三角形中线的巧用
三角形中线等分三角形面积的灵活运用
三角形中线等分面积的灵活应用山东 王明华如图:线段AD 是△ABC 的中线,过点A 作AE ⊥BC ,垂足为E ,则S △ABD =12BD ·AE ,S △ADC =12DC ·AE.因为BD =DC ,所以S △ABD =S △ADC .因此,三角形的中线把△ABC 分成两个面积相等的三角形.利用这一性质,可以解决许多有关面积的问题.一、求图形的面积例1 长方形ABCD 的长为a ,宽为b ,E 、F分别是BC 和CD 的中点,DE 、BF 交于点G ,求四边形ABGD 的面积.析解:连接CG ,不难得出S △BCF=S △DCE=4ab,从而S △BEG=S △DFG,由E 、F 分别是BC 和CD 的中点,可得△DGF 、△CFG 、△CEG 、△BEG 的面积相等,因此S 四边形ABGD=42433ab ab ab -⨯=. 二、巧算式子的值例 2 在数学活动中,小明为了求2341111122222n ++++⋅⋅⋅+的值(结果用n 表示),设计了如图2所示的几何图形.请你利用这个几何图形求2341111122222n ++++⋅⋅⋅+的值.析解:根据三角形的中线把它分成两个面积相等的三角形可知,图中三角形的面积等于1,也可以表示为234111*********n n ++++⋅⋅⋅++,因此2341111111222222n n ++++⋅⋅⋅+=-.点评:此题运用“数形结合思想”,借助三角形的面积来求数的运算,简捷、巧妙.三、巧分三角形例3 已知△ABC ,请你用两种不同的方法把它分成面积之比为1:2:3的三个三角形.析解:方法1:取BC 的中点E ,然后在BE 上取点D ,使BD 13=BE ,则AD 、AE 把△ABC 分成面积之比为1:2:3的三个三角形(如图1).方法2:在BC 边上截取DC31=BC ,连结AD ,然后取AB 的中点P ,连结BP 、CP ,则△PAC 、△PAB 、△PBC 的面积之比为1:2: 3(如图2).想一想:方法2中,这三个三角形的面积之比为什么是1:2:3?。
初中数学-三角形中的中线的用法教师版
三角形中的中线的用法模块一:三角形中位线 1.定义:连接三角形两边中点的线段. 2.定理:三角形中位线平行于三角形的第三边且等于第三边的一半.若DE 为ABC △的中位线,则DE//BC ,且12DE BC =.3.三角形中位线里隐含重要性质: ①三角形的三条中位线将原三角形分割成四个全等的三角形.EF 、GE 、GF 是ABC △的三条中位线,则有:①AEG EBF CFG FGE △△△△≌≌≌②12EFG ABC C C =△△,14EFG ABC S S =△△②三角形的三条中位线组成一个三角形,其周长为原三角形的周长的一半,其面积为原三角形面积的四分之一. 模块二:直角三角形斜边中线 定理:直角三角形斜边上的中线等于斜边的一半.若AD 为Rt ABC △斜边上的中线,则12AD BC =.相关结论:(1)AD BD DC ==; (2)ABD △,ACD △为等腰三角形 (3)2ADB C ∠=∠,2ADC B ∠=∠拓展:在由两个直角三角形组成的图中,M 为中点.相关结论:(1)AM MD =;(2)2AMD ABD ∠=∠. 模块三:中点辅助线综合E DCB AMMABCDA BCDDCBAFA B CE G(1)如图1-1,在ABC△中,D,E,F分别是AB,BC,AC的中点,若ABC△的周长为20cm,则DEF△的周长为__________.(2)如图1-2,在Rt ABC△中,30A∠=︒,1BC=,点D,E分别是直角边BC,AC的中点,则DE的长为__________.图1-1 图1-2(3)如图1-3,ABC△中,6AB AC==,8BC=,AE平分BAC∠交BC于点E,点D为AB的中点,连接DE,则BDE△的周长是__________.(4)如图1-4,在四边形ABCD中,E、F分别为AB、CD的中点.求证:1()2EF AC BD<+.图1-3 图1-4【解析】(1)10cm.(2)1.(3)10.(4)证明:取AD的中点M,连结EM和FM.∵E、F是AB、CD中点,∴12EM BD=,12FM AC=.又∵EF EM FM<+,∴1()2EF AC BD<+.【教师备课提示】考察中位线产生的线段长度关系.第(4)题利用中位线构造出长为12AC,12BD的线段并将线段集中;也可以求证1()2EF AD BC<+,方法是取AC 或BD的中点.FEDCBA模块一三角形中位线例题1MAB CDEF(1)如图2-1,在四边形ABCD 中,P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点,AD BC =,18PEF ∠=︒,则PFE ∠的度数是__________度.(2)如图2-2,已知四边形ABCD 的对角线AC BD =,E 、F 分别是AD 、BC 的中点,连结EF 分别交AC 、BD 于M 、N ,求证:AMN BNM =∠∠.(3)已知,如图2-3四边形ABCD 中,AD BC =,E 、F 分别是AB 和CD 的中点,AD 、EF 、BC 的延长线分别交于M 、N 两点.求证:AME BNE ∠=∠.图2-1 图2-2 图2-3【解析】(1)18.(2)设AB 的中点为G ,连结GE 、GF ,容易证得:GE //BD ,12EG BD =,GF //AC ,12EF AC =,从而GF GE =,GEF GFE ∠=∠, ∴AMN BNM =∠∠.(构造中位线来利用对角线相等的条件,也可以取AC 或BD 的中点.) (3)连接AC ,取AC 中点H ,连接FH 、EH .∵DF CF =,AH CH =,∴FH//AD ,12FH AD =,同理,12EH BC =,EH//BC , ∵AD BC =,∴EH FH =,∴HFE HEF ∠=∠, ∵FH//AM ,EH//BC , ∴AM E HFE ∠=∠,HEF BNE ∠=∠, ∴AME BNE ∠=∠.【教师备课提示】考察中位线的性质,学会通过构造中位线去利用已知的条件.CM FEND B AA CDM FE NB例题2CM FE G NDB AA H C D MF E NB如图,在ABC △中,D 、G 分别为AB 、AC 上的点,且BD CG =,M 、N 分别是BG 、CD 的中点,过MN 的直线交AB 于点P ,交AC 于点Q ,求证:AP AQ =.【解析】连DG ,找DG 的中点E ,连ME 、NE ,∵M 、N 分别是BG 与CD 的中点.∴ME//AB ,12ME BD =,NE//AC ,12NE GC =.∴APQ EMN ∠=∠,AQP ENM ∠=∠.∵BD GC =,∴EM EN =, ∴EMN ENM ∠=∠,∴APQ AQP ∠=∠,∴AP AQ =. 【教师备课提示】还可以取BC 中点.总结:已知四边形对角线中点,则取一边中点,可出两条中位线,学会构造出中位线去利用题目中给出的等量关系.已知:在ABC △中,90ABC ∠=︒,点E 在直线AB 上,ED 与直线AC 垂直,垂足为D ,且点M 为EC 中点,连接BM 、DM .(1)如图4-1,若点E 在线段AB 上,探究线段BM 与DM 及BM D ∠与BCD ∠所满足的数量关系,并直接写出你得到的结论;(2)如图4-2,若点E 在BA 延长线上,你(1)中的结论是否发生变化?写出你的猜想并证明.图4-1 图4-2【解析】(1)BM DM =,2BMD BCD ∠=∠;(2)结论不变,由题意知MB MC MD ==,∴2BME BCM ∠=∠,2DME DCM ∠=∠,两式相减,得2BMD BCD ∠=∠.NM PQG D C BAEA BC DG Q PM N 图2图1BEM CDAMEDCBA例题3模块二直角三角形斜边中线例题4如图,90MON∠=︒,ABC△中,90BAC∠=︒,2AB=,1AC=,AB在MON∠上滑动,求OC的最大值.【解析】取AB的中点D,连结OD、DC,则1OD=,2DC=,可得12OC≤+,即OC的最大值为12+(O、D、C三点共线时).