圆中常见辅助线的添加口诀及技巧知识交流

合集下载

初中数学辅助线口诀及图解

初中数学辅助线口诀及图解

初中数学辅助线口诀及图解初中数学辅助线口诀及图解 1作辅助线的方法和技巧题中有角平分线,可向两边作垂线。

垂直平分线,可以把线连接到两端。

三角形中两中点,连结则成中位线。

三角形中有中线,延长中线同样长。

成比例,正相似,常为平行线。

如果所有的线都在圆的外面,则通过切割圆心来连接这些线。

如果两圆内外切,经过切点作切线。

两个圆相交于两点,这两点一般作为它们的公共弦。

它是直径,在一个半圆里,我想把线连接成直角。

作等角,添个圆,证明题目少困难。

辅助线是虚线。

小心不要更改图纸。

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

需要将线段对折一半,延伸和缩短都可以测试。

三角形的两个中点相连形成中线。

三角形有一条中线,中线延伸。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

移动平行对角线组成三角形是很常见的。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径和弦长计算,弦中心到中间站的距离。

圆上若有一切线,切点圆心半径连。

勾股定理是计算切线长度最方便的方法。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆形,要连接成直角的弦。

圆弧的中点与圆心相连,竖径定理要记完整。

圆周角边两条弦,直径和弦端点连。

切角、切边、切弦、找同弧、同对角线等。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交的圆,别忘了把它做成普通串。

内外相切的两个圆,通过切点公切线。

如果添加了连接线,切点必须在连接线上。

在等角图上加一个圆很难证明问题。

辅助线,是虚线,画图注意勿改变。

如果图形是分散的,对称旋转进行实验。

画画是必不可少的,平时也要熟练。

解题还要多心眼,经常总结方法显。

不要盲目加线。

方法要灵活多变。

分析综合方法选,困难再多也会减。

圆中常见的辅助线

圆中常见的辅助线
的底角等。
计算弧长
利用半径和直径,可以计算圆中的 弧长,如半圆、四分之一圆等。
证明定理
半径和直径在证明圆的定理中起到 关键作用,如垂径定理、切线长定 理等。
半径和直径的作法
作半径
从圆心出发,用直尺或圆规画出到圆上任意一点的线段。
作直径
通过圆心,用直尺或圆规画出穿过圆上任意两点的线段。
02 弦
定义与性质
弦的作法
01
02
03
04
通过作弦的中垂线来找到弦的 中点;
通过连接圆心和弦的一个端点 来找到弦;
通过作经过圆上两点的切线来 找到弦;
通过作经过圆心的直线来找到 弦。
03 切线
定义与性质
定义
切线是指与圆只有一个公共点的直线。
性质
切线与半径垂直,切线长度与半径相等,切线到圆心的距离为0。
切线在解题中的作用
定义
连接圆上任意两点的线段被称为圆的 弦。
性质
弦与直径垂直时,弦平分直径;同弦 所对的圆周角相等;弦长与半径成正 比。
弦在解题中的作用
利用弦的性质求角度
利用弦的性质证明定理
通过利用弦所对的圆周角相等,可以 求出某些角度。
通过利用弦的性质,可以证明一些与 圆有关的定理。
利用弦的性质求长度
利用弦长与半径的比例关系,可以求 出某些长度。
圆中常见的辅助线
目 录
• 半径和直径 •弦 • 切线 • 割线
01 半径和直径
定义与性质
定义
半径是连接圆心和圆上任意一点 的线段,直径是穿过圆心且两端 点在圆上的线段。
性质
半径长度等于圆的半径,直径长 度等于圆的直径。
半径和直径在解题中的作用

