高等数学上册的复习重点

合集下载

高等数学(上册)重点总结

高等数学(上册)重点总结

第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f).2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y)y=f -1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。

㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。

2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b)㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:A ynn =∞→lim称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限: ⑴当∞→x时,)(x f 的极限:Ax f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim )(lim ⑵当0x x →时,)(x f 的极限:A x f xx =→)(lim 0左极限:A x f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件: 定理:A x f x f A x f x x x x xx ==⇔=+-→→→)(lim )(lim )(lim 000㈡无穷大量和无穷小量 1.无穷大量:+∞=)(lim x f称在该变化过程中)(x f 为无穷大量。

《高等数学》(上)期末复习知识要点

《高等数学》(上)期末复习知识要点

1、 四则运算法则与复合运算法则(换元法);2、 初等函数的连续性(代入法): 00lim ()()x x f x f x →=;3、 两个重要极限:1)0sin lim1x x x→=,【特征:0sin lim 1→=】2)1lim(1)x x e x →∞+=(或1lim(1)n n e n→∞+=,10lim(1)x x x e →+=);【特征:1lim(1)e →∞+= 】4、 存在准则:1)夹逼准则,2)单调有界准则;5、 洛必达法则:未定式00或∞∞(其它类型未定式:000,,,1,0∞⋅∞∞−∞∞必须转化); 6、 等价无穷小量替换:只适用于乘除,加减不适用.(当0x →时,21cos 2x x −∼, sin (tan ,arctan ,arcsin ,1,ln(1)),x x x x x e x x −+∼(1)1a x x α+−∼(α为常数)等等)7、 无穷小的性质:有界量与无穷小的乘积、有限个无穷小的和与乘积均为无穷小等 8、 泰勒公式(麦克劳林公式); 9、 微分中值定理;10、 定积分或导数定义*: 1)*【定积分定义】、设()f x 在[,]a b 上可积,则1lim ()()nb a n i b a b af a i f x dx n n→∞=−−+⋅=∑∫; 2)【导数定义】设()f x 在点a 处可导,则0()()()()lim()lim ()x ah f x f a f a h f a f a f a x a h→→−+−′′==−或.1、 函数()f x 在点0x 处连续000lim ()()lim ()lim ()()x x x x x x f x f x f x f x f x +−→→→⇔=⇔==;2、 间断点:1)第一类间断点:可去,跳跃;2)第二类间断点:无穷,振荡等.3、 连续函数的运算性质:连续函数的加减乘除仍为连续函数;连续函数的复合函数仍为连续函数 4、 初等函数的连续性:一切初等函数在其定义区间内处处连续 5、 闭区间上连续函数的性质:1)有界性;2)最大值最小值定理;3)零点定理【闭上连续两端异号零点在开内】;4)介值定理及其推论一、 极限及其求法:二、 函数的连续性《高等数学》(上)期末复习要点1、 定义: 1)0000000()()()()()limlimx x x f x f x f x x f x f x x x x →∆→−+∆−′==−∆; 2)0000000()()()()()lim lim x x x f x f x f x x f x f x x x x +++→∆→−+∆−′==−∆3)0000000()()()()()lim lim x x x f x f x f x x f x f x x x x−−−→∆→−+∆−′==−∆4)000()()()f x f x A f x A +−′′′==⇔= 2、 求导法则:【必须牢记18个基本导数公式】 1) 显函数()y f x =:I、四则运算法则: ()[()()],[()()],[],[()]()u x u x v x u x v x ku x v x ′′′′±⋅; II、复合函数的求导法则:设(),()y f u u g x ==都可导,则[()]y f g x =的导数为(){[()]}()()[()]()u g x d f g x f u g x f g x g x dx =′′′′=⋅=⋅,或dy dy du dx du dx=⋅ III、反函数的求导法则:1dy dx dxdy= IV、对数求导法则(特别适用于幂指函数):()y f x =,ln ||ln |()|y f x == (化简),y y′⇒= 2) 参数方程:()()x x t y y t =⎧⎨=⎩,()dy dydxg t dtdt dx == ,22()()d y dg t dg t dxdt dtdx dx=== , 其它阶同理可求.3) 隐函数:(,)0F x y =(方程两边对x 求导,注意y 为x 的函数)10x y dyF F dx′′⇒⋅+⋅= 3、 高阶导数:234(4)()234(),(),(),,()n n n d y d y d y d y f x f x f x f x dx dx dx dx′′′′′==== 等4、 微分()dy f x dx ′=5、 关系:可微与可导等价;可导必连续,反之未必.三、 导数与微分1、 曲线的切线与法线方程:00()y y k x x −=−,0()k f x ′=切,01/()k f x ′=−法;2、 微分中值定理:首先必须验证定理的条件是否满足,然后根据定理下结论!1)Rolle 定理:()0()f a b ξξ′=<<;2)Lagrange 中值定理:()()()()()f b f a f b a a b ξξ′−=−<<;估计函数值之差3)Cauchy 中值定理:()()()()()()()f b f a f a bg b g a g ξξξ′−=<<′−;4)Taylor 中值定理:()(1)100000()()()()()()!(1)!k n nkn k f x f f x x x x x x x k n ξξ++==−+−+∑在与之间 3、 洛必达法则:00()()limlim ()()f x f x org x g x ∞∞′′,其它型未定式必须转化 4、 泰勒公式:熟悉5个常见带Peano 型余项的Maclaurin 公式5、 函数的单调性【一阶导符号判定】、极值、最值及其函数图形的凹凸性【二阶导符号判定】、拐点和渐近线 6、 不等式的证明:1)单调性;2)中值定理;3)凹凸性;4)最值 7、 方程根的存在性及唯一性:1)零点定理;2)Rolle 定理;3)单调性;4)极值最值等等 8、 恒等式的证明:若在区间I 上()0f x ′≡,则在区间I 上()f x C ≡2π1、 基本性质:线性,对积分区间的可加性,保号性(特别课后Ex.7:用连续性与不恒等于去等号),定积分中值定理【()()()()baf x dx f b a a b ξξ=−<<∫】,定积分的奇偶对称性、周期性.2、()()f x dx F x C =+∫与Newton-Leibniz 公式:()()bba af x dx F x =∫,(()()F x f x ′=)3、 换元法:1)第一类(凑微分法);2)第二类:三角代换,倒代换等4、 分部积分法:1)三指动,幂不动;2)幂动,反对不动;3)凑同类所求便再现.5、 积分上限函数的导数:()()x a d f t dt f x dx =∫, ()()[()]()g x a d f t dt f g x g x dx′=⋅∫, 其中()f x 连续,()g x 可导,a 为常数,积分中的表达式()f t 必须与x 无关6、 有理函数的积分【假分式用除法化为多项式加真分式,真分式因式分解化为部分分式】以及可化为有理函数的积分【①三角函数有理式的积分:万能代换tan()2xt = ()x ππ−<<;②简单根式:线性函数或分式函数的根式讨厌要换之,开方不同最小公倍数】7、 反常积分:无穷限的反常积分或瑕积分,广义Newton-Leibniz 公式,特别注意瑕点在积分区间内部的瑕积分四、 导数的应用sin n xdx 】五、积分:不定积分,定积分,反常积分【必须牢记24个基本积分公式以及I n =∫1、 平面图形的面积:1) 直角坐标,x y :a、 曲边梯形1{(,)|,0()}D x y a x b y f x =≤≤≤≤:()baA f x dx =∫;b、 上、下型{(,)|,()()}D x y a x b g x y f x =≤≤≤≤:[()()]baA f x g x dx =−∫;c、 左、右型{(,)|,()()}D x y c y d g y x f y =≤≤≤≤:[()()]dcA f y g y dy =−∫;d、 设曲边梯形1D 的曲边由参数方程:(),()x x t y y t ==给出,则()()()b aA f x dx y t x t dt βα′==⋅∫∫【先代公式后换元】2) 极坐标,ρθ(极坐标变换cos ,sin x y ρθρθ==): 设曲边扇形{(,)|,0()}D ρθαθβρρθ=≤≤≤≤,则21()2A d βαρθθ=∫ 2、 体积:CaseA、旋转体的体积:1) X-型或上下型{(,)|,0()}D x y a x b y f x =≤≤≤≤:I、绕x 轴 2()bx aV f x dx π=∫;II、绕y 轴 2()(0)by aV xf x dx a π=≥∫2) Y-型或左右型{(,)|,0()}D x y c y d x g y =≤≤≤≤: I、绕y 轴 2()dy cV g y dy π=∫;II、绕x 轴 2()(0)dx cV yg y dy c π=≥∫CaseB、平行截面面积为已知的立体{(,,)|,(,)}x x y z a x b y z D Ω=≤≤∈,若()x AreaD A x =,则()baV A x dx =∫3、 弧长:由不同方程,代不同公式 1)():()()x x t C t y y t αβ=⎧≤≤⎨=⎩,()s βααβ=<∫;2):(),C y f x a x b =≤≤,()as a b =<∫;3):(),C ρρθαθβ=≤≤,()s βαθαβ=<∫六、 定积分的应用【有公式代就代公式,否则用元素法】 (一) 一阶微分方程:(,,)0F x y y ′=,(,)y f x y ′=或(.)(,)0M x y dx N x y dy +=1、 可分离变量:()()f x dx g y dy =,积分之可得通解2、 齐次:()dy ydx xϕ=,令y u x =,可将原方程化为关于,x u 的可分离变量3、 线性:()()dyP x y Q x dx+=,通解为()()[()]P x dx P x dx y e Q x e dx C −∫∫=+∫;或利用常数变易法或利用积分因之法:()()P x dxx e µ∫=4、 伯努利:()()(0,1)n dyP x y Q x y n dx+=≠,令1n z y −=,可将原方程化为关于,x z 的线性. (二) 可降阶的高阶微分方程: I 、()()n yf x =【右端只含x 】:连续积分之;II 、(,)y f x y ′′′=【不显含y 】:令,y p ′=则dpy dx′′=,可将原方程化为关于,x p 的一阶. III 、(,)y f y y ′′′=【不显含x 】:令y p ′=,则dpy p dy′′=,可将原方程化为关于,y p 的一阶 (三) 概念与理论1、 概念:阶,解(特解,通解),初始条件,初值问题,积分曲线2、 线性微分方程的解的结构:1)齐次:()()0y P x y Q x y ′′′++=,通解:1122()()y C y x C y x =+,其中12(),()y x y x 为该方程线性无关的两个解. 2)非齐次:()()()y P x y Q x y f x ′′′++= 通解:()*()y Y x y x =+,其中()Y x 为对应的齐次方程的通解,*()y x 为原方程的一个特解. 3)设12*(),*()y x y x 分别为1()()()y P x y Q x y f x ′′′++= 与2()()()y P x y Q x y f x ′′′++=的特解,则12**()*()y y x y x =+为12()()()()y P x y Q x y f x f x ′′′++=+的特解.七、 微分方程附录I——基本求导公式:1221(1)()0(2)();(3)();(4)(ln ||);1(5)()ln ;(6)(log );(01)ln (7)(sin )cos ;(8)(cos )sin ;(9)(tan )sec ;(10)(cot )csc ;(11)(sec )sec tan ;(12)x x x x a C C x x e e x xa a a x a a x ax x x x x x x x x x x αααα−′′′′====′′==>≠′′′′==−==−′=,为常数;,为常数常数且(csc )csc cot ;(13)(arcsin )(14)(arccos )(17)(sh )ch ;(18)(ch )sh .x x x x x x x x x ′′=−=′=′′==附录II——基本积分公式:122(1)1(2)1;(3)ln ||;1(4);(5)01;ln (6)sin cos ;(7)cos sin ;(8)sec tan ;(9)csc cot ;(10)sec tan sec x x x xkdx kx C k x x dx C dx x C x a e dx e C a dx C a a a xdx x C xdx x C xdx x C xdx x C x xdx x C αααα+=+=+≠−=++=+=+>≠=−+=+=+=−+=+∫∫∫∫∫∫∫∫∫∫,为常数;,常数,常数且;(11)csccot csc;(12)tan ln |cos |;(13)cot ln |sin |;(14)sec ln |sec tan |;(15)csc ln |csc cot |;(16);(18)x xdx x C xdx x C xdx x C xdx x x C xdx x x C C =−+=−+=+=++=−+∫∫∫∫∫2200;(20)(21)ln(;(22)ln ||;(23)sh ch ;(24)ch sh .1331,2422sin cos n n n C x C x C xdx x C xdx x C n n n nI xdx xdx πππ=+=++=+=+−−⋅⋅⋅⋅⋅⎛⎞−===⎜⎟⎝⎠∫∫∫∫∫ 1342,253n n n n n n ⎧⎪⎪⎨−−⎪⋅⋅⋅⋅⎪−⎩ 为正偶数;为大于1的正奇数.。