在Rt ABC△中,90BAC∠=︒,AD BC⊥,E、F、G分别是AB、AC、BC的中点,M 是DG的中点,求证:ME MF=.【解析】连结DF、EG,可证DF GE=,MDF MGE∠=∠,MD MG=,则MDF MGE△≌△,得证.例题5模块三中点辅助线综合例题6如图,在五边形ABCDE 中,90ABC AED ∠=∠=︒,BAC EAD ∠=∠,F 为CD 的中点.求证:BF EF =.【解析】方法一:如图1,取AC 中点M ,取AD 中点N ,连BM ,MF ,NF ,EN . ∵90ABC AED ∠=∠=︒,1122BM AC FN EN AD MF ====,,∴BMF FNE △≌△,∴BF EF =,方法二:如图2,延长CB 到M ,使得MB BC =, 延长DE 到N ,使得NE DE =, 连接AM ,AN ,MD ,CN . 由90ABC AED ∠=∠=°,AMC △,ADN △是等腰三角形,F 是CD 中点,则BF //MD ,12BF MD =,EF//CN ,12EF CN =,MAD CAN △≌△,MD CN =,∴BF EF =,此题的两种解法中综合了中点的三个基本用法:等腰三角形三线合一;直角三角形斜边中线;中位线,即以下三个模型:图2图1MNN MACBDEF F EDB CA例题7FEDB C A(1)如图1-1,在ABC△中,点D是BC中点,AE平分∠BAC,BE⊥AE于E,延长BE 交AC于F.若AB=10厘米,AC=16厘米,则DE的长度为__________.(2)如图1-2,已知,在四边形ABCD中,AD BC=,P是对角线BD的中点,N是DC 的中点,M是AB的中点,30DBC∠=︒,70ADB∠=︒.求MNP∠度数.图1-1 图1-2【解析】(1)3厘米;(2)∵在四边形ABCD中,P是对角线BD的中点,M、N分别是AB、CD的中点,∴NP,PM分别是CDB△与DAB△的中位线,∴12PN BC=,12PM AD=,PN//BC,PM//AD,∴30NPD DBC∠=∠=︒,70MPB ADB∠=∠=︒,∴110DPM∠=︒;∴140NPM∠=︒,∵AD BC=;∴PN PM=,故NMP△是等腰三角形.∵140NPM∠=︒,∴20PMN PNM∠=∠=︒.复习巩固模块一三角形中位线演练1(1)如图2-1,ABC △中,过点A 分别作ABC ∠、ACB ∠的外角平分线.....的垂线..AD 、AE ,垂足为D 、E .求证:①//ED BC ;②1()2ED AB AC BC =++.(2)(四川省中考题)如图2-2,已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证:2AC AE =.图2-1 图2-2【解析】(1)①分别延长AD 、AE 与直线BC 交于点F 、G ,∵BD ⊥AD ,且BD 为ABF ∠的角平分线∴AD FD =,且AB BF =(等腰三角形的三线合一) 同理可得AE GE =,AC GC =, ∴DE 为AFG △的中位线,∴ED //BC ,且12DE FG =.②由(1)知12DE FG =,且AB BF =,AC GC =,∴111()()222ED FG=FB BC CG AB BC AC =++=++.(2)取AC 的中点F ,连结DF ,易得DF//AB ,12DF AB =,ADF BAD ∠=∠,而1122DE BD AB ==,故DF DE =.再证ADE ADF △≌△,∴AE AF =,∴2AC AE =.C ED BA演练2CF E D B A(1)如图3-1,四边形ABCD 中,90ADC ∠=︒,取AC 中点O ,BC 中点E ,连接OD 、OE 、DE ,20CAD CAB ∠=∠=︒,则DOE ∠=__________.(2)如图3-2所示,ABC △中,AH BC ⊥于H ,点E 、D 、F 分别是AB 、BC 、AC 的中点,10cm HF =,则ED 的长度是__________.图3-1 图3-2【解析】(1)60︒.(2)10cm .(1)如图4-1,在ABC △中,2B C ∠=∠,M 是BC 中点,AD BC ⊥于D .求证:12DM AB =.(2)如图4-2,已知:ABD △和ACE △都是直角三角形,且90ABD ACE ∠=∠=︒,BAD CAE ∠=∠.连接DE ,设M 为DE 的中点.求证:MB MC =.【解析】(1)法一:取AB 中点G ,连结GD 、GM ,则12GD AB =,GM AC ∥.则GMD C ∠=∠. 而GD GB B GDB GMD DGM =⇒∠=∠=∠+∠ C DGM =∠+∠,由于2B C ∠=∠,所以DGM C GMD ∠=∠=∠.∴12MD GD AB ==. OEDC B AMEDCBA模块二直角三角形斜边中线演练3模块三中点辅助线综合演练4CAB GNDMC AB D M法二:同理可以取AC的中点N,连接DN,MN.(2)如图,分别取AD、AE的中点P、Q,连接PB、PM、QC、QM,由P、M、Q分别是AD、DE、AE的中点,∴PM//AE,12PM AE=,QM//AD,12QM AD=,∵ABD△、ACE△是直角三角形,∴12PB AD=,12CQ AE=,∴PB QM=,PM QC=,∵BAD CAE∠=∠,∴ADB AEC∠=∠,∴DPB CQE∠=∠,由AD//QM,AE//PM,∴APM AQM∠=∠,∴BPM MQC∠=∠,∴BPM MQC△≌△,∴MB MC=.QPAB CDE M图3。
“直角三角形斜边上的中线”的性质及其应用
“直角三角形斜边上的中线”的性质及其应用“直角三角形斜边上的中线等于斜边的一半”是直角三角形的重要性质之一,而且斜边上的中线将直角三角形分割成两个顶角互补、底角互余的两个等腰三角形,如能善于把握图形特征,恰当地构造并借助直角三角形斜边上的中线,往往能帮助我们迅速打开解题思路,从而顺利地解决问题,下面举例说明.一、有直角、有中点,利用垂直平分线性质【例1】如图,BD 、CE 是△ABC 的两条高,M 是BC 的中点,N 是DE 的中点.求证:MN 垂直平分DE .二、有直角、无中点,取中点,连线出中线【例2】如图,在Rt △ABC 中,∠C=90°,AD ∥BC ,∠CBE=21∠ABE ,求证:DE=2AB .三、有中点、无直角,造直角【例3】如图,梯形ABCD 中,AB ∥CD ,M 、N 是AB 、CD 的中点,∠ADC+∠BCD=270°,求证:MN=21(AB -CD ).四、逆用性质解题【例4】如图,延长矩形ABCD 的边CB 至E ,使CE=CA ,P 是AE 的中点.求证:BP ⊥DP .【习题练习】1、如图,△ABC 中,AB=AC ,∠ABD=∠CBD ,BD ⊥DE 于D ,DE 交BC 于E ,求证:CD=21BE .2、如图,△ABC 中,∠B=2∠C ,AD ⊥BC 于D ,M 是BC 的中点,求证:AB=2DM .3、如图,在四边形ABCD 中,∠DAB=∠DCB=90°,点M 、N 分别是BD 、AC 的中点.确定MN 、AC 的位置关系.直角三角形斜边上中线性质的应用一、直角三角形斜边上中线的性质1、性质:直角三角形斜边上的中线等于斜边的一半.如图,在Rt △BAC 中,∠BAC=90°,D 为BC 的中点,则BC 21AD =.2、性质的拓展:如图:因为D 为BC 中点,所以BC 21DC BD ==, 所以AD=BD=DC=BC 21, 所以∠1=∠2,∠3=∠4,因此∠ADB=2∠1=2∠2,∠ADC=2∠3=2∠4.因而可得如下几个结论:①直角三角形斜边上的中线将直角三角形分成两个等腰三角形;②分成的两个等腰三角形的腰相等,两个顶角互补、底角互余,并且其中一个等腰三角形的顶角等于另一个等腰三角形底角的2倍.二、性质的应用1、21倍关系求值 例1、如图,CD 是Rt △ABC 斜边AB 上的中线,若CD=4,则AB= .2、证明线段相等例2、如图,在△ABC 中,∠BAC=90°,延长BA 到D 点,使AB 21AD =,点E 、F 分别为边BC 、AC 的中点.(1)求证:DF=BE ;(2)过点A 作AG ∥BC ,交DF 于G .求证:AG=DG .3、证明角相等及角的倍分关系例3、已知,如图,在△ABC中,∠BAC 90°,BD、CE分别为AC、AB上的高,F为BC的中点,求证:∠FED=∠FDE.例4、已知:如图,在△ABC中,AD是高,CE是中线。
