10排列组合.

合集下载

excel10个字母随机取5个的所有组合

excel10个字母随机取5个的所有组合

在Excel中,我们经常会遇到需要对一些文字进行组合的情况。

我们有10个不同的字母,我们需要从中随机取出5个字母,然后列出所有可能的组合。

这个问题看起来非常简单,但实际上涉及到了组合数学中的排列组合问题。

在本文中,我们将探讨如何使用Excel来列出所有可能的5个字母组合。

1.在Excel中,我们需要创建一个包含所有10个字母的列表。

假设我们的10个字母分别是A、B、C、D、E、F、G、H、I、J。

我们可以将这些字母分别放在Excel的A1到A10单元格中。

2.接下来,我们需要在Excel中创建一个用来表示已选中的字母的列表。

我们可以在B1到B5单元格中依次输入“=A1”、“=A2”、“=A3”、“=A4”、“=A5”。

这样,我们就在Excel中创建了一个从原始列表中抽取的5个字母的列表。

3.我们需要在Excel中创建一个用来表示所有可能排列组合的列表。

我们可以在C1到C252单元格中使用以下公式来表示所有可能的组合: =CONCATENATE(B$1,B$2,B$3,B$4,B$5)4.接下来,我们需要使用Excel的拖动功能来自动填充C列中的所有单元格。

方法是将鼠标放在C1单元格的右下角,然后按住鼠标左键并向下拖动至C252单元格。

这样,Excel就会自动填充C列中的所有单元格,列出所有可能的5个字母组合。

通过以上步骤,我们就可以在Excel中列出所有可能的5个字母组合。

这种方法在实际工作中非常实用,在处理类似的排列组合问题时,可以大大提高工作效率。

希望本文对大家有所帮助。

在上面的示例中,我们展示了如何使用Excel来列出所有可能的5个字母组合。

然而,如果我们需要进行更复杂的排列组合操作,比如从一个更大的字母集合中随机取出更多的字母,该如何操作呢?在本文的后续部分,我们将进一步探讨如何在Excel中处理更复杂的排列组合问题。

1. 增加字母集合的数量假设我们不再限定于只有10个字母,而是要从26个字母中随机取出8个字母,然后列出所有可能的组合。

【排列组合(10)】排列与组合综合应用(二)

  【排列组合(10)】排列与组合综合应用(二)

排列与组合综合应用(二)一、选择题1.某班上午有五节课,分別安排语文,数学.英语.物理、化学各一节课.要求语文与化学相邻,数学与物理不相邻.且数学课不排第一节,则不同排课法的种数是()A. 16B. 24C. 8D. 122.将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组每组至少一人,则不同的分配方案的种数为()A. 50B. 80C. 120D. 1403.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排,若小明的父母至少有一人与他相邻,则不同坐法的总数为()A. 60B. 72C. 84D. 964.安排甲、乙、丙、丁四位教师参加星期一至星期六的值日工作,每天安排一人,甲、乙、丙每人安排一天,丁安排三天,并且丁至少要有两天连续安排,则不同的安排方法种数为()A. 72B. 96C. 120D. 1565.由0,1,2,3,5组成的无重复数字的五位偶数共有()A. 36个B. 42个C. 48个D. 120个6.某校选定甲、乙、丙、丁、戊共5名教师去3个边远地区支教(每地至少1人),其中甲和乙一定不同地,甲和丙必须同地,则不同的选派方案共有()种.A. 27B. 30C. 33D. 367.某技术学院安排5个班到3个工厂实习,每个班去一个工厂,每个工厂至少安排一个班,则不同的安排方法共有()A. 60种B. 90种C. 150种D. 240种8.某人连续投篮6次,其中3次命中,3次未命中.则他第1次、第2次两次均未命中的概率是()A. 12B. 310C. 14D. 15二、填空题(本大题共4小题,共20.0分)9.现有7件互不相同的产品,其中有4件次品,3件正品,每次从中任取一件测试,直到4件次品全被测出为止,则第三件次品恰好在第4次被测出的所有检测方法有______种.10.用数字1、2、3、4、5构成数字不重复的五位数,要求数字1,3不相邻,数字2、5相邻,则这样的五位数的个数是______(用数字作答).11.若把英语单词“good”的字母顺序写错了,则可能出现的错误共有______种.12.某高中高三某班上午安排五门学科(语文,数学,英语,化学,生物)上课,一门学科一节课,要求语文与数学不能相邻,生物不能排在第五节,则不同的排法总数是______.三、解答题(本大题共8小题,共96.0分)13.我校今年五四表彰了19名的青年标兵,其中A,B,C,D 4名同学要按任意次序排成一排照相,试求下列事件的概率(1)A在边上;(2)A和B在边上;(3)A或B在边上;(4)A和B都不在边上.14.六个人按下列要求站成一排,分别有多少种不同的站法?(1)甲、乙必须相邻;(2)甲、乙不相邻;(3)甲、乙之间恰有两人;(4)甲不站在左端,乙不站在右端.15.从8名运动员中选4人参加4×100米接力赛,在下列条件下,各有多少种不同的排法?(写出计算过程,并用数字作答)(1)甲、乙两人必须跑中间两棒;(2)若甲、乙两人只有一人被选且不能跑中间两棒;(3)若甲、乙两人都被选且必须跑相邻两棒.16.4男3女站成一排,求满足下列条件的排法共有多少种?(1)任何两名女生都不相邻,有多少种排法?(2)男甲不在首位,男乙不在末位,有多少种排法?(3)男生甲、乙、丙顺序一定,有多少种排法?(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法?17.6本不同的书,按如下方法分配,各有多少种分法:(1)分给甲、乙、丙3人,每人各得2本;(2)分给甲、乙、丙3人,甲得1本,乙得2本,丙得3本;(3)分给甲、乙、丙3人,其中一人得1本,其中一人得2本,其中一人得3本.18.有编号分别为1、2、3、4的四个盒子和四个小球,把小球全部放入盒子.问:(1)共有多少种放法?(2)恰有一个空盒,有多少种放法?(3)恰有2个盒子内不放球,有多少种放法?19.有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数:(Ⅰ)选其中5人排成一排;(Ⅱ)排成前后两排,前排3人,后排4人;(Ⅲ)全体排成一排,女生必须站在一起;(Ⅳ)全体排成一排,男生互不相邻;(Ⅴ)全体排成一排,甲不站在排头,也不站在排尾。

10排列组合课件

10排列组合课件

2020/11/30
6
4.消序法(留空法) 变式:如下图所示,有5
解: 如图所示
B
横8竖构成的方格图,从
A到B只能上行或右行
也共可有以多看少作条是不同的路线?
1,2,3,4,5,6,7,①,②,③, B
④顺序一定的排列,
A
将一条路经抽象为如下的一个

A11 11
排法(5-1)+(8-1)=11格:
有A55=120种排法
共有2 120=240种排法
几个元素必须相邻时,先 捆绑成一个元素,再与 其它的进行排列.
2020/11/30
5
4.消序法(留空法)
几个元素顺序一定的排列问题,一般是先排列,再 消去这几个元素的顺序.或者,先让其它元素选取位置 排列,留下来的空位置自然就是顺序一定的了.
例4. 5个人站成一排,甲总站在乙的右侧的有多少 种站法?
解: 选取编号相同的两组球和盒子的方法有 C62 15
种,其余4组球与盒子需错位排列有9种放法.
故所求方法有15×9=135种.
2020/11/30
10
7.剔除法 从总体中排除不符合条件的方法数,这是一
种间接解题的方法.
排列组合应用题往往和代数、三角、立体几何、平面 解析几何的某些知识联系,从而增加了问题的综合性,解 答这类应用题时,要注意使用相关知识对答案进行取舍.
↑ ↑ ↑ ↑↑ ↑
例2 . 7人排成一排.甲、乙两人不相邻,有多少种不同的排法?
解:分两步进行:
第1步,把除甲乙外的一般人排列: 有A55 =120种排法
第2步,将甲乙分别插入到不同的间隙或两端中(插孔):
有A62 =30种插入法
共有120 30=3600种排法

专题10 排列组合的综合运用(4月)(期中复习热点题型)(理)(原卷版)

专题10 排列组合的综合运用(4月)(期中复习热点题型)(理)(原卷版)