高等数学上册复习要点及解题技巧

高等数学上册复习要点及解题技巧

高等数学上册复习要点及解题技巧第一章:1、极限(夹逼准则)2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)高数解题技巧高数解题的四种思维定势●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。

●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。

●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。

●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。

线性代数解题的八种思维定势●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。

●第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。

●第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE再说。

●第四句话:若要证明一组向量α1,α2,…,αS线性无关,先考虑用定义再说。

高等数学(上)总结

高等数学(上)总结

高等数学(上)总结.doc高等数学(上)知识点总结第一章:函数、极限与连续性1.1 函数定义:函数是定义域到值域的一种对应关系。

性质:单调性、奇偶性、周期性、有界性等。

1.2 极限定义:极限描述了函数在某一点或无穷远处的行为。

运算法则:加、减、乘、除、复合等。

1.3 无穷小与无穷大无穷小:函数值趋于零的量。

无穷大:函数值趋于无穷的量。

1.4 连续性定义:函数在某一点的极限等于函数值。

性质:连续函数的和、差、积、商(除数不为零)仍然是连续的。

间断点:第一类间断点和第二类间断点。

第二章:导数与微分2.1 导数定义:导数是函数在某一点处的切线斜率。

几何意义:曲线在某点的切线斜率。

物理意义:速度、加速度。

2.2 基本导数公式幂函数、三角函数、指数函数、对数函数的导数。

2.3 高阶导数定义:导数的导数,用于研究函数的凹凸性。

2.4 微分定义:函数在某一点处的线性主部。

几何意义:局部线性逼近。

第三章:积分3.1 不定积分定义:原函数,即导数等于给定函数的函数。

基本积分表:幂函数、三角函数、指数函数、对数函数等。

3.2 定积分定义:在区间上函数平均值的极限。

几何意义:曲线与x轴围成的面积。

3.3 积分技巧分部积分法、换元积分法、有理函数积分等。

第四章:级数4.1 数项级数收敛性:正项级数、交错级数、比值判别法等。

4.2 幂级数泰勒级数:函数在某点的幂级数展开。

4.3 函数项级数一致收敛性:函数序列的极限。

第五章:多元函数微分学5.1 偏导数定义:函数对某一变量的局部变化率。

5.2 全微分定义:函数在多元变量上的微分。

5.3 隐函数微分法定义:隐函数的导数和微分。

5.4 多元函数的极值拉格朗日乘数法:求解多元函数的条件极值。

高等数学(上册)复习总结

高等数学(上册)复习总结

高等数学(上册)复习总结第一章函数、极限与连续主要知识点:函数的概念;函数的奇偶性、有界性;复合函数;初等函数;极限的概念;极限的性质(唯一性、有界性、保号性);夹逼准则、单调有界原理、两个重要极限;无穷小的概念、无穷小阶的比较;等价无穷小代换性质、无穷小与有界函数乘积仍为无穷小之性质;函数的双侧极限与单侧极限(即左右极限)之关系;函数连续的概念及定义;判别间断点的类型;闭区间上连续函数的性质(零点定理、最值定理)。

主要技能测试点:1.对极限概念的理解,并能灵活运用计算极限的各种方法计算极限;2.对连续概念的理解,会讨论函数的连续、间断情形,并能判别间断点的类型。

主要题型:1.函数复合;2.计算各种类型的极限;3.确定极限式中所含的参数;3.无穷小阶的比较;4.函数连续性的讨论及确定函数式中的参数(已知函数连续);5.判别间断点的类型;6.利用零点定理讨论方程根的存在。

第二讲导数与微分主要知识点:导数定义;左右导数的定义及左右导数与导数的关系;可导与连续的关系;导数作为函数变化率的几何意义、物理意义;曲线的切线与法线方程;导数公式;求导法则(四则运算、复合函数、反函数);微分的概念;高阶导数。

主要技能测试点:1、对导数定义的理解,运用导数定义求导数及求具有导数结构的极限;2、掌握计算导数的各种方法,会求各类函数的导数。

3.运用导数的几何、物理意义解决有关曲线的斜率、瞬时速度等实际问题。

主要题型:1、利用导数定义求导数及求具有导数结构的极限;2、讨论函数在一点的连续性与可导性的;3、求复合函数的导数(包括抽象复合函数的求导);4、求隐函数和由参数方程所确定的函数的一、二阶导数;5、求幂指函数的导数;6、求高阶导数第三讲 中值定理与导数应用主要知识点:三个中值定理(罗尔、拉格郎日、柯西);洛必达法则;利用导数判别函数的单调性;极值的概念;函数取得极值的充分与必要条件;极值的判别法(一阶导数判别法、二阶导数判别法);求最值的方法;曲线的凹凸性的判别法及求拐点的方法;曲线的渐近线。

(完整版)高数上册知识点

(完整版)高数上册知识点

高等数学上册知识点第一章 函数与极限、、、函数1、函数定义及性质(有界性、单调性、奇偶性、周期性);2、反函数、复合函数、函数的运算;3、初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数;4、函数的连续性与间断点;函数在连续)(x f 0x )()(lim 00x f x f x x =→第一类:左右极限均存在。

间断点 可去间断点、跳跃间断点第二类:左右极限、至少有一个不存在。

无穷间断点、振荡间断点5、闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。

、、、极限1、定义1、数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim 2、函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00、、、左极限: 右极限:)(lim )(00x f x f xx -→-=)(lim )(00x f x f xx +→+=)()( )(lim 000+-→=⇔=x f x f A x f x x 、、2、极限存在准则1、夹逼准则:1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim ax n n =∞→lim 2、单调有界准则:单调有界数列必有极限。