三角形中线定理的应用
三角形中线定理的应用三角形中线定理是解决三角形相关问题中常用的一个定理。
它指出:一个三角形的三条中线交于一个点,并且这个点离三角形的三个顶点的距离相等,且等于中线长的一半。
这个点被称为三角形的重心。
根据这个定理,我们可以应用它来解决一些实际问题。
我们来看一个具体的例子。
假设有一个三角形ABC,其中AB=10cm,BC=8cm,AC=6cm。
我们需要求解这个三角形的重心坐标。
根据中线定理,我们知道三角形的重心是三条中线的交点。
中线是连接三角形的一个顶点与对边中点的线段,因此我们需要先求出三角形的对边中点坐标,然后再求出中线的交点坐标。
我们可以通过求解三角形的三个顶点坐标来求出对边中点坐标。
假设顶点A的坐标为(0, 0),则顶点B的坐标为(10, 0),顶点C的坐标为(x, y)。
由于AC=6cm,我们可以利用勾股定理求解y的值。
根据勾股定理,我们有:x^2 + y^2 = AC^2x^2 + y^2 = 6^2x^2 + y^2 = 36又由于BC=8cm,我们可以利用坐标的对称性求解x的值。
由于点B的坐标为(10, 0),点C的坐标为(x, y),所以x的值应为10-x。
将x的值代入上面的方程,我们可以求解出y的值。
假设y1为y的值,则有:(10-x)^2 + y1^2 = 8^2100 - 20x + x^2 + y1^2 = 64x^2 + y1^2 - 20x + 36 = 0根据二次方程的求解公式,我们可以求解出x的值和y1的值。
假设x1为x的值,y1为y的值,则有:x1 = (20 + sqrt(20^2 - 4*1*36)) / 2x1 = (20 + sqrt(400 - 144)) / 2x1 = (20 + sqrt(256)) / 2x1 = (20 + 16) / 2x1 = 36 / 2x1 = 18y1 = sqrt(8^2 - (10-x1)^2)y1 = sqrt(64 - (10-18)^2)y1 = sqrt(64 - 64)y1 = sqrt(0)y1 = 0由此可知,点C的坐标为(18, 0),即C点为x轴上的点。
三角形中线的性质及其应用
三角形中线的性质及其应用在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线.一个三角形里有三条中线,三角形的三条中线交于一点.三角形三条中线的交点叫做三角形的重心.三角形的中线有下列性质:1.三角形重心与顶点的距离等于它与对边中点距离的两倍.2.经过三角形一角顶点与重心的直线,必经过这个角对边的中点.3.一个三角形的三条中线把原三角形分成六个面积相等的小三角形.4.等腰三角形底边上的中线、底边上的高、顶角的平分线互相重合.5.直角三角形斜边上的中线等于斜边的一半.利用三角形中线的性质,可以解决一些实际问题.例 1:在△ABC中,过重心G画平行BC的直线交AB于点D,那么AD:DB=?解题思路:根据题意画出图1,连接AG并延长AG交BC于E.由中线性质2可知E是BC的中点.由中线性质1知, AG:GE=2:1在△ABE中,∵DG∥BC,∴ ,故求得AD:DB=2:1例2:如图2,在Rt△ABC中,∠S=90°,G为重心,且AG=2,则AB²+GC²=?解题思路:作GE⊥BC,E为垂足,延长AG交BC于点D,则D为BC的中点,GD=AG=1,∴Rt△ABC斜边BC上的中线AD=3.由中线性质5知AD= BC=BD=CD=3,在Rt△GDE中,根据勾股定理,得DE²+GE²=GD²=1,同理在RT△GBE中,GB²=BE²+GE²=(BD+DE)²+GE²=BD²+2BD·DE+DE²+GE².①在RT△GCE中,GC²=CE²+GE²=(CD-DE)²+GE²=CD²-2CD·DE+DE²+GE²=BD²-2BDDE+DE²+GE²②由①+②得GB²+GC²=2(BD²+DE²+GE²)=2(3²+1)=20例3:如图3,在等腰△ABC中,CH是底边上的高线.点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E, 连接BP交AC于点F,(1)证明:∠CAE=∠CBF⑵证明:AE=BF证明思路: (1)在△ABC中, AC=BC,CH⊥AB于点H,根据三角形中线性质4,知CH是底边AB上的中线,又CH⊥AB,∴CH是线段AB的中垂线.∵点P在CH上,∴PA=PB,∴∠PAB=∠PBA.∵AC=BC,∴∠CAB=∠CBA.由等式性质得∠CAB-∠PAB=∠CAB-∠PBA,即∠CAE=∠CBF.⑵在△ACE和△BCF中,∵∠ACE=∠BCF,AC=BC,∠CAE=∠CBF.∴△ACE≌△BCF(ASA),∴AE=BF例 4:如图4, 在△ABC中,点D在AC上,DB=BC,点E是CD的中点,点F是AB的中点.(1)求证:EF= AB(2)过点A作AG∥EF,交BE的延长线于点G,求证△ABE≌△AGE.证明思路:⑴连接BE,在△BCD中,∵DB=BC,E是DC 的中点,由三角形中线性质4知BE⊥CD.在R t △AEB中,F是斜边AB的中点,由三角形中线性质5,知EF= AB⑵由(1)知EF= AB=AF,所以∠FAE=∠FEA,∵AG∥EF,∴∠FEA=∠GAE,∴∠FAE=∠GAE又AE=AE,∠AEB=∠AEG=90°,∴△ABE≌△AGE(ASA)例5, 如图5, 在△ABC中,中线AD,BE,CF相交于点G,GA=2 ,GB=2,GC=2求△ABC的面积.证明思路: 根据三角形中线性质3,有S△GAF=S△GFB=S△GBD=S△GDC=S△GCE=S△GEA=S△ABC.∴S△GBC=S△ABC,因此只要求出△GBC的面积,△ABC的面积就容易求出来了.延长AD至H,使DH=GD.∵BD=DC,∴,四边形BHCG为平行四边形,在△HGC中,HG=AG=2GD=2 ,HC=GB=2 ,GC=2.∵GC +HC =2 +(2 ) =12,HG =(2 ) =12,∴GC +HC =HG由勾股定理逆定理知∠GCH=90°,∴平行四边形BHCG是矩形, ∠BGC=90°∴S△GBC=GB·GC=ⅹ2ⅹ2=2∴S△GBC=S△ABC, ∴S△ABC=3 S△GBC=6 .2。
三角形中线的运用
∴DE= 1 2
BC
且 DE ∥ BC
3.在直角三角形中,30°角所对的直角边等于 斜边 的一半 .
如图,在RT△ABC中,∠C=90°, ∠A=30°,
∴BC=
1 2
AB .
4.等腰三角形“三线合一”的性质:
如图,已知AB=AC,AD⊥BC.
∴BD=CD=
1 2
BC
,
∠BAD=∠CAB.
5.一种常见的关于中点的辅助线思想 ——“倍长中线法”
如图:在△ABC中,点D是BC边的中点, 我们可以将AD延长至A′,使A′D=AD , 连接A′B(A′C).
∴△ACD≌ △A′BD (△ABD≌ △A′C)D
∴ AA′=2AD.
例1:如图:∠BAC=∠DAE=90º,AB=AC,AD=AE, 连接BE、CD,M为BE的中点,连接AM,
求证:CD=2AM.
北碚区王朴中学童昌强
三角形中线的运用
一.知识回顾—线段“中点”相关知识点: 1.在直角三角形中,斜边上的中线等于 斜边的一半
如图,在RT△ABC中,∠ABC=90°, 点D是AC的中点,
∴AD=CD= BD = 1 AC . 2
2.三角形的中位线平行且等于 第三边的一半
如图,在△ABC中,点D、E分别为AB、AC中,点E在AC上,且AE=CE ,连接 BE,点D在BC的延长线上,且CE=CD,连接ED、AD. 点F是BE的中点,连接FA、FD.求证:AD=2AF.
