1.4从三个不同方向看物体的形状

合集下载

初中数学知识点精讲精析 从三个方向看物体的形状

初中数学知识点精讲精析 从三个方向看物体的形状
【解析】正方体及圆柱从正面看到的形状是四边形,球与圆锥从正面看到的形状分别是圆与三角形,所以这4个几何体中从正面看到的形状是四边形的个数为2
例3.画出下面几何体的三种形状图.
【答案】
【解析】从正面看,有3列,左边第1列有1层,第2列有3层,第3列有2层;从左面看,有2行,前面一行有1层,后面一行有3层;从上面看,有3列,从左面数第1列,有1个正方形,第2列有2个正方形,第3列有1个正方形(横着叫行,竖着叫列).
【解析】从上面看可得到两个相邻的正方形,故选A.
3.【答案】A
【解析】俯视图不是圆的几何体只有正方体。
课外拓展
了解三视图的画法
在画组合体三视图之前,首先运用形体分析法把组合体分解为若干个形体,确定它们的组合形式,判断形体间邻接表面是否处于共面、相切和相交的特殊位置;然后逐个画出形体的三视图;最后对组合体中的垂直面、一般位置面、邻接表面处于共面、相切或相交位置的面、线进行投影分析。当组合体中出现不完整形体、组合柱或复合形体相贯时,可用恢复原形法进行分析。
3.三种形状图的画法
(1)常见几何体的三种形状图的画法
①确定从不同方向 看到的几何体的形状。
例如圆锥从正面看到的是三角形,从左面看到的是三角形,从上面看到的是带圆心的圆。
②虚实要求:画图时,看得见的轮廓线画实线,看不见的轮廓线画虚线。
(2)正方体搭建的几何体的画法
画三种形状图,要注意从相应的方向看几何体有几列,每列有几个正方体(即有几层),根据看到的列数、层数,画出相应的图。
③从左面看到的形状图与从上面看到的形状图反映物体的宽度。
(2)由三种形状图判断小正方体的个数
如图,①从正面看到的形状图和从左面看到 的形状图中可以看出几何体的层数有3层;②从左面看到的形状图和从上面看到的形状图中可得到排数有3排;③从正面看到的形状图和从上面看到的形状图中可得到列数有2列。

1.4 从三个方向看物体的形状

1.4 从三个方向看物体的形状

1.4 从三个方向看物体的形状
例桌上放着一个圆锥和一个正方体,如下图,
请说出下面三幅图分别是从哪个方向看所得到的平面图形.
解析:
会看图是做此题的关键,一定要把这两个图形看作一个整体去观察.从正面看,就分别是它们各自从正面看得到的平面图形,一个是三角形,一个是正方形,所以应和(2)对应;从上面看,也是它们各自从上面看到的平面图形,一个是带圆心的圆,一个是正方形,所以应和(1)对应;从左面看,圆锥挡住了一部分正方体,所以看上去是三角形和一个被挡住了一部分的正方形的组合图形,应和(3)对应.
答案:
(1)从上面看;(2)从正面看;(3)从左面看.。