3、无穷小(大)量1、定义:若则称为无穷小量;若则称为无穷大量。

0lim =α∞=αlim2、无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、阶无穷小k Th1;)(~ααββαo +=⇔Th2 (无穷小代换)αβαβαβββαα''=''''lim lim lim ,~,~、、、、4、求极限的方法1、单调有界准则;2、夹逼准则;3、极限运算准则及函数连续性;4、两个重要极限:a) b)1sin lim 0=→xxx e xx xx xx =+=++∞→→11(lim )1(lim 105、无穷小代换:()0→x a)xx x x x arctan ~arcsin ~tan ~sin ~b)221~cos 1x x -c)()x e x ~1-a x axln ~1-d)()x x ~)1ln(+axx a ln ~)1(log +e)xx αα~1)1(-+第二章 导数与微分、、、导数1、定义:000)()(lim )(0x x x f x f x f x x --='→左导数:00)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数在点可导)(x f 0x )()(00x f x f +-'='⇔2、几何意义:为曲线在点处的切线的斜率。

(完整版)高等数学上册知识点

(完整版)高等数学上册知识点

高等数学上册第一章 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在。

间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。

无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。

(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim 2) 函数极限δδε-<-<∀>∃>∀⇔=→Ax f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f x x +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限。

3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。

2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim,~,~存在,则(无穷小代换)4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0=→xxxb)e xx xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x~1- (a x a xln ~1-)d) x x ~)1ln(+ (a xx a ln ~)1(log +)e)x x αα~1)1(-+第二章 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。

(完整版)高等数学(上)重要知识点归纳

(完整版)高等数学(上)重要知识点归纳

高等数学(上)重要知识点归纳第一章 函数、极限与连续一、极限的定义与性质 1、定义(以数列为例),,0lim N a x n n ∃>∀⇔=∞→ε当N n >时,ε<-||a x n2、性质(1) )()()(lim 0x A x f A x f xx α+=⇔=→,其中)(x α为某一个无穷小。

(2)(保号性)若0)(lim 0>=→A x f xx ,则,0>∃δ当),(0δx U x o∈时,0)(>x f 。

(3)*无穷小乘以有界函数仍为无穷小。

二、求极限的主要方法与工具 1、*两个重要极限公式 (1)1sin lim=∆∆→∆ (2)e =◊+◊∞→◊)11(lim 2、两个准则 (1) *夹逼准则 (2)单调有界准则 3、*等价无穷小替换法常用替换:当0→∆时(1)∆∆~sin (2)∆∆~tan(3)∆∆~arcsin (4)∆∆~arctan(5)∆∆+~)1ln( (6)∆-∆~1e (7)221~cos 1∆∆- (8)nn ∆-∆+~114、分子或分母有理化法5、分解因式法 6用定积分定义 三、无穷小阶的比较* 高阶、同阶、等价1、连续的定义*)(x f 在a 点连续)()()()()(lim 0lim 0a f a f a f a f x f y ax x ==⇔=⇔=∆⇔-+→→∆2、间断点的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧其他震荡型(来回波动))无穷型(极限为无穷大第二类但不相等)跳跃型(左右极限存在可去型(极限存在)第一类 3、曲线的渐近线*ax x f A y A x f ax x =∞===→∞→则存在渐近线:铅直渐近线:若则存在渐近线:水平渐近线:若,)(lim )2(,)(lim )1(五、闭区间连续函数性质 1、最大值与最小值定理 2、介值定理和零点定理第二章 导数与微分一、导数的概念 1、导数的定义*a f x f a f x a f y dy a f y ax x x a x a x -=-∆+=∆=='='→→∆→∆==)()(lim )()(lim lim |)(|002、左右导数 左导数ax a f x f x y a f a x x --=∆∆='--→→∆-)()(limlim)(0 右导数ax a f x f x y a f a x x --=∆∆='++→→∆+)()(limlim)(03、导数的几何意义*k a f a x f y a x 处的切线斜率在点(曲线))(,)(|='=4、导数的物理意义加速度)速度)则若运动方程:()()()(,)(()()(t a t v t s t v t s t s s ='=''='= 5、可导与连续的关系: 连续,反之不然。

《高等数学上册》复习重点

《高等数学上册》复习重点

《高等数学上册》复习重点(注意:此文件仅供教师复习课用,不能给学生拷贝!即教师上复习课时以此为纲,让学生通过听课记笔记(而不是抄或拷贝)了解此重点。

)第一章函数与极限1.朴素的极限概念,极限四则运算法则2.两个重要极限3.无穷小定义,无穷小的阶,等价无穷小代换4.求间断点及判别间断点的类型5.连续和极限的关系,连续函数的极限6.利用零点定理验证解的存在性第二章导数与微分1.导数的定义和几何意义2.导数的四则运算法则和复合函数的求导法则3.二阶导数4.隐函数求导5.参数方程所确定的函数的求导6.微分的定义和几何意义,求微分,一阶微分形式不变性7.连续、可导与可微的关系第三章微分中值定理与导数的应用1.拉格朗日中值定理及其应用2.利用洛必达法则求未定式的极限3.判断函数的单调性,利用单调性证明不等式4.判断函数图形的凹凸性,求拐点5.求函数极值点和极值,求解较简单的最值应用问题第四章不定积分1.原函数与不定积分的概念,不定积分的性质2.不定积分的第一换元法(简单的凑微分法)3.不定积分的第二换元法(不含三角代换)4.典型的分部积分法问题,换元法与分部法的结合5.简单的有理函数的积分(简单地试凑可分解为部分分式的)第五章定积分1.定积分的概念及性质2.变限积分的概念及其求导3.牛顿-莱布尼兹公式,定积分的换元法和分部积分法4.简单的无穷限的反常积分第六章定积分的应用1.平面图形面积(直角坐标方程)2.绕坐标轴旋转的旋转体的体积(直角坐标方程)第七章微分方程(注意:讲课按教学大纲要求讲,不可删减内容)1.微分方程解的概念,线性微分方程解的结构2.可分离变量的微分方程3.一阶线性微分方程4.二阶常系数齐次线性微分方程5.二阶常系数非齐次线性微分方程的特解形式6.简单的微分方程应用问题。

高数(上)期末复习重点

高数(上)期末复习重点

高数〔上册〕期末复习要点第一章:1、极限〔夹逼准则〕2、连续〔学会用定义证明一个函数连续,判断间断点类型〕第二章:1、导数〔学会用定义证明一个函数是否可导〕注:连续不一定可导,可导一定连续2、求导法则〔背〕3、求导公式也可以是微分公式第三章:1、微分中值定理〔一定要熟悉并灵活运用--第一节〕2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值〔高中学过,不需要过多复习〕5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法〔变dx/变前面〕2、分部积分法〔注意加C 〕〔最好都自己推导一遍,好记〕定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线〔两直线的夹角、线面夹角、求直线方程〕 3、空间平面4、空间旋转面〔柱面〕高数解题技巧。