A
E
F B
D C
A
B
MC
E
D
A
B M
D
C
E
A′
△ACD≌△EA′A
A
B
三角形中线的几种用法
三角形中线的几种用法一、加倍法加倍法是三角形中线的最基本最常见的用法,其基本思路是:把三角形一边的中线延长,并截取中线长,得到二倍的三角形的中线长,利用三角形全等或中心对称,证明有关线段(或角)的相等及不等关系.基本模式是:如图1,已知:△ABC 中,AD 是BC 边上的中线,延长AD 至E ,使DE=AD ,则有:△ADC ≌△EDB ,BE ∥AC ,BE=AC .例题 已知:如图2,AD 为△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE=EF , 求证:AC=B F.证明:延长AD 至H ,使DH=AD ,则△ACD ≌HBD(SAS),AC=BH ,∠HAC=∠H ∵AE=EF ,∴∠AFE=∠AEF ,由∠BFH=∠AFE 得∠BFH=∠H ,∴BF=BH ,∴AC=BF .图 1E DC BA图 2H FE DCBA二、利用三角形的中线把三角形分成面积相等的两部分来解决有关面积的求解问题基本模式是:若AD 为△ABC 中线,则S △ABD=S △ADC=21S △ABC .例题 已知:如图3,△ABC 中,M 是AB 中点,MD ⊥BC ,EC ⊥BC ,S △ABC=24,求S △BDE . 解:连接MC ,由题意知:DM ∥EC ,∴S △DME=S △DMC ,又∵M 为AB 中点,∴S △BCM=21S △ABC ,∴S △BDE=S △BCM=21S △ABC=12.三、关于“直角三角形斜边上中线等于斜边一半”的用法基本模式:如果CD 是Rt △ACB 斜边AB 上的中线,则有:CD=21AB .例题 已知:如图4,∠ABC=∠ADC=90°,点M 、N 分别是对角线AC 、BD 的中点, 求证:MN ⊥BD .证明:连结BM 、DM ,则由∠ABC=90°,M 为AC 的中点,得:BM=21AC , 同理:由∠ADC=90°, M 为AC 的中点,得:MD=21AC ,∴BM=DM ,由N 为BD 中点及等腰三角形三线合一性质,得MN ⊥BD .四、关于三角形重心问题的应用基本模式是:若O 为△ABC 的三条中线AD 、BE 、CF 的交点(即△ABC 的重心),则有OD OA =OE OB =OF OC =12.例题 已知:如图5,线段PQ 过△ABC 的重心M ,P 、Q 分别内分AB 、AC 的比值为p 、q ,求p 1+q 1.解:作射线AM 交BC 于D 点,分别过B 、C 两点作PQ 的平行线交AM 于G 、F ,AM∵M为△ABC的重心,∴DB=DC,MD=2:1,∴△BDG≌△DCF,∴DG=DF.。
4条件:三角形中线
基本条件突破2:中线作为条件如何用 【中线定义】:在三角形中,连接一个顶点与它对边中点的线段,叫做三角形的中线。
三角形的三条中线交于一点,这点称三角形的重心。
【中线作为条件的用法】:用法1:用于平分线段,同等线段1(中线1)用法2:用于平分三角形面积(中线2)例题感知【类型一】 应用三角形的中线求线段的长在△ABC 中,AC =5cm ,AD 是△ABC 的中线,若△ABD 的周长比△ADC 的周长大2cm ,则BA =________.解析:如图,∵AD 是△ABC 的中线,∴BD =CD ,∴△ABD 的周长-△ADC 的周长=(BA +BD +AD )-(AC +AD +CD )=BA -AC =BA -5cm =2cm ,∴BA =7cm.故答案为7cm.方法总结:通过本题要理解三角形的中线的定义,解决问题的关键是将△ABD 与△ADC 的周长之差转化为边长的差.【类型二】 利用中线解决三角形的面积问题如图,在△ABC 中,E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF 和△BEF 的面积分别为S △ABC ,S △ADF 和S △BEF ,且S △ABC =12,则S △ADF -S △BEF =________.解析:∵点D 是AC 的中点,∴AD =12AC .∵S △ABC =12,∴S △ABD =12S △ABC =12×12=6.∵EC =2BE ,S △ABC =12,∴S △ABE =13S △ABC =13×12=4.∵S △ABD -S △ABE =(S △ADF +S △ABF )-(S △ABF +S △BEF )=S △ADF -S △BEF ,即S △ADF -S △BEF =S △ABD -S △ABE =6-4=2.故答案为2.方法总结:三角形的中线将三角形分成面积相等的两部分;高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.试题感知题型一:用中线进行线段的转换(中线1)1.(2015秋•荔湾区期末)如图,BD是△ABC的中线,AB=6cm,BC=4cm,则△ABD和△BCD 的周长差为cm.2.(2019春•揭阳期中)如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD的周长为15cm,则AC长为.3.如图,BD是△ABC的中线,AB=8,BC=6,△ABD和△BCD的周长的差是.题型二:用中线解决图形面积问题(中线2)1.如图,CD是△ABC的中线,则()A.S△ACD=S△BCD B.S△ACD=S△ABC C.S△ACD=2S△BCD D.以上各项均不正确2.如图,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且△ABC的面积是4cm2,则阴影部分面积等于()A.2cm2B.1cm2C.cm2D.cm23.如图,AD是△ABC的中线,点E是AD的中点,连接BE、CE,若△ABC的面积是8,则阴影部分的面积为()A.2 B.4 C.6 D.84.如图,在△ABC中,点D在BC上,点O在AD上,如果S△AOB=3,S△BOD=2,S△ACO=1,那么S △COD等于()A.B.C.D.5.如图,△ABC中,D,E两点分别在AB,BC上,若AD:DB=CE:EB=2:3,则△DBE与△ADC 的面积比为()A.3:5 B.4:5 C.9:10 D.15:166.(2018秋•兴义市期末)如图,已知BE⊥AD,CF⊥AD,且BE=CF.那么AD是△ABC 的.(填“中线”或“角平分线”)题型三:三角形的重心1.如图,点G为△ABC的重心,则S△ABG:S△ACG:S△BCG的值是()A.1:2:3 B.2:1:2 C.1:1:1 D.无法确定2.如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG并延长与AC交于点F,如果AD=9,CE=12,那么下列结论不正确的是()A.AC=10 B.AB=15 C.BG=10 D.BF=153.如图,△ABC的两条中线BE、CD交于O,则S△EDO:S△ADE=()A.1:2 B.1:3 C.1:4 D.1:64.(2019秋•南安市期中)如图所示,已知点E,F分别是△ABC的边AC,AB的中点,BE,CF相交于点G,FG=1,则CF的长为.5.(2019•姜堰区一模)如图,Rt△ABC中,∠BAC=90°,AB=6,AC=4,G是△ABC重心,则S△AGC=.6.(2019秋•清江浦区校级月考)如图,在△ABC中,D是△ABC的重心,S△BDE=2,则△AEC 的面积是.8.(2017•武汉模拟)如图,在△ABC中,AB=9,AC=7,BE、CD为中线,且BE⊥CD,则BC =.。
三角形的中线及中位线性质的运用举例