圆中常见辅助线的添加口诀及技巧

圆中常见辅助线的添加口诀及技巧

圆中常见辅助线的添加口诀及技巧半径与弦长计算,弦心距来中间站;圆上若有一切线,切点圆心半径连;要想证明是切线,半径垂线仔细辨;是直径,成半圆,想成直角径连弦;弧有中点圆心连,垂径定理要记全;圆周角边两条弦,直径和弦端点连;要想作个外接圆,各边作出中垂线;还要作个内切圆,内角平分线梦园;如果遇到相交圆,不要忘作公共弦;若是添上连心线,切点肯定在上面;二:圆中常见辅助线的添加:1、遇到弦时解决有关弦的问题时1、常常添加弦心距,或者作垂直于弦的半径或直径或再连结过弦的端点的半径;作用:①利用垂径定理;②利用圆心角及其所对的弧、弦和弦心距之间的关系;③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量;2、常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点;作用:①可得等腰三角形;②据圆周角的性质可得相等的圆周角;2、遇到有直径时常常添加画直径所对的圆周角;作用:利用圆周角的性质,得到直角或直角三角形3、遇到90°的圆周角时常常连结两条弦没有公共点的另一端点;作用:利用圆周角的性质,可得到直径;4、遇到有切线时1常常添加过切点的半径见切点连半径得垂直作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形;5、遇到证明某一直线是圆的切线时1若直线和圆的公共点还未确定,则常过圆心作直线的垂线段,再证垂足到圆心的距离等于半径;2若直线过圆上的某一点,则连结这点和圆心即作半径,再证其与直线垂直;6、遇到三角形的内切圆时连结内心到各三角形顶点,或过内心作三角形各边的垂线段;作用:利用内心的性质,可得:1内心到三角形三个顶点的连线是三角形的角平分线; 2内心到三角形三条边的距离相等7、遇到三角形的外接圆时,连结外心和各顶点作用:外心到三角形各顶点的距离相等;例题1、如图,已知△ABC内接于⊙O,∠A=45°,BC=2,求⊙O的面积; 例题2、如图,弦AB的长等于⊙O的半径,点C在弧AMB上,则∠C的度数是________.例题3、如图,AB是⊙O的直径,AB=4,弦BC=2,∠B=例题4、如图,AB、AC是⊙O的的两条弦,∠BAC=90°,AB=6,AC=8,⊙O的半径是例题5、如图所示,已知AB是⊙O的直径,AC⊥L于C,BD⊥L于D,且AC+BD=AB;求证:直线L与⊙O相切;例题6、如图,P是⊙O外一点,PA、PB分别和⊙O切于A、B,C是弧AB 上任意一点,过C作⊙O的切线分别交PA、PB于D、E,若△PDE的周长为12,则PA长为______________例题7、如图,△ABC中,∠A=45°,I是内心,则∠BIC=例题8、如图,Rt△ABC中,AC=8,BC=6,∠C=90°,⊙I分别切AC,BC,AB 于D,E,F,求Rt△ABC的内心I与外心O之间的距离.课后练习1、已知:P是⊙O外一点,PB,PD分别交⊙O于A、B和C、D且AB=CD.求证:PO平分∠BPD.2、如图,ΔABC中,∠C=90°,圆O分别与AC、BC相切于M、N,点O在AB上,如果AO=15㎝,BO=10㎝,求圆O的半径.3、已知:□ABCD的对角线AC、BD交于O点,BC切⊙O于E点.求证:AD也和⊙O相切.4、如图,学校A附近有一公路MN,一拖拉机从P点出发向PN方向行驶,已知∠NPA=30°,AP=160米,假使拖拉机行使时,A周围100米以内受到噪音影响,问:当拖拉机向PN方向行驶时,学校是否会受到噪音影响请说明理由.如果拖拉机速度为18千米∕小时,则受噪音影响的时间是多少秒总结:弦心距、半径、直径是圆中常见的辅助线;圆中辅助线添加的常用方法圆是初中几何中比较重要的内容之一,与圆有关的问题,汇集了初中几何的各种图形概念和性质,其知识面广,综合性强,随着新课程的实施,园的考察主要以填空题,选择题的形式出现,不会有比较繁杂的证明题,取而代之的是简单的计算;圆中常见的辅助线有:1作半径,利用同圆或等圆的半径相等; 2涉及弦的问题时,常作垂直于弦的直径弦心距,利用垂径定理进行计算和推理; 3作半径和弦心距,构造直角三角形利用勾股定理进行计算; 4 作直径构造直径所对的圆周角; 5 构造同弧或等弧所对的圆周角; 6遇到三角形的外心时,常连接外心与三角形的各个顶点; 7 已知圆的切线时,常连接圆心和切点半径; 8 证明直线和园相切时,有两种情况:1已知直线与圆有公共点时,连接圆心与公共点,证此半径与已知直线垂直 ,简称“有点连线证垂直,”2已知直线与圆无公共点时,过圆心作已知直线的垂线段,证它与半径相等,简称“无点做线证相等”此外,两解问题是圆中经常出现的问题,涉及弧,弦,与圆有关的角,点与圆,直线与圆,圆与圆的位置关系等知识,着重考察思维的完备性和严谨性,应特别引起重视。

(完整版)圆中常见辅助线作法分类大全

(完整版)圆中常见辅助线作法分类大全

1.碰到弦时(解决相关弦的问题时)经常增添弦心距,或许作垂直于弦的半径(或直径)或再连结过弦的端点的半径。

或许连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。

作用: 1 、利用垂径定理;2、利用圆心角及其所对的弧、弦和弦心距之间的关系;3、利用弦的一半、弦心距和半径构成直角三角形,依据勾股定理求相关量。

4、可得等腰三角形;5、据圆周角的性质可得相等的圆周角。

例:如图,AB是⊙ O 的直径 ,PO⊥ AB 交⊙ O 于 P 点,弦 PN 与 AB 订交于点 M ,求证:PM ?PN=2PO 2.剖析:要证明PM?PN=2PO2,即证明 PM ?PC =PO 2,过 O 点作 OC⊥PN 于 C,依据垂经定理 NC=PC ,只需证明PM?PC=PO2,要证明 PM?PC=PO2只需证明 Rt△ POC∽Rt △ PMO.1证明 : 过圆心 O 作 OC⊥ PN 于 C,∴ PC=PN2∵PO⊥ AB, OC ⊥PN ,∴∠ MOP= ∠ OCP=90° .又∵∠ OPC=∠ MPO ,∴ Rt△POC∽ Rt△PMO.∴ PO PC即∴ PO2 = PM?PC.∴ PO2= PM ?1PN,∴ PM ?PN=2PO2.PM PO2【例 1】如图,已知△ ABC内接于⊙ O,∠ A=45°, BC=2,求⊙ O的面积。

AOB C【例 2】如图,⊙ O的直径为10,弦 AB=8, P 是弦 AB 上一个动点,那么 OP的长的取值范围是 _________ .【例 3】如图,弦AB的长等于⊙ O的半径,点 C 在弧 AMB上,则∠ C的度数是 ________.2. 碰到有直径时经常增添(画)直径所对的圆周角。