〔高等数学、考研数学通用〕高数解题的四种思维定势●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。

●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。

●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。

●第四句话:对定限或变限积分,假设被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。

线性代数解题的八种思维定势●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。

●第二句话:假设涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。

●第三句话:假设题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE 再说。

高数重要知识点

高数重要知识点

高等数学上册重要知识点 第一章 函数与极限一. 函数的概念1 两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim1l = 0,称f x 是比gx 高阶的无穷小,记以f x = 0)(x g ,称gx 是比fx 低阶的无穷小; 2l ≠ 0,称f x 与gx 是同阶无穷小;3l = 1,称f x 与gx 是等价无穷小,记以f x ~ gx 2 常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x1 cos x ~ 2/2^x , x e 1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二 求极限的方法1.两个准则准则1.单调有界数列极限一定存在准则2.夹逼定理设gx ≤ f x ≤ hx 放缩求极限若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim0=→x xx 公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.★用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:10)(lim 0=→x f x x ,0)(lim 0=→x F x x ;2)(x f 与)(x F 在0x3)()(lim 0x F x f x x ''→存在或为无穷大,则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)(lim 0x F x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达H L 'ospital 法则.例1计算极限0e 1lim x x x→-.解 该极限属于“0”型不定式,于是由洛必达法则,得0e 1lim x x x →-0e lim 11x x →==. 例2计算极限0sin lim sin x axbx→.解 该极限属于“0”型不定式,于是由洛必达法则,得00sin cos lim lim sin cos x x ax a ax a bx b bx b→→==. 注 若(),()f x g x ''仍满足定理的条件,则可以继续应用洛必达法则,即二、∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件: 1∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;2)(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;3)()(lim 0x F x f x x ''→存在或为无穷大,则 注:上述关于0x x →时未定式∞∞∞∞型同样适用.例3计算极限lim (0)nx x x n e →+∞>.解 所求问题是∞∞型未定式,连续n 次施行洛必达法则,有lim e n x x x →+∞1lim e n x x nx -→+∞=2(1)lim e n xx n n x -→+∞-= !lim 0e x x n →+∞===. 使用洛必达法则时必须注意以下几点: 1洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; 2只要条件具备,可以连续应用洛必达法则;3洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.7.利用导数定义求极限基本公式)()()(lim0'000x f xx f x x f x =∆-∆+→∆如果存在8.利用定积分定义求极限基本格式⎰∑==∞→11)()(1lim dx x f n kf n n k n 如果存在三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f x 的间断点;如果f x 在间断点0x 处的左、右极限都存在,则称0x 是f x 的第一类间断点;第一类间断点包括可去间断点和跳跃间断点; 2第二类间断点第一类间断点以外的其他间断点统称为第二类间断点;常见的第二类间断点有无穷间断点和振荡间断点;四.闭区间上连续函数的性质在闭区间a ,b 上连续的函数f x ,有以下几个基本性质;这些性质以后都要用到;定理1.有界定理如果函数f x 在闭区间a ,b 上连续,则f x 必在a ,b 上有界;定理2.最大值和最小值定理如果函数f x 在闭区间a ,b 上连续,则在这个区间上一定存在最大值M 和最小值m ;定理3.介值定理如果函数f x 在闭区间a ,b 上连续,且其最大值和最小值分别为M 和m ,则对于介于m 和M 之间的任何实数c ,在a ,b 上至少存在一个ξ ,使得f ξ = c推论:如果函数f x 在闭区间a ,b 上连续,且f a 与f b 异号,则在a ,b 内至少存在一个点ξ ,使得f ξ = 0这个推论也称为零点定理第二章 导数与微分1.复合函数运算法则设y = f u ,u = x ,如果 x 在x 处可导,f u 在对应点u 处可导,则复合函数y = f x 在x 处可导,且有)('))(('x x f dxdudu dy dx dy φφ==对应地dx x x f du u f dy )('))((')('φφ==,由于公式du u f dy )('=不管u 是自变量或中间变量都成立;因此称为一阶微分形式不变性; 2.由参数方程确定函数的运算法则设x = t ,y =)(t ϕ确定函数y = yx ,其中)('),('t t ϕφ存在,且)('t φ≠ 0,则)(')('t t dx dy φϕ= 二阶导数3.反函数求导法则设y = f x 的反函数x = gy ,两者皆可导,且f ′x ≠ 0 则)0)('())(('1)('1)('≠==x f y g f x f y g4 隐函数运算法则可以按照复合函数理解设y = yx 是由方程Fx , y = 0所确定,求y ′的方法如下:把Fx , y = 0两边的各项对x 求导,把y 看作中间变量,用复合函数求导公式计算,然后再解出y ′ 的表达式允许出现y 变量 5 对数求导法则 指数类型 如x x y sin =先两边取对数,然后再用隐函数求导方法得出导数y ′; 对数求导法主要用于:①幂指函数求导数②多个函数连乘除或开方求导数注意定义域 P106 例6关于幂指函数y = f xg x 常用的一种方法,y = )(ln )(x f x g e 这样就可以直接用复合函数运算法则进行; 6 可微与可导的关系f x 在0x 处可微 f x 在0x 处可导;7 求n 阶导数n ≥ 2,正整数先求出 y ′, y ′′,…… ,总结出规律性,然后写出yn ,最后用归纳法证明;有一些常用的初等函数的n 阶导数公式 (1) x n x e y e y ==)(, (2) n x n x a a y a y )(ln ,)(== (3) x y sin =,)2sin()(πn x y n += (4) x y cos =,)2cos()(πn x y n +=5x y ln =,n n n x n y ----=)!1()1(1)(第三章 微分中值定理与导数应用一 罗尔定理 设函数 f x 满足1在闭区间a ,b 上连续;2在开区间a ,b 内可导;3 f a = f b 则存在ξ ∈a ,b ,使得f ′ξ = 0二 ★拉格朗日中值定理证明不等式 P134 9、10设函数 f x 满足1在闭区间a ,b 上连续;2在开区间a ,b 内可导;则存在ξ ∈a ,b ,使得)(')()(ξf ab a f b f =-- 推论1.若f x 在a ,b 内可导,且f ′x ≡ 0,则f x 在a ,b 内为常数;推论2.若f x , gx 在a ,b 内皆可导,且f ′x ≡ g ′x ,则在a ,b 内f x = gx + c ,其中c 为一个常数; 三 柯西中值定理设函数f x 和gx 满足:1在闭区间a ,b 上皆连续;2在开区间a ,b 内皆可导;且g ′x ≠0则存在ξ ∈a ,b 使得)(')(')()()()(ξξg f a g b g a f b f =--)(b a <<ξ注:柯西中值定理为拉格朗日中值定理的推广,特殊情形gx = x 时,柯西中值定理就是拉格朗日中值定理;四 ★泰勒公式① 估值 ② 求极限麦克劳林 P145 T10 定理 1.皮亚诺余项的n 阶泰勒公式 设f x 在0 x 处有n 阶导数,则有公式,称为皮亚诺余项对常用的初等函数如x e ,sin x ,cos x ,ln1+ x 和α)1(x + α 为实常数等的n 阶泰勒公式都要熟记;定理2拉格朗日余项的n 阶泰勒公式设f x 在包含0 x 的区间a ,b 内有n +1阶导数,在a ,b 上有n 阶连续导数,则对x ∈a ,b ,有公式,,称为拉格朗日余项上面展开式称为以0 x 为中心的n 阶泰勒公式;当0x =0 时,也称为n 阶麦克劳林公式;导数的应用一 基本知识设函数f x 在0x 处可导,且0x 为f x 的一个极值点,则0)('0=x f ;我们称x 满足0)('0=x f 的0x 称为)(x f 的驻点,可导函数的极值点一定是驻点,反之不然;极值点只能是驻点或不可导点,所以只要从这两种点中进一步去判断; 极值点判断方法)(x f 在0x 的邻域内可导,且0)(0='x f ,则①若当0x x <时,0)(>'x f ,当0x x >时,0)(<'x f ,则0x 为极大值点;②若当0x x <时,0)(<'x f ,当0x x >时,0)(>'x f ,则0x 为极小值点;③若在0x 的两侧)(x f '不变号,则0x 不是极值点.② 第二充分条件)(x f 在0x 处二阶可导,且0)(0='x f ,0)(0≠''x f ,则①若0)(0<''x f ,则0x 为极大值点;②若0)(0>''x f ,则0x 为极小值点.二 凹凸性与拐点 1.凹凸的定义设f x 在区间I 上连续,若对任意不同的两点1 2 x , x ,恒有 则称f x 在I 上是凸凹的;在几何上,曲线y = f x 上任意两点的割线在曲线下上面,则y = f x 是凸凹的;如果曲线y = f x 有切线的话,每一点的切线都在曲线之上下则y = f x 是凸凹的; 2 拐点的定义曲线上凹与凸的分界点,称为曲线的拐点; 3 凹凸性的判别和拐点的求法 设函数f x 在a ,b 内具有二阶导数)(''x f ,如果在a ,b 内的每一点x ,恒有)(''x f > 0,则曲线y = f x 在a ,b 内是凹的; 如果在a ,b 内的每一点x ,恒有)(''x f < 0,则曲线y = f x 在a ,b 内是凸的; 求曲线y = f x 的拐点的方法步骤是: 第一步:求出二阶导数)(''x f ;第二步:求出使二阶导数等于零或二阶导数不存在的点k x x x ,...2,1 ;第三步:对于以上的连续点,检验各点两边二阶导数的符号,如果符号不同,该点就是拐点的横坐标; 第四步:求出拐点的纵坐标; 四 渐近线的求法 五 曲率第四章 不定积分一基本积分表:二 换元积分法和分部积分法 换元积分法1第一类换元法凑微分:[])()(d )()]([x u du u f x x x f ϕϕϕ=⎰⎰='2第二类换元法变量代换:[])(1d )()]([)(x t t t t f dx x f -='=⎰⎰ϕϕϕ分部积分法使用分部积分法时被积函数中谁看作)(x u 谁看作)('x v 有一定规律;记住口诀,反对幂指三为)(x u ,靠前就为)(x u ,例如xdx e x arcsin ⎰,应该是x arcsin 为)(x u ,因为反三角函数排在指数函数之前,同理可以推出其他; 三 有理函数积分 有理函数:)()()(x Q x P x f =其中)()(x Q x P 和是多项式; 简单有理函数: ⑴21)()(,1)()(x x P x f x x P x f +=+=⑵))(()()(b x a x x P x f ++=⑶ba x x P x f ++=2)()()(1、“拆”;2、变量代换三角代换、倒代换、根式代换等.第五章 定积分一概念与性质1、 定义:∑⎰=→∆=ni ii bax f dx x f 1)(lim )(ξλ2、 性质:10条(3)3 基本定理变上限积分:设⎰=Φxadtt f x )()(,则)()(x f x =Φ'推广:)()]([)()]([)()()(x x f x x f dt t f dx d x x ααβββα'-'=⎰ N —L公式:若)(x F 为)(x f 的一个原函数,则)()()(a F b F dx x f ba-=⎰4 定积分的换元积分法和分部积分法第六章 定积分的应用(一)平面图形的面积1、 直角坐标:⎰-=badx x f x f A )]()([122、 极坐标:⎰-=βαθθϕθϕd A )]()([212122(二)体积1、 旋转体体积: a 曲边梯形x b x a x x f y ,,),(===轴,绕x 轴旋转而成的旋转体的体积:⎰=ba xdx x f V )(2πb 曲边梯形x b x a x x f y ,,),(===轴,绕y 轴旋转而成的旋转体的体积:⎰=baydx x xf V )(2π 柱壳法2、 平行截面面积已知的立体:⎰=badx x A V )((三)弧长1、 直角坐标:[]⎰'+=badx x f s 2)(12、 参数方程:[][]⎰'+'=βαφϕdt t t s 22)()( 极坐标:[][]⎰'+=βαθθρθρd s 22)()(第七章 微分方程(一) 概念1、 微分方程:表示未知函数、未知函数的导数及自变量之间关系的方程.阶:微分方程中所出现的未知函数的最高阶导数的阶数.2、 解:使微分方程成为恒等式的函数.通解:方程的解中含有任意的常数,且常数的个数与微分方程的阶数相同.特解:确定了通解中的任意常数后得到的解.(二) 变量可分离的方程dx x f dy y g )()(=,两边积分⎰⎰=dx x f dy y g )()((三) 齐次型方程)(x y dx dy ϕ=,设x y u =,则dxdux u dx dy +=;或)(y x dy dx φ=,设y x v =,则dydv y v dy dx += (四) 一阶线性微分方程用常数变易法或用公式:⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C dx e x Q e y dx x P dxx P )()()((五) 可降阶的高阶微分方程1、)()(x f yn =,两边积分n 次;2、),(y x f y '=''不显含有y ,令p y =',则p y '='';3、),(y y f y '=''不显含有x ,令p y =',则dy dppy =''(六) 线性微分方程解的结构1、21,y y 是齐次线性方程的解,则2211y C y C +也是;2、21,y y 是齐次线性方程的线性无关的特解,则2211y C y C +是方程的通解;3、*2211y y C y C y ++=为非齐次方程的通解,其中21,y y 为对应齐次方程的线性无关的解,*y 非齐次方程的特解.(七) 常系数齐次线性微分方程二阶常系数齐次线性方程:0=+'+''qy y p y特征方程:02=++q pr r ,特征根: 21,r r(八) 常系数非齐次线性微分方程1、)()(x P e x f m x λ=设特解)(*x Q e x y m x k λ=,其中⎪⎪⎩⎪⎪⎨⎧=是重根是一个单根不是特征根, λ, λ, λk 210 2、()x x P x x P e x f n l x ωωλsin )(cos )()(+=设特解[]xx R x x R e x y m m x k ωωλsin )(cos )()2()1(*+=,其中 } ,max{n l m =,⎪⎩⎪⎨⎧++=是特征根不是特征根i i k ωλωλ ,1 ,0。