直角三角形斜边上中线性质的运用在直角三角形中有这样一个十分重要而又运用广泛的性质:直角三角形中,斜边上的中线等于斜边的一半.下面就这一性质的应用举例说明.例1 如图1,已知,△ABC 中,CE ⊥AD 于E ,BD ⊥AD 于D ,BM =CM .求证:ME =MD .分析 要证明ME =MD 首先想到的要证明两个角相等,可没有足够的条件,但有中点和垂线,于是想到通过辅助线构造直角三角形,利用直角三角形斜边上的中线性质证明.证明 延长DM 与CE 交于N .因为CE ⊥AD 于E ,BD ⊥AD 于D , 所以CE ∥BD ,即∠NCM =∠DBM ,又∠CMN =∠BMD ,BM =CM ,所以△CMN ≌△BMD , 所以NM =DM ,即M 为ND 中点.因为CE ⊥AD 于E ,所以△NED 为直角三角形,所以ME =12ND ,所以ME =MD .例2 如图2,BD 、CE 是高,G 、F 分别是BC 、DE 的中点,求证:FG ⊥DE .分析 有三角形高就会想到直角三角形,有中点当然会联想到直角三角形斜边上的中点性质和等腰三角形的性质,于是,连结DG 、EG ,可得DG 、EG 分别是Rt △BDC 和Rt △BEC 的中线,可知△GDE 是等腰三角形,进而由F 是DE 的中点,即FG ⊥DE .证明 因为BD 、CE 是高,所以∠BDC =∠BEC =90°, 即△BDC 和△BEC 都是直角三角形. 又因为G 是BC 的中点,所以DG =EG =12BC ,即△GDE 是等腰三角形. 因为F 是DE 的中点,所以GF 是等腰三角形GDE 的底边DE 上的中线, 所以由等腰三角形的“三线合一”,得GF 也是底边DE 上的高线,EDBCA FG图2N ED CBAM图1所以FG ⊥DE .例3 如图3所示,点E 、F 分别为正方形ABCD 边AB 、BC 的中点,DF 、CE 交于点M ,CE 的延长线交DA 的延长线于G ,试探索:(1)DF 与CE 的位置关系;(2)MA 与DG 的大小关系.分析(1)要探索DF 与CE 的位置关系,由图可以猜想到DF ⊥CE ,而由条件可以证明△EBC ≌△FCD ,则有∠ECB =∠FDC ,即可证明DF ⊥CE .(2)仍然通过观察分析图形,可以猜想MA =12DG ,而事实上,由(1)可知△DMG 是直角三角形,再由条件可得△GAE ≌△CBE ,即得GA =CB ,于是利用直角三角形斜边上的中线性质即可证明.解(1)DF ⊥CE .理由:因为点E 、F 分别为正方形ABCD 边AB 、BC 的中点, 所以∠B =∠FCD =90°,BE =12AB ,CF =12BC ,而AB =BC =CD ,即BE =CF , 所以△EBC ≌△FCD ,所以∠ECB =∠FDC ,而∠DFC +∠FDC =90°,所以∠DFC +∠FCM =90°, 即∠CMF =90°,所以DF ⊥CE . (2)MA =12DG .理由:因为F 是AB 的中点,所以AE =BE , 又∠GAE =∠B ,∠AEG =∠BEC ,所以△GAE ≌△CBE ,所以GA =CB . 而由(1)可知△DMG 是直角三角形,所以MA =12DG . 例4 已知:如图4,□ABCD 中,对角线AC 、BD 相交于点O ,EF ⊥AC ,O 是垂足,EF 分别交AB 、CD 于点E 、F ,且BE =OE =12AE .求证:□ABCD 是矩形.EDBCA FGM 图3图4ABCEGFOD分析 要证□ABCD 是矩形,只要证AC =BD 或OA =OB 即可.由BE =OE =12AE ,可作出Rt △AOE 斜边上的中线OG ,这样可证得△AOG ≌△BOE ,于是证得OA =OB .证明 取AE 的中点G ,连结OG ,所以Rt △AOE 中,OG =12AE =AG , 因为BE =OE =12AE ,所以OE =OG ,AG =BE ,即∠OGE =∠OEG , 所以∠AGO =∠OEB ,所以△AGO ≌△BEO ,所以OA =OB ,又四边形ABCD 是平行四边形,所以AC =2OA ,BD =2OB ,即AC =BD , 所以□ABCD 是矩形.综上所述,利用直角三角形斜边上中线的性质解题时,应依据条件,贯例图形,通过分析,把问题转化为证明线段相等,或通过辅助线,构造出直角三角形,利用“直角三角形斜边上的中线等于斜边的一半”,同时兼用全等三角形的知识,从而逐步逼近结论.在几何证明中,另外,熟练地识别图形、善于构造图形,并运用图形的性质进行推理论证是十分重要的.下面一道题目供同学们自己练习:如图6所示,在梯形ABCD 中,AB ∥CD ,∠C +∠D =90°,E 、F 为AB 、CD 的中点.求证:CD -AB =2EF .提示:作EM ∥AD 交CD 于M ,EN ∥BC 交CD 于N .利用直角三角形斜边上中线等斜边的一半.图6FEDCBA聚焦中位线定理的运用中位线定理是三角形一个重要定理.有一个特点,在同一个题设下有两个结论:一个结论是表明两条线段的位置关系(平行),另一个结论是表明两条线段的数量关系(一半).在应用这个定理时,不一定同时需要两个结论,有时需要平行,有时需要倍分关系.可以根据具体情况,按需选用.现举例说明中位线定理的运用.一、用于证明平行例1 在△ABC 中,BD 平分∠ABC ,A D ⊥BD,垂足为D ,AE=EC. 求证:DE ∥BC.图1CFEDBA证明:延长AD 交BC 于点F. 因为BD 平分∠ABC , 所以∠ABD =∠CBD. 因为A D ⊥BD,所以∠BDA =∠BDF=900. 又BD=BD,所以△BDA ≌△BDF(ASA). 所以AD=DF.又因为AE=EC,所以DE ∥FC, 即DE ∥BC (三角形的中位线定理). 二、用于证明角相等例2 如图2,四边形ABCD 中,对角线AC 、BD 相交于O ,已知AC=BD,M,N 分别是AD 、BC 的中点,MN 与AC 、BD 分别交于E 、F 点.求证:∠AEN=∠BFM.图24312FEBAP NMCD分析:可取CD 或AB 的中点构造中位线. 证明:可取AB 的中点P ,连接PM 、PN. 因为AM=MD,AP=BP,BN=NC, 所以MPBD 21,PN AC 21(三角形中位线定理). 所以∠1=∠3,∠2=∠4. 又因为AC=BD, 所以MP=NP, ∠3=∠4, 所以∠1=∠2.所以∠AEN=∠BFM (等角的补角相等). 三、用于证明线段相等例3 如图3,△ABC 的AB 、AC 向形外作正三角形ABD 和ACE,分别取BD 、BC 、CE 的中点P 、M 、Q.求证:PM=QM.图3QPCAD分析:中点P 、M 所在线段DB 、CB 有公共端点B ,若连接它们的另一端D 、C ,则PM 使成为△BCD 的中位线,同理连接BE 之后MQ 也成为△BEC 的中位线,通过中位线定理的传递,问题转化为证明DC 与BE 相等.证明过程由同学们自己完成!四、用于证明线段的特殊关系例4 如图4,已知四边形ABCD 中,E 、F 、G 、H 分别为AB 、CD 、AC 、BD 的中点,且E 、F 、G 、H 不在同一条直线上,求证:EF 和GH 互相平分.分析:要证明EF 和GH 互相平分,可证明四边形EGFH 是平行四边形;有中点,可考虑利用中位线定理.图4GHBE ACFD证明:连接EG 、GF 、FH 、HE. 因为AE=EB, BH=HD, 所以EH AD 21. 同理FG AD 21. 所以EHFG.所以四边形EGFH 是平行四边形. 所以EF 和GH 互相平分.巧用中线的性质解题我们知道三角形的一条中线将三角形分成的两个三角形等底同高,这样的两个三角形的面积相等.下面我们利用上述性质来巧解以下问题.一、巧算式子的值例1 在数学活动中,小明为了求23411112222++++ (1)2n +的值(结果用n 表示),设计了如图1所示的几何图形.请你利用这个几何图形求23411112222++++ (1)2n +的值.图1解析:从图中可以看出大三角形的面积为1,根据三角形的中线把它分成两个面积相等的三角形可知,23411112222++++…12n +12n +表示:组成面积为1的大三角形的所有小三角形的面积之和,于是23411112222++++ (1)2n +112n =-.【点评】此题运用“数形结合思想”,借助三角形的面积来求数的运算. 二、求图形的面积例2 如图2,长方形ABCD 的长为a ,宽为b ,E 、F 分别是BC 和CD 的中点,DE 、BF 交于点G ,求四边形ABGD 的面积.图2 解析:连接CG ,不难得出BCFSDCES=4ab=,从而BEGDFG S S=,由E 、F 分别是BC 和CD 的中点,可得△DGF、△CFG、△CEG、△BEG的面积相等,因此S四边形ABGDab=-4ab43⨯23=ab.【点评】本题的难度较大,通过连接CG,巧妙地把四边形ABGD以外的部分分成四个面积相等的三角形.像CG这样原题中没有,但我们在解题的过程中用它来“辅助”解决问题的线,称之为“辅助线”.三、巧等分土地例3.有一块三角形优良品种试验基地,如图3所示,•由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择(画图说明).图3解析:可根据中线的特征,先分为两个面积相等的三角形,然后再依次等分.方案1:如答图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、ED、•AF.(1) (2) (3)方案2:如答图2,分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如答图3,分别取BC的中点D,CD的中点E,AB的中点F,连接AD、AE、DF.【点评】三角形面积计算公式为12×底×高,因此解题的关键是找出底、高分别相等的四个三角形.对于本题,同学们!你还有别的方法吗?试试看.。
七年级数学下册巧用三角形的中线求长度和面积