《从三个方向看物体的形状》示范教学方案

《从三个方向看物体的形状》示范教学方案

第一章丰富的图形世界1.4从三个方向看物体的形状一、教学目标1.会画立方体及其简单组合的三种形状图.2.根据从上面看的形状图及其相应位置的立方体的数量,画出从正面看与从左面看的形状图.3.培养学生重视实践、善于观察的习惯,在与他人合作交流时,和谐友好地相处.二、教学重点及难点:重点:会画立方体及其简单组合的三种形状图.难点:根据从上面看的形状图及其相应位置的立方体的数量,画出从正面看与从左面看的形状.三、教学准备正方体模型四、相关资源:相关图片五、教学过程【复习回顾】创设情境,引入新课欣赏诗句以及图片.题西林壁——苏轼横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.师生活动:教师利用课件展示庐山景观,让学生朗读苏东坡的《题西林壁》,并说说“横看成岭侧成峰”一句中,蕴含了怎样的数学道理.小结:“横看成岭侧成峰”一句中,蕴含的数学道理:横看就是从东面西面看庐山山岭连绵起伏,从侧面看庐山山峰耸立.设计意图:以苏东坡的诗句《题西林壁》营造一个崭新的数学学习氛围,创设实际情境,激发兴趣,使学生集中注意,同时引入课题并从中挖掘藴含的数学道理,让学生感受数学的魅力,培养学生的数学文化素养.板书:4.从三个方向看物体的形状本图片是微课的首页截图,本微课资源讲解了从不同的方向看立体图形,并通过讲解实例与练习,巩固所学的知识点.若需使用,请插入微课【知识点解析】从不同的方向看.【新知讲解】探究一:从三个方向看物体的形状活动1:从不同方向观察实物当我们从不同的方向观察同一物体时,通常可以看到不同的图形,观察下列图片中的同一物体,说一说分别是从哪个方向看到的:思考:每台摄像机拍到的分别是下面的哪张照片?师生活动:教师引导学生思考.A是(2);B是(1);C是(3);D是(4).设计意图:教学中,首先呈现了几张照片,让学生从生活实际中感受到从不同的方向看会有不同的效果,从而引入教学内容,感受不同的方向观察物体的不同性.通过前面的学习,我们发现许多物体从不同方向观察会看到不同的图形(视图),为了研究问题的方便让我们来认识几种特殊的视图:活动2.从三个方向看小正方体组成的几何体师生合作画出如下图形:设计意图:循序渐进地提出问题(活动),让学生逐步感受从不同角度看结果不一样,逐步得到从正前方、正左方、正上方所看到的三种形状图的概念.活动三:小组活动1:现在,我们就以小组为单位,用5个小立方块搭建几何体,要尽可能地搭出不同的几何体,再从不同的方向看一看自己所搭的几何体,并画出几何体的形状图.学生展示搭成的几何体,并画出从三个方向看到的图形.从三个不同方向看几何体(1)(2)(3)(4)形状图.(1)(2)(3)(4)小组活动2:用6个自制小立方块摆出几何体,画出三个方向看到的形状图.要求:每小组至少摆两种;画好后小组之间互相交流批改.设计意图:有五个立方块增加到六个,学生自己先摆后画,进一步巩固画法. 学生动手操作,用几个小正方体搭一搭,学会与人交流、合作,使学生真正成为学习的主体,形成师生互动的课堂氛围.探究二:数几何体中小正方体的个数活动 1.如图是几个小立方块所搭几何体的从上面看的图形形状,小正方形的数字表示该位置小立方块的个数.这个几何体的从正面看和从左面看的形状图.师生活动:让学生动手利用手中的小立方块,尝试独立寻求解决问题的方法,特别要重视利用操作来帮助解决问题,然后同伴进行交流,验证结果.解法一:先摆出这个几何体,再画出它的从正面看和从左面看的形状图.解法二:根据从上面看的图联想确定从正面看到的图有3列,从左面看的图有2列,再根据数字确定每列方块的个数.由此可得形状图如下:活动2.一个几何体由几个大小相同的小立方块搭成,从上面看和从左面看所看到的平面图形如图所示.搭出满足条件的几何体,你搭的几何体由几个小立方块搭成?与同伴交流.从上面看从左面看注意:如果两个几何体从正面看、左面看、上面看所看到的平面图形是相同的,但是物体的形状并不一定相同,甚至几何体A可以由五个小立方块组成,而几何体B是由六个小立方块组成的.【典型例题】例1画出如图所示的几何体从正面、左面和上面看到的图形.分析:从正面看到的图有三列,每列的方块数分别是2,1,1;从左面看到的图有两列,每列的方块数分别是2,1;从上面看到的图有三列,每列的方块数分别是1,1,2.解:几何体的三种形状图如图所示.总结:画几何体的三种形状图关键是确定它们的列数及每列方块的个数.例2用小立方体搭一个几何体,使得它从正面和上面看到的图形如图所示,搭建这样的几何体,最多要用几个小立方块?最少要用几个小立方块?分析:(1)在从上面看到的图中,用小正方形中的数字表示在该位置小立方块的个数.由于从正面看到的图每列的个数即是从上面看到的图中该列小正方形中的最大数字,因此,用的小立方块块数最多的情况是每个小正方形中都填该列的最大数字.如图(1)所示,此种情况共用小立方块17块.(2)搭建这样的几何体,每列只要有一个最大数字,其他小正方形内的填写数字减少到最少的1,即可满足条件,如图(2)所示,这样只需要小立方块11块即可.解:搭建这样的几何体,最多用17块小立方块,最少用11块小立方块.总结:由于从正面看到的图的列数与从上面看到的图的列数相同,从正面看到的图每列方块数是从上面看到的图该列小正方形中的最大数字,因此每行每列最多可摆放3个小的立方块.例3如图是一个几何体的三种形状图(含有数据),则这个几何体的侧面展开图的面积等于().A.2π B.π C.4 D.2分析:由从上面看到的图可以看出该几何体是圆柱或圆锥;由从正面看到的图和从左面看到的图中可以看出该几何体是四棱柱或圆柱.两者结合可以猜测这个几何体是圆柱.由题意,得这个几何体是圆柱,且圆柱的直径为1,高为2.圆柱的侧面展开图是一个长方形,此长方形的长为π,宽为2,则该圆柱的侧面积为2π.答案:A.【随堂练习】1.从正面看如图所示的立体图形得到的图形是().解:B.2.从正面看由一些大小相同的小正方体组成的几何体的形状图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,从左面看这个几何体的形状图是().解:A.点拨:因为从上面看到的图中,最上面一行小正方形内数字为1,2,所以从左面看到的图最左边一列的小正方形的个数为2;因为从上面看到的图中,中间一行小正方形内数字为3,2,所以从左面看到的图中间一列的小正方形有3个.故选项B,C,D错.3.如图是由若干个大小相同的小正方体堆砌成的几何体,那么其三种形状图中面积最小的是( ).A.从正面看到的图B.从左面看到的图C.从上面看到的图D.三种一样解:B.点拨:从正面看到的图和从上面看到的图的面积一样,有5个小正方形的大小,而从左面看到的图有3个小正方形的大小,故选B.4.有一辆汽车如图所示,小红从楼上往下看这辆汽车,小红看到的形状是图中的().5.分别从正面、左面、上面看一个由若干个正方体组成的立体图形,得到的平面图形如下图所示,你能搭出这个立体图形吗?动手试试看!参考答案:4.解析:小汽车从上面看只能看到驾驶室的顶部和车身的上面,从上面看到的是两个长方形,故选B.5.如图所示.六、课堂小结谈谈你在本节课的收获从本节的例子可知,给定几何体的形状,可以确定从三个不同方向看到的形状图;反过来,能根据从不同方向看到的几何体的形状图确定搭出的几何体的小立方块的个数.设计意图:有师引导学生回顾这节课的新知,让学生大胆发言,从而加深印象.七、板书设计4.从三个方向物体形状一、从三个方向看小正方体组成的几何体1.五个小正方体:2.六个小正方体:二、数小正方体的个数4.如图,是由一些相同的小正方体构成的立体图形的三视图这些相同的小正方体的个数是().主视图左视图俯视图A.4 B.5 C.6 D.75.如图,桌子上放着一个圆锥和一个圆柱,请写出下面三副图中从哪具方向看到的?(1) (2) (3)6.如图两个图形分别是某个几何体的俯视图和主视图,则该几何体是________.俯主7.如图是某几何体的三种形状图.(1)说出这个几何体的名称;(2)画出它的表面展开图;(3)若从正面看到的形状图的长为15 cm,宽为4 cm;从左面看到的形状图的宽为3 cm,从上面看到的形状图的最长边长为5 cm,求这个几何体的所有棱长的和为多少?它的侧面积为多大?它的体积为多大?参考答案1.C.2.A.3.D.4.B.5.(1)左面,(2)上面,(3)前面.6.圆柱.7.分析:由三种形状图可确定该几何体为三棱柱,然后确定出各棱的长,从而可画出它的表面展开图,并计算出它的侧面积和体积.解:(1)这个几何体是三棱柱;(2)它的表面展开图如图所示;(3)它的所有棱长之和为(3+4+5)×2+15×3=69(cm).它的侧面积为3×15+4×15+5×15=180(cm2);它的体积为12×3×4×15=90(cm3).。

北师大版七年级上册数学1.4 从三个方向看物体的形状(解析版)

北师大版七年级上册数学1.4 从三个方向看物体的形状(解析版)