《高数知识:上册重点难点》

《高数知识:上册重点难点》

《高数知识:上册重点难点》一、关键信息项1、函数与极限函数的概念、性质和分类极限的定义、性质和计算方法无穷小与无穷大的概念和性质极限的四则运算和两个重要极限函数的连续性和间断点的类型2、导数与微分导数的定义、几何意义和物理意义基本初等函数的导数公式导数的四则运算和复合函数求导法则隐函数和参数方程求导微分的定义和运算3、中值定理与导数的应用罗尔定理、拉格朗日中值定理和柯西中值定理函数的单调性和极值函数的凹凸性和拐点函数图形的描绘洛必达法则4、不定积分不定积分的概念和性质基本积分公式换元积分法和分部积分法5、定积分定积分的概念、性质和几何意义牛顿莱布尼茨公式定积分的换元法和分部积分法反常积分的概念和计算6、定积分的应用平面图形的面积体积弧长物理应用(如变力做功、液体压力等)11 函数与极限111 函数的概念函数是数学中的一个重要概念,它描述了两个变量之间的对应关系。

设 x 和 y 是两个变量,D 是一个给定的数集,如果对于每个 x∈D,按照某种确定的对应关系 f,都有唯一的 y 值与之对应,则称 y 是 x 的函数,记作y =f(x),x∈D。

函数的要素包括定义域、值域和对应法则。

112 函数的性质函数具有单调性、奇偶性、周期性和有界性等性质。

单调性是指函数在某个区间上的增减情况;奇偶性是指函数关于原点或 y 轴对称的性质;周期性是指函数在一定区间上重复出现的性质;有界性是指函数值存在上下界。

113 函数的分类常见的函数类型有基本初等函数(如幂函数、指数函数、对数函数、三角函数和反三角函数)、复合函数、分段函数等。

12 极限的定义极限是高等数学中一个非常重要的概念,用于描述函数在某个点或无穷远处的趋势。

设函数 f(x)在点 x₀的某个去心邻域内有定义,如果对于任意给定的正数ε,总存在正数δ,使得当 0 <|x x₀| <δ时,|f(x) A| <ε 成立,则称常数 A 为函数 f(x)当 x 趋于 x₀时的极限,记作lim(x→x₀) f(x) = A 。