9.微专题:巧用三角形的中线求长度和面积◆类型一求线段长【方法点拨】由中线得线段相等,再结合中线这条公共边相等解题.如图,BD为△ABC 的中线,则AD=CD,C△ABD-C△BCD=AB-BC.1.如图,已知△ABC的周长为21cm,AB=6cm,BC边上的中线AD=5cm,△ABD 的周长为15cm,求AC的长.◆类型二求面积【方法点拨】(1)中线把三角形分成两个面积相等的三角形.如图①,若BD为△ABC的中线,则S△ABD=S△BCD.若DE为△BCD的中线,则S△BDE=S△CDE=12S△BCD=14S△ABC.图①图②(2)若题中有中点,求面积,要考虑在三角形中连接中线,利用①中的性质求解,如T4.(3)同一三角形被不同中线分成的三角形面积也相等.如图②,BD,AE均为△ABC的中线,则S△ABD=S△BCD=S△ABE=S△ACE=12S△ABC.2.如图,AD是△ABC的中线,CE是△ACD的中线,S△AEC=3cm2,则S△ABC=________.第2题图第3题图3.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2.若S△ABC=12,则S1+S2=________.4.如图①,已知AD为△ABC中BC边上的中线.(1)试说明:S△ADB=S△ADC;(2)如图②,若O为AD的中点,连接BO和CO,设△ABC的面积为S,△ABO的面积为S1,用含S的代数式表示S1,并说明理由;(3)如图③,学校有一块面积为40m2的三角形空地ABC,按图③所示分割,其中点D、E、F分别是线段BC、AD、EC的中点,拟计划在△BEF内栽种花卉,其余地方铺草坪,则栽种花卉(阴影部分)的面积是________m2.参考答案与解析1.解:∵AB=6cm,AD=5cm,△ABD的周长为15cm,∴BD=15-6-5=4(cm).∵AD 是BC边上的中线,∴BC=8cm.∵△ABC的周长为21cm,∴AC=21-6-8=7(cm).2.12cm2 3.144.解:(1)作AE⊥BC.∵S△ADB=12BD·AE,S△ADC=12CD·AE,又AD为△ABC中BC边上的中线,∴BD=CD,∴S△ADB=S△ADC.(2)由(1)可知S△ADB=S△ADC,同理S△ABO=S△DBO=12S△ADB,∴S△ABO=14S△ABC,即S1=14S.(3)10解析:S△BEF=12S△BEC=12(S△BDE+S△CDE)=14(S△ABD+S△ACD)=14S△ABC.。
直角三角形斜边上的中线的性质及其应用
“直角三角形斜边上的中线”的性质及其应用而且斜边上的中线将“直角三角形斜边上的中线等于斜边的一半”是直角三角形的重要性质之一,恰当地构造并直角三角形分割成两个顶角互补、底角互余的两个等腰三角形,如能善于把握图形特征,下面举例说借助直角三角形斜边上的中线,往往能帮助我们迅速打开解题思路,从而顺利地解决问题,明.一、有直角、有中点,连线出中线,用性质 BC的中点,CE是△ABC的两条高,M是例1.如图1,BD、有什么关系?证明你的猜想.DE的中点.试问:MN与DEN是DE.垂直平分猜想:MN1图1,∴NDBC,又NE=、MD,在Rt△BEC中,∵点M是斜边BC的中点,∴ME=证明:如图:连接ME2DE.垂直平分的垂直平分线,∴NM⊥DE.即直线MN是线段DEMN,“直角三角形斜边上的中线等于斜边的一半”评析:题目中给出了三角形的两条高与两个中点,联想问题便迎刃而解.二、有直角、无中点,取中点,连线出中线,用性质1A DADBC,∠CBE=,∠ABE例2.如图2,在Rt△ABC中,∠C=902DE=2AB0∥,求证:FAB相等,分析:欲证DE=2AB,则可寻DE的一半,再让其与2图E 1B取DE的中点F,连AF,则AF=FD=DE,可证得△AFD, C2△ABF均为等腰三角形,由此结论得证.1DE,所以∠DAF=∠ADF,又因为AD∥BCAFF,连,则AF=FD=,所以∠CBE=∠ADF,证明:DE的中点21∠ABE,所以∠ABF=又因为∠CBE=∠AFB,所以AF=AB,即DE=2AB.2评析:本题是有直角、无中点的情况,这时要取直角三角形的斜边上的中点,再连结该点与直角顶点,然后用性质来解决问题.P 三、有中点、无直角,造直角,用性质CD CD的中点,N是AB、,梯形ABCD中,AB∥CD,M、.如图例33N K 0 BCD=270,∠ADC+∠1M A B.MN=(AB-CD)求证:3图20证明:延长AD、BC交于P,∵∠ADC+∠BCD=270,、MK重合,则P、N于APB=90,连结PN,连结PM交DCK,下证N和∴∠11CD,PM=BM=DM=AB,0三点共线,PM分别是直角三角形△PDC、△PAB斜边上的中线,∴PN=CN=DN= 、∵PN22∵∠PNC=2∠PDN=2∠A,∠PMB=∠PKC=2∠A,∴∠PNC=∠PKC,∴N、K重合,1(AB-CD).∴MN=PM-PN=2评析:本题只有中点,而没有直角,这时要想方设法构造直角,应用性质,而条件中正好有角的关系“∠0,这样问题就易以解决了”BCD=270∠ADC+DA 四、逆用性质解题E,使CE=CA,至例4.如图4,延长矩形ABCD的边CP的中点.是AEODP.求证:BPEBC4图,于点O,连结PO证明:如图3,连结BD交AC AO=OC=OB=OD∵四边形ABCD是矩形,∴,11,EC=AC∵PA=PE,∴PO=,∴PO=BDEC,∵22.BP⊥DPOP=OB=OD即,∴“直角三角形斜边上的中线等于斜边的一半”这个性质是众所周知的,而它的逆定理往往被评析:的一半.BD边的中线等于BD大家所忽视,本题就是利用这个性质构造△PBD,证请同学们试一试吧!于E,于D,DE交BCDE1.如图5,△ABC中,AB=AC,∠ABD=∠CBD,BD⊥A 1CD=BE.求证:2 BC的于BCD,M是2.如图6,△ABC中,∠B=2∠C,AD⊥D.中点,求证:AB=2DM ACE B5图M·C B D6 图1应想到“直角三角形斜边上的中线等于斜边的一BEBE是直角三角形的斜边,由1.提示:结论中的2DFC.,即证∠C=∠DF,故应取BE的中点F,连结,只需证明DC=DF半”即可.、,连结DNMN2.提示:取AB的中点N直角三角形斜边上中线性质的应用它为证明线同时也是常考的知识点.直角三角形斜边上中线的性质是直角三角形的一个重要性质,下面谈谈直角三角形斜边上中线的线段的倍分等问题提供了很好的思路和理论依据。
巧用三角形中线的性质
巧用三角形中线的性质-CAL-FENGHAI.-(YICAI)-Company One12 巧用三角形中线的性质例1. 已知(如图)AD 是ABC ∆的中线,求证AB+AC>2AD分析:要证两条线段的和大于第三条线段,很显然要根据三角形三边关系定理“两边之和大于第三边”这一知识来证,而图形中要证的三条边不再同一个三角形中,因此,我们要利用这一结论,就必须重新构造出一个三角形的三边的长度恰好等于要证的三条线段长度,从而达到目的。
由已知:AD 是BC 边上的中线,很显然有BD=DC ,在此基础上构造出另外一条线段使其与AD 相等,即延长AD 至点E ,使AD=DE ,这样不但出现了二倍的AD ,同时又出现了两个全等的三角形,即ADC EDB ∆≅∆(SAS ),从而有AC=BE 。
这样我们要证的三条线段就出现在一个三角形之中,进而可以得出我们要证的结论,这是巧妙地利用中线这一特殊的线段(证明略)例2. 已知(如图)AE 是ABD ∆中BD 边上的中线,AB=CD ,BAD=ADB ∠∠。
求证:AC=2AE.分析:这也是一道巧用中线的证明题,原题要求我们证出AC=2AE 。
而AE 在图形中恰好是一个三角形的中线,我们知道要证两条线段相等,只要证两条线段所在的两个三角形全等就可以啦。
而图形中没有2AE 这条线段,这样我们就必须构造出一个全新的三角形,使其中一边的长为2AE ,延长AE 至点F ,使AE=EF(AF=2AE),连结BF ,从而得到一个新的三角形ABF ∆。
进而证得ABF ∆ 和ADC ∆全等,从而证出AC=AF,即AC=2AE 。
例3. 如图,在△ABC 中,AB=AC=16cm ,D 为AB 的中点,DE ⊥AB 交AC 于E ,△BEC 的周长为26cm ,求△ABC 的周长。
分析:由于AD=BD , 0ADE=BDE=90∠∠,DE=DE 可得ADE BDE ∆≅∆,所以AE=BE ,BEC ∆周长=BE+CE+AC ,ABC ∆周长=AB+AC+BC=AB+AE+EC+BC =AB+BE+EC+BC =AB+BEC ∆周长。
三角形中线的几种用法