1.4 从三个方向看物体的形状一、单选题1.如图,从左面看如图所示的几何体得到的平面图形是()A.B.C.D.【答案】B【解析】【分析】直接根据三视图进行排除选项即可.【详解】由立体图形的三视图可直接排除A、C、D,只有B符合该立体图形的左视图;故选B.【点睛】本题主要考查三视图,熟练掌握三视图的方法是解题的关键.2.有一种圆柱体茶叶简如右图所示,则它的主视图是()A.B.C.D.【答案】D【解析】【分析】根据主视图的定义判断即可.【详解】茶叶盒是圆柱体,主视图应是矩形,故选D.【点睛】本题考查主视图的定义,关键在于牢记基本概念.3.下列几何体中,其俯视图与主视图完全相同的是()A.B.C.D.【答案】C【解析】【分析】俯视图是指从上面往下看,主视图是指从前面往后面看,根据定义逐一分析即可求解.【详解】解:选项A:俯视图是圆,主视图是三角形,故选项A错误;选项B:俯视图是圆,主视图是长方形,故选项B错误;选项C:俯视图是正方形,主视图是正方形,故选项C正确;选项D:俯视图是三角形,主视图是长方形,故选项D错误.故答案为:C.【点睛】本题考查了视图,主视图是指从前面往后面看,俯视图是指从上面往下看,左视图是指从左边往右边看,熟练三视图的概念即可求解.4.下列立体图形中,俯视图是圆的是()A.①①①B.①①①C.①①①D.①①①【答案】D【解析】【分析】俯视图是从几何体的上面看物体,所得到的图形,分析每个几何体,解答出即可.【详解】解:①圆柱的俯视图是圆,符合题意;①圆锥的俯视图是圆,符合题意;①六棱柱的俯视图是六边形,不符合题意;①球的俯视图是圆,符合题意.故选:D.【点睛】本题主要考查了简单几何体的俯视图,具有一定的空间想象能力是解决本题的关键.5.某几何体的三视图如下所示,则该几何体可以是()A.B.C.D.【答案】A【解析】【分析】【详解】解:根据主视图、左视图、俯视图的平面图形,可以判断该几何体为A.故选:A6.如图是由几个大小相同的小正方体搭成的几何体从不同方向看到的平面图形,则搭成这个几何体的小正方体有()A.3个B.4个C.5个D.6个【答案】B【解析】【分析】根据给出的几何体,通过动手操作,观察可得答案为4,也可以根据画三视图的方法,发挥空间想象能力,直接想象出每个位置正方体的数目,再加上来解答即可.【详解】由三视图可得,需要的小正方体的数目:1+2+1=4.故选:B.【点睛】本题考查了几何体的三视图及空间想象能力.根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.7.如图,模块①由15个棱长为1的小正方体构成,模块①-①均由4个棱长为1的小正方体构成.现在从模块①-①中选出三个模块放到模块①上,与模块①组成一个棱长为3的大正方体.下列四个方案中,符合上述要求的是()A.模块①,①,①B.模块①,①,①C.模块①,①,①D.模块①,①,①【答案】C【解析】【分析】观察模块①可知,模块①补到模块①上面的左边,模块①补到模块①上面的右上角,模块①补模块①上面的右下角,使得模块①成为一个棱长为3的大正方体.【详解】由图形可知模块①补模块①上面的左边,模块①补模块①上面的右上角,模块①补模块①上面的右下角,使得模块①成为一个棱长为3的大正方体,故能够完成任务的是模块①,①,①,故选C.【点睛】此题主要考察简单组合体的三视图.8.从不同方向看一只茶壶,你认为是俯视效果图的是()A.B.C.D.【答案】A【解析】俯视图是从上面看到的平面图形,也是在水平投影面上的正投影. 易判断选A.9.一个几何体的三视图如图所示,则该几何体外接球的表面积为()A .43πB .83πC .163πD .3π 【答案】C【解析】【分析】根据主视图、左视图以及俯视图,即可判定这个几何体是圆锥,求出外接球的半径,即可求出球的表面积.【详解】由三视图可知,这个几何体是圆锥,其外接球的球心恰好是正三角形的外心,因为这个圆锥外接球的半径为23=① 所以这个球的表面积为:S =4πr 2=163π. 故选C.【点睛】本题考查了利用三视图求几何体的表面积.理解外接球的球心就是正三角形的外心是解题的关键. 10.如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是( )A.3个或4个或5个B.4个或5个C.5个或6个D.6个或7个【答案】A【解析】根据主视图①左视图①画出俯视图可能情况.所以选A.二、填空题11.从正面、左面、上面看一个几何体,三个面看到的图形大小、形状完全相同的是__.(写出一个这样的几何体即可).【答案】正方体【解析】【分析】分别根据所看位置写出每个几何体的三视图形状,即可得到答案.【详解】解:正方体从正面看是正方形、从左面看是正方形、从上面看正方,符合题意,故答案为正方体.【点睛】本题考查三视图相关,从不同的方向观察几何体,即可分析得到答案.12.如图是一个由一些相同的小正方体搭成的立体图形,图(1)~(3)是它的三视图,试标出各个视图的名称________,______,_________.【答案】(1)左视图(2)俯视图(3)主视图【解析】【分析】根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,可得答案.【详解】解:根据题意可知,主视图是(3),左视图是(1),俯视图是(2),故答案为:(1)左视图,(2)俯视图,(3)主视图.【点睛】本题考查了简单组合体的三视图,从上边看到的图是俯视图,从左边看到的图是左视图,从正面看到的图是主视图.13.一个几何体分别从上面看、从左面看、从正面看,得到的平面图形如图所示,则这个几何体是________.【答案】圆柱【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.故答案为:圆柱.【点睛】本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.14.已知一个物体由x个相同的正方体堆成,它的三视图如图,那么x ________.【答案】8【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,求出总个数即可.【详解】综合三视图,这个物体共有3层,第一层有6个,第二层2个,一共有6+2=8(个),则x=8,故答案是:8.【点睛】考查了由三视图判断几何体,考查了对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.15.若干桶方便面摆放在桌面上,如图所给出的是从不同方向看到的图形,从图形上可以看出这堆方便面共有_______桶.【答案】6【解析】【分析】从俯视图中可以看出最底层方便面的个数及摆放的形状,从主视图可以看出每一层方便面的层数和个数,从左视图可看出每一行方便面的层数和个数,从而算出总的个数.【详解】三摞方便面是桶数之和为:3+1+2=6.故答案是:6.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.16.一个由若干个小正方体搭建而成的几何体的三视图如下,则搭建这个几何体的小正方体有_______个。

北师大版七年级上册1.4从三个方向看物体的形状(教案)

北师大版七年级上册1.4从三个方向看物体的形状(教案)
对于视图之间的转换和识别,教师可以通过对比不同物体的三视图,让学生观察并分析它们之间的差异和联系。例如,比较两个不同角度观察的立方体的三视图,让学生理解同一物体在不同视图下的表现。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《从三个方向看物体的形状》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要从不同角度观察物体的情况?”比如,当我们看到一个复杂的玩具或建筑模型时,我们需要从不同的方向去观察它,才能完整地理解它的形状。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三视图的奥秘。
2.教学难点
-空间想象能力的培养:学生需要能够将二维的视图转换为三维的物体,这对于一些空间想象能力较弱的学生来说是一大挑战。
-三视图的绘制技巧:如何准确地从三个不同方向绘制物体的视图,特别是当物体有隐藏线时,如何处理这些隐藏线。
-视图之间的转换和识别:学生需要理解不同视图之间的相互关系,并能从一个视图推断出其他视图的信息。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三视图在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
二、核心素养目标
1.培养学生的空间观念,提高对物体形状和几何图形的认知能力,使学生能够从不同角度观察和分析物体。
2.培养学生的几何直观,通过观察、想象、绘制三视图,加强对物体形状的理解和感知。