(完整版)高数上册知识点

(完整版)高数上册知识点

高等数学上册知识点一、 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数;4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f x x =→间断点 第一类:左右极限均存在. ( 可去间断点、跳跃间断点)第二类:左右极限、至少有一个不存在. (无穷间断点、振荡间断点)5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论. (二) 极限 1、 定义1) 数列极限 : εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限 :εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f x x +→+=)()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔; Th2 αβαβαβββαα''=''''lim lim lim,~,~存在,则(无穷小代换) 4、 求极限的方法1)单调有界准则; 2)夹逼准则; 3)极限运算准则及函数连续性;4) 两个重要极限: a) 1sin lim 0=→xx x b) e x x x x x x =+=++∞→→)11(lim )1(lim 15)无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~ b) 221~cos 1x x - c) x ex~1-,(a x a x ln ~1-) d)x x ~)1ln(+ (ax x a ln ~)1(log +) e) x x αα~1)1(-+二、 导数与微分(一) 导数 1、定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→- , 右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔ 2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率.3、可导与连续的关系: 4、求导的方法1) 导数定义; 2)基本公式; 3)四则运算; 4)复合函数求导(链式法则); 5) 隐函数求导数; 6)参数方程求导; 7)对数求导法. 5、 高阶导数1)定义:⎪⎭⎫ ⎝⎛=dx dy dx d dx y d 222)Leibniz 公式:()∑=-=nk k n k k n n v u C uv 0)()()( (二) 微分1) 定义:)()()(00x o x A x f x x f y ∆+∆=-∆+=∆,其中A 与x ∆无关. 2) 可微与可导的关系:可微⇔可导,且dx x f x x f dy )()(00'=∆'=三、 微分中值定理与导数的应用 (一) 中值定理1、 Rolle 定理:若函数)(x f 满足:1)],[)(b a C x f ∈; 2)),()(b a D x f ∈; 3))()(b f a f =;则0)(),,(='∈∃ξξf b a 使. 2、 Lagrange 中值定理:若函数)(x f 满足:1)],[)(b a C x f ∈;2)),()(b a D x f ∈;则))(()()(),,(a b f a f b f b a -'=-∈∃ξξ使. 3、 Cauchy 中值定理:若函数)(),(x F x f 满足: 1)],[)(),(b a C x F x f ∈; 2)),()(),(b a D x F x f ∈;3)),(,0)(b a x x F ∈≠'则)()()()()()(),,(ξξξF f a F b F a f b f b a ''=--∈∃使(二) 洛必达法则 (三) Taylor 公式 (四) 单调性及极值1、单调性判别法:],[)(b a C x f ∈,),()(b a D x f ∈,则若0)(>'x f ,则)(x f 单调增加;则若0)(<'x f ,则)(x f 单调减少.2、 极值及其判定定理:a) 必要条件:)(x f 在0x 可导,若0x 为)(x f 的极值点,则0)(0='x f . b) 第一充分条件:)(x f 在0x 的邻域内可导,且0)(0='x f ,则①若当0x x <时,0)(>'x f ,当0x x >时,0)(<'x f ,则0x 为极大值点;②若当0x x <时,0)(<'x f ,当0x x >时,0)(>'x f ,则0x 为极小值点;③若在0x 的两侧)(x f '不变号,则0x 不是极值点.c) 第二充分条件:)(x f 在0x 处二阶可导,且0)(0='x f ,0)(0≠''x f ,则 ①若0)(0<''x f ,则0x 为极大值点;②若0)(0>''x f ,则0x 为极小值点.3、 凹凸性及其判断,拐点1))(x f 在区间I 上连续,若2)()()2( ,,212121x f x f x x f I x x +<+∈∀,则称)(x f 在区间I 上的图形是凹的;若2)()()2(,,212121x f x f x x f I x x +>+∈∀,则称)(x f 在区间I 上的图形是凸的. 2)判定定理:)(x f 在],[b a 上连续,在),(b a 上有一阶、二阶导数,则 a) 若0)(),,(>''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凹的; b) 若0)(),,(<''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凸的.3)拐点:设)(x f y =在区间I 上连续,0x 是)(x f 的内点,如果曲线)(x f y =经过点))(,(00x f x 时,曲线的凹凸性改变了,则称点))(,(00x f x 为曲线的拐点.(五) 不等式证明1、 利用微分中值定理;2、利用函数单调性;3、利用极值(最值). (六) 方程根的讨论1、连续函数的介值定理;2、Rolle 定理;3、函数的单调性;4、极值、最值;5、凹凸性. (七) 渐近线1、 铅直渐近线:∞=→)(lim x f ax ,则a x =为一条铅直渐近线;2、 水平渐近线:b x f x =∞→)(lim ,则b y =为一条水平渐近线;3、 斜渐近线:k xx f x =∞→)(lim ,b kx x f x =-∞→])([lim 存在,则b kx y +=为一条斜渐近线.(八) 图形描绘四、 不定积分 (一) 概念和性质1、 原函数:在区间I 上,若函数)(x F 可导,且)()(x f x F =',则)(x F 称为)(x f 的一个原函数.2、不定积分:在区间I 上,函数)(x f 的带有任意常数的原函数称为)(x f 在区间I 上的不定积分.3、 基本积分表(P188,13个公式);4、 性质(线性性).(二) 换元积分法1、 第一类换元法(凑微分):[])()(d )()]([x u du u f x x x f ϕϕϕ=⎰⎰='2、 第二类换元法(变量代换):[])(1d )()]([)(x t t t t f dx x f -='=⎰⎰ϕϕϕ(三) 分部积分法:⎰⎰-=vdu uv udv(四) 有理函数积分 : 1、“拆”; 2、变量代换(三角代换、倒代换、根式代换等).五、 定积分(一) 概念与性质:1、 定义:∑⎰=→∆=ni i i ba x f dx x f 1)(lim )(ξλ2、性质:(7条)性质7 (积分中值定理) 函数)(x f 在区间],[b a 上连续,则],[b a ∈∃ξ,使))(()(a b f dx x f ba-=⎰ξ(平均值:ab dx x f f ba-=⎰)()(ξ)(二) 微积分基本公式(N —L 公式)1、变上限积分:设⎰=Φxa dt t f x )()(,则)()(x f x =Φ'推广:)()]([)()]([)()()(x x f x x f dt t f dxd x x ααβββα'-'=⎰ 2、N —L 公式:若)(x F 为)(x f 的一个原函数,则)()()(a F b F dx x f ba-=⎰(三) 换元法和分部积分1、换元法:⎰⎰'=βαϕϕt t t f dx x f bad )()]([)( 2、分部积分法:[]⎰⎰-=baba ba vdu uv udv(四) 反常积分1、 无穷积分:⎰⎰+∞→+∞=tat adx x f dx x f )(lim)(, ⎰⎰-∞→∞-=btt bdx x f dx x f )(lim)(, ⎰⎰⎰+∞∞-+∞∞-+=0)()()(dx x f dx x f dx x f2、瑕积分:⎰⎰+→=btat badx x f dx x f )(lim )((a 为瑕点), ⎰⎰-→=tabt badx x f dx x f )(lim )((b 为瑕点)两个重要的反常积分:1) ⎪⎩⎪⎨⎧>-≤∞+=-∞+⎰1,11,d 1p p a p x x p a p 2) ⎪⎩⎪⎨⎧≥∞+<--=-=--⎰⎰1,1 ,1)()(d )(d 1q q qa b x b x a x x qb a q b a q六、 定积分的应用 (一) 平面图形的面积1、 直角坐标:⎰-=badx x f x f A )]()([122、极坐标:⎰-=βαθθϕθϕd A )]()([212122(二) 体积1、 旋转体体积:a)曲边梯形x b x a x x f y ,,),(===轴,绕x 轴旋转而成的旋转体的体积:⎰=bax dx x fV )(2πb)曲边梯形x b x a x x f y ,,),(===轴,绕y 轴旋转而成的旋转体的体积:⎰=b ay dx x xf V )(2π(柱壳法) 2、 平行截面面积已知的立体:⎰=badx x A V )((三) 弧长1、 直角坐标:[]⎰'+=badx x f s 2)(1 2、参数方程:[][]⎰'+'=βαφϕdt t t s 22)()(3、极坐标:[][]⎰'+=βαθθρθρd s 22)()(七、 微分方程 (一) 概念1、 微分方程:表示未知函数、未知函数的导数及自变量之间关系的方程. 阶:微分方程中所出现的未知函数的最高阶导数的阶数.2、 解:使微分方程成为恒等式的函数.通解:方程的解中含有任意的常数,且常数的个数与微分方程的阶数相同. 特解:确定了通解中的任意常数后得到的解.(二) 变量可分离的方程dx x f dy y g )()(=,两边积分⎰⎰=dx x f dy y g )()((三) 齐次型方程)(x y dx dy ϕ=,设xyu =,则dx du x u dx dy +=; 或)(y x dy dx φ=,设y x v =,则dy dv y v dy dx += (四) 一阶线性微分方程)()(x Q y x P dx dy =+ ,用常数变易法或用公式:⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C dx e x Q e y dx x P dx x P )()()( (五) 可降阶的高阶微分方程1、)()(x f yn =,两边积分n 次;2、),(y x f y '=''(不显含有y ),令p y =',则p y '='';3、),(y y f y '=''(不显含有x ),令p y =',则dydp p y =''(六) 线性微分方程解的结构1、21,y y 是齐次线性方程的解,则2211y C y C +也是;2、21,y y 是齐次线性方程的线性无关的特解,则2211y C y C +是方程的通解;3、*2211y y C y C y ++=为非齐次方程的通解,其中21,y y 为对应齐次方程的线性无关的解,*y 非齐次方程的特解.(七) 常系数齐次线性微分方程二阶常系数齐次线性方程:0=+'+''qy y p y特征方程:02=++q pr r ,特征根: 21,r r(八) 常系数非齐次线性微分方程 )(x f qy y p y =+'+''1、)()(x P e x f m xλ=,设特解)(*x Q e x y m xkλ=,其中 ⎪⎪⎩⎪⎪⎨⎧=是重根是一个单根不是特征根, λ, λ, λk 210 2、()x x P x x P e x f n l x ωωλsin )(cos )()(+=设特解[]x x R x x R e x y m mx k ωωλsin )(cos )()2()1(*+=, 其中 } ,max{n l m =,⎪⎩⎪⎨⎧++=是特征根不是特征根i i k ωλωλ ,1 ,0。