作用:利用圆周角的性质,获得直角或直角三角形。

例 如图,在△ ABC 中,∠ C=90°,以 BC 上一点 O 为圆心,以 OB 为半径的圆交 AB 于点 M ,交 BC 于点 N .( 1) 求证: BA · BM=BC · BN ;( 2) 假如 CM 是⊙ O 的切线, N 为 OC 的中点,当 AC=3 时,求 AB 的值.剖析:要证 BA · BM=BC · BN ,需证△ ACB ∽△ NMB ,而∠ C=90°,因此需要△ NMB 中有个直角,而BN 是圆 O 的直径,因此连结 MN 可得∠ BMN=90 °。

初中数学圆的辅助线八种作法

初中数学圆的辅助线八种作法

中考数学圆的辅助线在平面几何中,与圆有关的许多题目需要添加辅助线来解决。

百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。

添加辅助线的方法有很多,本文只通过分析探索归纳几种圆中常见的辅助线的作法。

下面以几道题目为例加以说明。

1.有弦,可作弦心距在解决与弦、弧有关的问题时,常常需要作出弦心距、半径等辅助线,以便应用于垂径定理和勾股定理解决问题。

例1 如图1, ⊙O 的弦AB 、CD 相交于点P , 且AC=BD 。

求证:PO 平分∠APD 。

分析1:由等弦AC=BD 可得出等弧 = 进一步得出 = ,从而可证等弦AB=CD ,由同圆中 等弦上的弦心距相等且分别垂直于它们所对应的弦,因此可作辅助线OE ⊥AB ,OF ⊥CD ,易证△OPE ≌△OPF ,得出PO 平分∠APD 。

证法1:作OE ⊥AB 于E ,OF ⊥CD 于FAC=BD => = => ==> AB=CD => OE=OF∠OEP=∠OFP=90° => △OPE ≌△OPF0OP=OP=>∠OPE=∠OPF => PO 平分∠APD 分析2:如图1-1,欲证PO 平分∠APD ,即证AB(BD , (CD (D 图 1AC(AC (BD (AB (CD(∠OPA=∠OPD ,可把∠OPA 与∠OPD 构造在两个 三角形中,证三角形全等,于是不妨作辅助线即半径OA ,OD ,因此易证△ACP ≌△DBP ,得AP=DP ,从而易证△OPA ≌△OPD 。

证法2:连结OA ,OD 。

∠CAP=∠BDP∠APC=∠DPB =>△ACP ≌△DBP AC=BD=>AP=DPOA=OD =>△OPA ≌△OPD =>∠OPA=∠OPD =>PO 平分∠APD OP=OP2.有直径,可作直径上的圆周角对于关系到直径的有关问题时,可作直径上的圆周角,以便利用直径所对的圆周角是直角这个性质。

例谈圆中常见作辅助线的方法

例谈圆中常见作辅助线的方法

例谈圆中常见作辅助线的方法圆是初中几何部分的重要内容之一,与圆有关的大部分几何题型都需要添加辅助线来解决。

只要添上合适的辅助线,不仅会使问题迎刃而解,而且还会有效地培养学生的解题能力与创造性思维能力。

通过对实践教学中的归纳与总结,发现添加辅助线的方法有很多,本文就圆中常见作辅助线的方法归纳如下:一、作弦心距(在与弦有关的计算或证明题时,常作辅助线的方法是作弦心距)例1:如图1,ab为⊙o的直径,pq切⊙o于t,ac⊥pq于c,交⊙o于d,ad=2,tc=.求⊙o的半径。

解:过点o作om⊥ac于m,∴am=md=ad/2=1.∵pq切⊙o于t,∴ot⊥pq.又∵ac⊥pq,om⊥ac,∴∠otc=∠act=∠omc=90°,∴四边形otcm为矩形.∴om=tc=,∴在rt△aom中,.即⊙o的半径为2.例2:如图2,已知在以o为圆心的两个同心圆中,大圆的弦ab 交小圆于c、d两点.求证:ac=bd.证明:过点o作oe⊥ab于e,则ae=be,ce=de,∴ae-ce=be-de.∵ac=ae-ce,bd=be-de.∴ac=bd.二、连半径(与半径和弦有关的简单计算、已知圆中有切线的有关计算和证明时,常作辅助线的方法是连半径)例3:如图3,⊙o的直径cd=20cm,直线l⊥co,垂足为h,交⊙o于a、b两点,ab=16 cm,直线l平移多少厘米时能于⊙o相切?解:连接oa,∵l⊥co,∴oc平分ab∴ah=8cm.在rt△aho中,oh=6cm.∴ch=4cm,dh=16 cm.答:直线l向左平移4cm,或向右平移16cm时能于⊙o相切。