三角形中线的几种用法一、加倍法加倍法是三角形中线的最基本最常见的用法,其基本思路是:把三角形一边的中线延长,并截取中线长,得到二倍的三角形的中线长,利用三角形全等或中心对称,证明有关线段(或角)的相等及不等关系.基本模式是:如图1,已知:△ABC 中,AD 是BC 边上的中线,延长AD 至E ,使DE=AD ,则有:△ADC ≌△EDB ,BE ∥AC ,BE=AC .例题 已知:如图2,AD 为△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE=EF , 求证:AC=B F.证明:延长AD 至H ,使DH=AD ,则△ACD ≌HBD(SAS),AC=BH ,∠HAC=∠H ∵AE=EF ,∴∠AFE=∠AEF ,由∠BFH=∠AFE 得∠BFH=∠H ,∴BF=BH ,∴AC=BF .ͼ 1E DC BAͼ 2H FE DCBA二、利用三角形的中线把三角形分成面积相等的两部分来解决有关面积的求解问题基本模式是:若AD 为△ABC 中线,则S △ABD=S △ADC=21S △ABC .例题 已知:如图3,△ABC 中,M 是AB 中点,MD ⊥BC ,EC ⊥BC ,S △ABC=24,求S △BDE . 解:连接MC ,由题意知:DM ∥EC ,∴S △DME=S △DMC ,又∵M 为AB 中点,∴S △BCM=21S △ABC ,∴S △BDE=S △BCM=21S △ABC=12.三、关于“直角三角形斜边上中线等于斜边一半”的用法基本模式:如果CD 是Rt △ACB 斜边AB 上的中线,则有:CD=21AB .例题 已知:如图4,∠ABC=∠ADC=90°,点M 、N 分别是对角线AC 、BD 的中点, 求证:MN ⊥BD .证明:连结BM 、DM ,则由∠ABC=90°,M 为AC 的中点,得:BM=21AC , 同理:由∠ADC=90°, M 为AC 的中点,得:MD=21AC ,∴BM=DM ,由N 为BD 中点及等腰三角形三线合一性质,得MN ⊥BD .四、关于三角形重心问题的应用基本模式是:若O 为△ABC 的三条中线AD 、BE 、CF 的交点(即△ABC 的重心),则有OD OA =OE OB =OF OC =12.例题 已知:如图5,线段PQ 过△ABC 的重心M ,P 、Q 分别内分AB 、AC 的比值为p 、q ,求p 1+q 1.解:作射线AM 交BC 于D 点,分别过B 、C 两点作PQ 的平行线交AM 于G 、F ,∵M 为△ABC 的重心,∴DB=DC ,MD AM=2:1,∴△BDG ≌△DCF ,∴DG=DF .。
中考经典题型--“直角三角形斜边上的中线”的性质及其应用
“直角三角形斜边上的中线”的性质及其应用 “直角三角形斜边上的中线等于斜边的一半”是直角三角形的重要性质之一,而且斜边上的中线将直角三角形分割成两个顶角互补、底角互余的两个等腰三角形,如能善于把握图形特征,恰当地构造并借助直角三角形斜边上的中线,往往能帮助我们迅速打开解题思路,从而顺利地解决问题,下面举例说明.一、有直角、有中点,利用垂直平分线性质【例1】如图,BD 、CE 是△ABC 的两条高,M 是BC 的中点,N 是DE 的中点.求证:MN 垂直平分DE .二、有直角、无中点,取中点,连线出中线【例2】如图,在Rt △ABC 中,∠C=90°,AD ∥BC ,∠CBE=21∠ABE ,求证:DE=2AB .三、有中点、无直角,造直角【例3】如图,梯形ABCD 中,AB ∥CD ,M 、N 是AB 、CD 的中点,∠ADC+∠BCD=270°,求证:MN=21(AB -CD ).四、逆用性质解题 【例4】如图,延长矩形ABCD 的边CB 至E ,使CE=CA ,P 是AE 的中点.求证:BP ⊥DP .【习题练习】1、如图,△ABC 中,AB=AC ,∠ABD=∠CBD ,BD ⊥DE 于D ,DE 交BC 于E ,求证:CD=21BE .2、如图,△ABC 中,∠B=2∠C ,AD ⊥BC 于D ,M 是BC 的中点,求证:AB=2DM .3、如图,在四边形ABCD 中,∠DAB=∠DCB=90°,点M 、N 分别是BD 、AC 的中点.确定MN 、AC 的位置关系.直角三角形斜边上中线性质的应用 一、直角三角形斜边上中线的性质 1、性质:直角三角形斜边上的中线等于斜边的一半.如图,在Rt △BAC 中,∠BAC=90°,D 为BC 的中点,则BC 21AD =. 2、性质的拓展:如图:因为D 为BC 中点,所以BC 21DC BD ==, 所以AD=BD=DC=BC 21, 所以∠1=∠2,∠3=∠4,因此∠ADB=2∠1=2∠2,∠ADC=2∠3=2∠4.因而可得如下几个结论:①直角三角形斜边上的中线将直角三角形分成两个等腰三角形;②分成的两个等腰三角形的腰相等,两个顶角互补、底角互余,并且其中一个等腰三角形的顶角等于另一个等腰三角形底角的2倍.二、性质的应用1、21倍关系求值 例1、如图,CD 是Rt △ABC 斜边AB 上的中线,若CD=4,则AB= .2、证明线段相等例2、如图,在△ABC 中,∠BAC=90°,延长BA 到D 点,使AB 21AD =,点E 、F 分别为边BC 、AC 的中点.(1)求证:DF=BE ;(2)过点A 作AG ∥BC ,交DF 于G .求证:AG=DG .3、证明角相等及角的倍分关系例3、已知,如图,在△ABC中,∠BAC 90°,BD、CE分别为AC、AB上的高,F为BC的中点,求证:∠FED=∠FDE.例4、已知:如图,在△ABC中,AD是高,CE是中线。
初中数学 三角形中线等分面积的灵活应用
三角形中线等分面积的灵活应用山东 王明华如图:线段AD 是△ABC 的中线,过点A 作AE ⊥BC ,垂足为E ,则S △ABD =12BD ·AE ,S △ADC =12DC ·AE.因为BD =DC ,所以S △ABD =S △ADC .因此,三角形的中线把△ABC 分成两个面积相等的三角形.利用这一性质,可以解决许多有关面积的问题.一、求图形的面积例1 长方形ABCD 的长为a ,宽为b ,E 、F 分别是BC 和CD 的中点,DE 、BF 交于点G ,求四边形ABGD 的面积.析解:连接CG ,不难得出S △BCF=S △DCE=4ab , 从而S △BEG=S △DFG,由E 、F 分别是BC 和CD 的中点,可得△DGF 、△CFG 、△CEG 、△BEG 的面积相等,因此S 四边形ABGD=42433ab ab ab -⨯=.二、巧算式子的值例2 在数学活动中,小明为了求2341111122222n ++++⋅⋅⋅+的值(结果用n 表示),设计了如图2所示的几何图形.请你利用这个几何图形求2341111122222n ++++⋅⋅⋅+的值.析解:根据三角形的中线把它分成两个面积相等的三角形可知,图中三角形的面积等于1,也可以表示为234111*********n n ++++⋅⋅⋅++, 因此2341111111222222n n ++++⋅⋅⋅+=-. 点评:此题运用“数形结合思想”,借助三角形的面积来求数的运算,简捷、巧妙.三、巧分三角形例3 已知△ABC ,请你用两种不同的方法把它分成面积之比为1:2:3的三个三角形.析解:方法1:取BC 的中点E ,然后在BE 上取点D ,使BD13=BE ,则AD 、AE 把△ABC 分成面积之比为1:2:3的三个三角形(如图1).方法2:在BC 边上截取DC 31=BC ,连结AD ,然后取AB 的中点P ,连结BP 、CP ,则△PAC 、△PAB 、△PBC 的面积之比为1:2: 3(如图2).想一想:方法2中,这三个三角形的面积之比为什么是1:2:3?。
全等三角形倍长中线法
全等三角形倍长中线法全等三角形倍长中线法,听起来是不是有点高深?但其实它就像一杯清茶,细细品味其实很有趣。
先给大家讲讲这个中线。
中线是什么呢?想象一下,一个三角形就像你吃的披萨,三角形的中线就像是从一个顶点划到对边中点的那条线。
这条线把三角形一分为二,真是妙不可言!而且,这条线可不是简单的线哦,它有它的奥秘和美丽。
接下来,我们来聊聊全等三角形。
说白了,全等三角形就像是两个完全一样的双胞胎,不论怎么旋转、翻转,尺寸和形状都一模一样。
就像两个小朋友,一个穿蓝色衣服,一个穿红色衣服,他们的脸型、身高、手长全都一样,简直是个绝配!在几何学里,利用全等三角形的特性,我们能找到一些有趣的解决方案。
说到倍长中线法,这个方法其实就是在利用这些全等三角形的关系,来帮助我们找到中线的长度。
想象一下,我们有个三角形,三个顶点分别是A、B、C。
我们从顶点A 出发,划一条线到对边BC的中点D,这条线就是中线AD。
接下来,如果我们把中线的长度乘以2,那可不是说它就长了一倍哦,而是我们能找到一个新的点,让它们形成一个新的三角形。
而这个三角形,也是全等的,真的是太酷了吧!不过,这个倍长中线法可不止这么简单。
其实,运用这个方法时,我们还可以用到一些数学定理,像平行线、相似三角形等等。
就像在厨房里做菜,我们不仅需要主料,还需要辅料,才能做出一道美味的菜肴。
再说了,做数学题也是需要多动脑筋的,有时候光靠一个公式可不够哦!让我们更深入地了解一下。
我们用倍长中线法,实际上就是借助全等三角形的关系来做一些巧妙的推理。
比如,我们可以知道,中线的长度与三角形的面积、周长之间有着密切的关系。