高等数学(一)上 知识点归纳

高等数学(一)上 知识点归纳

第一讲: 极限与连续一. 数列函数: 1. 类型:(1)数列: ()n a f n =; 1()n n a f a += (2)初等函数:(3)分段函数: *0102()(),()x x f x F x x x f x ≤⎧=⎨>⎩; *00()(),x x f x F x x x a ≠⎧=⎨=⎩;*(4)复合(含f )函数: (),()y f u u x ϕ== (5)隐式(方程): (,)0F x y =(6)参式: ()()x x t y y t =⎧⎨=⎩(7)变限积分函数: ()(,)xaF x f x t dt =⎰2. 特征(几何):(1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ⇒∀--定号) (2)奇偶性与周期性(应用).3. 反函数与直接函数: 11()()()y f x x f y y f x --=⇔=⇒=二. 极限性质:1. 类型: lim n n a →∞; l i m ()x f x→∞(含x →±∞); 0l i m ()x x f x →(含0x x ±→) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型:000,,1,,0,0,0∞∞∞-∞⋅∞∞∞4. 性质: *有界性, *保号性, *归并性 三. 常用结论:1,1n n n →∞→, 1(0)1n a a >→, 1()max{,,}nnn na b c a b c ++→, ()00!na a n >→1(0)x x →→∞, 0lim 1xx x +→=, l i m 0n x x x e →+∞=, ln lim 0n x x x →+∞=, 0l i m l n 0n x x x +→=, 0,xx e x →-∞⎧→⎨+∞→+∞⎩四. 必备公式:1. 等价无穷小: 当()0u x →时,s i n ()()u x u x ; tan ()()u x u x ; 211cos ()()2u x u x - ; ()1()u x eu x - ; ln(1())()u x u x + ; (1())1()u x u x αα+- ;a r c s i n ()(u x u x ; arctan ()()u x u x 2*. 泰勒公式:(1)2211()2!x e x x o x =+++; (2)221ln(1)()2x x x o x +=-+;(3)341sin ()3!x x x o x =-+;(4)24511cos 1()2!4!x x x o x =-++;(5)22(1)(1)1()2!x x x o x αααα-+=+++.五. 常规方法: 前提: (1)准确判断0,,1,0M α∞∞∞(其它如:00,0,0,∞-∞⋅∞∞); (2)变量代换(如:1t x=) 1. 抓大弃小()∞∞,2. 无穷小与有界量乘积 (M α⋅) (注:1sin1,x x≤→∞) 3. 1∞处理(其它如:00,∞)4. 左右极限(包括x →±∞):(1)1(0)x x→; (2)()xe x →∞; 1(0)x e x →; (3)分段函数: x , []x , max ()f x5. 无穷小等价替换(因式中的无穷小)(注: 非零因子)6. 洛必达法则 (1)先”处理”,后法则(00最后方法); (注意对比: 1ln lim 1x x x x →-与0ln lim 1x x x x→-)(2)幂指型处理: ()()ln ()()v x v x u x u x e=(如: 1111111(1)x x x x xee e e-++-=-)(3)含变限积分;(4)不能用与不便用7*. 泰勒公式(皮亚诺余项): 处理和式中的无穷小 8. 极限函数: ()lim (,)n f x F x n →∞=(⇒分段函数)六. 非常手段 1. 收敛准则:(1)()lim ()n x a f n f x →+∞=⇒(2)双边夹: *?n n n b a c ≤≤, *,?n n b c a →(3)单边挤: 1()n n a f a += *21?a a ≥ *?n a M ≤ *'()0?f x >2. 导数定义(洛必达?): 00l i m'()x ff x x→= 3. 积分和: 10112l i m [()()()]()n nf f f f x d x n n n n→∞+++=⎰ , 4. 中值定理: lim [()()]lim '()x x f x a f x a f ξ→+∞→+∞+-=七. 常见应用:1. 无穷小比较(等价,阶): *(),(0)?nf x kx x → (1)(1)()(0)'(0)(0)0,(0)n n f f f f a -=====⇔ ()()!!n n n a af x x x x n n α=+ (2)()xxn f t dt kt dt ⎰⎰2. 渐近线(含斜):(1)()lim,lim[()]x x f x a b f x ax x→∞→∞==-()f x ax b α⇒++(2)()f x ax b α=++,(10x→)3. 连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, '()f x 连续性) 八. [,]a b 上连续函数性质1. 连通性: ([,])[,]f a b m M = (注:01λ∀<<, “平均”值:0()(1)()()f a f b f x λλ+-=)2. 介值定理: (附: 达布定理)(1)零点存在定理: ()()0f a f b <0()0f x ⇒=(根的个数); (2)()0(())'0xaf x f x dx =⇒=⎰.第二讲:导数及应用(一元)(含中值定理)一. 基本概念:1. 差商与导数: '()f x =0()()limx f x x f x x→+- ; 0'()f x =000()()lim x x f x f x x x →--(1)0()(0)'(0)limx f x f f x →-= (注:0()lim (x f x A f x→=连续)(0)0,'(0)f f A ⇒==)(2)左右导: ''00(),()f x f x -+;(3)可导与连续; (在0x =处, x 连续不可导; x x 可导)2. 微分与导数: ()()'()()'()f f x x f x f x x o x df f x dx =+-=+⇒= (1)可微⇔可导; (2)比较,f df ∆与"0"的大小比较(图示); 二. 求导准备:1. 基本初等函数求导公式; (注: (())'f x )2. 法则: (1)四则运算; (2)复合法则; (3)反函数1'dx dy y = 三. 各类求导(方法步骤):1. 定义导: (1)'()f a 与'()x a f x =; (2)分段函数左右导; (3)0()()limh f x h f x h h→+--(注: 0()(),x x F x f x x x a ≠⎧=⎨=⎩, 求:0'(),'()f x f x 及'()f x 的连续性) 2. 初等导(公式加法则):(1)[()]u f g x =, 求:0'()u x (图形题); (2)()()xaF x f t dt =⎰, 求:'()F x (注: ((,))',((,))',(())'x b baaaf x t dt f x t dt f t dt ⎰⎰⎰)(3)0102(),()x x f x y x x f x <⎧=⎨≥⎩,求''00(),()f x f x -+及0'()f x (待定系数)3. 隐式((,)0f x y =)导: 22,dy d y dx dx (1)存在定理;(2)微分法(一阶微分的形式不变性). (3)对数求导法.4. 参式导: ()()x x t y y t =⎧⎨=⎩, 求:22,dy d ydx dx5. 高阶导()()n f x 公式:()()ax n n axe a e =; ()11!()()n n n b n a bx a bx +=--; ()(sin )sin()2n n ax a ax n π=+⨯; ()(cos )cos()2n n ax a ax n π=+⨯()()1(1)2(2)()'"n n n n n n uv u v C u v C u v --=+++注: ()(0)n f与泰勒展式: 2012()nn f x a a x a x a x =+++++ ()(0)!n n f a n ⇒=四. 各类应用:1. 斜率与切线(法线); (区别: ()y f x =上点0M 和过点0M 的切线)2. 物理: (相对)变化率-速度;3. 曲率:ρ=曲率半径, 曲率中心, 曲率圆)五. 单调性与极值(必求导) 1. 判别(驻点0'()0f x =):(1) '()0()f x f x ≥⇒ ; '()0()f x f x ≤⇒ ; (2)分段函数的单调性(3)'()0f x >⇒零点唯一; "()0f x >⇒驻点唯一(必为极值,最值). 2. 极值点:(1)表格('()f x 变号); (由0002'()'()''()lim0,lim 0,lim 00x x x x x x f x f x f x x x x x →→→≠≠≠⇒=的特点)(2)二阶导(0'()0f x =)注(1)f 与',"f f 的匹配('f 图形中包含的信息);(2)实例: 由'()()()()f x x f x g x λ+=确定点“0x x =”的特点. (3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明(()0f x ≥)(1)区别: *单变量与双变量? *[,]x a b ∈与[,),(,)x a x ∈+∞∈-∞+∞? (2)类型: *'0,()0f f a ≥≥; *'0,()0f f b ≤≥*"0,(),()0f f a f b ≤≥; *00"()0,'()0,()0f x f x f x ≥=≥ (3)注意: 单调性⊕端点值⊕极值⊕凹凸性. (如: max ()()f x M f x M ≤⇔=) 4. 函数的零点个数: 单调⊕介值六. 凹凸与拐点(必求导!): 1. "y ⇒表格; (0"()0f x =)2. 应用: (1)泰勒估计; (2)'f 单调; (3)凹凸. 七. 罗尔定理与辅助函数: (注: 最值点必为驻点) 1. 结论: ()()'()()0F b F a F f ξξ=⇒== 2. 辅助函数构造实例: (1)()f ξ⇒()()xaF x f t dt =⎰(2)'()()()'()0()()()f g f g F x f x g x ξξξξ+=⇒= (3)()'()()()'()0()()f x f g f g F x g x ξξξξ-=⇒= (4)'()()()0f f ξλξξ+=⇒()()()x dxF x e f x λ⎰=;3. ()()0()n ff x ξ=⇔有1n +个零点(1)()n f x -⇔有2个零点4. 特例: 证明()()n fa ξ=的常规方法:令()()()n F x f x P x =-有1n +个零点(()n P x 待定)5. 注: 含12,ξξ时,分家!(柯西定理)6. 附(达布定理): ()f x 在[,]a b 可导,['(),'()]c f a f b ∀∈,[,]a b ξ∃∈,使:'()f c ξ= 八. 拉格朗日中值定理1. 结论: ()()'()()f b f a f b a ξ-=-; (()(),'()0a b ϕϕξϕξ<⇒∃∍>)2. 估计: '()f f x ξ=九*. 泰勒公式(连接,',"f f f 之间的桥梁) 1. 结论: 2300000011()()'()()"()()"'()()2!3!f x f x f x x x f x x x f x x ξ=+-+-+-; 2. 应用: 在已知()f a 或()f b 值时进行积分估计十. 积分中值定理(附:广义): [注:有定积分(不含变限)条件时使用]第三讲: 一元积分学一. 基本概念: 1. 原函数()F x :(1)'()()F x f x =; (2)()()f x dx dF x =; (3)()()f x dx F x c =+⎰注(1)()()xaF x f t dt =⎰(连续不一定可导);(2)()()()()xx aax t f t dt f t dt f x -⇒⇒⎰⎰ (()f x 连续)2. 不定积分性质:(1)(())'()f x dx f x =⎰; (())()d f x dx f x dx =⎰(2)'()()f x dx f x c =+⎰; ()()d f x f x c=+⎰ 二. 不定积分常规方法1. 熟悉基本积分公式2. 基本方法: 拆(线性性)1212(()())()()kf x k gx d x k f x d x k g x d x+=+⎰⎰⎰3. 凑微法(基础): 要求巧,简,活(221sin cos x x =+)如: 211(),,ln ,2dxdx d ax b xdx dx d x a x =+==2=(1ln )(ln )x dx d x x =+=4. 变量代换:(1)常用(三角代换,根式代换,倒代换): 1sin ,,,x t t t t x====(2)作用与引伸(化简): x t =5. 分部积分(巧用):(1)含需求导的被积函数(如ln ,arctan ,()xax x f t dt ⎰);(2)“反对幂三指”: ,ln ,n axnx edx xxdx ⎰⎰(3)特别:()xf x dx ⎰ (*已知()f x 的原函数为()F x ; *已知'()()f x F x =)6. 特例: (1)11sin cos sin cos a x b x dx a x b x++⎰; (2)(),()sin kxp x e dx p x axdx ⎰⎰快速法; (3)()()n v x dx u x ⎰三. 定积分: 1. 概念性质:(1)积分和式(可积的必要条件:有界, 充分条件:连续) (2)几何意义(面积,对称性,周期性,积分中值)*20(0)8a a π>=⎰; *()02baa bx dx +-=⎰ (3)附:()()baf x dx M b a ≤-⎰,()()()bbaaf xg x dx M g x dx ≤⎰⎰)(4)定积分与变限积分, 反常积分的区别联系与侧重2: 变限积分()()xax f t dt Φ=⎰的处理(重点)(1)f 可积⇒Φ连续, f 连续⇒Φ可导 (2)(())'xaf t dt ⎰()f x =; (()())'()x xaax t f t dt f t dt -=⎰⎰;()()()xaf x dt x a f x =-⎰(3)由函数()()xaF x f t dt =⎰参与的求导, 极限, 极值, 积分(方程)问题3. N L -公式:()()()baf x dx F b F a =-⎰(()F x 在[,]a b 上必须连续!)注: (1)分段积分, 对称性(奇偶), 周期性 (2)有理式, 三角式, 根式 (3)含()baf t dt ⎰的方程.4. 变量代换: ()(())'()baf x d x f u t u t d tβα=⎰⎰(1)00()()()aa f x dx f a x dx x a t =-=-⎰⎰,(2)()()()[()()]aaaaaf x dx f x dx x t f x f x dx --=-=-=+-⎰⎰⎰ (如:4411sin dx x ππ-+⎰)(3)2201sin n n n n I xdx I nπ--==⎰, (4)2200(sin )(cos )f x dx f x dx ππ=⎰⎰;20(sin )2(sin )f x dx f x dx ππ=⎰⎰,(5)(sin )(sin )2xf x dx f x dx πππ=⎰⎰,5. 分部积分(1)准备时“凑常数” (2)已知'()f x 或()xaf x =⎰时, 求()baf x dx ⎰四. 反常积分: 1. 类型: (1)(),(),()aaf x dx f x dx f x dx +∞+∞-∞-∞⎰⎰⎰(()f x 连续)(2)()baf x dx ⎰: (()f x 在,,()x a x b x c a c b ===<<处为无穷间断)2. 敛散;3. 计算: 积分法⊕N L -公式⊕极限(可换元与分部)4. 特例: (1)11pdx x +∞⎰; (2)101p dx x ⎰五. 应用: 1. 面积, (1)[()()];baS f x g x dx =-⎰(2)1()dcS f y dy -=⎰;(3)21()2S r d βαθθ=⎰;2. 体积: (1)22[()()]bx aV f x g x dx π=-⎰; (2)12[()]2()dby caV f y dy xf x dx ππ-==⎰⎰(3)0x x V =与0y y V = 3. 弧长: ds =(1)(),[,]y f x x a b =∈)as d x=⎰(2)12(),[,]()x x t t t t y y t =⎧∈⎨=⎩21t t s =⎰ (3)(),[,]r r θθαβ=∈:s βαθ=⎰4. 物理:功,引力,水压力,质心,5. 平均值(中值定理):(1)1[,]()baf a b f x dx b a =-⎰;(2)0()[0)limxx f t dt f x→+∞+∞=⎰, (f 以T 为周期:0()Tf t dt fT=⎰)第四讲: 微分方程一. 基本概念1. 常识: 通解, 初值问题与特解(注: 应用题中的隐含条件) 2*. 变换方程:(1)令()'""x x t y Dy =⇒=(如欧拉方程)(2)令(,)(,)'u u x y y y x u y =⇒=⇒(如伯努利方程) 3. 建立方程(应用题)的能力 二. 一阶方程:1. 形式: (1)'(,)y f x y =; (2)(,)(,)0M x y dx N x y dy +=; (3)()y a b =2. 变量分离型: '()()y f x g y =解法:()()()()dyf x dx G y F x Cg y =⇒=+⎰⎰3. 一阶线性(重点): '()()y P x y Q x +=(1)解法(积分因子法): 000()()0[()]xxx x P x dxP x dxx x y eQ x edx y --⎰⎰⇒=+⎰(2)变化: '()()x p y x q y +=;(3)推广: 伯努利(数一) '()()y p x y q x y α+= 4. 齐次方程: '()y y x=Φ (1)解法: '(),()ydu dxu u xu u x u u x =⇒+=Φ=Φ-⎰⎰(2)特例:111222a xb yc dy dx a x b y c ++=++ 三. 二阶降阶方程1. "()y f x =: 12()y F x c x c =++2. "(,')y f x y =: 令'()"(,)dpy p x y f x p dx=⇒== 3. "(,')y f y y =: 令'()"(,)dpy p y y pf y p dy=⇒== 四. 高阶线性方程: ()"()'()()a x y b x y c x y f x ++=高等数学(一)上知识点归纳11 1. 通解结构:(1)齐次解: 01122()()()y x c y x c y x =+(2)非齐次特解: 1122()()()*()y x c y x c y x y x =++2. 常系数方程: "'()y py qy f x ++=(1)特征方程与特征根: 20r pr q ++= (2)齐次通解: 121212121212,(),(cos sin ),r x r x rx x C e C e r r y C C x e r r r e C x C x r iα⎧+≠⎪=+==⎨⎪β+β=α±β⎩(3)非齐次特解形式确定: 待定系数;A)()()xm f x P x e λ= *()k x m y x Q x e λ=,其中λ非特征根,0k =;λ单特征根,1k =;λ重特征根,2k =;令()()k m Q x x Q x =,代入方程求解:2()(2)()()()()m Q x p Q x r pr q Q x P x '''+++++=λ B)()[()cos ()sin ]x n l f x e P x x P x x λ=ω+ω *[()cos ()sin ]k x m m y x e R x x Q x x λ=ω+ωi λ±ω非特征根,0k =;i λ±ω单特征根,1k =;max{,}m n l =。

