(完整word版)常用逻辑用语知识点归纳,推荐文档

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用逻辑用语知识点归纳

1. 四种命题,(原命题、否命题、逆命题、逆否命题)

(1)四种命题的关系,

(2)等价关系(互为逆否命题的等价性)

(a)原命题与其逆否命题同真、同假。(b)否命题与逆命题同真、同假。

2. 充分条件、必要条件、充要条件

(1)定义:若p成立,则q成立,即p q时,p是q的充分条件。同时q是p的必要条件。

若p成立,则q成立,且q成立,则p成立,即p q且q p,则p与q互为充要条件。

(2)判断方法:

(i)定义法,

(ii)集合法:设使p成立的条件组成的集合是A,使q成立的条件组成的集合为B,若A B则p 是q的充分条件。同时q是p的必要条件。

若A=B,则p与q互为充要条件。

(iii)命题法:假设命题:"若p则q”当原命题为真时,p是q的充分条件。

当其逆命题也为真时,p与q互为充要条件。

注意:充分条件与充分非必要条件的区别:

用集合法判断看,前者:集合A是集合B的子集;后者:集合A是集合B的真子集。

3. 全称命题、特称命题(含有全称量词的命题叫全称命题,含有存在量词的命题叫特称命题)

(1)关系:全称命题的否定是特称命题,特称命题的否定是全称命题。

(2)全称量词与存在量词的否定。

4.逻辑连结词“或”,“且”,“非”。

(1)构造复合命题的方式:简单命题+逻辑连结词(或、且、非)+简单命题。

(2)复合命题的真假判断:

注意:“命题的否定”与“否命题”是两个不同的概念:前者只否定结论,后者结论与条件共同否定。

相关文档
最新文档