专题10 排列组合的综合运用一、单选题1.用0,1,2,4组成没有重复数字的四位数,共有A .24个B .20个C .18个D .12个2.“回文数”是指从左到右读与从右到左读都一样的正整数.如22,121,3443等.那么在四位数中,回文数共有A .81个B .90个C .100个D .900个3.当前,新冠肺炎疫情进入常态化防控新阶段,防止疫情输入的任务依然繁重,疫情防控工作形势依然严峻、复杂.某地区安排,,,,A B C D E 五名同志到三个地区开展防疫宣传活动,每个地区至少安排一人,且,A B 两人安排在同一个地区,,C D 两人不安排在同一个地区,则不同的分配方法总数为A .86种B .64种C .42种D .30种4.平面内有两组平行线,一组有3条,另一组有4条,且这两组平行线相交,可以构成不同的平行四边形个数为A .10B .12C .16D .185.横峰中学高二某班准备举办一场“互动沙龙”,要求从6位男嘉宾,2位女嘉宾中随机选出4位嘉宾进行现场演讲,且女嘉宾至少要选中1位,如果2位女嘉宾同时被选中,她们的演讲顺序不能相邻,那么不同演讲顺序的种数是A .1860B .1320C .1140D .10206.已知{}()1,0,1,1,2,,,i x i n n N *∈-=∈,则满足1232n x x x x ++++=的有序数组()123,,,,n x x x x共有个A.222n n-B.222n n+C.22n n-D.2n n-7.小明同学从9种有氧运动和3种无氧运动中选4种运动进行体育锻炼,则他至少选中1种无氧运动的选法有A.261种B.360种C.369种D.372种8.2020年是全面建成小康社会的目标实现之年,也是全面打赢脱贫攻坚战的收官之年.为更好地将“精准扶贫”落到实处,某地安排7名干部(3男4女)到三个贫困村调研走访,每个村安排男、女干部各1名,剩下1名干部负责统筹协调,则不同的安排方案有A.72种B.108种C.144种D.210种9.某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为A.85B.86C.91D.9010.如图所示为沟算盘,即古罗马算盘,其用青铜制成,盘上竖有小槽,内有小珠,其中左边七个竖槽的下槽各有四珠,每珠表示一,上槽一珠表示五,槽间有数位个、十、百(对应拉丁字母:I,X,C);右边的两个竖槽表示分数,其中右数第二个竖槽的上槽有一珠,表示12,下槽有五珠,每珠表示112,最右边的竖槽含有三个短槽,上槽有一珠,表示124,中槽有一珠,表示148,下槽有二珠,每珠表示172.若从右数的前两个竖槽中任选三个小珠,则一共能表示的分数的个数为A.19B.44 C.55D.12011.某小区的道路网如图所示,则由A到C的最短路径中,不经过B的概率为A.25B.815C.35D.2312.2019年二十国集团(20G)领导人峰会将在日本大阪开幕,为了欢迎二十国集团政要及各位来宾的到来,日本大阪市长决定举办大型歌舞晚会,现从A、B、C、D、E共5名歌手中任选3人出席演唱活动,当3名歌手中有A和B时,A需排在B的前面出场(不一定相邻),则不同的出场方法有.A.51种B.45种C.42种D.35种13.2020是全面实现小康社会目标的一年,也是全面打赢脱贫攻坚战的一年.复旦大学团委发起了“跟着驻村第一书记去扶贫”的实践活动,其中学生小明与另外3名学生一起分配到某乡镇甲、乙、丙3个贫困村参与扶贫工作,若每个村至少分配1名学生,则小明恰好分配到甲村的方法数是A.3B.8C.12D.614.刘老师、王老师与四位学生共六人在凌江园排成一排照相,两位老师相邻且都不在两端的排法种数是A.96B.128C.144D.24015.把5名同学分配到图书馆、食堂、学生活动中心做志愿者,每个地方至少去一个同学,不同的安排方法共有种.A.60B.72C.96D.15016.天河区某校开展学农活动时进行劳动技能比赛,通过初选,选出甲、乙、丙、丁、戊共5名同学进行决赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说“很遗憾,你和乙都未拿到冠军”;对乙说“你当然不是最差的”,试从这个回答中分析这5人的名次排列顺序可能出现的种类有A .54种B .60种C .72种D .96种17.2020年12月1日,大连市开始实行生活垃圾分类管理.某单位有四个垃圾桶,分别是一个可回收物垃圾桶、一个有害垃圾桶、一个厨余垃圾桶、一个其它垃圾桶.因为场地限制,要将这四个垃圾桶摆放在三个固定角落,每个角落至少摆放一个,则不同的摆放方法共有(如果某两个垃圾桶摆放在同一角落,它们的前后左右位置关系不作考虑)A .18种B .24种C .36种D .72种18.从1,2,3,4,5这五个数字中任取3个组成无重复数字的三位数,当三个数字中有2和3时,2需排在3的前面(不一定相邻),这样的三位数有A .51个B .54个C .12个D .45个19.8名学生站成两排,前排3人,后排5人,则不同站法的种数为①5555A A +;②5383A A ;③5383A A +;④88A .其中正确命题的个数是A .0B .1C .2D .3 20.将标号为1、2、3、4、5、6的6个小球随机地放入标号为1、2、3、4、5、6的6个盒子中,每个盒子放一个小球,恰好有4个小球的标号与其所在盒子的标号不一致的放法总数有A .45种B .90种C .135种D .180种 二、多选题1.我国古代著名的数学著作中,《周碑算经》、《九章算术》、《孙子算经》、《五曹算经》、《夏侯阳算经》、《孙丘建算经》、《海岛算经》、《五经算术》、《级术》和《纠古算经》,称为“算经十书”,某老师将其中的《周碑算经》、《九章算术》、《孙子算经)、《五经算术》、《缀术》和《缉古算经》6本书分给5名数学爱好者,其中每人至少一本,则不同的分配方法的种数为 A .124564C C A B .5651A CC .124564C A AD .2565C A 2.将4个不同的小球放入三个分别标有1、2、3号的盒子中,不允许有空盒子,则不同的放法种数是A .11114323C C C CB .2343C A C .3143A CD .21342322C C A A 3.现安排高二年级A ,B ,C 三名同学到甲、乙、丙、丁四个工厂进行社会实践,每名同学只能选择一个工),且允许多人选择同一个工厂,则下列说法正确的是A .所有可能的方法有43种B .若工厂甲必须有同学去,则不同的安排方法有37种C .若同学A 必须去工厂甲,则不同的安排方法有16种D .若三名同学所选工厂各不相同,则不同的安排方法有24种4.2020年3月,为促进疫情后复工复产期间安全生产,滨州市某医院派出甲、乙、丙、丁4名医生到A ,B ,C 三家企业开展“新冠肺炎”防护排查工作,每名医生只能到一家企业工作,则下列结论正确的是A .若C 企业最多派1名医生,则所有不同分派方案共48种B .若每家企业至少分派1名医生,则所有不同分派方案共36种C .若每家企业至少分派1名医生,且医生甲必须到A 企业,则所有不同分派方案共12种D .所有不同分派方案共34种5.现有4个小球和4个小盒子,下面的结论正确的是A .若4个不同的小球放入编号为1,2,3,4的盒子,则共有24种放法B .若4个相同的小球放入编号为1,2,3,4的盒子,且恰有两个空盒的放法共有18种C .若4个不同的小球放入编号为1,2,3,4的盒子,且恰有一个空盒的放法共有144种D .若编号为1,2,3,4的小球放入编号为1,2,3,4的盒子,没有一个空盒但小球的编号和盒子的编号全不相同的放法共有9种6.将四个不同的小球放入三个分别标有1、2、3号的盒子中,不允许有空盒子的放法有多少种?下列结论正确的有A .11113213C C C CB .2343C AC .122342C C AD .187.用0到9这10个数字.可组成个没有重复数字的四位偶数?A .31129488A A A A +⋅⋅B .31329498()A A A A +⋅-C .112112558448A A A A A A ⋅⋅+⋅⋅D .43132109598()A A A A A --- 8.下面结论正确的是A .若3个班分别从5个风景点中选择一处游览,则不同的选法种数为35B .1×1!+2×2!+…+n ⋅n !=(n +1)!﹣1(n ∈N *)C .(n +1)m n C =(m +1)11m n C ++(n >m ,N ,N m n **∈∈) D .135********...2n n n n n n C C C C --++++=(N n *∈)9.用数字0、1、2、3、4、5组成没有重复数字的四位数,则下列说法正确的是 A .可组成360个不重复的四位数B .可组成156个不重复的四位偶数C .可组成96个能被3整除的不重复四位数D .若将组成的不重复的四位数按从小到大的顺序排成一个数列,则第85个数字为2310 10.如图,在某城市中,M 、N 两地之间有整齐的方格形道路网,其中1A 、2A 、3A 、4A 是道路网中位于一条对角线上的4个交汇处.今在道路网M 、N 处的甲、乙两人分别要到N 、M 处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N 、M 处为止.则下列说法正确的是A .甲从M 到达N 处的方法有120种B .甲从M 必须经过2A 到达N 处的方法有9种C .甲、乙两人在2A 处相遇的概率为81400 D .甲、乙两人相遇的概率为41100三、填空题1.现有标号为①,②,③,④,⑤的5件不同新产品,要放到三个不同的机构进行测试,每件产品只能放到一个机构里.机构A,B各负责一个产品,机构C负责余下的三个产品,其中产品①不在A机构测试的情况有___________种(结果用具体数字表示).2.楼道里有12盏灯,为了节约用电,需关掉3盏不相邻的灯,则关灯方案有___________种.3.用数字1、2、3、4、6可以组成无重复数字的五位偶数有___________个.(用数字作答)4.某医院传染病科室有5名医生.4名护士,现从这9名医护人员中选取5名参加医院组织的运动会,要求其中至少有2名医生.2名护士,则不同的选取方法有___________种.5.中国古典乐器一般按“八音”分类,这是我国最早按乐器的制造材料来对乐器进行分类的方法,最早见于《周礼·春官·大师》.八音分为“金、石、七、革、丝、木、匏、竹”,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器.某同学安排了包括“土、匏、竹”在内的六种乐器的学习,每种乐器安排一节,连排六节,并要求“土”与“匏”相邻排课,但均不与“竹”相邻排课,且“丝”不能排在第一节,则不同的排课方式的种数为___________.6.把分别写有“爸”、“爸”、“去”、“哪”、“儿”的5张卡片放入4个不同信封,每个信封至少放一张卡片,则写有“爸”、“爸”的两张卡片恰好被放入同一个信封的不同情况共有___________种.(用数字作答)7.由1,2,3,4,5,6组成的无重复数字的三位数中,奇数必须排在百位或个位上的数共有___________个.8.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则关于“六艺”课程讲座不同排课顺序的种数为___________.(用数字作答)9.辛丑牛年春晚现场请来了荣获“人民英雄”“时代楷赘”“全国道德模范”称号的几位先进人物代表共度新春佳节,他们是“人民英雄”陈薇,“时代楷模”毛相林、张连刚,林占禧,“全国道德模范”张晓艳、周秀芳、张家丰,朱恒银,从中选出两位荣誉称号不同的代表先后给全国人民拜年,则不同的发言情况有___________种.10.为响应国家脱贫攻坚的号召,某县抽调甲、乙、丙等六名大学生村官到A、B、C三个村子进行扶贫,每个村子去两人,且甲不去A村,乙和丙不能去同一个村,则不同的安排种数为___________.11.某班需要选班长、学习委员、体育委员各2名,其中体育委员中必有男生,现有4名男生4名女生参加竞选,若不考虑其他因素,则不同的选择方案种数为___________.12.某班4名同学去参加3个社团,每人只参加1个社团,每个社团都有人参加,则满足上述要求的不同方案共有___________种.(用数字填写答案)13.七个男生和四个女生排成一排,要求女生不相邻且不可排两头的排法共有___________.14.小明与3位男生、3位女生在排队购物,已知每位女生需2分钟,男生需1分钟,若小明(不排在首位)的前后不同时为女生,且他的等待时间不多于4分钟,则不同的排队情况共有___________种.15.某校高二年级共有10个班级,5位教学教师,每位教师教两个班级,其中姜老师一定教1班,张老师一定教3班,王老师一定教8班,秋老师至少教9班和10班中的一个班,曲老师不教2班和6班,王老师不教5班,则不同的排课方法种数___________.四、双空题1.某地区高考改革,实行“312++”模式,即“3”指语文,数学,外语三门必考科目,“1”指在物理,历史两门科目中必选一门,“2”指在化学,生物,政治,地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有___________;选择了物理的概率为___________.(用数字作答)2.给如图染色,满足条件每个小方格染一种颜色,有公共边的小方格颜色不能相同,则用4种颜色染色的方案有___________种,用5种颜色染色的方案共有___________种.3.在浙江省新高考选考科目报名中,甲、乙、丙、丁四位同学均已选择物理、化学作为选考科目,现要从生物、政治、历史、地理、技术这五门课程中选择一门作为选考科目,则不同的选报方案有___________种(用数字作答);若每位同学选报这五门学科中的任意一门是等可能的,则这四位同学恰好同时选报了其中的两门课程的概率为___________.4.在新高考改革中,学生可从物理、历史,化学、生物、政治、地理,技术7科中任选3科参加高考,则学生有___________种选法.现有甲、乙两名学生先从物理、历史两科中任选一科, 再从化学、生物、政治、地理四门学科中任选两科,则甲、乙二人恰有一门学科相同的选法有___________种.5.一行八空任意填字,恰填得“上”、“右”两字各4个的不同填法有___________种;两张相同的44 方格表,有一方格重合(如图),沿格线连接A B 、两点;则不同的最短连接线有___________条.五、解答题1.(1)用0到9这10个数字,可以组成多少个没有重复数字的三位偶数?(2)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则有多少个不同的排法?2.要从6名男生4名女生中选出5人参加一项活动,按下列要求,各有多少种不同的选法? (1)甲当选且乙不当选;(2)至多有3名男生当选.3.4位同学报名参加2022年杭州亚运会6个不同的项目(记为A ,B ,C ,D ,E ,F )的志愿者活动.假设每位同学恰报1个项目,且报名各项目是等可能的.(1)求4位同学报了4个不同的项目的概率;(2)求1位同学报了项目A ,剩余3位同学都报了项目B 的概率.4.有四个编有1、2、3、4的四个不同的盒子,有编有1、2、3、4的四个不同的小球,现把四个小球逐个随机放入四个盒子里.(1)小球全部放入盒子中有多少种不同的放法?(2)在(1)的条件下求恰有一个盒子没放球的概率?(3)若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法? 5.7名班委有7种不同的职务,甲、乙、丙三人在7名班委中,现对7名班委进行职务具体分工.(1)若正、副班长两职只能从甲、乙、丙三人中选两人担任,有多少种不同的分工方案?(2)若正、副班长两职至少要选甲、乙、丙三人中的一人担任,有多少种不同的分工方案? 6.用0、1、2、3、4、5这六个数字:(1)能组成多少个无重复数字的四位数?(2)能组成多少个无重复数字的四位奇数?(3)能组成多少个无重复数字且比1325大的四位数?。

排列组合公式

排列组合公式

排列组合公式在我们的日常生活和学习中,经常会遇到需要计算可能性数量的情况。

比如,从一堆物品中挑选出几个,或者安排人员的座位顺序等等。

而解决这些问题,就离不开排列组合公式。

首先,我们来了解一下什么是排列。

排列指的是从给定的元素集合中,按照一定的顺序选取若干个元素进行排列。

举个例子,假如有 5个不同的字母 A、B、C、D、E,从中选取 3 个进行排列,那么就有5×4×3 = 60 种不同的排列方式。

排列的公式为:A(n, m) = n! /(n m)!这里的“n”表示元素的总数,“m”表示选取的元素个数。

“!”表示阶乘,例如5! =5×4×3×2×1。

接下来,我们再看看组合。

组合则是指从给定的元素集合中,不考虑顺序地选取若干个元素。

还是用上面 5 个字母的例子,如果从中选取 3 个字母组成一组,不考虑它们的排列顺序,那么组合的数量就会比排列少。

因为像 ABC、ACB、BAC 等,在组合中都被视为同一种情况。

组合的公式是:C(n, m) = n! / m!×(n m)!为了更好地理解排列组合公式,我们来看几个实际的例子。

假设一个班级有 10 名学生,要选出 3 名学生参加比赛。

这里用组合公式 C(10, 3) = 10! /(3!×7!)= 120 ,即有 120 种不同的选法。

如果这3 名学生有不同的比赛项目,并且需要考虑他们参赛的顺序,那么就要用排列公式 A(10, 3) = 10! / 7! = 720 ,就有 720 种不同的安排方式。

再比如,从一副扑克牌(除去大小王,共 52 张)中抽取 5 张牌,计算有多少种不同的组合。

这里就是 C(52, 5) = 52! /(5!×47!),通过计算可以得出具体的组合数量。

排列组合公式在很多领域都有着广泛的应用。

在概率论中,计算随机事件发生的可能性;在密码学中,用于生成复杂的密码组合;在数学竞赛中,解决各种计数问题;在计算机科学中,优化算法和数据结构。

排列组合公式排列组合公式

排列组合公式排列组合公式
排列组合公式排列组合公式
组合数的推广
C
r n
n! r!(n r)!
n(n1)(nr1) r!
n r
R,rZ
r
(
1)(
r! 1,
0,
r
1)
,r 0 r 0 r 0
排列组合公式排列组合公式
几个记号
下阶乘函数 [x ]n x (x 1 ) (x n 1 ) 上阶乘函数 [x ]n x (x 1 ) (x n 1 )
排列组合公式排列组合公式
映射
• 设映射f:{1,2, …,n} →{1,2, …,m}(n≤m) • (1) 若f是严格递增的,则不同的f有多少个? • (2) 若f是不减的,则不同的f有多少个?
排列组合公式排列组合公式
例题
1、从A={a,b,c}中任取两个不同的字母构成的字共有多少个? 2、m元集合的n元子集的个数? 3、平面上任三点都不共线的25个点,可形成多少条直线?可
排列组合公式排列组合公式
例题
• 从为数众多的一分币、二分币、一角币和二 角币中,可以有多少种方法选出六枚来?
• F(4,6)=C(4+6-1,6)=C(9,6)=84
排列组合公式排列组合公式
例题
• 某糕点厂将8种糕点装盒,若每盒有一打糕 点,求市场上能买到多少种该厂出品的盒 装糕点?
• 某糕点厂将8种糕点装盒,若每盒有一打糕 点,且要求每种糕点至少放一块。求市场 上能买到多少种该厂出品的盒装糕点?
• C((r-qn)+n-1,r-qn)=C(n-nq+r-1,r-nq)= C(nnq+r-1,n-1)
排列组合公式排列组合公式
放球问题:例题
• 今有五封不同的信要经由一个讯道传送。 又有总共15个空白要插在这些信之间而使 得每两封信之间至少有三个空白。有多少 种方法安排这些信和空白?