例4:如图4,pa是⊙o的切线,切点是a,过点a作ah⊥op于点h,交⊙o于点b.求证:pb是⊙o的切线.证明:连接oa、ob.∵pa是⊙o的切线,∴∠oap=90°.∵oa=ob,ab⊥op,∴∠aop=∠bop.又∵oa=ob,op=op,∴△aop≌△bop.∴∠opb=∠oap=90°.∴pb是⊙o的切线.三、既作弦心距又连半径(与半径和弦都有关的计算时,常作辅助线的方法是既作弦心距又连半径,利用勾股定理来解决)例5:直径为52厘米的圆柱形油槽内装入一些油后,截面如图5,若油最大深度为16厘米.那么油面宽度ab的长是多少厘米?解:连接oa,作oc⊥ab于c,则ac=bc=ab.在rt△oac中,oa=×52=26厘米,oc=26-16=10厘米,∴ac=24厘米.∴ab=2ac=48厘米.四、连弦构造相似三角形或直角三角形(在圆中与弦或其他有关的计算或证明时,常作辅助线的方法是连弦,利用同弧所对的圆周角相等连弦构造相似三角形或利用直径所对的圆周角为直角这个性质连弦构造出直角三角形,从而将问题转化到相似三角形或直角三角形中去计算或证明)例6:已知,如图6,在半径为4的⊙o中,ab,cd是两条直径,m为ob的中点,cm的延长线交⊙o于点e,且em>mc.连结de,de=. (1)求证:am·mb=em·mc;(2)求em的长;(3)求sin∠eob的值.解:(1)连接ac,eb,则∠cam=∠bem.又∠amc=∠emb,∴△amc∽△emb.∴,即am·mb=em·mc.(2)∵dc为⊙o的直径,∴∠dec=90°,ec=∵oa=ob=4,m为ob的中点,∴am=6,bm=2.设em=x,则cm=7-x. 代入(1),得6×2=x(7-x).解得x1=3,x2=4.但em>mc,∴em=4. (3)由(2)知,oe=em=4,作ef⊥ob于f,则of=mf=ob=1. 在rt△eof中,∴sin∠eob=.例7:如图7所示,△abc是直角三角形,∠abc=90°,以ab为直径的⊙o交ac于点e,点d是bc边的中点,连结de.(1)求证:de与⊙o相切;(2)若⊙o的半径为,de=3,求ae.(1)证明:连结oe,be,∵ab是直径,∴be⊥ac.∵d是bc的中点,∴de=db,∴∠dbe=∠deb.又oe=ob,∴∠obe=∠oeb,∴∠dbe+∠obe=∠dbe+∠oeb.即∠abd=∠oed.又∵∠abc=90°,∴∠oed=90°,∴de是⊙o的切线.(2)解:∵,∴,∴.五、作直径构造直角三角形(在圆中牵涉到三角函数的运算或与直径的计算与证明时,常作辅助线的方法是作直径,利用直径所对的圆周角是直角构造直角三角形,从而将问题转化到直角三角形中去解决)例8:如图8,点a、b、c在⊙o上(ac不过o点),若∠acb=60°,ab=6,求⊙o半径的长。

初中数学几何图形的辅助线添加方法大全

初中数学几何图形的辅助线添加方法大全

初中数学添加辅助线的方法汇总作辅助线的基本方法一:中点、中位线,延长线,平行线。

如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

二:垂线、分角线,翻转全等连。

如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。

其对称轴往往是垂线或角的平分线。

三:边边若相等,旋转做实验。

如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。

其对称中心,因题而异,有时没有中心。

故可分“有心”和“无心”旋转两种。

四:造角、平、相似,和、差、积、商见。

如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。

在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。

故作歌诀:“造角、平、相似,和差积商见。

”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。

如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。

六:两圆相切、离,连心,公切线。

如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。

七:切线连直径,直角与半圆。

如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。

即切线与直径互为辅助线。

如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。

即直角与半圆互为辅助线。

八:弧、弦、弦心距;平行、等距、弦。

如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。

中考数学点对点-几何问题辅助线添加技巧(解析版)

中考数学点对点-几何问题辅助线添加技巧(解析版)

专题29 几何问题辅助线添加技巧专题知识点概述全国各地每年的中考试卷里都会出现考查几何的证明和计算问题,在解答试题过程中,我们发现当题设条件不够,必须添加辅助线,把分散条件集中,建立已知和未知的桥梁,结合学过的知识,采用一定的数学方法,把问题转化为自己能解决的问题。

学会添加辅助线技巧,是培养学生科学思维、科学探究的重要途径。

所以希望大家学深学透添加辅助线的技巧和方法。

一、以基本图形为切入点研究添加辅助线的技巧策略1.三角形问题方法1:有关三角形中线的题目,常将中线加倍。

含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。

方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。

方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。

方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。

2.平行四边形问题平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形;(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线;(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;(5)过顶点作对角线的垂线,构成线段平行或三角形全等。

3.梯形问题梯形是一种特殊的四边形。

它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。

初中数学证明题常见辅助线作法及几何规律,三角形、圆、四边形全都有,102条规律做题不愁!

初中数学证明题常见辅助线作法及几何规律,三角形、圆、四边形全都有,102条规律做题不愁!

初中数学证明题常见辅助线作法及几何规律,三角形、圆、四边形全都有,102条规律做题不愁!颜老师说:人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。

初中几何常见辅助线作法歌诀人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

3月24日初中数学圆半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

除了上边方便记忆的顺口溜之外,颜老师还为大家整理了不同几何图形的做法及规律,有相交线、平行线、三角形、四边形及圆几部分,共102条规律,可以说做题时遇到的都包括在这里哦~线、角、相交线、平行线规律1.如果平面上有n(吃2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出k n(n-1)条。