七年级数学上1.4从三个不同方向看物体的形状目标二从不同方向看到的平面图形还原几何体新版北师大版14

七年级数学上1.4从三个不同方向看物体的形状目标二从不同方向看到的平面图形还原几何体新版北师大版14

7 【2021·黄冈启黄中学月考】从正面、左面和上面看一个 几何体,所得到的图形如图所示,回答下列问题: (1)该几何体有几层? 解:该几何体有2层;
(2)该几何体共有多少个小正方体? 该几何体共有8个小正方体.
思维发散练 1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月21日星期一下午10时52分59秒22:52:5922.3.21
谢谢观赏
You made my day!
2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那 些善于独立思考的人,给那些具有锲而不舍的人。2022年3月下午10时52分22.3.2122:52March 21, 2022
3、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。 2022年3月21日星期一10时52分59秒22:52:5921 Marc h 2022
【点拨】观察发现,该几何体为圆锥和圆柱 的组合体,其体积为(6÷2)2π×4+13×(6÷2)2π ×(7-4)=45π(m3).故选 C.
5 【2020·雅安】【教材P18习题T4变式】一个几何体由若 干个大小相同的小正方体组成,它从上面看到的图形和 从左面看到的图形如图所示,那么组成该几何体所需小 正方体的个数最少为( B ) A.4 B.5 C.6 D的体积.(π取3.14)
【点拨】观察几何体从正面与从上面看到的平面图 形,可以看出该几何体是由长方体与圆柱组成的, 因此计算体积时把长方体的体积与圆柱的体积分别 算出来,再求和.注意长方体与圆柱的体积计算公 式的运用.
解:该几何体由圆柱和长方体组成,所以它的体积就是 长方体的体积加圆柱的体积.长方体的体积为 25×30× 40=30000(cm3),圆柱的体积为 π×2202×32≈ 10 048(cm3),所以该几何体的体积=长方体的体积+ 圆柱的体积≈30 000+10 048=40 048(cm3).

北师大版数学七年级上册1.4从三个方向看物体的形状优秀教学案例

北师大版数学七年级上册1.4从三个方向看物体的形状优秀教学案例
北师大版数学七年级上册1.4从三个方向看物体的形状优秀教学案例
一、案例背景
本节课的教学内容是北师大版数学七年级上册1.4“从三个方向看物体的形状”。在此之前,学生已经学习了平面图形的认知和立体图形的初步知识,对空间几何有了基本的了解。但是,从三个方向看物体,对于他们来说是一个新的视角和挑战。
在现实生活中,我们观察物体和几何图形时,往往是从不同的方向和角度进行的。因此,本节课的学习对于培养学生的空间想象能力和抽象思维能力具有重要意义。同时,通过观察和描述物体的形状,也能培养学生的观察力和表达能力。
(二)讲授新知
1.通过多媒体课件,展示各种物体和几何图形,引导学生从三个方向观察并描述它们的形状。
2.讲解从三个方向观察物体和几何图形的具体方法和步骤,如正面、侧面、上面等。
3.举例说明从不同方向观察物体和几何图形可能得到的不同的形状,并引导学生理解和掌握其中的规律。
(三)学生小组讨论
1.将学生分成小组,每个小组分发一些物体模型和几何图形,要求他们从三个方向观察并描述它们的形状。
3.针对学生的表现和反馈,进行教学反思和调整,为后续教学做好准备。
(五)作业小结
1.布置相关的作业,让学生在课后巩固所学知识,提高他们的实际操作能力。
2.提醒学生认真完成作业,并鼓励他们积极思考和探索,提出自己的问题。
3.对学生的作业进行及时的批改和反馈,指出他们的优点和需要改进的地方,帮助他们不断提高。
2.设计讨论问题,引导学生思考和探索从不同方向观察物体和几何图形的意义和规律。
3.鼓励学生积极发表自己的观点和发现,促进小组成员之间的交流和合作。
(四)总结归纳
1.引导学生总结从三个方向观察物体和几何图形的规律和方法,并强调其重要性和应用价值。

北师大版七上数学1.4《从三个方向看物体的形状》知识点精讲

北师大版七上数学1.4《从三个方向看物体的形状》知识点精讲

识点总结(1)三视图:是指观测者从三个不同位置观察同一个空间几何体而画出的图形。

将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。

一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图--能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图--能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图--能反映物体的左面形状,三视图就是主视图、俯视图、左视图的总称。

(2)特点:一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。

三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。

三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。

主俯长对正、主左高平齐、俯左宽相等即:主视图和俯视图的长要相等主视图和左视图的高要相等左视图和俯视图的宽要相等。

在许多情况下,只用一个投影不加任何注解,是不能完整清晰地、表达和确定形体的形状和结构的。

三个形体在同一个方向的投影完全相同,但三个形体的空间结构却不相同。

可见只用一个方向的投影来表达形体形状是不行的。

一般必须将形体向几个方向投影,才能完整清晰地表达出形体的形状和结构。

课后练习1.球的三视图是( )A.三个圆B.三个圆且其中一个包括圆心C.两个圆和一个半圆弧D.以上都不对2.若一个几何体的三视图都是正方形,则这个几何体是( )A.长方体B.正方体C.圆柱D.圆锥3.下列命题正确的是( )A.三视图是中心投影B.小华观察牡丹花,牡丹花就是视点C.球的三视图均是半径相等的圆D.阳光从矩形窗子里照射到地面上,得到的光区仍是矩形答案:1.A 2.B 3.C习题训练。

北师大版数学七年级上册1.4《从三个方向看物体的形状》课件(25张PPT)

北师大版数学七年级上册1.4《从三个方向看物体的形状》课件(25张PPT)