排列组合公式排列组合计算公式

排列组合公式排列组合计算公式

排列组合公式/排列组合计算公式2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数R参与选择的元素个数!-阶乘 ,如 9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1: 有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合, 我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析 例1 设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法. 点评 由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种? 解 依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: ∴ 符合题意的不同排法共有9种. 点评 按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型. 例3 判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法? 分析 (1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. (1)①是排列问题,共用了封信;②是组合问题,共需握手(次). (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法. (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积. (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法. 例4 证明. 证明 左式 右式. ∴ 等式成立. 点评 这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化. 例5 化简. 解法一 原式 解法二 原式 点评 解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化. 例6 解方程:(1);(2). 解 (1)原方程 解得. (2)原方程可变为 ∵ ,, ∴ 原方程可化为. 即 ,解得第六章 排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明 加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排 列、组合中有关问题提供了理论根据.例1 5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解: 5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的 报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明 排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研 究的对象以及研 究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2 由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的 偶数共有( )A.60个B.48个C.36个D.24个解 因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3 将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解: 将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四 例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明 历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4 从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A.140种B.84种C.70种D.35种解: 抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种根据加法原理可得总的取法有C24·C25+C24·C15=40+30=70(种 )可知此题应选C.例5 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式?解: 甲公司从8项工程中选出3项工程的方式 C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C22种.根据乘法原理可得承包方式的种数有C3 8×C15×C24×C22=×1=1680(种).(四)二项式定理、二项展开式的性质说明 二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.例6 在(x-)10的展开式中,x6的系数是( )A.-27C610B.27C410C.-9C610D.9C410解 设(x-)10的展开式中第γ+1项含x6,因Tγ+1=Cγ10x10-γ(-)γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C410(-)4=9C410故此题应选D.例7 (x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0.(五)综合例题赏析例8 若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为( )A.1B.-1C.0D.2解:A.例9 2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )A.6种B.12种C.18种D.24种解 分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。

10以内的组合与分解

10以内的组合与分解

10以内的组合与分解摘要:一、引言二、10以内的组合方法1.相邻数组合2.相同数组合3.互补数组合三、10以内的分解方法1.质数分解2.合数分解四、应用场景1.数学题目解答2.益智游戏五、总结正文:一、引言在数学领域,组合与分解是基础中的基础。

掌握10以内的组合与分解,不仅能够帮助我们更好地解决数学问题,还能提高我们的思维能力。

本文将详细介绍10以内的组合与分解方法,并在日常生活中找到应用场景。

二、10以内的组合方法1.相邻数组合:相邻数组合是指两个相邻的数进行组合,如1和2、3和4等。

这种组合在数学题目中常有应用,如求和、求平均数等。

2.相同数组合:相同数组合是指两个或多个相同的数进行组合,如2+2+2、3+3+3等。

这种组合在数学题目中也有广泛应用,如求总数、求平均数等。

3.互补数组合:互补数是指两个数之和为10的组合,如1和9、2和8、3和7等。

这种组合在数学题目中也有应用,如求和、求差等。

三、10以内的分解方法1.质数分解:质数分解是将一个合数分解为若干个质数的乘积。

例如,将24分解为2×2×2×3。

掌握质数分解有助于解决因式分解、约分等问题。

2.合数分解:合数分解是将一个合数分解为若干个质数的乘积。

例如,将48分解为2×2×2×2×3。

合数分解在数学题目中有广泛应用,如求最大公约数、最小公倍数等。

四、应用场景1.数学题目解答:在解决数学题目时,熟练运用组合与分解可以简化计算过程。

例如,求10以内的两个数之和、两个数之积等问题。

2.益智游戏:在玩一些益智游戏时,掌握10以内的组合与分解有助于找到规律、破解关卡。

例如,数独、华容道等游戏。

五、总结掌握10以内的组合与分解方法,不仅有助于我们在学习中取得好成绩,还能在日常生活中提高我们的解决问题的能力。

排列组合的一些算法

排列组合的一些算法

排列组合的⼀些算法排列组合有多种实现⽅法,下⾯介绍整理的⼀些⽅法。

⼀、最简单直接的就是递归原理⽐较直接:计算⼀个集合的组合,⾸先选择⼀个元算,然后在剩下的集合中选择剩下的元素。

看下⾯的源代码:/*************************** 计算⼀个集合的组合*************************/#include<stdlib.h>#include<assert.h>/************************** 递归: ⾸先选择⼀个元素,然后在剩下的集合中选择其余元素************************/typedef struct LiStack{char element;struct LiStack* prev;struct LiStack* next;}LiStack;typedef struct SqStack{char *elements;int top; /*栈指针*/}SqStack;//采⽤链式存储的栈, 双向链表:由栈顶指向栈底void CalCombinationLi(const char Elements[], int SetLg, int k, LiStack *StackHead, LiStack *StackTail){//Elements:集合, SetLg:集合长度, k:要选取的元素个数, stackHead:指向栈顶, StackTail:指向栈底LiStack* StackTmp;LiStack* StackN;int i;assert(k<=SetLg);//如果要选取的元素个数超过集合长度,则出错if(k==0){//输出该次选取的元素组合StackTmp = StackTail;while(StackTmp){printf("%c ",StackTmp->element);StackTmp = StackTmp->prev;}printf(""n");return;}//从该集合中顺序选取⼀个元素[i], 因为共选取k个元素, 所以最后⼀个可选择的元素为[SetLg-k]//然后从剩下的集合[i+1:end]中选取其余的k-1个元素//这样就构成了从集合(长度为SetLg)中选取k个元素, 按字典序的组合for(i=0; i<=SetLg-k; ++i){//将元素[i]压栈StackN = (LiStack*)malloc(sizeof(LiStack));StackN->element = Elements[i];StackN->next = NULL;StackN->prev = NULL;if(StackHead){StackHead->prev = StackN;StackN->next = StackHead;}else{StackTail = StackN;}StackHead = StackN;CalCombinationLi(Elements+i+1, SetLg-i-1, k-1, StackHead, StackTail);//从剩下的集合中选取k-1个元素//将元素[i]弹出栈StackTmp = StackHead;StackHead = StackHead->next;free(StackTmp);if(StackHead){StackHead->prev = NULL;}else{StackHead = NULL;StackTail = NULL;}}}//采⽤顺序存储的栈void CalCombinationSq(const char Elements[], int SetLg, int k, SqStack *stack){//Elements:集合, SetLg:集合长度, k:要选取的元素个数, stack:栈assert(k<=SetLg);int i;if(k==0){//输出此次选取的元素组合for(i=0; i<=stack->top; i++)//从栈底到栈顶{printf("%c ",stack->elements[i]);}printf(""n");return;}for(i=0; i<=SetLg-k; i++){//将元素[i]压栈stack->top++;stack->elements[stack->top]=Elements[i];CalCombinationSq(Elements+i+1, SetLg-i-1, k-1, stack);//将元素[i]弹出栈stack->top--;}}//测试int main(){char elements[] = {'a', 'b', 'c', 'd'};const int NUM = sizeof(elements) / sizeof(elements[0]);LiStack *StackHead=NULL, *StackTail=NULL;int i;SqStack *stack=(SqStack *)malloc(sizeof(SqStack));stack->elements = (char *)malloc(sizeof(elements));for(i=1; i<=NUM; i++){//CalCombinationLi(elements, NUM, i, StackHead, StackTail);CalCombinationSq(elements, NUM, i, stack);}}排列的源程序和上⾯的类似,其实上⾯的组合输出具有顺序性,和排列的输出没有多⼤的区别。

【金识源】(3年高考2年模拟1年原创)最新2013版高考数学 专题10 排列组合二项式定理(解析版)

【金识源】(3年高考2年模拟1年原创)最新2013版高考数学 专题10 排列组合二项式定理(解析版)

【金识源】(3年高考2年模拟1年原创)最新2013版高考数学专题10 排列组合二项式定理(解析版)【考点定位】2014考纲解读和近几年考点分布2012考纲解读考纲原文(1)分类加法计数原理、分步乘法计数原理①理解分类加法计数原理和分步乘法计数原理;②会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.(2)排列与组合①理解排列、组合的概念.②能利用计数原理推导排列数公式、组合数公式.③能解决简单的实际问题.(3)二项式定理①能用计数原理证明二项式定理.②会用二项式定理解决与二项展开式有关的简单问题.考纲解读(1)标准中只是对理科有要求,对文科不做要求;但大纲版对文理科均作要求。

(2)已删除:组合数的性质。

近几年考点分布近几年考点分布排列、组合、二项式定理是高考数学相对独立的内容,也是密切联系实际的一部分。

在高考中,注重基本概念,基础知识和基本运算的考查。

试题难度不大,多以选择、填空的形式出现。

排列组合的试题会以现实生活中的生产问题、经济问题为背景,不会仅是人或数的排列。

以排列组合应用题为载体,考查学生的抽象概括能力,分析能力,综合解决问题的能力。

将排列组合与概率统计相结合是近几年高考的一大热点,应引起重视。

二项式定理的知识在高考中经常以客观题的形式出现,多为课本例题、习题迁移的改编题,难度不大,重点考查运用二项式定理去解决问题的能力和逻辑划分、化归转化等思想方法。

为此,只要我们把握住二项式定理及其系数性质,会把实际问题化归为数学模型问题或方程问题去解决,就可顺利获解。

【考点pk】名师考点透析考点一、计数原理【名师点睛】1.如何选用分类加法计数原理和分步计数乘法原理。

在处理具体的应用问题时,必须先分清是“分类”还是“分步”,“分类”表现为其中任何一类均可独立完成所给事件,而“分步”必须把各步骤均完成才能完成所给事情。

2.运用分类加法计数原理,首先要根据问题的特点,确定分类标准,分类应满足:完成一件事情的任何一种方法,必须属于某一类且仅属于某一类,即类与类的确定性与并列性。

排列组合解法公式

排列组合解法公式

排列组合解法公式排列组合在数学中可是个很有趣的部分呢!它能帮我们解决好多生活中的问题。

先来说说排列的公式吧。

排列呢,就是从 n 个不同元素中,取出 m 个元素按照一定的顺序排成一列。

这时候的排列数记作 A(n, m) ,它的计算公式就是 A(n, m) = n! / (n - m)! 。

比如说,从 5 个不同的水果里选3 个排成一排,那就是 A(5, 3) = 5! / (5 - 3)! = 60 种排法。

再讲讲组合的公式。

组合就是从 n 个不同元素中,取出 m 个元素组成一组,不考虑顺序。

组合数记作 C(n, m) ,计算公式是 C(n, m) = n! / [m!×(n - m)!] 。

还是拿水果举例,从 5 个不同的水果里选 3 个组成一组,不考虑顺序,那就是 C(5, 3) = 5! / [3!×(5 - 3)!] = 10 种组合。

我还记得之前给学生们讲这部分知识的时候,发生了一件有趣的事儿。

那是一个阳光明媚的上午,我在黑板上写下了一道排列组合的题目:在一个班级里有 10 个同学,要选出 4 个同学去参加比赛,有多少种选法?我让同学们先自己思考,然后讨论。