圆中常用的作辅助线的八种方法

圆中常用的作辅助线的八种方法
CD与⊙O相切,理由如下: 如图,作直径CE,连接AE. ∵CE是直径,∴∠EAC=90°. ∴∠E+∠ACE=90°. ∵CA=CB,∴∠B=∠CAB. ∵AB∥CD, ∴∠ACD=∠CAB. ∴∠B=∠ACD. 又∵∠B=∠E,∴∠ACD=∠E. ∴∠ACE+∠ACD=90°,即OC⊥DC. 又OC为⊙O的半径,∴CD与⊙O相切
习题课
阶段方法技巧训练(一)
202X
专训2 圆中常用的作辅助 线的八种方法
在解决有关圆的计算或证明题时,往往需要
添加辅助线,根据题目特点选择恰当的辅助线至
关重要.圆中常用的辅助线作法有:作半径,巧
用同圆的半径相等;连接圆上两点,巧用同弧所
对的圆周角相等;作直径,巧用直径所对的圆周
角是直角;证切线时“连半径,证垂直”以及
解:
又∵∠CDB=∠DBO,DE=BE,
02
∠CED=∠OEB,
03
∴△CDE≌△OBE.
∴S△CDE=S△OBE.
∴S阴影=S扇形OCB= π·62=6π(cm2).
证明:
求DE的长. 如图,连接BE. ∵AB是直径, ∴∠AEB=90°,∴BE⊥AC. ∵△ABC是等边三角形, ∴AE=EC,即E为AC的中点. ∵D是BC的中点,故DE为△ABC的中位线. ∴DE= AB= ×2=1. 解:
7 遇切线巧作过切点的半径 方法 8.如图,⊙O是Rt△ABC的外接圆,∠ABC=90°, 点P是圆外一点,PA切⊙O于点A,且PA=PB.
解:
5
遇弦加弦心距或半径
方法
5.如图所示,在半径为5的⊙O中,AB,CD是互相 垂直的两条弦,垂足为P,且AB=CD=8,则OP 的长为( ) A.3 B.4 C.3 D.4

初中数学《圆》常用辅助线构造技巧

初中数学《圆》常用辅助线构造技巧

初中数学《圆》常用辅助线构造技巧圆是初中数学中的重要内容,常常会涉及到圆的基本性质、切线、切点、弦、弦长、弧、弧长等概念。

为了更好地解题,我们可以使用一些常用的辅助线构造技巧。

下面,我将介绍几种常用的辅助线构造技巧。

1.直径是圆的特殊弦,通过任意两点连接圆心,可以得到直径。

在解题中,如果涉及到圆心和两点的位置关系,可以考虑构造直径。

2.过圆心的直线与圆的切线垂直。

当我们需要求解两个垂直的线段或角度时,可以考虑构造一条过圆心的直径,使其与需要垂直的线段或角度相交。

3.过圆心的直线将弧等分为两个等长的弧。

当我们需要将一个弧等分为两个等长的弧时,可以考虑构造一条过圆心的直线,将这个弧分割为两个等长的弧。

1.过切点的切线与圆的半径垂直。

当我们需要求解两个垂直的线段或角度时,可以考虑构造一条过切点的切线,并将其延伸至圆心,使其与需要垂直的线段或角度相交。

2.过切点的切线等于切点至圆心的半径。

当我们需要求解两个等长的线段或角度时,可以考虑构造一条过切点的切线,并将其延伸至圆心,使其与另一条需要等长的线段或角度相交。

1.弦的中点与圆心以及两个端点可以构成一个等腰三角形。

当我们需要求解与等腰三角形相关的线段或角度时,可以考虑构造一条连接弦的中点与圆心以及两个端点的直线。

2.以弦的中点为顶点的直角三角形。

当我们需要求解与直角三角形相关的线段或角度时,可以考虑构造一条连接弦的中点与两个端点的直线,并通过调整弦的位置,使其与这条直线构成一个直角。

1.弦的垂直平分线同时也是弦的中垂线。

在解题中,如果需要求解弦的垂直平分线或者弦的中垂线,可以考虑构造一条连接弦的两个端点的直线,并将其垂直平分或中垂。

2.连接弦的两个端点与圆心的线段是一个等角二段线。

当我们需要求解与等角二段线相关的线段或角度时,可以考虑构造一条连接弦的两个端点与圆心的直线。

以上是一些常用的圆的辅助线构造技巧,通过合理地运用这些技巧,可以帮助我们更好地理解和解题。

圆中常用辅助线的添加方法

圆中常用辅助线的添加方法
作用:利用内心的性质,可得:①内心到三角形三个顶点的连线是三角形的角平分线;②内心到三角形三条边的距离相等.在处理内心的问题时,常需连结顶点与内心,以便利用内切圆的圆心是三角形内角平分线交点这一性质.
12.遇到三角形的外接圆时,连结外心和各顶点
作用:外心到三角形各顶点的距离相等.
13.遇到两圆外离时(解决有关两圆的外、内公切线的问题)
例1如图1,在以 为圆心的两个同心圆中,大圆的弦 交小圆于 、 两点.求证: .
证明过 作 于
∵ 为圆心,


练习如图2, 为⊙ 的弦,
是 上的一点, , .求⊙ 的半径.
2.有等弧或证弧等时常连等弧所对的弦或作等弧所对的圆心角.
例2如图,已知 是⊙ 的直径, 、 分别是 、 的中点, , .
求证:
证明:(一)连结 、
∵ 、 分别是 、 的中点,
∴ 、 .
∵ , ∴ .
∵ , 、 ,
∴ △ ≌ △ .
∴ .
∴ .
3.有弦中点时常连弦心距
例3如图4,已知 、 分别是⊙ 的弦 、 的中点, ,求证: .
证明连结 、 .(其余证明过程略,请自己补充完整)
4.有弧中点(或证明是弧中点)时,常有以下几种引辅助线的方法:
常常作出过切点的半径、连心线、平移公切线,或平移连心线.
作用:①利用切线的性质;②利用解直角三角形的有关知识.
14.遇到两圆相交时两个相交圆不离公共弦
常常作公共弦、两圆连心线、连结交点和圆心等.
作用:①利用连心线的性质、解直角三角形有关知识;②利用圆内接四边形的性质;③利用两圆公共的圆周的性质;④垂径定理.
圆中常用辅助线的添加方法
圆中辅助线的添加口诀:

圆中常作哪些辅助线

圆中常作哪些辅助线

CM O N 圆中常作哪些辅助线?通过作辅助线能使复杂问题简单化,圆问题中常用的辅助线是哪些呢?现把一些规律总结如下:弦与弦心距,密切紧相连. 直径对直角,圆心作半径. 已知有两圆,常画连心线. 遇到相交圆,连接公共弦. 遇到相切圆,作条公切线. “有点连圆心,无点作垂线.” 切线证明法,规律记心间.一、作弦心距.在解决有关弦的问题时,常常作弦心距,以利用垂经定理或圆心角、弦、弦心距之间的关系定理及推论.因此“弦与弦心距,密切紧相连.”.例 1.如图,AB是⊙O 的直径,PO⊥AB 交⊙O 于 P 点,弦 PN 与 AB 相交于点 M,求P证:PM•PN=2PO2.1分析:要证明PM•P N=2PO²,即证明PM•PN =POA B2²,1过 O 点作 OC⊥PN 于 C,根据垂经定理PN =PC,只需证明2。

⨯。

∆PMOPM•PC=PO²,由PO = P M,“三点定型”法可判断需证明 Rt△POC∽Rt△PMO.。

⨯ ∆POCPC PO1证明: 过圆心 O 作 OC⊥PN 于 C,∴PC= PN2∵PO⊥AB, OC⊥PN,∴∠MOP=∠OCP=900.又∵∠OPC=∠MPO,∴Rt△POC∽Rt△PMO.∴ PO = PC PM,即∴PO2= PM•PC. PO1∴PO2= PM•PN,∴PM•PN=2PO2.2二、连结半径圆的半径是圆的重要元素,圆中的许多性质如:“同圆的半径相等”和“过切点的半径与切线相互垂直”都与圆的半径有关.连结半径是常用的方法之一.例 2.已知:△ABC 中,∠B=900,O 是 AB 上一点,以 O 为圆心,以 OB 为半径的圆切 AC 与 D 点,交 AB 与 E 点,AD=2,AE=1.求证:CD 的长. CD 分析:D 为切点,连结 DO,∠ODA=900.根据切线长定理AE O BCD=CB.DO=EO= 半径r,在Rt△ADO 中根据勾股定理或Rt△ADO~ Rt△ABC,求出CD.证明: 连结DO∴OD⊥AC 于 D, ∴∠OCP=900.∵AB 过 O 点, ∠B=900.∴BC 为⊙O 的切线, ∴CD=CB设 CD=CB=x,DO=EO=y在Rt△ADO 中,AO2 =AD2+ DO2,AD=2,AE=13∴(1+y)2=22+y2, ∴ y=23 3在Rt△ABC 中,AC2 =AB2+ BC2,即(2+x)2=(1+ + )2+x2, ∴x=32 2∴CD=3.三、连结公共弦D 在处理有关两圆相交的问题时,公共弦像一把AEBPAE“钥匙”,常常可以打开相应的“锁”,因此“遇到相交圆,连接公共弦.”。

中考数学答题技巧:圆与圆位置关系中常见辅助线的作法

中考数学答题技巧:圆与圆位置关系中常见辅助线的作法

中考数学答题技巧:圆与圆位置关系中常见辅助线的作法中考数学答题技巧:圆与圆位置关系中常见辅助线的作法圆与圆位置关系是初中几何的一个重要内容,也是学习中的难点,本文介绍圆与圆的位置关系中常见的五种辅助线的作法。

1. 作相交两圆的公共弦利用圆内接四边形的性质或公共圆周角,沟通两圆的角的关系。

例1. 如图1,⊙O1和⊙O2相交于A、B两点,过A、B分别作直线C D、EF,且CD//EF,与两圆相交于C、D、E、F。

求证:CE=DF。

图1分析:CE和DF分别是⊙O1和⊙O2的两条弦,难以直截了当证明它们相等,但通过连结AB,则可得圆内接四边形ABEC和ABFD,利用圆内接四边形的性质,则易证明。

证明:连结AB因为又因此即CE//DF又CD//EF因此四边形CEFD为平行四边形即CE=DF2. 作两相交圆的连心线利用过交点的半径、公共弦、圆心距构造直角三角形,解决有关的运算问题。

例2. ⊙O1和⊙O2相交于A、B两点,两圆的半径分别为和,公共弦长为12。

求的度数。

图2分析:公共弦AB可位于圆心O1、O2同侧或异侧,要求的度数,可利用角的和或差来求解。

解:当AB位于O1、O2异侧时,如图2。

连结O1、O2,交AB于C,则。

分别在和中,利用锐角三角函数可求得故当AB位于O1、O2同侧时,如图3图3则综上可知或3. 两圆相切,作过切点的公切线利用弦切角定理沟通两圆中角的关系例3. 如图4,⊙O1和⊙O2外切于点P,A是⊙O1上的一点,直线A C切⊙O2于C,交⊙O1于B,直线AP交⊙O2于D。