不识庐山真面目,只缘身在此山中.
从本节的例子可知,给定几何体的形状,可以确定从三个不同方向看到的形状图;
解:几何体的三种形状图如图所示. 例2.用小立方体搭一个几何体,使得它从正面和上面看到的图形如图所示,搭建这样的几何体,最多要用几个小立方块?最少要用几
个小立方块?
解:搭建这样的几何体,最多用17块小立方块,最少用11块小立方块.
5.分别从正面、左面、上面看一个由若干个正方体组成的立体图形,得到的平面图形如下图所示,你能搭出这个立体图形吗?动手试
试看!
从本节的例子可知,给定几何体的形状,可以确定从三个不同方向看到的形状图;
谈谈你在本节课的收获:
从上面看 C.从上面看到的图
D.三种一样
不识庐山真面目,只缘身在此山中.
从本节的例子可知,给定几何体的形状,可以确定从三个不同方向看到的形状图;
例3.如图是一个几何体的三种形状图(含有数据),则这
个几何体的侧面展开图的面积等于( A ).
1
1
2
2
从正面看 从左面看
从上面看
A.2π
B.π
C.4
D.2
随堂练习
1.从正面看如图所示的立体图形得到的图形是( B ).
A
B
C
D
随堂练习
2.从正面看由一些大小相同的小正方体组成的几何体的形 状图如图所示,其中正方形中的数字表示在该位置上的小正方 体的个数,那么,从左面看这个几何体的形状图是( A ).
解法一:先摆出这个几何体,再画出 它的从正面看和从左面看的形状图.
21 12
探究新知
解法二:根据从上面看的图联想确定从正面看到的图有3列, 从左面看的图有2列,再根据数字确定每列方块的个数. 由此可得形状图如下:

1.4从三个方向看物体的形状

1.4从三个方向看物体的形状

课题:第一章第四节从三个方向看物体的形状课型:新授课教学目标:1.初步体会从不同方向观察同一物体可能看到不同的图形;能识别简单的三视图;会画简单几何体及其简单组合的三视图.2.经历从不同方向观察物体的活动过程,发展空间观念,积累数学经验;能在与他人交流的过程中合理清晰地表达自己的思维过程.3.通过创设情景与主动探究,培养学生学习数学的热情和兴趣,体验观察是获得知识的重要途径,形成与他人合作交流的意识,发展学生的审美情趣.教法及学法指导:根据学生已具备的知识与能力条件及本节课内容的特点,结合新课标重活动、重合作、重实践、重过程、重能力的要求,组织数学活动是本节课的重要措施.因而“观察法”贯穿始终,用“发现探究法”、“练习法”突出本节课的重点,用“演示法”、“讨论法”突破本节课的难点.让学生经历“观察、探索、操作、想象、交流”的过程,真正成为学习的主体.考虑到七年级学生具有教强烈的自我表现欲,并且在此之前已有较多的关于形状的感知经验,对一些图形的变化有了一定的观察、探索、表达能力,站在不同的位置看自己熟悉的事物发现规律、总结规律,应该说内容有趣,并富有挑战性.在本节课上有的学生可能会在观察过程中特别迅速得出结论,也可能存在有些学生抽象能力较弱看不出来.针对前者,我会在课堂中给他们展示的机会让他们当小老师,针对后者,指导他们尝试摆简单几何体,使他们尝到成功的喜悦.课前准备:教具:多媒体课件,相关物品学具:学生每人准备三个自制的正方体(大小相同)教学过程:一、创设情境欣赏漫画《9与6》师:请同学们观察下面的漫画,思考两个同学为什么争吵?生1:两位同学由于观察的方向不同,所以看到的结果也不一样.生2:两位同学所站的位置不同,观察的角度不同,结果也就不同.师:那这幅漫画给我们什么启示.生3:观察事物要从多方面观察.生4:我们从不同的方向看物体,看到的结果可能不一样.师:回答得非常好!生活中从多个角度仔细观察,才能发现事物的本质.这就是我们这节课将要学习的内容《从三个方向看物体的形状》.看什么呢?看生活中熟悉的物体和数学中熟悉的简单几何体.【设计意图】从学生熟悉的事物和情景入手,让学生经历从不同方向观察物体的活动过程,通过情景,体会从不同方向观察同一事物可能看到不同的图形,迅速进入学习状态,既激发了求知欲望,又激活了学习思维.从而引入课题..二、感知探究1.初步感知下面请三个同学做一个小实验,谁愿意?生:我愿意!(学生纷纷举手,体现了强烈的参与意识.)师:(老师摆好道具)请A、B、C同学上来.(按不同方位站好.)请告诉大家,你们分别看到了什么?A:我看到了一个小正方体和一个水壶.B:我看到了一个水杯和一个水壶.C:我看到了一个小正方体、一个水壶、一个水杯.师:讲台上明明摆着同样的东西,但他们三个人的回答却不一样,是怎么回事呢?生:因为他们站的角度不同,看到的东西就不一样了.师:现在请A、B两位同学调一下位置,看看是不是这么一回事.生:是的.师:谢谢你们的合作.确实经过同学们的实验、观察发现了……生:发现了从不同方向看,看到的东西可能不一样.师: 同学们看这幅图中,每幅图是谁看到的?生: 第(1)幅图是B 看到的,第(2)幅图是A 看到的,第(3)幅图是C 看到的,第(4)幅图是D 看到的. 师:完全正确!同学们应用生活经验解决了问题.现在你能不能举一些生活中从不同角度观察同一对象的实例呢?生:从不同的方向看一个人,看到的五官不一定相同.生:美术课,老师叫我们去写生,从不同方向画同一个物体或景色. 生:达芬奇画鸡蛋,他从不同的方向看,画出来的鸡蛋不一定相同. 生:看刑侦电影,罪犯拍照的时候要拍不同方向的照片.(其他同学大笑) 师(笑):数学也运用到犯罪学了,太精彩了!【设计意图】这段师生举例.较好地体现了数学与生活的紧密联系,体现了数学的应用价值,体现了学生的参与意识和情感态度,知识真正成为了多元目标的载体,新课程的理念得到了淋漓尽致的体现.【实际效果】这段师生举例.较好地体现了数学与生活的紧密联系,体现了数学的应用价值,体现了学生的参与意识和情感态度,知识真正成为了多元目标的载体,新课程的理念得到了淋漓尽致的体现.2.探究新知师:同学们说的这些现象都很好,并且都体现了一个问题,那就是要从不同的方向看,才能全面看清某件事物.(用多媒体展示图片)让学生观察说出下面的三幅图分别是从哪个方向看到的吗?左面上面师:有答案了吗?第一幅图请一位同学回答. 生:从后面看到的.师:相对于后面的叫什么呢? 生:正面.师:所以也可以说是从正面看到的结果.第二幅图呢?生:从上面看到的结果.师:第三幅图呢?生:从左面看到的.师:从别的面还能看到这样的结果吗?生:从右面,只不过画法有点区别.师:回答得很完整, 无论是生活中的物品,还是数学中的简单的几何体,我们从不同方向看或观察同一物体时,可能看到不同的图形.请问:我们要从几方面才能把一个物体看完整呢?生:要从六个方面:上、下、左、右、前、后.师:还有人有不同意见吗?生:还有侧面呢.师:那至少要从几个方向看呢?生:三个就对了.因为数学中的几何体可以认为是对称的.师:今天,所有同学表现得都棒极了,说的答案都很有道理.(教师总结)人们从不同的方向观察某个物体时,可以看到不同的图形.我们一般从正面;从左面看;从上面看.现在让我们继续来观察一下数学中我们熟悉的简单几何体.打开书第16页,用自己做的几何体搭一搭图1-18,摆一摆.四人小组围坐交流,边看边记录.师:为了使同学们对组合体有更进一步的认识,请同学们按屏幕显示的几何体,动手用桌子上的积木摆一摆、搭一搭,然后思考下面的问题,并小组议一议.①说说你从正面、左面、上面分别看到什么图形?②小组的各同学看到的结果是否一样?为什么?(给学生充足的时间观察讨论,并发表意见)生①:我从正面看到四个正方形,从左面看到三个正方形,从上面看到三个正方形.生②:我从正面看到三个正方形,从左面看到四个正方形,从上面看到三个正方形.生③:小组的各同学看到的结果不一样,因为坐的位置不同,方向不同.师:回答得很好.假设从右下角往左上角的方向看是从正面看,则从左向看为从左看,站在观察主视图的位置从上往下看为从上面看.(课件配合显示))师:同学们画图时要保证每个正方形大小一致.师:为了巩固一下刚才所学的知识,同学们有没有信心考考自己?生:有.师:请做课本第17页随堂练习.生:黑板上画图.【设计意图】教学中可以让学生先思考片刻,然后进行讨论和交流,在交流过程中,要求学生描述出为什么是这样的,然后教师可以展示课件,让学生有一个更为清晰的认识.对于学生的表述,注意引导他们尽可能清楚、有条理地表述.三、交流提高做一做用课前准备的6个小正方体,以小组为单位,由一位同学搭几何体(可以变换不同的搭法),其他同学画出从正面、左面、上面看到的几何体的形状图,并与同伴进行交流.(实物展台投影)学生举例:正面看上面看左面看【设计意图】这一活动设计既能指导学生读书、引发学生动脑思考、动手操作,小组讨论解决问题,又给学生创设了交流的机会,引导他们学会合作、探究.【实际效果】激发了学生的学习兴趣,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中充分感受数学来源于生活又应用于生活;真正理解和掌握基本的数学知识与技能;发展学生空间观念;培养学生合作交流的能力.四、拓展应用一个几何体由几个大小相同的小立方块搭成,从上面看和从左面看所看到的形状图如图所示.搭出满足条件的几何体,你搭的几何体由几个小立方块搭成?与同伴交流.从上面看从左面看师: 从两个方向看到的形状图想象出几何体,你可以吗?生:纷纷思考.生:很多学生感觉困难.师:那同学们小组合作搭一下吧.生:合作,交流生:我们组得到答案了,是6个.生:我们认为是5个.师:那请你们给大家展示下吧.师:在平面图形还原到立体图形的探究过程中,同学们学到了哪些知识?生:通过学习我认为,今后观察事物要做到全面、细致,不然就成了“盲人摸象”.生:生活中的有些现象可能是多种原因造成的,因此遇到问题要多动动脑筋.比如,这个问题我就没有想到两种情况.生:解决问题不仅要动脑筋,而且还要动手去实践,实践才能出真知.师:(小结)刚才同学们做的模型、谈的感想都非常精彩.通过讨论,我们都知道了,这个问题的答案不只一个.如果我们不是通过做实验的方法去观察、去发现,那么我们对这个问题的认识,很有可能就是片面的,也会犯盲人摸象一样的错误.二组和三组虽然有一点点缺陷,但是这些同学的想像力是非常丰富的,精神可嘉.【设计意图】已知部分形状图及有关数据信息,反向思考几何体的构成,从而力图让学生从逐步脱离实物观察,迫使学生进入真正的想象层面,提高空间想象能力.在此过程中,通过由问题到模型,由模型再到脱离模型,较为完整地反映出一个问题解决的全貌.【实际效果】通过小组合作既锻炼了学生的小组合作能力,又提高了学生的空间想象能力,同时又因为是小组间竞争,为了小组荣誉,每位成员都积极思考,完成较好.五、总结升华这节课你有哪些收获?有何体会?你认为自己的表现如何?教师引导学生回顾、思考、交流. 教师重点关注:1.学生的归纳总结能力.2.能否对问题有进一步的思考.3.能否发表自己的见解,倾听他人的意见,反思学习过程.4.学生对两圆位置及数量关系的掌握及熟练程度,对拓展知识的理解程度.师:同学们掌握得还不错.这节课你学到了什么?你有何收获?生:我学到了从不同方向看同一个物体,可能看到不同的结果.生:我还学到了从三个方向看正方体、长方体、圆锥.师:说得很好!你学习了从不同方向看,对你做人有何启示?生:我觉得,不仅看物体是如此,看每个人、每件事也是如此,要全面观察.师:太好了!你真聪明,想了这么多,而且很有道理.老师也有同感,从不同角度观察一件事或一个人,所得的结果也不一样.我作为一个老师,也会全面地评价每一个学生.同时也希望同学们今后看物、看人、看事要多角度、多方向分析观察,这样我们就会发现许多美好的闪光的东西,从而感受生活是多么的美好.【设计意图】如此小结,画龙点睛之笔,给人以耳目一新之感,使本课主题得以升华,而且教师也自我评价了一番,这又是对课堂评价的再发展,说明教师角色的真正转变. 六.当堂反馈1.如图,水平放置的圆柱形物体从正面,左面,上面看到的平面图形是()B.D.2. 观察图中的几何体,指出右面三幅图分别从哪个角度看到的?3.连一连:用线连接从正面看下列物品对应的平面图形水杯球领奖台4. 如图是由几个小正方体所搭成的几何体上面看到的图形,小正方形中的数字表示在该位置的小正方体的个数,请你画出从正面、左面可以看到的图形.【设计意图】通过几个题目巩固本节课所学的知识,并检验学习目标的达成度,指导下面的学习.七、作业设置学课本习题1.6(必做)1、2、3(选做)4板书设计:教学反思:本节课基本达成课前预设的教学目标,教学重点突出,难点得到突破,并彰显出新课程观下的小班化数学课堂教学的特色.教学过程中主线明确,注重展示学生对数学知识的建构过程.创设了丰富多彩的教学情景,较好地体现了新课程的基本理念,关注了学生的心理需求,拓宽了学生的学习空间,激发了学生的兴趣和动机,鼓励了学生积极参与的热情,重视了学科间的相互渗透,发展了学生的创新思维,培养了学生的实践能力和应用意识,增强了学生的合作意识和探索精神,创造性地应用了课堂教学评价原理,恰当地运用了现代教育技术,展现了一个平等、互动的民主课堂.本节课循序渐进地让学生经历由观察模型、搭建模型、画出三种形状图,到脱离模型、由数(从上面看的形状图及其相应位置的立方体的数量)悟形(立体图形)、由形(立体图形)悟形(形状图)、搭模验证等过程,充分调动学生学习积极性,发展学生的空间观念.同时,我还注意到小班化教学的特点,关注班级里每一个学生,亲自参加每一小组的活动认真倾听并给予指导.将全体学生分成10个小组,进行观察,思考和交流;在学生发言过程中,我的提问面基本覆盖到全班学生,这样一节课中每个学生都能参与到数学学习活动中.在评价方面,我采用激励的评价方式,对学生的发言、操作、课堂练习和小结给予充分地肯定,同时采取了组长对组员的评价以及组与组之间的互评达到了评价多元化的目标,大大激发了学生的学习兴趣,学生的发言是越来越精彩,课堂展示出灵动的美.。