一开始,大家都有点懵,各种答案都有。

有的同学直接用 10 乘以 4 ,有的同学乱写一通。

我看着他们抓耳挠腮的样子,心里偷笑,但也知道这对于他们来说确实是个有点难的知识点。

我开始慢慢引导他们,“同学们,咱们先想想,如果要考虑选出的同学的顺序,那就是排列问题;如果不考虑顺序,那就是组合问题。

那这道题,我们需不需要考虑选出同学的顺序呢?”同学们开始七嘴八舌地讨论起来。

有的说要,有的说不要。

最后,我们一起分析得出,这里不需要考虑顺序,是组合问题。

于是,我们按照组合的公式 C(10, 4) = 10! / [4!×(10 - 4)!] 一起计算,算出结果是 210 种选法。

这时候,同学们恍然大悟,脸上露出了开心的笑容。

排列组合的生成

排列组合的生成

3.计数Counting3.1排列Permutations(置换)3.1.1乘积集合Product Sets,卡氏积Cartesian Product设A,B是两个集合,元素a∈A, b∈B,称(a,b)为一个序对,或序偶ordered pair。

(a,b)=(c,d)当且仅当a=c∧b=d定义乘积集合A⨯B ={(a,b)| a∈A,b∈B }定理1 乘法原理Multiplication Priciple|A⨯B|=|A|⨯|B|假设依次实行T1,T2两种任务,如果做T1有n1种不同的办法, 做T2有n2种不同的办法, 则共有n1⨯n2种方法完成任务T1T2。

定理2 乘法原理推广|A1⨯A2⨯…⨯A k|=|A1|⨯|A2|⨯…⨯|A k|假设依次实行任务T1, T2, ……,T k,如果做T1有n1种不同的办法, 做T2有n2种不同的办法,…做T k有n k种不同的办法, 则共有n1⨯n2⨯…⨯n k种方法完成任务T1T2…T k。

例1.a) 用1,2,3,4,5可以组成多少个不同的三位数?b)用0,1,2,3,4,5可以组成多少个不同的三位数?解a) 第一位有5种取法,第二位,第三位也都有5种取法,共组成53=125个不同的三位数。

b) 第一位有5种取法,第二位,第三位有6种取法,共组成5⨯62=180个不同的三位数。

例2.n个元素的集合A共有多少个子集?解 由第一章知可以用n 个1的数组表示A, A 的子集可以用长度为n 的0,1序列表示。

每一位可以取0或1,两种取法,共有2⨯2⨯2⨯…⨯2=2n 种不同的01串,对应2n 个不同的子集。

定理3. 从n 个元素的集合A 中可重复地取出r 个元素排成一列,共有n r 种不同的取法。

定理4. 从n 个元素的集合A 中不重复地取出r 个元素排成一列,共有n(n-1)…(n-r+1)种不同的取法。

简称n 个元素中取r 个元素的排列Permuations 有r n P 种,排列rn P= n(n-1)…(n-r+1)=)!(!r n n -=[]rn全排列 从n 个元素的集合A 中不重复地取出n 个元素排成一列,共有n!种不同的取法。

排列组合 基本公式

排列组合 基本公式

排列组合基本公式好的,以下是为您生成的关于“排列组合基本公式”的文章:咱今儿就来唠唠排列组合的基本公式,这玩意儿在数学里可有意思啦!先说说排列。

比如说,从 5 个不同的水果里选 3 个排成一排,有多少种排法?这就得用排列公式啦。

排列公式是:A(n, m) = n! / (n - m)! 这里的“!”表示阶乘,比如说 5! 就是 5×4×3×2×1 。

我记得有一次,学校组织活动,要从班上的 10 个同学里选 3 个去参加演讲比赛,并且要确定他们的出场顺序。

这可不就是一个典型的排列问题嘛!咱先用排列公式算算,A(10, 3) = 10! / (10 - 3)! = 10×9×8 = 720 种。

也就是说,一共有 720 种不同的安排方法。

这可把负责安排的老师给难住了,拿着笔在纸上比划了半天,嘴里还念念有词的。

再讲讲组合。

还是从那 5 个水果里选 3 个,不过这次不考虑顺序,这就叫组合。

组合公式是:C(n, m) = n! / [m!(n - m)!] 。

就像上次学校运动会,要从 8 个同学里选 3 个参加接力赛,这时候就不用考虑他们跑步的顺序,只要选出这 3 个人就行,那就是用组合来算。

C(8, 3) = 8! / [3!(8 - 3)!] = 56 种。

那排列和组合到底有啥区别呢?其实很简单,排列要考虑顺序,组合不考虑顺序。

比如说,从 3 个不同的字母 A、B、C 中选 2 个进行排列,那就有 AB、BA、AC、CA、BC、CB 这 6 种情况。

但要是组合呢,就只有 AB、AC、BC 这 3 种。

在实际生活中,排列组合的应用可多了去了。

像抽奖活动,从一堆号码里抽出几个中奖号码,这就是组合;而选班干部,要确定谁当班长、谁当学习委员,这就得考虑排列。

还有啊,你去买衣服的时候,假如有 5 件上衣,4 条裤子,你想选一套衣服,这也能用到组合,一共有 5×4 = 20 种搭配方法。

排列组合公式排列组合计算公式

排列组合公式排列组合计算公式

<<排列组合公式/排列组合计算公式>>公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数R参与选择的元素个数“!”-阶乘,如 9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化例6 解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例1 5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解: 5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有( )A.60个B.48个C.36个D.24个解因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A.140种B.84种C.70种D.35种解:抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种根据加法原理可得总的取法有C24·C25+C24·C15=40+30=70(种 )可知此题应选C.例5甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式?解:甲公司从8项工程中选出3项工程的方式 C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C22种.根据乘法原理可得承包方式的种数有C38×C15×C24×C22=×1=1680(种).(四)二项式定理、二项展开式的性质说明二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.例6在(x-)10的展开式中,x6的系数是( )A.-27C610B.27C410C.-9C610D.9C410解设(x-)10的展开式中第γ+1项含x6,因Tγ+1=Cγ10x10-γ(-)γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C410(-)4=9C410故此题应选D.例7 (x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0.(五)综合例题赏析例8若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为( )A.1B.-1C.0 D .2解:A.例9 2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )A.6种B.12种C.18种D.24种解分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。

10--排列组合

10--排列组合

高中数学第十章-排列组合二项定理考试内容:分类计数原理与分步计数原理. 排列.排列数公式.组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求:(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.§10. 排列组合二项定理 知识要点一、两个原理.1. 乘法原理、加法原理.2. 可.以有..重复..元素..的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:nm 种)二、排列.1. ⑪对排列定义的理解.定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑫相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑬排列数.从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号mn A 表示.⑭排列数公式:),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=注意:!)!1(!n n n n -+=⋅ 规定0! = 1111--++=⋅+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10==n n n C C 2. 含有可重元素......的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n =.例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .三、组合.1. ⑪组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑫组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C m n mmmn m n -=+--==⑬两个公式:①;m n n m n C C -= ②mn m n m n C C C 11+-=+①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有mn C )②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C mn 种,依分类原理有m n m n m n C C C 11+-=+.⑭排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系. ⑮①几个常用组合数公式 nn n n n n C C C 2210=+++11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n kn m n m m n m m m m m m n n n n n n n n C n C k nCkC C C C C C C C C C C C②常用的证明组合等式方法例. i. 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-)ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法(即用m n m n m n C C C 11+-=+递推)如:413353433+=+++n n C C C C C . vi. 构造二项式. 如:n nn n n n C C C C 222120)()()(=+++ 证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中n x 的系数,左边为22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅-- ,而右边nn C 2= 四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型: ①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某)(n m m ≤个元素必相邻的排列有m m m n m n A A ⋅+-+-11个.其中11+-+-m n m n A 是一个“整体排列”,而m m A 则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-2n A 2211A A n ⋅-. ②有n 件不同商品,若其中A 、B 排在一起有2211A A nn ⋅--. ③有n 件不同商品,若其中有二件要排在一起有112--⋅n n n A A . 注:①③区别在于①是确定的座位,有22A 种;而③的商品地位相同,是从n 件不同商品任取的2个,有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少?mm n m n m n A A 1+---⋅(插空法),当n – m+1≥m, 即m≤21+n 时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,)(n m m 个元素的全排列有m m A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m mn n A A 种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法?解法一:(逐步插空法)(m+1)(m+2)…n = n !/ m !;解法二:(比例分配法)mm n n A A /. ⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有k knnn n k n kn A C C C )1(-⋅.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有3!224=C (平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少? (!2/102022818C C C P =)注意:分组与插空综合. 例如:n 个元素全排列,其中某m 个元素互不相邻且顺序不变,共有多少种排法?有mmm m n m n m n A A A /1+---⋅,当n – m+1 ≥m, 即m≤21+n 时有意义. ⑧隔板法:常用于解正整数解组数的问题.例如:124321=+++x x x x 的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为4321,,,x x x x 显然124321=+++x x x x ,故(4321,,,x x x x )是方程的一组解.反之,方程的任何一组解),,,(4321y y y y ,对应着惟一的一种在12(如图所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数311C . 注意:若为非负数解的x 个数,即用n a a a ,...,21中i a 等于1+i x ,有A a a a A x x x x n n =-+-+-⇒=+++1...11...21321,进而转化为求a 的正整数解的个数为1-+n n A C .⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,x 2x 4并且都排在某r 个指定位置则有rk r n r r A A --.例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:11--m n A ;不在某一位置上:11---m n m n A A 或11111----⋅+m n m m n A A A (一类是不取出特殊元素a ,有m n A 1-,一类是取特殊元素a ,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的)⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列(或组合),规定某r 个元素都包含在内 。

第10讲排列组合公式-高思数学_4年级下第十讲排列组合公式

第10讲排列组合公式-高思数学_4年级下第十讲排列组合公式

小高要想说对口诀还真不容易!大家学过乘法原理,口诀第一个字有6种说法,第二个字有5种说法,依次类推,口诀这六个字共有654321720×××××=(种)排法.我们也可以这样理解:只有把口诀这六个字按照正确的顺序排列好,才能练成高思神掌.把六个字排成一列,就是我们这一讲要学习的排列.排列公式:从m 个不同44的元素中取出n 个(n ≤m ),并按照一定的顺序排成一列,其方法数叫做从m 个不同元素中取出n 个的排列数,记作A n m,它的计算方法如下:A n m =比如,从1、2、3、4中挑两个数字组成一个两位数,十位上有1、2、3、4这4种选择,十位选定后,个位可以从剩下的三个数字中选,有3种选择.根据乘法原理可以知道,这样的两位数有4312×=(个).我们也可以这样理解,要组成两位数相当于从1、2、3、4中挑两个数字排成一行,有24A 4312=×=(种)排法,所以这样的两位数有12个.关于排列数的计算,再给大家举几个例子:45A 5432120=×××=(从5开始递减地连乘4个数);38A 876336=××=(从8开始递减地连乘3个数);1100A 100=(从100开始递减地连乘1个数). 分析 直接用公式计算,注意要从几开始乘,连乘几个数.练习1.计算:(1)25A ; (2)5277A A −.生活中的许多问题其实就是排列问题.例如,你回家后,发现桌上有牛奶糖、巧克力和水果糖各一颗,你会按照什么顺序来吃这三颗糖?先吃哪个再吃哪个,有多少种顺序呢?这其实就是一个排列问题.分析 本题要排成一行,顺序有没有影响?假设是红黄蓝绿白五种颜色的话,“黄红白”和“白红黄”表示的是一种信号还是两种信号呢?练习2.有4名同学,要选出3人从左往右排成一排,一共有多少种不同的排法?分析 本题要从五个数字中选出多少个数字排成一排?如何用排列进行计算?千位是多少的数肯定比4125小?练习3.从5、6、7、8、9这五个数字中选出四个数字(不能重复)组成四位数,共能组成多少个不同的四位数?其中比6957大的有多少个? 拍聚会照 赵项和童学是好朋友.一天,童学的父母带着童学和赵项出去游玩.赵项酷爱摄影,提出要给童学拍全家福,童学一家以为只拍一张照片,就同意了.结果赵项要求童学一家在6个不同景点,按照“爸爸、童学、妈妈”、“妈妈、童学、爸爸”等6种排列方式全拍一遍,且每次拍照时每个人的动作都不一样.童学一家非常厌烦,但既然同意拍照了就只能硬着头皮拍完这6张照片.一个月之后,班里有十人左右的同学聚会.童学说:“咱们让赵项来拍聚会照吧!”同学们应声附和,赵项一听,撒腿就跑,心想:“还不得累死我啊!”一共可以表示出多少种不同的信号?字的四位数?将它们从小到大排列起来,例题3与排列问题类似,生活中也存在着许多组合问题.例如,你回家后,还是发现桌上有牛奶糖、巧克力和水果糖各一颗,但现在要选两颗装进口袋,有多少种方式呢?这其实就是一个组合问题.组合公式:从m 个不同元素中取出n 个(n ≤m )作为一组(不计顺序),可选择的方法数叫做从m 个不同元素中取出n 个不同的组合数,记作C n m ,它的计算方法如下:()C A A [1n n n m m n m m =÷=×−×�()1]A n n m n ×−+÷….比如,要从1、2、3、4中挑两个数,这时挑出1、2与挑出2、1都是一样的,挑出1、3与挑出3、1也是一样的.换句话说,能组成的两位数有24A 个,但每两个数字对应的22A 2=个两位数,在这里只算作同一种挑法.因此,只是从1、2、3、4中挑两个数而不考虑顺序,有2242A A 1226÷=÷=(种)方法.例如222552C A A 10=÷=,333553C A A 10=÷=;333883C A A 56=÷=,555885C A A 56=÷=.在刚才的四个算式中,2355C C =,3588C C =.其实这个关系是可以推广的.比如,5277C C =,4599C C =,1822020C C =……大家能从组合数定义的角度,说出为什么会有这样的等量关系吗?分析 直接用公式计算,注意公式里每个数字的含义.练习4.(1)27C ; (2)22863C 2C ×−×; (3)1213C . 分析 要想画出一条线段,需要选出几个点?要想画出一个三角形呢?四边形呢?为顶点或端点,一共可以画出多少条线段?多少个三角形?多少个四边形?例题5练习5.在一个圆周上有7个点,以这些点为顶点,一共可以画出多少个五边形?在身高互不相同的如果可以随便站,那么一共有多少种排法?如果要求第二排最矮的人也比第一排最高的人高,那么一共有多少种不同的排法?题本一、A n m:从m个不同的元素中取出n个(n≤m)排成一列的方法数.()()A11nmm m m n=×−××−+.二、C n m:从m个不同的元素中取出n个(n≤m)的方法数.()()()C A A1111n n nm m nm m m n n n=÷=×−××−+÷×−××.三、C Cn m nm m−=.(n≤m)作业1.计算:(1)34A;(2)3255A A−.2.海军舰艇之间经常用旗语来互相联络,方式是这样的:在旗杆上从上至下升起3面颜色不同的旗帜,每一种排列方式就代表一个常用信号,如果共有6种不同颜色的旗帜,那么可以组成多少种不同的信号?3.从3、4、5、6、7这五个数字中选出三个数字(不能重复)组成三位数,共能组成多少个不同的三位数?其中比635小的有多少个?4.(1)38C;(2)32752C C×−;(3)211C.5.在平面上有10个点,以这些点为端点,一共可以连出多少条线段?。