当你掌握了这个技巧,就像是打开了新世界的大门,里面有数不尽的宝藏等着你去发掘。
想想看,数学就像是探险游戏,每解决一个难题,就像找到了一个隐藏的宝藏,兴奋得不行!不过,很多同学可能在学习这个法则时,觉得有点无从下手,或者是觉得这个知识点特别抽象。
其实呀,只要把它和生活中的例子结合起来,就会变得简单多了。
巧用中线 轻松求面积(初中数学)
巧用中线轻松求面积根据等底同高的三角形面积相等,我们得到三角形的中线具有一个重要的性质:“三角形的中线把三角形分成面积相等的三角形”.利用中线的这个性质我们可以快速地解决与面积相关的一类问题.例1如图1,AD是△ABC的中线,E是AD的中点,连接EB,EC,CF⊥BE于点F.若BE=9,CF=8,求△ACE的面积.解析:因为CF⊥BE于点F,所以S△BCE=12BE•CF=12×9×8=36.因为AD是△ABC的中线,所以BD=CD.所以S△EBD=S△ECD=12S△EBC=18.因为E是AD的中点,所以S△ACE=S△ECD=18.例2 如图2,在△ABC中,已知D为BC上一点,E,F分别为AD,BE的中点,且S△ABC=13.求△CEF的面积.解析:因为E为AD的中点,所以S△BDE=12S△ABD,S△CDE=12S△ACD.所以S△BEC=S△BDE+S△CDE=12S△ABC=132.又因为F为BE的中点,所以S△EFC=12S△BEC=134.例3如图3,已知△ABC的面积为36,点D,E分别在边BC,AC上,且BD=CD,CE=2AE,AD与BE相交于点F,若△AEF的面积为3,则图中阴影部分的面积为.图3 图4解析:方法1:如图4,连接CF.因为△AEF与△CEF等高,CE=2AE,所以S△CEF=2S△AEF=6.因为BD=CD,所以S△ABD=S△AC D=12S△ABC=18.所以S△CFD= S△ACD-S△AEF-S△CEF=18-3-6=9.所以S△BFD=S△CFD=9.故填9.方法2:观察图形发现△ABD与△ABE的公共部分是△ABF,因此有S△ABD-S△ABE=(S△ABF+S△BDF)-(S△ABF+S△AFE)=S△BDF-S△AFE.因为BD=CD,所以S△ABD=12S△ABC=18.因为CE=2AE,所以S△ABE=13S△ABC=12.所以S△BDF-S△AFE= S△ABD-S△ABE=18-12=6. 所以S△BDF=3+6=9.故填9.图1图2第1 页共1 页。
三角形的中线有什么作用
三角形的中线有什么作用在我们学习数学的过程中,三角形是一个非常基础且重要的几何图形。
而三角形的中线,作为三角形中的一个重要概念,具有许多独特且实用的作用。
首先,让我们来明确一下什么是三角形的中线。
三角形的中线是连接三角形的一个顶点和它所对边的中点的线段。
也就是说,如果我们有一个三角形 ABC,那么连接顶点 A 和边 BC 中点的线段就是中线。
同样,顶点 B 到边 AC 中点的线段,以及顶点 C 到边 AB 中点的线段,也都是中线。
那么,三角形的中线到底有哪些作用呢?其一,三角形的中线可以将三角形分成两个面积相等的部分。
这是因为中线将对边平分,所以以中线为底边的两个小三角形的高是相同的,而底边也相等,根据三角形面积公式(面积=底×高÷2),就可以得出这两个小三角形的面积相等。
比如,在三角形 ABC 中,AD 是BC 边上的中线,那么三角形 ABD 和三角形 ACD 的面积就是相等的。
这一性质在解决很多与三角形面积相关的问题时非常有用。
其二,三角形的三条中线相交于一点,这个点被称为三角形的重心。
重心具有一些特殊的性质。
比如,如果我们把一个质地均匀的三角形薄板用细线悬挂起来,使其能够自由摆动,那么薄板静止时,细线所在的直线一定经过三角形的重心。
而且,重心到三角形顶点的距离与到对边中点的距离之比为 2:1。
其三,中线还与三角形的周长和边长有着密切的关系。
通过中线,我们可以建立一些等式来求解三角形的边长或者判断三角形的类型。
比如,如果已知三角形两条中线的长度,以及这两条中线所对应的边的长度,就可以利用中线定理求出第三条中线的长度。
其四,在实际生活中,三角形中线的概念也有广泛的应用。
例如在建筑设计中,工程师们在计算三角形结构的稳定性和受力情况时,就需要用到中线的相关知识。
在物理学中,研究物体在三角形斜面上的运动时,也会涉及到中线的原理。
此外,从数学思维的角度来看,对三角形中线的研究和理解有助于培养我们的逻辑推理能力和空间想象力。
三角形中线的一个简单性质及推广的妙用
图 2
B , G 由矩形 的性质知AA C的面积是矩形 A C B B D的面积
若点 D不是 B C的中点 , 则可得到这一性质的推广, 即如 图 2中 D是 AA C的 边 B B C上 任 意 一 点 , 为 因
AA D与 AA D中 B B C D与 C D边上 的 高线相 同 , 以 所
角形的中线等分 三角形 的面 积. 即如图 1A ,D是 AA C B 中曰 c边上 的中线 , . s 脚 = 1. 则 s c △ D= s
=s := 1 5
△ ^ 8c
分别是矩形 A C B D的边 A 、 C的中点 , BB 连结 A c 设 F、E, A C F、E交于点 G 则 , 等于
.o ÷四 s ∞= 边形A C △ BD的面 = . 积 ÷口
2 2
D
寸‘毒. (o年 7 初 版 7 f 29 第 期. 中 ) : o ?
哦
=
・ 解题研究 ・
初 一第 2题 ) 如图 l , l矩形 A C B D中 , F是 C D的中点 , c B 3 E,D= H . B A 4 D 若长方形 的面 积是 3 0平方 米 , 阴 0 则 平方 米.
,
所 以 S 四 形 日 = △ G S 8 + △,+S 8 凹 边 ^ G S ^ + △£ S c c £ G G △
=
8
: :
, ,
匿
图4
霾
击 ÷ ,
= 一 1= 2 又因为矩形 A c l 了 了 B D的面积
,
则 .边 s 口
幽3
简析
如图4 令 E 、 相交于点 0, , G朋 分别连结 0 、 A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形中线的巧用-CAL-FENGHAI.-(YICAI)-Company One1
三角形中线的巧用
边的知识:
三角形任意两边之和大于第三边
三角形任意两边之差小于第三边
角的知识:
三角形三个内角的和等于180°
三角形的一个外角等于和它不相邻的两个内角的和。
三角形的任何一个外角大于和它不相邻的一个内角。
三角形线的知识:
三角形的中线、高、角平分线都是线段。
锐角三角形的三条高都在三角形的内部。
直角三角形的三条高,一条在三角形的内部,其他两条是直角边。
钝角三角形的三条高,一条在三角形的内部,其他两条在三角形的外部。
垂直平分线的性质:线段的垂直平分线上的点到线段两端点的距离相等。
角平分线性质:角平分线上的点到角的两边的距离相等。
三角形全等的知识:
全等三角形的性质:全等三角形的对应边相等,对应角相等.
全等三角形的判断:SSS、SAS、ASA、AAS这四种。
三角形的中线是与三角形有关线段的重要线段。
三角形的中线在解决和三角形面积有关的问题中常常发挥重要作用。
如图1,连接三角形ABC的顶点A和它所对的边BC的中点D,所得线段
AD叫△ABC的边BC上的中线。
∴BD=CD=BC . AE⊥BC于E,即AE是△ABC 的边BC上的高。
同时AE也是△ABD、△ACD的高。
根据三角形的面积公式,三角形ABC的面积为,即
.
△ABD、△ACD的面积可表示为:
,
,
所以△ABD、△ACD的面积相等,都等于△ABC面积的一半。
结论一:三角形的一边的中线把这个三角形分成面积相等的两部分。
例1 如图2,AD、BE是△ABC的两条中线。
AD、BE交于G,试比较△BGD 和△AGE面积的大小。
析解:因为AD、BE是△ABC的两条中线,根据结论一,三角形ADC的面积等于三角形ABC的面积的一半,三角形BCE的面积也等于三角形ABC的面积
的一半。
所以=,所以,
即.所以△BGD和△AGE的面积相等。
引申:连接GC,则GD是三角形GBC的中线,GE是三角形AGC的中线,根据上面结论一,有,,而,
所以,
,所以
结论二:连接三角形的中线的交点和这个三角形任意两个顶点所组成的三角形的面积等于这个三角形面积的.
例2 (2009贺州)如图3-1,正方形ABCD的边长为1,E、F分别是AB、BC边上的中点,求图中阴影部分的面积。
分析:图中阴影部分是不规则四边形,须作辅助线转化为规则四边形或三角形。
更重要的是要考虑中点的运用。
解:如图3-2,连接BD,则三角形BCD的面积= ,根据上述结论二,△ BOD的面积等于△BCD的面积的,
即,
∴阴影部分的面积=.
点评:求不规则图形的面积往往是作辅助线转化为三角形加以分析。
图中三角形BDO的面积是和三角形BDC的中线有关的,记住上面的两个结论,能够迅速巧妙的求解此题。