北师大版数学七年级上册教案 1.4从三个不同的方向观察

北师大版数学七年级上册教案 1.4从三个不同的方向观察

1.4从三个不同的方向看物体的形状学习目标:1、以观察物体为载体,着力发展学生的空间想象能力和推理能力,不断的发展学生的空间观念。

2、能根据观察的内容,画出从正面、上面、左面观察到的平面图形。

3、能据给出的平面图形还原立体图形,其中还包括根据给定的两个方向观察到的平面图形确定搭出这个立体图形所需要正方体的数量范围。

如果想象能力偏差的,动手摆摆。

教法与学法指导经过课前调查了解,发现学生掌握空间与图形领域的知识较扎实,对这部分知识学习热情高涨,希望自己是一个发现者、研究者、探索者,而在学生的精神世界中,这种需要特别强烈。

”让学生自己动手搭一搭、摆一摆,再从三个不同的方向观察物体。

教师为主导,学生为主体,小组合作与独立探究相结合。

教师点拨总结。

课前准备:多媒体课件教学过程(一)复习引入新课复习:1、一个物体从不同方向看就看出不同的平面图形,比如:从正面看圆柱体是()图形;从上面看是()图形。

2、从正面看、左面看、上面看都是相等的正方形,该物体是();从正面看、左面看、上面看都是相等的圆,该物体是();从正面看、左面看都是相等的长方形,俯视图是圆,则该物体是()看课本图1-17下列图片是哪个摄影师傅拍摄的?导入新课(板书课题)(二)探索交流,解决问题1.师:组织学生进行比赛画图,让学生独立观察由几个小立方体组成的立体图形,并画出从正面、上面、左面看到的形状,看谁做的又好又快。

从正面看从左面看从上面看生:画出从三方面看出的不同图形。

三生板演,生纠错。

师:出示17页随堂练习生:做练习,一生板演2、师出示:做一做:用6个小立方块搭成不同的几何体,画出从上面、左面、上面看到的几何体的形状图,并与同伴交流。

师:以小组为单位动手做一做并讨论交流结果。

设计意图学生小学已经较好的掌握了观察5个小立方体搭成的立体图形并画出平面图形。

再用6个的动手搭一搭,学生能够主动利用原来的方法,独立画出由6个小立方体搭成的立体图形,以比赛方式呈现即节约教学时间又可以激发学生的学习的兴趣。

2017-2018学年北师大版数学七年级上册教案1.4从三个方向看物体的形状

2017-2018学年北师大版数学七年级上册教案1.4从三个方向看物体的形状
2.能够根据物体的三视图,想象出物体的形状,并能够根据物体的形状画出三视图。具体内容包括:
a.研究物体与三视图之间的关系,学会通过观察三视图来识别物体。
b.掌握三视图的绘制方法,包括正方体、长方体等基本几何体的三视图绘制。
c.通过实例分析,了解三视图在实际应用中的重要性,培养空间想象能力。
本节课旨在帮助学生建立空间观念,提高观察物体和绘制三视图的能力,为后续学习几何知识打下基础。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的空间观念和几何直观能力,通过观察、想象和描述,提高对物体形状的认识,形成对三维空间的基本感知。
2.培养学生的逻辑思维与推理能力,使学生能够运用三视图知识,进行物体形状的分析和推理,锻炼抽象思维。
3.培养学生的创新意识和实践能力,鼓励学生在观察、想象、绘制三视图的过程中,发现规律,独立思考,解决实际问题。
今天的学习,我们了解了三视图的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对三视图的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对于三视图的概念和绘制方法的理解存在一些差异。有的同学能够迅速掌握,而有的同学则在转换和想象上遇到了困难。这让我意识到,在教授这部分内容时,需要更加注意个别差异,采取更加个性化的教学方法。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“三视图在建筑设计中是如何帮助工程师的?”
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

鲁教版数学六年级上册1.4《从三个方向看物体的形状》说课稿

鲁教版数学六年级上册1.4《从三个方向看物体的形状》说课稿

鲁教版数学六年级上册1.4《从三个方向看物体的形状》说课稿一. 教材分析《从三个方向看物体的形状》是鲁教版数学六年级上册第1.4节的内容。

本节内容是在学生已经掌握了简单几何体的知识的基础上进行学习的,目的让学生能够从不同的方向观察物体,并能够描述物体的形状。

教材通过丰富的图片和实际操作,引导学生理解并掌握从三个方向观察物体的方法,提高学生的空间想象能力和观察能力。

二. 学情分析六年级的学生已经具备了一定的空间想象能力和观察能力,对于简单的几何体已经有了一定的了解。

但是,对于从三个方向观察物体,并能够描述物体的形状,可能还存在一定的困难。

因此,在教学过程中,教师需要注重引导学生,让学生通过实际操作,理解和掌握从三个方向观察物体的方法。

三. 说教学目标1.知识与技能:学生能够从三个方向观察物体,并能够描述物体的形状。

2.过程与方法:学生通过实际操作,培养空间想象能力和观察能力。

3.情感态度与价值观:学生能够积极参与课堂活动,对数学产生兴趣。

四. 说教学重难点1.教学重点:学生能够从三个方向观察物体,并能够描述物体的形状。

2.教学难点:学生能够理解和掌握从三个方向观察物体的方法。

五. 说教学方法与手段在本节课中,我将采用讲授法、引导法和实践法进行教学。

同时,我会利用多媒体课件和实物模型,帮助学生更好地理解和掌握从三个方向观察物体的方法。

六. 说教学过程1.导入:通过展示一些日常生活中的物体,引导学生思考从不同的方向观察物体会有什么不同的发现。

2.新课导入:介绍从三个方向观察物体的方法和步骤。

3.实践操作:学生分组进行实际操作,从三个方向观察物体,并描述物体的形状。

4.总结提升:引导学生总结从三个方向观察物体的方法和步骤。

5.巩固练习:学生独立完成一些相关的练习题。

6.课堂小结:对本节课的内容进行总结,强调从三个方向观察物体的重要性。

七. 说板书设计板书设计如下:从三个方向观察物体1.正面观察2.侧面观察3.上面观察八. 说教学评价教学评价主要通过学生的课堂表现、作业完成情况和练习题的正确率来进行。