初中数学九年级教案学案排列组合(十)

初中数学九年级教案学案排列组合(十)

两个基本原理一、教学目标1、知识传授目标:正确理解和掌握加法原理和乘法原理2、能力培养目标:能准确地应用它们分析和解决一些简单的问题3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力二、教材分析1.重点:加法原理,乘法原理。

解决方法:利用简单的举例得到一般的结论.2.难点:加法原理,乘法原理的区分。

解决方法:运用对比的方法比较它们的异同.三、活动设计1.活动:思考,讨论,对比,练习.2.教具:多媒体课件.四、教学过程正1.新课导入随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。

排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.2.新课我们先看下面两个问题.(l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4班,汽车有2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?板书:图因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法.一般地,有如下原理:加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1十m2十…十m n种不同的方法.(2) 我们再看下面的问题:由A村去B村的道路有3条,由B村去C村的道路有2条.从A村经B村去C村,共有多少种不同的走法?板书:图这里,从A村到B村有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B 村到C村又有2种不同的走法.因此,从A村经B村去C村共有 3X2=6种不同的走法.一般地,有如下原理:乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法.那么完成这件事共有N=m1 m2…m n种不同的方法.例1 书架上层放有6本不同的数学书,下层放有5本不同的语文书.1)从中任取一本,有多少种不同的取法?2)从中任取数学书与语文书各一本,有多少的取法?解:(1)从书架上任取一本书,有两类办法:第一类办法是从上层取数学书,可以从6本书中任取一本,有6种方法;第二类办法是从下层取语文书,可以从5本书中任取一本,有5种方法.根据加法原理,得到不同的取法的种数是6十5=11.答:从书架L任取一本书,有11种不同的取法.(2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种方法;第二步取一本语文书,有5种方法.根据乘法原理,得到不同的取法的种数是N=6X5=30.答:从书架上取数学书与语文书各一本,有30种不同的方法.练习:一同学有4枚明朝不同古币和6枚清朝不同古币1)从中任取一枚,有多少种不同取法? 2)从中任取明清古币各一枚,有多少种不同取法?例2(1)由数字l,2,3,4,5可以组成多少个数字允许重复三位数?(2)由数字l,2,3,4,5可以组成多少个数字不允许重复三位数?(3)由数字0,l,2,3,4,5可以组成多少个数字不允许重复三位数?解:要组成一个三位数可以分成三个步骤完成:第一步确定百位上的数字,从5个数字中任选一个数字,共有5种选法;第二步确定十位上的数字,由于数字允许重复,这仍有5种选法,第三步确定个位上的数字,同理,它也有5种选法.根据乘法原理,得到可以组成的三位数的个数是N=5X5X5=125.答:可以组成125个三位数.练习:1、从甲地到乙地有2条陆路可走,从乙地到丙地有3条陆路可走,又从甲地不经过乙地到丙地有2条水路可走.(1)从甲地经乙地到丙地有多少种不同的走法?(2)从甲地到丙地共有多少种不同的走法?2.一名儿童做加法游戏.在一个红口袋中装着2O张分别标有数1、2、…、19、20的红卡片,从中任抽一张,把上面的数作为被加数;在另一个黄口袋中装着10张分别标有数1、2、…、9、1O的黄卡片,从中任抽一张,把上面的数作为加数.这名儿童一共可以列出多少个加法式子?3.题2的变形4.由0-9这10个数字可以组成多少个没有重复数字的三位数?小结:要解决某个此类问题,首先要判断是分类,还是分步?分类时用加法,分步时用乘法其次要注意怎样分类和分步,以后会进一步学习练习1.(口答)一件工作可以用两种方法完成.有 5人会用第一种方法完成,另有4人会用第二种方法完成.选出一个人来完成这件工作,共有多少种选法?2.在读书活动中,一个学生要从 2本科技书、 2本政治书、 3本文艺书里任选一本,共有多少种不同的选法?3.乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)展开后共有多少项?4.从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通.从甲地到丙地共有多少种不同的走法?5.一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同.(1)从两个口袋内任取一个小球,有多少种不同的取法?(2)从两个口袋内各取一个小球,有多少种不同的取法?作业:(略)。