求证PC平分。

图4分析:要证PC平分,即证而的边分布在两个圆中,难以直截了当证明。

若过P作两圆的公切线PT,与AC交于T易知由弦切角定理,得又是的一个外角因此又从而有即PC平分4. 两圆相切,作连心线利用连心线通过切点的性质,解决有关运算问题。

例4. 如图5,⊙O1与半径为4的⊙O2内切于点A,⊙O1通过圆心O 2,作⊙O2的直径BC,交⊙O1于点D,EF为过点A的公切线,若,求的度数。

圆中常见的辅助线的作法分类大全

圆中常见的辅助线的作法分类大全

1. 遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。

或者连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。

作用:1、利用垂径定理;2、利用圆心角及其所对的弧、弦和弦心距之间的关系;3、利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。

4、可得等腰三角形;5、据圆周角的性质可得相等的圆周角。

例:如图,AB是⊙O 的直径,PO ⊥AB 交⊙O 于P 点,弦PN 与AB 相交于点M , 求证:PM •PN=2PO 2.分析:要证明PM •PN=2PO 2,即证明PM •PC =PO 2,过O 点作OC ⊥PN 于C ,根据垂经定理 NC=PC ,只需证明PM •PC=PO 2,要证明PM •PC=PO 2只需证明Rt △POC ∽Rt △PMO. 证明: 过圆心O 作OC ⊥PN 于C ,∴PC=21PN ∵PO ⊥AB, OC ⊥PN ,∴∠MOP=∠OCP=90°. 又∵∠OPC=∠MPO ,∴Rt △POC ∽Rt △PMO. ∴PO PC PM PO 即∴PO 2= PM •PC. ∴PO 2= PM •21PN ,∴PM •PN=2PO 2. 【例1】如图,已知△ABC 内接于⊙O ,∠A=45°,BC=2,求⊙O 的面积。

【例2】如图,⊙O 的直径为10,弦AB =8,P 是弦AB 上一个动点,那么OP 的长的取值范围是_________.【例3】如图,弦AB 的长等于⊙O 的半径,点C 在弧AMB 上,则∠C 的度数是________.CBBA2. 遇到有直径时常常添加(画)直径所对的圆周角。

作用:利用圆周角的性质,得到直角或直角三角形。

例 如图,在△ABC 中,∠C=90°,以BC 上一点O 为圆心,以OB 为半径的圆交AB 于点M ,交BC 于点N .(1) 求证:BA ·BM=BC ·BN ;(2) 如果CM 是⊙O 的切线,N 为OC 的中点,当AC=3时,求AB 的值.分析:要证BA ·BM=BC ·BN ,需证△ACB ∽△NMB ,而∠C=90°,所以需要△NMB 中有个直角,而BN 是圆O 的直径,所以连结MN 可得∠BMN=90(1) 证明:连结MN ,则∠BMN=90°=∠ACB ∴△ACB ∽△NMB ∴BN AB BMBC∴AB ·BM=BC ·BN(2) 解:连结OM ,则∠OMC=90° ∵N 为OC 中点∴MN=ON=OM ,∴∠MON=60° ∵OM=OB ,∴∠B=21∠MON=30° ∵∠ACB=90°,∴AB=2AC=2×3=6【例4】如图,AB 是⊙O 的直径,AB=4,弦BC=2,∠B=3. 遇到90°的圆周角时常常连结两条弦没有公共点的另一端点。

高中辅助线的常见添法口诀

高中辅助线的常见添法口诀

高中辅助线的常见添法口诀以下是为您生成的十个适用于小学生的关于高中辅助线常见添法的口诀:口诀一:一遇中点想中位,中位相连三角形。

两边中点连成线,平行且等于第三边。

二看等腰三角形,三线合一要记清。

顶角平分线垂线,底边中线连一起。

遇到直角三角形,斜边中线不能忘。

等于斜边一半长,解题常常派用场。

口诀二:一瞧平行四边形,对角线来互相分。

连接顶点构新形,面积相等易证明。

二有梯形要添线,平移腰来或平移对。

或者作出两高线,上下底和轻松算。

若是遇到圆问题,连接半径和圆心。

口诀三:一遇比例想相似,对应边成比例。

平行构造相似形,相似比来把题解。

二见切线连半径,垂直关系立呈现。

要证切线先连弦,半径垂线证切线。

遇到角平分线,向两边作垂线。

口诀四:一有三角形求面积,高线中线要考虑。

高线用来算面积,中线平分三角形。

二若证全等条件少,添加辅助线来找。

连接对应边中点,构造全等轻松搞。

角平分线遇垂线,三线合一试试看。

口诀五:一遇轴对称图形,对称轴上添线段。

对应点连起来,图形性质更明显。

二看多边形问题,连接对角线求解。

分成多个三角形,内角和就好算清。

复杂图形多变形,转化思想要记心。

一到圆中求角度,同弧所对圆周角。

圆心角是它两倍,关系明确好解题。

二若圆中有弦长,作弦心距不能忘。

垂直平分弦一半,勾股定理来帮忙。

遇到两圆相相交,公共弦长很重要。

口诀七:一遇中点倍延长,构造全等或相似。

中线加倍法也行,解题思路更清晰。

二有折叠问题来,对应边和角相等。

折痕当作对称轴,图形关系不难猜。

辅助线呀巧添加,数学难题不再难。

口诀八:一瞧图形太分散,连接图形变整体。

二看条件较隐蔽,添加辅助现端倪。

要证线段和差倍,延长截短去尝试。

三角形里角度谜,外角等于不相邻。

一遇面积求解难,割补方法来转换。

二若求证线段比,相似三角形找对。

比例性质灵活用,问题解决笑开颜。

辅助线呀作用大,巧妙添加顶呱呱。

口诀十:一有平行四边形,平移对角构矩形。

二见菱形对角线,互相垂直且平分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆中常见辅助线的添加口诀及技巧
半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