1.4从三个方向看物体的形状

1.4从三个方向看物体的形状

3 1
1 2
1
从上面看 从左面看
从正面看
4、从正面看到的图列数与从上面看到的图列数相同, 其每列方块数是从上面看到的图列该列的最大数字。 从左面看到的图列数与从上面看到的图的行数相同, 其每列方块数是从上面看到的图中该行的最大数字。
由图定数
一个几何体有几个大小相同的小立方块搭成, 从上面和左面看到的这个几何体的形状图如图所示, 请搭出满足条件的几何体,你搭的几何体由几个小 立方体块构成?与同伴交流。
13.如图,由四个小正方体组成的几何体中,若每个小正方体的棱 长都是1,则该几何体从上面看它的形状图的面积是____3 .
14.(2014·黔东南)在桌上摆着一个由若干个相同正方体组成的几何 体,从正面和从左面看到的形状图如图所示 ,设组成这个几何体的 小正方体的个数为n,则n的最小值为____5 .
4.下列几何体中,有一个几何体从正面看这个几何体的形状图与
从上面看这个几何体的形状图的形状不一样,这个几何体是( C )
5 . 从正面、左面、上面观察如图所示的几何体 ,分别画出你所看到
的几何体的形状图.
解:如图:
知识点2:由从不同方向看到的形状图确定实物形状 6.某几何体从三个不同方向看到的形状如图,则该几何体是( )B A.圆锥 B.圆柱 C.球 D.长方体
从上面看
从左面看
由图定数
用小立方块搭一个几何体,使得它的从正面看和从上 面看的形状图如图所示。
从正面看
从上面看
这样的几何体只有一种吗?它最少需要多少个小立方块? 最多需要多少个小立方块?
由图定数
从正面看
从上面看
1 1 3
1 1 2
1
最少摆法中其中之一所需个数: 最多时所需小立方块个数: 3+2+1+1+1+1+1=10 3+3+3+2+2+2+1=16

§1.4 从三个方向看物体的形状(教)

§1.4 从三个方向看物体的形状(教)

§1.4 从三个方向看物体的形状【学习目标】1、经历从不用方向观察物体的活动过程,发现空间的概念;2、在观察过程中初步体会从不同的方向观察同一物体可能看到不同的形状;3、能认识从三个方向看到简单物体的形状,会画立方体及简单组合体从方向看到的形状,并能够根据看到的形状描述基本几何体或实物模型。

【课前知多少】1、截面:用一个平面去截一个几何体,截出的面叫做截面;2、截面的形状与被截的几何体有关,还与截面的角度和方向有关。

【合作探究 问题解决】一、从不同的方向观察物体我们从不同的角度观察同一物体,可能看到不同的情况(如右图)。

我们可根据正面、上面、左面三个不同方向看物体,然后描绘出观察者所看到的形状,这样就可以把一个立体图形转化为平面图形。

例1、一辆小汽车从小明的面前经过,请按照汽车被摄入镜头先后顺序给下面的照片编号.答:先后顺序为:例2:下面五幅图分别是从右图中什么方向看到的?答:图(1)是从面 背 看到的,图(2)是从面 上 看到的,图(3)是从面 左 看到的,图(4)是从面 正 看到的,图(5)是从面 右 看到的,① ② ③ ④ ⑤二、物体的三视图问题:请同学们根据下图中堆放好立方体块,然后从三个方向看,思考分别看到哪些图象?从上面的活动中可以体会到从不同的方向看同一物体时,可能看到不同的图形.其中,从正面看到的图叫主视图,从左面看到的图叫左视图,从上面看到的图叫俯视图, 即物体的三视图.例3、下面是由7块小正方体木块堆成的物体,从三个方向看到的图形如下,请说出哪一个是主视图?哪一个是左视图?哪一个是俯视图?视图视图 视图例4、请画出下列几何体的三视图从左面看 从上面看从正面看例5、请说出下图中右边三幅图分别是从哪个方向看到的?视图 视图 视图三、根据其俯视图,画出其余视图例6、如图是由几个小立方体块所搭几何体的俯视图,小正方形中的数字表示在该位置小立块的个数,请画出这个几何体的主视图和左视图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题 1.4从三个方向看物体的形状课型新授主备人授课时间年月日总第 6 课时授课人
教学程序及内容
学习目标:
知识与技能:准确描述观察到的图形,并能够画出简单几何体的三视图,能根据不同方看到的图形,搭建满足条件的几何体。

过程与方法:经历从不同方向观察同一物体的过程,发展空间观念、初步体会从不同方向观察同一物体可能看到的不同的图形。

情感与态度价值观:通过活动体验做数学的快乐,增强学生学习数学的求知欲和数学活动的经验,并在合作学习中获得成功的体验,增强自信心,提高学习数学的兴趣,培养学生的合作、探究精神。

教学过程:
一、创设情境,导入课题
当我们从不同方向观察同一物体时,通常可以看到不同的图形。

我们来看看
图1-17四幅图分别是哪台相机找出来的相片,连一连。

二、
1.在小学数学中,我们曾经辨认过从正面、左面(或右面)和上面三个不同
的方向观察同一物体时看到的物体的形状图。

随记
2.画出下列两个物体从三个不同方向看到的图形
3.用6个小立方块搭成不同的几何体,并画出从正面、右面和上面看到几何体的形状图,并和同桌交流。

4.一个几何体由几个大小相同的小立方块搭成,从上面和从左面看到这个几何体的形状图如下图所示,请搭出满足条件的几何体。

你搭出的几何体由几个小立方块构成,和同桌进行交流。

三、练习:
1.从左面看如图所示的几何体可得到的平面图形是()。

四、课堂小结:本节课你学会了什么知识?
五、达标检测:
六、布置作业:
教学
反思。

相关文档
最新文档