【高中数学竞赛专题大全】 竞赛专题10 排列组合、二项式定理(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题10 排列组合、二项式定理(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题10 排列组合、二项式定理(50题竞赛真题强化训练)一、填空题1.(2018·广东·高三竞赛)袋中装有m 个红球和n 个白球,m >n≥4.现从中任取两球,若取出的两个球是同色的概率等于取出的两个球是异色的概率,则满足关系40m n +≤的数组(m ,n )的个数为_______. 【答案】3 【解析】 【详解】记“取出两个红球”为事件A ,“取出两个白球”为事件B ,“取出一红一白两个球”为事件C ,则()22m m n C P A C +=,()22n m n C P B C +=,()112m nm nC C P C C +⋅=. 依题意得()()()P A P B P C +=,即2211m n m n C C C C +=.所以()2m n m n +=-,从而m n +为完全平方数.又由4m n >≥及40m n +≤,得940m n ≤+≤. 所以9,3,m n m n +=⎧⎨-=⎩或16,4,m n m n +=⎧⎨-=⎩或25,5,m n m n +=⎧⎨-=⎩或36,6,m n m n +=⎧⎨-=⎩. 解之得(m ,n )=(6,3)(舍去),或(10,6),或(15,10),或(21,15). 故符合题意的数组(m ,n )有3个. 故答案为32.(2018·湖南·高三竞赛)已知123A B={a ,,}a a ⋃,当A B ≠时,(,)A B 与(,)B A 视为不同的对,则这样的(,)A B 对的个数有_____个. 【答案】26 【解析】 【详解】由集合A 、B 都是A B 的子集,A B ≠且()123,,A B a a a ⋃=. 当 A =∅时,B 有1种取法; 当A 为一元集时,B 有2种取法;当A 为二元集时,B 有4种取法; 当A 为三元集时,B 有7种取法.故不同的(A ,B )对有13234726+⨯+⨯+=(个). 故答案为263.(2018·湖南·高三竞赛)从-3、-2、-1、0、1、2、3、4八个数字中,任取三个不同的数字作为二次函数()()20f x ax bx c a =++≠的系数.若二次函数的图象过原点,且其顶点在第一象限或第三象限,这样的二次函数有_____个. 【答案】24 【解析】 【详解】可将二次函数分为两大类:一类顶点在第一象限;另一类顶点在第三象限,然后由顶点坐标的符号分别考查.因为图象过坐标原点,所以c=0.故二次函数可写成()2f x a bx =+的形式.又()2224b b f x a x a a ⎛⎫=+- ⎪⎝⎭,所以其顶点坐标是2,24b b a a ⎛⎫- ⎪⎝⎭.若顶点在第一象限,则有02b a >,204b a->.故0a <,0b >. 因此,这样的二次函数有113412A A ⋅=个.若顶点在第三象限,则有02b a -<,204b a-<.故0a >,0b >.这样的二次函数有2412A =个. 由加法原理知,满足条件的二次函数共有11234424A A A ⋅+=个.故答案为244.(2018·湖南·高三竞赛)31||2||x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为_____.【答案】-20 【解析】 【详解】因为6312x x ⎫⎛⎫+-= ⎪ ⎪⎝⎭.所以()333346120T C ⎛⎫=-=-. 故答案为-205.(2018·四川·高三竞赛)设集合{}1,2,3,4,5,6,7,8I =,若I 的非空子集A B 、满足A B =∅,就称有序集合对(),A B 为I 的“隔离集合对”,则集合I 的“隔离集合对”的个数为______.(用具体数字作答) 【答案】6050 【解析】 【详解】设A 为I 的()17k k ≤≤元子集,则B 为I 的补集的非空子集.所以,“隔离集合对”的个数为()()()()7778880880808898888888111212122223216050kkk kk k k k C C C C C C C --===-=-=+-+---=-+=∑∑∑. 故答案为6050.6.(2020·浙江·高三竞赛)已知十进制九位数()12910a a a ⋅⋅⋅,则所有满足1254a a a >>>=,569a a a <<<的九位数的个数为__________.【答案】25 【解析】 【详解】由题意得:{}i (i 1,2,3,4,6,7,8,9)5,6,7,8,9a =∈,且有顺序.于是满足题意的有445525N C C =⋅=.故答案为:25.7.(2018·山东·高三竞赛)集合A 、B 满足{}1,2,3,,10A B =,A B =∅,若A 中的元素个数不是A 中的元素,B 中的元素个数不是B 中的元素,则满足条件的所有不同的集合A 的个数为______. 【答案】186 【解析】 【详解】设A 中元素个数为()1,2,,9k k =,则B 中元素个数为10k -,依题意k A ∉,441122m k m ⎛⎫⎛⎫-<<+ ⎪ ⎪⎝⎭⎝⎭.10k B -∉,10k A -∈,此时满足题设要求的A 的个数为1102k C --.其中,当5k =时,不满足题意,故5k ≠.所以A 的个数为018484888882186C C C C C +++-=-=.8.(2020·辽宁锦州·高二期末)202148被7除后的余数为_______. 【答案】6 【解析】 【分析】将问题转化为二项式定理即可求解. 【详解】()2021202148491=-的通项公式为()202112021491r rr r T C -+=⨯⨯-,当{}0,1,2,,2020r ∈时,1r T +都能整除7,当2021r =时,该项为-1,所以余数为6. 故答案为:6 【点睛】本题主要考查二项式定理,属于基础题.9.(2021·江西·铅山县第一中学高二阶段练习(理))已知多项式()()10310290129101(1)(1)1x x a a x a x a x a x +=+++++++++,则2a =___________.【答案】42 【解析】 【分析】根据题意把310x x +变形为()()3101111x x ⎡⎤⎡⎤-+++-++⎣⎦⎣⎦,然后利用二项式定理来求. 【详解】因为()()3103101111x x x x ⎡⎤⎡⎤+=-+++-++⎣⎦⎣⎦()()10290129101(1)(1)1a a x a x a x a x =+++++++++,所以22231042a C C =-+=.故答案为:42.10.(2021·全国·高三竞赛)若33223(2011)x y ax bx y cxy dy +=+++,则248a b c d -+-=__________.【答案】8-【分析】 【详解】令x 1,y 2==-,条件式立即化为3(2)248a b c d -=-+-,即2488a b c d -+-=-. 故答案为:8-.11.(2020·江苏·高三竞赛)用三个数字“3,1,4”构成一个四位密码,共有___________种不同结果. 【答案】81 【解析】 【详解】解析:只有一个数时,3种;两个数时,()221344242C C C +⨯=种;三个数时,33436⨯⨯=种,共81种. 故答案为:81.12.(2020·江苏·高三竞赛)已知集合{}1,2,3,4,5,6A =,则满足()()()f f f x x =的函数f :A A →共有___________个.【答案】47 【解析】 【详解】解析,值域中元素的个数为1或6,若值域中元素的个数为1, 则()f x m =(m 为常数),共6种; 若值域中元素的个数6, 当()f x x =时,1种;当()(())((()))x f x f f x f f f x x →→→→,则3个一组,有36240C =.因此题述所求为164047++=个. 故答案为:47.13.(2018·河北·高三竞赛)欲登上7阶楼梯,某人可以每步跨上两阶楼梯,也可以每步跨上一阶楼梯,则共有_____种上楼梯的方法.【解析】 【详解】本题采用分步计数原理.第一类:0次一步跨上2阶楼梯,即每步跨上一阶楼梯,跨7次楼梯,只有1种上楼梯的方法;第二类,1次一步跨上2阶楼梯,5次每步跨上一阶楼梯,跨6次楼梯,有166C =种方法;第三类:2次一步跨上2阶楼梯,3次每步跨上一阶楼梯,跨5次楼梯,有5210C =种方法;第四类:3次一步跨上2阶楼梯,1次每步跨上一阶楼梯,跨4次楼梯,有344C =种方法;共计21种上楼梯的方法.14.(2018·河南·高三竞赛)若()()222012224nn n x a a x a x a x n *+=++++∈N ,则242n a a a +++被3除的余数是______.【答案】1 【解析】 【详解】令0x =,得204na =.分别令1x =和1x =-,将得到的两式相加,得()2202421622nn n a a a a ++++=+. 所以()()2222122242162423142nn n n n n n a a a -+++=+-=+- ()()21211121mod3n n -≡-⨯-≡-≡.15.(2018·湖北·高三竞赛)一枚骰子连贯投掷四次,从第二次起每次出现的点数都不小于前一次出现的点数的概率为______. 【答案】772【解析】 【详解】设1234a a a a 、、、分别是四次投掷骰子得到的点数,那么()1234,,,a a a a 共有46种不同的情况. 如果从第二次起每次出现的点数都不小于前一次出现的点数,则1234a a a a ≤≤≤.若1234a a a a 、、、的值都相等,则()1234,,,a a a a 有16C 种不同的情况;若1234a a a a 、、、恰好取两个不同的值,则()1234,,,a a a a 有263C 种不同的情况;若1234a a a a 、、、恰好取3个不同的值,则()1234,,,a a a a 有363C 种不同的情况;若1234a a a a 、、、恰好取4个不同的值,则()1234,,,a a a a 有46C 种不同的情况.因此,满足1234a a a a ≤≤≤的情况共有1234666633126C C C C +++=(种).故所求的概率为41267672=. 16.(2019·河南·高二竞赛)称{1,2,3,4,5,6,7,8,9}的某非空子集为奇子集:如果其中所有数之和为奇数,则奇子集的个数为____________ . 【答案】256 【解析】 【详解】全集{1,2,3,…,9}中含有5个奇数、4个偶数.根据奇子集的定义知,奇子集中只能含有1个奇数、3个奇数、5个奇数,而偶数的个数为0、1、2、3、4都有可能. 所以,奇子集共有:()()()101401450144444435454445C C C C C C C C C C C C +++++++++++()()135014555444C C C C C C =+++++()451012256=++⨯=个.故答案为:256.17.(2019·贵州·高三竞赛)已知m ∈{11,13,15,17,19},n ∈{2000,2001,…,2019},则mn 的个位数是1的概率为____________ . 【答案】25【解析】 【详解】当m =11,n ∈{2000,2001,…,2019}时,mn 的个位数都是1,此时有20种选法; 当m =13,n ∈{2000,2004,2008,2012,2016}时,mn 的个位数都是1,此时有5种选法; 当m =15时,mn 的个位数不可能为1,此时有0种选法;当m =17,n ∈{2000,2004,2008,2012,2016}时,mn 的个位数都是1,此时有5种选法; 当m =19,n ∈{2000,2002,2004,…,2018}时,m 的个位数都是1,此时有10种选法. 综上,所求概率为205051025205++++=⨯.故答案为:25.18.(2020·全国·高三竞赛)在1,2,3,…,10中随机选出一个数a 在-1,-2,-3,…,-10中随机选出一个数b ,则2a b +被3整除的概率为______ . 【答案】37100【解析】 【分析】题中条件2a b +是3的倍数,考虑2a 被3除的余数分情况讨论.另外注意有2a 和b 被3除的余数相加是3的倍数. 【详解】数组(),a b 共有210100=种等可能性的选法. 考虑其中使2a b +被3整除的选法数N .若a 被3整除,则b 也被3整除.此时,a b 各有3种选法,这样的(),a b 有239=种.若a 不被3整除,则()()222319613321a k k k k k =±=±+=±+,于是2a 被3除余1,那么b 被3除余2.此时a 有7种选法,b 有4种选法,这样的(),a b 有7428⨯=种.因此92837.N =+=于是所求概率为37100. 【点睛】此题考查计数原理和概率的知识,属于中档题.19.(2021·全国·高三竞赛)把数字09~进行排列,使得2在3的左边,3在5的左边,5在7的左边的排法种数为_________. 【答案】151200 【解析】 【分析】 【详解】考虑全排列,有种1010A 排法;将数字2、3、5、7从队列中拿出来,保留原队列顺序,有44A 种排法;使得2在3的左边,3在5的左边,5在7的左边,只能按照2、3、5、7的顺序排列,有1种排法;故满足题意的排法数是1010441151200A A ⋅=. 故答案为:151200.20.(2021·全国·高三竞赛)若多项式219201x x x x -+--+可以表示成1920011920a a y a y a y ++++,这里1y x =+,则2a =___.【答案】1330 【解析】 【分析】 【详解】 因为: ()()219202192021211(1)111(1)y x x x x x x x x x x y -+--+=+-+--+=+=+-,又因为:()()219201920220210119200119201y x x x x y a a y a y a y a y a y a y a y -+--+=++++=++++,所以3221C 1330a ==.故答案为:1330.21.(2021·全国·高三竞赛)有甲乙两个盒子,甲盒中有5个球,乙盒中有6个球(所有球都是一样的).每次随机选择一个盒子,并从中取出一个球,直到某个盒子中不再有球时结束.则结束时是甲盒中没有球的概率为______. 【答案】319512【解析】 【分析】 【详解】相当于前十次中至少有五次选择了甲盒的概率, 即5101011101051319222512i i p CC ===+=∑.故答案为:319 512.22.(2021·全国·高三竞赛)一次聚会有8个人参加,每个人都恰好和除他之外的两个人各握手一次.聚会结束后,将所有握手的情况记录下来,得到一张记录单.若记录单上的每条握手记录不计先后顺序(即对某两张记录单,可以分别对其各条记录进行重新排列后成为两张完全相同的,则这两张被认为是同一种),则所有可能的记录单种数为_______.【答案】3507【解析】【分析】【详解】根据已知,将这8个人进行分组,每组的所有人排成一个圆圈,每个人和与其相邻的两个人握手.问题转化为这样的分组、以及分完组之后的项链排列(因为要求握手记录无序)方法有几种.注意到最多分成两组,则:当分成一组时,有7!2种;当分成两组时,若两组人数分别为3和5,则有384!2! 22C⋅⋅种;若两组人数都是4,则有483!3!2!22C⋅⋅种.故共有43887!4!2!3!3!3507 2222!22CC+⋅⋅+⋅⋅=种.故答案为:3507.23.(2021·全国·高三竞赛)先后三次掷一颗骰子,则其中某两次的点数和为10的概率为___________.【答案】23 108【解析】【分析】【详解】有两次为5的概率为213531166216C C+=,有两次为6和4的概率为211134323306216A C C C+=,所以概率为163023216216108+=. 故答案为:23108. 24.(2021·浙江·高二竞赛)对于正整数n ,若(5315)n xy x y -+-展开式经同类项合并,(,0,1,,)i j x y i j n =合并后至少有2021项,则n 的最小值为______.【答案】44 【解析】 【分析】 【详解】由(5315)(3)(5)n n n xy x y x y -+-=+-,共有()21n +项,所以2(1)2021n +≥,得1n ≥,则min 44n =. 故答案为:44.25.(2021·浙江·高三竞赛)已知整数数列1a ,2a ,…,10a ,满足1012a a =,4862+=a a a ,且11k k a a +-=(1k =,2,…,9),则这样的数列个数共有______个. 【答案】192 【解析】 【分析】 【详解】 分情况讨论:①先考虑468,,a a a ,设4a r =,则:(1)45678,1,2,3,4a r a r a r a r a r ==+=+=+=+; (2)45678,1,,1,a r a r a r a r a r ==+==+=; (3)45678,1,,1,a r a r a r a r a r ==+==-=; (4)45678,1,2,3,4a r a r a r a r a r ==-=-=-=-; (5)45678,1,2,3,a r a r a r a r a r ==-=-=+=; (6)45678,1,,1,a r a r a r a r a r ==-==-=;②再考虑910,a a ,同理共有4种,且10a r s =+,其中6,4,2,0,2,4,6s =---;③最后考虑123,,a a a 共有8种,且1a r t =+,其中1,3t =±±,所以110a a ≠,故1012a a =一定有解, 综上共有864192⨯⨯=个; 故答案为:192.26.(2021·全国·高三竞赛)将2枚白棋和2枚黑棋放入一个44⨯的棋盘中,使得棋盘的每个方格内至多放入一枚棋子,且相同颜色的棋子既不在同一行,也不在同一列,如果我们只区分颜色而不区分同种颜色的棋子,则不同放法的种数为_________. 【答案】3960 【解析】 【分析】利用去杂法可求不同方法的种数. 【详解】解析:将两枚白棋放入方格中的方法数为169722⨯=种,两枚黑棋放入方格中使得它们既不在同一行,也不在同一列的方法数为169722⨯=,其中至少有1枚黑棋与白棋放入同一方格的方法数为1892=⨯种,两枚黑棋均放入两枚白棋所在的方格中的方法数为1种,故由容斥原理可知不同的方法数为72(72291)3960⨯-⨯+=种. 故答案为:3960. 【点睛】思路点睛:对于较为复杂的组合计数问题,我们可以采用去杂法从反面考虑,但要注意防止重复计算,如本题中同色的棋子不做区分.27.(2021·全国·高三竞赛)用平行于各边的直线将一个边长为10的正三角形分成边长为1的正三角形表格,则三个顶点均为格点且各边平行于分割线或与分割线重合的正三角形的个数是___________. 【答案】315 【解析】 【详解】解析:设边长为n 的正三角形中由格点构成各边平行于分割线或与分割线重合的正三角形的个数为n a ,则1231,5,13a a a ===,当n 为偶数时,则21+12+212322n n n n n a a C --⎛⎫=+++++ ⎪⎝⎭,其中21n C +为增加的一条边上的1n +分点中的任意两个不同的构成的正三角形的个数; 2212322n n -⎛⎫++++ ⎪⎝⎭为以增加的一条边上的1n +分点中的任意一个点为顶点的正三角形的个数,同理,当n 为奇数时,则21+11+21232n n n n a a C --⎛⎫=++++ ⎪⎝⎭,其中21n C +为增加的一条边上的1n +分点中的任意两个不同的构成的正三角形的个数; 121232n -⎛⎫+++ ⎪⎝⎭为以增加的一条边上的1n +分点中的任意一个点为顶点的正三角形的个数,故2221034111a C C C =++++()()()()()2012121221221234212345+⨯++⨯+⨯++⨯+++⨯++++⨯++++⎡⎤⎣⎦=()()3223441112123454136101580315C C C C ++++++++++++=++=答案为:315.28.(2021·全国·高三竞赛)设()40382019201k k k x xa x =++=∑,其中(0,1,,4038)i a i =为常数,则134630kk a==∑___________.【答案】20183 【解析】 【详解】 设()201822403601240361x x b b x b x b x ++=++++,则()()()201922498601403611x x x x b b x b x ++=+++++.可见0031236456,,,a b a b b b a b b b ==++=++,因此40384036a b =.20180340380140363a a a b b b +++=+++=.故答案为:20183.29.(2021·全国·高三竞赛)设129,,,a a a 是1,2,…,9的一个排列,如果它们满足123456789a a a a a a a a a <<>>>><<,则称之为一个“波浪形排列”.则所有的“波浪形排列”的个数为___________. 【答案】379 【解析】 【详解】解析: 3a 只能取7、8、9,按照3a 取值依次分成三类,若39a =,有2385280C C =种排列;若38a =,有237484C C =种排列;若37a =,有26=15C 种排列; 可得总数为379. 故答案为:379.30.(2021·全国·高三竞赛)从正方形的四个顶点及四条边的中点中随机选取三个点,则“这三个点能够组成等腰三角形”发生的概率为___________. 【答案】514【解析】 【详解】解析:按照选取点中正方形顶点的个数进行分类,依次可以为3、2、1、0个,相应的等腰三角形个数为3344C 4142C 20+⨯+⨯+=,因此所求概率为38205C 14=. 