要想作个外接圆,各边作出中垂线。

还要作个内切圆,内角平分线梦园。

如果遇到相交圆,不要忘作公共弦。

若是添上连心线,切点肯定在上面。

二:圆中常见辅助线的添加:
1、遇到弦时(解决有关弦的问题时)
(1)、常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。

作用:①利用垂径定理;
②利用圆心角及其所对的弧、弦和弦心距之间的关系;③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。

(2)、常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。

作用:①可得等腰三角形;
②据圆周角的性质可得相等的圆周角。

2、遇到有直径时
常常添加(画)直径所对的圆周角。

作用:利用圆周角的性质,得到直角或直角三角形
3、遇到90°的圆周角时
常常连结两条弦没有公共点的另一端点。

作用:利用圆周角的性质,可得到直径。

4、遇到有切线时
(1)常常添加过切点的半径(见切点连半径得垂直)
作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形。

5、遇到证明某一直线是圆的切线时
(1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段,再证垂足到圆心的距离等于半径。

(2)若直线过圆上的某一点,则连结这点和圆心(即作半径),再证其与直线垂直。

6、遇到三角形的内切圆时
连结内心到各三角形顶点,或过内心作三角形各边的垂线段。

作用:利用内心的性质,可得:
(1)内心到三角形三个顶点的连线是三角形的角平分
线;(2)内心到三角形三条边的距离相等
7、遇到三角形的外接圆时,连结外心和各顶点
作用:外心到三角形各顶点的距离相等。

例题1、如图,已知△ABC内接于⊙O,∠A=45°,BC=2,求⊙O的面积。

例题2、如图,弦AB的长等于⊙O的半径,点C在弧AMB上,
则∠C的度数是
________.
例题3、如图,AB是⊙O的直径,AB=4,弦BC=2,∠
B=
例题4、如图,AB、AC是⊙O的的两条弦,∠BAC=90°,
AB=6,AC=8,⊙O的半径

例题5、如图所示,已知AB是⊙O的直径,AC⊥L于C,BD⊥L于D,且AC+BD=AB。

求证:直线L与⊙O相切。

例题6、如图,P是⊙O外一点,PA、PB分别和⊙O切于A、B,C 是弧AB上任意一点,过C作⊙O的切线分别交PA、PB于D、E,若△PDE的周长为12,则PA长为______________
例题7、如图,△ABC中,∠A=45°,I是内心,则∠
BIC=
例题8、如图,Rt△ABC中,AC=8,BC=6,∠C=90°,⊙I分别切AC,BC,AB于D,E,F,求Rt△ABC的内心I与外心O之间的距离.
课后练习
1、已知:P是⊙O外一点,PB,PD分别交⊙O于A、B和C、D且AB=CD.求证:PO平分∠BPD.
2、如图,ΔABC中,∠C=90°,圆O分别与AC、BC相切于M、N,点O在AB上,如果AO=15㎝,BO=10㎝,求圆O的半径.
3、已知:□ABCD的对角线AC、BD交于O点,BC切⊙O于E点.求证:AD也和⊙O相切.
4、如图,学校A附近有一公路MN,一拖拉机从P点出发向PN方向行驶,已知∠NPA=30°,AP=160米,假使拖拉机行使时,A周围100米以内受到噪音影响,问:当拖拉机向PN方向行驶时,学校是否会受到噪音影响?请说明理由.如果拖拉机速度为18千米∕小时,则受噪音影响的时间是多少秒?
总结:弦心距、半径、直径是圆中常见的辅助线。

圆中辅助线添加的常用方法圆是初中几何中比较重要的内容之一,与圆有关的问题,汇集了初中几何的各种图形概念和性质,其知识面广,综合性强,随着新课程的实施,园的考察主要以填空题,选择题的形式出现,不会有比较繁杂的证明题,取而代之的是简单的计算。

圆中常见的辅助线有:(1)作半径,利用同圆或等圆的半径相等;(2)涉及弦的问题时,常作垂直于弦的直径(弦心距),利用垂径定理进行计算和推理;(3)作半径和弦心距,构造直角三角形利用勾股定理进行计算;(4)作直径构造直径所对的圆周角;(5)构造同弧或等弧所对的圆周角;(6)遇到三角形的外心时,常连接外心与三角形的各个顶点;(7)已知圆的切线时,常连接圆心和切点(半径);(8)证明直线和园相切时,有两种情况:1已知直线与圆有公共点时,连接圆心与公共点,证此半径与已知直线垂直,简称“有点连线证垂直,”2已知直线与圆无公共点时,过圆心作已知直线的垂线段,证它与半径相等,简称“无点做线证相等”此外,两解问题是圆中经常出现的问题,涉及弧,弦,与圆有关的角,点与圆,直线与圆,圆与圆的位置关系等知识,着重考察思维的完备性和严谨性,应特别引起重视。

相关文档
最新文档