故答案为:514. 31.(2021·全国·高三竞赛)圆周上有20个等分点,从中任取4个点,是某个梯形4个顶点的概率是_______. 【答案】48323【解析】 【详解】解析:梯形共有两种:从10组平行于直径的9条平行直线中选2条,或从10组不平行于直径的10条平行直线中选2条.第一种去掉矩形有()2910C 4320⨯-=个,第二种去掉矩形有()21010C 5400⨯-=个,共有720个,故概率是42072048323C =.故答案为:48323. 32.(2021·全国·高三竞赛)在平面直角坐标系xOy 中,点集{(,){1,2},{1,2,3,4}}K x y x y =∈∈.从K 中随机取出五个点,则其中有四点共线或四点共圆的概率为____________. 【答案】57【解析】 【详解】考虑任四点不共线、任四点不共圆的情形. 由无四点共线知每列至少有一个点不取.不妨设左边一列有两个点不取,分六种情况知方法数为2200228+++++=.故原概率为3838C 165C 7P -==. 故答案为:57.33.(2021·全国·高三竞赛)在0、1、2、3、4、5、6中取5个数字组成无重复数字的五位数,其中是27倍数的最小数是_______. 【答案】14256 【解析】 【详解】解析:首先这个数是9的倍数,故这5个数字只能是0、3、4、5、6或1、2、4、5、6,五位数字之和为18.设五位数是abcde ,则()1000010001001010810mod27a b c d e a b c d e ++++≡+-++, 为了使数最小,考虑1a =,故可取各数字为1、2、4、5、6,先考虑12456,此时10810123250628a b c d e +-++=-++=,不合要求; 再考虑14256,此时10810141650654a b c d e +-++=-++=,符合要求. 故所求的最小的数是14256. 故答案为:14256.34.(2019·山东·高三竞赛)6个相同的红色球,3个相同的白色球,3个相同的黄色球排在一条直线上,那么同色球不相邻的概率是______ .【答案】5924【解析】 【详解】由题意可知,所有的排列方法种数为:12!6!3!3!N =⨯⨯,满足题意的排列方法数量为:5!253!2!n =⨯⨯⨯, 故同色球不相邻的概率为5!2553!2!12!9246!3!3!p ⨯⨯⨯==⨯⨯. 故答案为:5924. 35.(2019·贵州·高三竞赛)若(a +b )n 的展开式中有连续三项的二项式系数成等差数列,则最大的三位正整数n =____________ . 【答案】959 【解析】 【详解】设(a +b )n 的展开式中连续三项的二项式系数为11C ,C ,C (11)k k k n n n k n -+-.因为112C C C k k k n n n -+=+,所以22(41)420n k n k -++-=,得到n =①由n 为正整数,则8k +9应为奇完全平方数,故设8k +9=(2m +1)2,即222k m m =+-, 代入①式得n =(m +1)2-2或n =m 2-2. 所以,三位正整数n 的最大值为959. 故答案为:959.36.(2019·广西·高三竞赛)从1,2,…,20中任取3个不同的数,这3个数构成等差数列的概率为____________ . 【答案】338【解析】 【详解】设取出的3个不同的数分别为a 、b 、c .不同的取法共有320C 种,若这3个数构成等差数列,则有a +c =2b .故、c 同为奇数或同为偶数,且a 与c 确定后,b 随之而定.从而所求概率为221010320338C C P C +==. 故答案为:338. 37.(2019·浙江·高三竞赛)在复平面上,任取方程10010z -=的三个不同的根为顶点组成三角形,则不同的锐角三角形的数目为____________. 【答案】39200 【解析】 【详解】易知10010z -=的根在单位圆上,且相邻两根之间弧长相等,都为2100π,即将单位圆均匀分成100段小弧.首先选取任意一点A 为三角形的顶点,共有100种取法.按顺时针方向依次取顶点B 和顶点C ,设AB 弧有x 段小弧,CB 弧有y 段小弧,AC 弧有z 段小弧,则△ABC 为锐角三角形的等价条件为:1001,,49x y z x y z ++=⎧⎨⎩970,,48x y z x y z ++=⎧⇒⎨⎩ ① 计算方程组①的整数解个数,记1{|97,49}P x x y z x =++=,2{|97,49}P y x y z y =++=,3{|97,49}P z x y z z =++=,{(,,)|97,,,0}S x y z x y z x y z =++=,则123123||P P P S P P P ⋂⋂=-⋃⋃2991231C |i j i j P P P P P P <⎛=-++-∑⋂+ ⎝)23|P P ⋂⋂229950C 3C 1176=-=. 由于重复计算3次,所以所求锐角三角形个数为1001176392003⨯=.故答案为:39200.38.(2019·新疆·高三竞赛)随机取一个由0和1构成的8位数,它的偶数位数字之和与奇数位数字之和相等的概率为____________ . 【答案】35128【解析】 【分析】该8位数首位数字必须为1,分别计算出奇数位上和偶数位上1的个数,结合组合知识求出基本事件总数和偶数位数字之和与奇数位数字之和相等包含的基本事件个数即可得解. 【详解】设n 是满足题意的8位数,故知其偶数位上1的个数和在奇数位上1的个数相同,从而在奇数位上与偶数位上1的个数可能为1、2、3或4.注意到首位为1,下面分情况讨论:(1)奇数位上与偶数位上有1个1,3个0共有0134C C 4⋅=种可能;(2)奇数位上与偶数位上有2个1,2个0,共有1234C C 18⋅=种可能;(3)奇数位上与偶数位上有3个1,1个0,有2334C C 12⋅=种可能;(4)奇数位上与偶数位上有4个1,共有34341C C ⋅=种可能.合计共有4+18+12+1=35个满足条件的自然数n .又因为0和1构成的8位数共有72128=个,从而概率为35128. 故答案为:35128【点睛】此题考查求古典概型,关键在于熟练掌握计数原理,根据分类计数原理结合组合知识求解概率.39.(2019·新疆·高三竞赛)记[x ]为不超过实数x 的最大整数.若27788A ⎡⎤⎡⎤=+++⎢⎥⎢⎥⎣⎦⎣⎦201920207788⎡⎤⎡⎤+⎢⎥⎢⎥⎣⎦⎣⎦,则A 除以50的余数为____________ .【答案】40 【解析】 【分析】根据21277,88k k -均不是整数,利用放缩法分析出21221217772788k k k k ---⎡⎤⎡⎤-<+<⎢⎥⎢⎥⎣⎦⎣⎦,结合二项式定理得A 除以50的余数. 【详解】注意到21277,88k k-均不是整数. 按定义212212212212177777772117888888k k k k k kk k -----⎛⎫⎛⎫⎡⎤⎡⎤-=-+-<+<+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦, 所以对任意正整数k 均有21221777188k k k --⎡⎤⎡⎤+=-⎢⎥⎢⎥⎣⎦⎣⎦22771k -=⋅-17(49)1k -=⋅- ()()()1101111117(501)175050111r k k k r k r k k k k C C C ---------=⋅--=⋅⨯+⋅⋅⋅+⨯⨯-+⋅⋅⋅+⨯--17(1)1(mod 50)k -=⋅--.从而71010(11)101040(mod50)A ≡⋅⋅--≡. 故答案为:40 【点睛】此题考查数论相关知识点,涉及同余问题结合二项式定理处理,需要熟练掌握初等数论相关知识.40.(2020·全国·高三竞赛)现有10张卡片,每张卡片上写有1,2,3,4,5中两个不同的数,且任意两张卡片上的数不完全相同.将这10张卡片放入标号为1,2,3,4,5的五个盒子中,规定写有i ,j 的卡片只能放在i 号或j 号盒子中.一种放法称为“好的”,如果1号盒子中的卡片数多于其他每个盒子中的卡片数.则“好的”放法共有________种. 【答案】120. 【解析】 【分析】结合题意,对满足情况进行分类,运用组合的相关知识进行求解. 【详解】解:用{,}i j 表示写有i ,j 的卡片.易知这10张卡片恰为{,}(15)i j i j ≤<≤.考虑“好的”卡片放法.五个盒子一共放有10张卡片,故1号盒至少有3张卡片,能放入1号盒的卡片仅有{1,2},{1,3},{1,4},{1,5}.情况一:这4张卡片都在1号盒中,此时其余每个盒中已经不可能达到4张卡片,故剩下6张卡片无论怎样放都符合要求,有6264=种好的放法.情况二:这4张卡片恰有3张在1号盒中,且其余每盒最多仅有2张卡片. 考虑{1,2},{1,3},{1,4}在1号盒,且{1,5}在5号盒的放法数N .卡片{2,3},{2,4},{3,4}的放法有8种可能,其中6种是在2,3,4号的某个盒中放两张,其余2种则是在2,3,4号盒中各放一张.若{2,3},{2,4},{3,4}有两张在一个盒中,不妨设{2,3},{2,4}在2号盒,则{2,5}只能在5号盒,这样5号盒已有{1,5},{2,5},故{3,5},{4,5}分别在3号与4号盒,即{2,5},{3,5},{4,5}的放法唯一;若{{2,3},{2,4},{3,4}在2,3,4号盒中各一张,则2,3,4号盒均至多有2张卡片,仅需再使5号盒中不超过2张卡片,即{2,5},{3,5},{4,5}有0张或1张在5号盒中,对应0133C C 4+=种放法.因此612414N =⨯+⨯=.由对称性,在情况二下有456N =种好的放法. 综上,好的放法共有6456120+=种. 【点睛】关键点点睛:解答本题的关键是结合题意进行分类讨论,需要考虑全面,不要漏掉情况,要求综合能力较强.41.(2021·浙江·高三竞赛)一条直线上有三个数字1a ,2a ,3a ,数字2a 位于1a ,3a 之间,称数值1223a a a a -+-为该直线的邻差值.现将数字1~9填入33⨯的格子中,每个数字均出现,过横向三个格子、竖向三个格子及对角线三个格子共形成8条直线.则这8条直线的邻差值之和的最小值为______,最大值为______. 【答案】 36 60 【解析】 【分析】 【详解】如图1,这8条直线的邻差值之和:9212387894147636951i i M a a a a a a a a a a a a a a a a a a ==-+-+-+-+-+-+-+-+-∑,利用局部调整法,当(1,2,,9)i a i i ==⋯时,M 有最小值2226668436+++++++=.当如图2排列时,M 有最大值8189(9823)224602i i =⨯++--⨯=+=∑. 故答案为:36,60.42.(2021·全国·高三竞赛)刘老师为学生购买纪念品,商店中有四种不同类型纪念品各10件(每种类型纪念品完全相同),刘老师计划购买24件纪念品,且每种纪念品至少购买一件.则共有________种不同的购买方案. 【答案】633 【解析】 【详解】解析:只需计算()4210()f x x x x =+++中24x 的系数而()()4104210441()(1)x f x x x x x x -=+++=⋅-又由幂级数展开式可得233411420(1)nn x x C x x +=+++++-,故()()4102030403301464n n n f x x x x x x C x ∞+=⎛⎫=-+-+ ⎪⎝⎭∑,故24x 的系数为3332313346633C C C -+=.故答案为:633.43.(2021·全国·高三竞赛)从集合{1,2,,2020}的非空子集中随机取出一个,其元素之和恰为奇数的概率为____________. 【答案】20192020221- 【解析】 【详解】解析:集合{1,2,,2020}共有非空子集202021-个,元素和为奇数的子集个数恰为函数()()22000()(1)11f x x x x =+++的展开式中奇次项系数之和2019(1)(1)22f f --=.故20192020221P =-.故答案为:20192020221-. 44.(2021·全国·高三竞赛)将圆周21n 等分于点1221,,,n A A A +,在以其中每三点为顶点的三角形中,含有圆心的三角形个数为__________. 【答案】1(1)(21)6n n n ++【解析】 【详解】任取一个分点记为P ,然后将其余2n 个分点这样标志, 自P 点后,逆时针方向的连续n 个点依次记为12,,,n A A A ,顺时针方向的连续n 个点依次记为12,,,n B B B .先考虑以P 为顶点且含有圆心的三角形,如图,显然这种三角形的另两个顶点必须一个属于点集{}12,,,n A A A ,而另一个属于点集{}12,,,n B B B .且这种i j PA B ,含有圆心当且仅当1,,{1,2,,}i j n i j n ++∈.现计算符合条件的三角形个数:当i k =时,j 可取值,1,,1n n n k --+,共计k 个值.因此这种含有圆心的i j PA B 个数为()112nk n n k =+=∑ , 当点P 取遍21n 个位置,共得1(1)(21)2n n n ++个三角形,由于每个三角形有三个顶点,故每个三角形重复计算了三遍, 因此符合条件的三角形个数为1(1)(21)6n n n ++.故答案为:1(1)(21)6n n n ++.二、解答题45.(2021·全国·高二课时练习)已知集合M={1,2,3,4,5,6},N={6,7,8,9},从M 中选3个元素,N 中选2个元素组成一个含5个元素的新集合C ,则这样的集合C 共有多少个? 【答案】90 【解析】 【分析】分类计数,再用加法原理求解. 【详解】第一类:从M 中选取3个元素且含6有25C 种,从N 中选取2个元素不含6有23C 种,根据分步乘法计数原理,有2253C C ⨯=10×3=30(种);第二类:从M 中选取3个元素且不含6有35C 种,从N 中选取2个元素有24C 种,根据分步乘法计数原理,有3254C C ⨯=10×6=60(种).由分类加法计数原理,集合C 共有30+60=90(个). 46.(2018·广东·高三竞赛)已知正整数n 都可以唯一表示为2012999m m n a a a a =+⋅+⋅++⋅ ①的形式,其中m 为非负整数,{}0,1,,8j a ∈(0j =,1,,1m -),{}1,,8m a ∈.试求①中的数列012,,,,m a a a a 严格单调递增或严格单调递减的所有正整数n 的和. 【答案】984374748 【解析】【详解】设A 和B 分别表示①中数列严格单调递增和递减的所有正整数构成的集合.符号S (M )表示数集M 中所有数的和,并将满足①式的正整数记为110m m n a a a a -=.把集合A 分成如下两个不交子集{}000A n A a =∈=和{}100A n A a =∈≠. 我们有()()()01S A S A S A ==.对任意1n A ∈,令()09f n n A =∈,则f 是1A 到0A 的双射. 由此得()()019S A S A =,从而()()110S A S A =. 又对任意10m m a a a a B -=∈,令()()()()101999m m b g a a a a A -==---∈,则g 是B 到1A 的双射,其中()119999918m m m a b +++=+++=-. 因为{}101018,0,1,,7m m m m B a a a a a a m --=≤<<<≤=所以B 中共有718m m C+=∑个元素,因此()()()7111809918m m m S B S A C ++=+=-∑88880099988k k k k k C C ===-∑∑ ()8891028=-. 又令2A 表示A 中最高位数8m a =的正整数全体,A 中其余的数和零所构成的集合记为3A , 则()()()23S A S A S A =+. 对任意10m m a a a a B -=∈,令()()()()103888m m b a a a a A σ-==---∈则σ是B 到3A 的双射,其中118989891m m m a b -++=⋅+⋅++=-.所以()()()71138091m m m S B S A C++=+=-∑ ()888091102k k o k C ==-=-∑.最后对任意{}0288ma a a A =∈-,令()()()088mb a a a B τ==--∈.则τ是{}28A -到B 的双射,其中128989891m m m a b +++=⋅+⋅++=-.所以()()()712280891m m m S B S A C ++=+=+-∑()8188818919102k k k C +==+-=⋅-∑.于是,()()()()()8899191021082102S B S A S B S A ⎧+=-⎪⎨⎪+=-⎩解之得()931108096875008032S A =⨯+=,()15624704S B =. 由于A 和B 中都含有1,2,…,8,因此所求正整数的和等于()()36984374748S A S B +-=. 47.(2019·江苏·高三竞赛)平面直角坐标系中有16个格点(i ,j ),其中0≤i ≤3,0≤j ≤3.若在这16个点中任取n 个点,这n 个点中总存在4个点,这4个点是一个正方形的顶点,求n 的最小值. 【答案】11. 【解析】 【分析】分两步来证明:先找到10个点,它们中的任意四点不能构成正方形的顶点,再根据抽屉原理证明任意的11个点,一定存在4个点为正方形的四个顶点. 【详解】存在下面的10点即:点(0,0),(1,0),(2,0),(2,1),(3,1),(0,2),(3,2),(0,3),(1,3),(3,3), 其中任意4个点不能构成正方形的顶点,故11n ≥. 下证:任意11点中,一定存在4个点为正方形的四个顶点.因为共取11个点,分两种情况讨论:(1)有一行有4个点(设为1234,,,P P P P ),则余下三行共有7个点, 由抽屉原理知余下三行中必有一行至少有3个点(设为123,,Q Q Q ),因1234,,,P P P P ,123,,Q Q Q 分布在两行,若该两行相邻或中间隔一行,则存在四个点,它们为正方形的四个顶点;若该两行间隔两行,如图,不妨设1234,,,P P P P 为线段AB 上的格点,123,,Q Q Q 为线段OC 上的格点,对应的点的坐标为()()()0,0,1,0,2,0,余下4个点分布在中间两行,若线段DE 上有两个整点,则它们和1234,,,P P P P 中的两点构成正方形的顶点,否则线段GF 上至少有3个点,则其中必有两个格点与123,,Q Q Q 中的两点构成正方形的顶点.(2)任意一行都没有4个点,则各行的格点数分别为3,3,3,2,故4行中必有相邻两行各有3个格点,这6个格点中必存在4个格点,它们构成正方形的顶点. 【点睛】本题考查组合最值,此类问题,解决的基本方法是先找一个反例,从而确定变量的初始范围,再利用抽屉原理来证明该范围成立.48.(2019·上海·高三竞赛)设n 为正整数,称n ×n 的方格表Tn 的网格线的交点(共(n +1)2个交点)为格点.现将数1,2,……,(n +1)2分配给Tn 的所有格点,使不同的格点分到不同的数.称Tn 的一个1×1格子S 为“好方格”,如果从2S 的某个顶点起按逆时针方向读出的4个顶点上的数依次递增(如图是将数1,2,…,9分配给T 2的格点的一种方式,其中B 、C 是好方格,而A 、D 不是好方格)设Tn 中好方格个数的最大值为f (n ).(1)求f (2)的值;(2)求f (n )关于正整数n 的表达式.【答案】(1)f (2)=3.(2)221()2n n f n ⎡⎤+-=⎢⎥⎣⎦.【解析】【详解】(1)如图①,将T 2的4个1×1格子(以下简称“格子”)分别记为A 、B 、C 、D ,将9个格点上的数分别记为a 、b 、c 、d 、e 、f 、g 、h 、i.当a ,b ,……,i 依次取为1,2,……,9时,易验证B 、C 、D 均为好方格,这表明f (2)≥3. 现假设f (2)=4,即存在一种数的分配方式,使A 、B 、C 、D 均为好方格.由对称性,不妨设边界上8个数a ,b ,……,h 中的最小数为a 或b .此时由A 为好方格知,或者有a <b <i <h ,或者有b <i <h <a ,故b <i <h 总是成立的.进而由B 、C 为好方格知,必有i <f <g <h ,b <c <d <i ,但这时d <i <f ,与D 为好方格矛盾. 综上可得f (2)=3.(2)设Tn 的各格点的数已被分配好,此时好方格有k 个称格子的一条边为一段“格线”我们对Tn 的每段格线标记一个箭头若格线连结了两个格点U 、V ,其中U 上的数小于V 上的数,则对格线UV 标上一个指向UV 顺时针旋转90°后所得方向的箭头.称一个格子S 及S 的一条边UV 所构成的有序对(S ,UV )为一个“对子”,如果UV 上所标的箭头由S 内指向S 外设对子总数为N .一方面,每个格子S 至少贡献1个对子(否则沿逆时针方向读S 顶点上的数将永远递减,矛盾),而根据好方格的定义每个好方格贡献3个对子,于是()22312N k n k k n +⋅-=+.另一方面,Tn 的每段格线至多贡献1个对子,且Tn 边界上至少有一段格线标有向内的箭头(否则,沿逆时针方向读n 边界上的数将永远递增,矛盾),从而不贡献对子.注意到Tn 的格线段数为2n (n +1),所以又有2(1)1N n n +-.综合两方面得,2k +n 2≤2n (n +1)-1,即好方格的个数2212n n k+-. 最后,对n 为奇数和n 为偶数的情况,分别如图②和图③,将1,2,……,(n +1)2按粗线经过的次序依次分配给所有格点对图中标有“▲”记号的每个格子,易验证,按被粗线经过的先后次序排列其4个顶点,恰是一种逆时针排列,因而这些格子均为好方格.。

c 10 6排列组合写法

c 10 6排列组合写法

c 10 6排列组合写法
我们要计算从10个元素中选取6个元素的排列组合数。

排列组合是数学中的基本概念,用于描述从n个元素中选取r个元素的不同方式的数量。

排列数(Permutations)是从n个元素中选取r个元素的所有不同方式的数量,记作P(n, r)。

组合数(Combinations)是从n个元素中选取r个元素的所有不同方式的数量,不考虑元素的顺序,记作C(n, r)。

排列数和组合数都可以使用以下公式计算:
P(n, r) = n! / (n-r)!
C(n, r) = n! / [r!(n-r)!]
其中,n!表示n的阶乘,即n×(n-1)×...×3×2×1。

对于这个问题,我们要计算的是排列数P(10, 6)。

计算结果为:P(10, 6) = 151200
所以,从10个元素中选取6个元素的排列数为:151200种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.排列组合
本部分是高考的必考内容,每年都有2、3道与排列组合二项式定理展开式及通项有关.纵观近三年的高考,从难度程度看,二项式定理、概率相对容易,排列组合时难时易.
目前在考查能力、思想、应用、创新、综合的趋势下,排列、组合和概率依旧会以中等偏上难度考查下去,二项式定理的考查趋向于对能力的要求.排列、组合与概率的应用题常以现实生活、社会热点为载体,同时也考查两个基本原理.
一、排列组合的意义,计算公式及其应用 【例1】(2008年上海卷)上海卷12)组合数C r
n
(n >r ≥1,n 、r ∈Z )恒等于( D )
A .r +1n +1C r -1n -1
B .(n +1)(r +1)
C r -1n -1 C .nr C r -1n -1
D .n r
C r -1n -1
【例2】(2008年全国Ⅰ)如图,一环形花坛分成A B C D ,,,四块,
现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96
B .84
C .60
D .48
【解析】B 分三类:种两种花有24A 种种法;种三种花有342A 种种法;种四种花有4
4A 种种法.共有234444284A A A ++=.
另解:按A B C D ---顺序种花,可分A C 、同色与不同色有43(1322)84⨯⨯⨯+⨯=
【例3】 (2008年陕西卷)某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 种.(用数字作答).
【解析】 96 分两类:第一棒是丙有11412448C C A ⋅⋅=,第一棒是甲、乙中一人有11421448C C A ⋅⋅=
因此共有方案484896+=种
【例4】(2008年重庆卷)某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点A 、B 、C 、A 1、B 1、C 1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有 种(用数字作答)
【解析】216 111432A B C 处种,处种,处种则底面共
43224⨯⨯=, 1131A B B C ,B 分类,A ,同,处种,处种,则共有3种

12B A B A ,不同,处3,处种,
1C ⨯处种,则共有32=6种,由分类计数原理得上底面共9种,由分步类计数原理得共有249216⨯=种
【例5】 (2007年天津)如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一
种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).
【解析】 如果有2种颜色,则有26C 种颜色可以选择,涂上有12C 种
方法.
如果用3种颜色有3
6C 种颜色可以选择,涂上有18)21(23=+⨯⨯(种)方法. ∴不同涂色种数为39018361226=∙+∙C C C (种).
二、二项式定理、二项式展开式的性质 【例6】 (2008年安徽卷)设88018(1),x a a x a x +=+++则0,18,
,a a a 中奇数的个数
为( )
A .2
B .3
C .4
D .5
【解析】 A 由题知)8,2,1,0(8 ==i C a i i ,逐个验证知18
808==C C ,其它为偶数,选
A.
【例7】 (2008年浙江卷)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4
x 的项的系数是( A )
(A )-15 (B )85 (C )-120 (D )274
【解析】A 本小题主要考查二项式定理展开式具体项系数问题。

本题可通过选括号
(即5个括号中4个提供x ,其余1个提供常数)的思路来完成。

故含4
x 的项的系数为(1)(2)(3)(4)(5)15.-+-+-+-+-=-
【例8】(2008年福建卷)若5
5
4
3
2
543210(2)x a x a x a x a x a x a -=+++++,则
12345a a a a a ++++= . (用数字作答)
【解析】 31 令54321011x a a a a a a =+++++=-得,令0x =得0032x a ==-得 所以 5432131a a a a a ++++=
【例9】(2008年辽宁卷)已知2
31(1)n
x x x x ⎛⎫+++ ⎪⎝⎭的展开式中没有..常数项,n ∈*
N ,且2≤n ≤8,则n =______.
【解析】 5 本小题主要考查二项式定理中求特定项问题。

依题31()n
x x
+
对n ∈*N 且2≤n ≤8中,只有5n =时,其展开式既不出现常数项,也不会出现与x 、2x 乘积为常数的
项。

【例10】(2007年江西)已知
n
展开式中,各项系数的和与其各项二项式系数的
和之比为64,则n 等于( )
A.4 B.5
C.6
D.7
【解析】 C 令x =1,各项系数和为4n
,二项式系数和为2n
,故有,642
4=n n
∴n =6.。

相关文档
最新文档