(完整版)高数上册知识点

(完整版)高数上册知识点

高等数学上册知识点第一章 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在。

间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。

无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。

(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f xx +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限。

3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。

2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限:a) 1sin lim 0=→xx x b)e x x xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x ~1- (a x a x ln ~1-) d) x x ~)1ln(+ (ax x a ln ~)1(log +)e) x x αα~1)1(-+第二章 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→ 左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+ 函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。

大学高数上册知识点总结

大学高数上册知识点总结

大学高数上册知识点总结第一章:函数与极限1.理解函数的概念,掌握函数的表示方法。

2.会建立简单应用问题中的函数关系式。

3.了解函数的奇偶性、单调性、周期性、和有界性。

4.掌握基本初等函数的性质及图形。

5.理解复合函数及分段函数的有关概念,了解反函数及隐函数的概念。

6.理解函数连续性的概念(含左连续和右连续)会判别函数间断点的类型。

7.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左右极限间的关系。

8.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

9.掌握极限性质及四则运算法则。

10.理解无穷孝无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。

第二章:导数与微分1.理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求*面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描写一些物理量,理解函数的可导性与连续性之间的关系。

2.掌握导数的四则运算法则和复合函数的求导法则,掌握初等函数的求导公式,了解微分的四则运算法则和一阶微分形式的不变性,会求初等函数的微分。

3.会求隐函数和参数方程所确定的函数以及反函数的导数。

4.会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。

第三章:微分中值定理与导数的应用1.熟练运用微分中值定理证明简单命题。

2.熟练运用罗比达法则和泰勒公式求极限和证明命题。

3.了解函数图形的作图步骤。

了解方程求近似解的两种方法:二分法、切线法。

4.会求函数单调区间、凸凹区间、极值、拐点以及渐进线、曲率。

第四章:不定积分1.理解原函数和不定积分的概念,掌握不定积分的'基本公式和性质。

2.会求有理函数、三角函数、有理式和简单无理函数的不定积分3.掌握不定积分的分步积分法。

4.掌握不定积分的换元积分法。

第五章:定积分1.理解定积分的概念,掌握定积分的性质及定积分中值定理。

2.掌握定积分的换元积分法与分步积分法。

大一高数上册重要知识点

大一高数上册重要知识点

大一高数上册重要知识点高等数学是大学理工科学生必修的一门基础课程,它的重要性不言而喻。

在大一高数上册中,有一些重要的知识点需要我们掌握和理解。

本文将介绍这些重要知识点,并给出相应的解析和例题。

1. 函数的基本概念与性质函数是数学中的重要概念,它描述了两个变量之间的关系。

在高数上册中,我们需要掌握函数的定义、定义域、值域、奇偶性、单调性等基本性质。

同时,我们还需要了解常见的函数类型,如幂函数、指数函数、对数函数、三角函数等,并能够分析其图像和性质。

2. 三角函数与三角恒等式三角函数是高数上册中重要的一部分内容。

我们需要熟练掌握正弦函数、余弦函数、正切函数等的定义、性质及其图像。

同时,学习三角函数的重点还包括三角函数的诱导公式、三角函数的和差化积公式、倍角公式等三角恒等式。

3. 极限与连续极限是高数上册的核心内容之一,我们需要掌握一元函数和多元函数的极限定义、性质及常用的极限计算方法。

此外,我们还需要理解连续函数的定义和性质,并会运用极限的概念判断函数的连续性。

4. 导数与微分导数是高数上册的又一重点内容。

我们需要理解函数导数的定义、几何意义和运算规则,并能够应用导数求函数的极值、判断函数的单调性和凹凸性。

此外,还需要了解微分的定义和微分近似计算的方法。

5. 不定积分和定积分积分是高数上册的最后一个重要知识点。

我们需要熟练掌握不定积分和定积分的定义、性质和常用的计算方法,如换元积分法、分部积分法、定积分的几何意义和计算等。

同时,还需要了解牛顿—莱布尼茨公式和积分中值定理等与积分有关的重要定理。

6. 常微分方程常微分方程是数学中的一门应用学科,也是大一高数上册的重点内容。

我们需要掌握一阶和二阶常微分方程的基本概念和解法,如可分离变量方程、一阶线性方程、二阶常系数齐次方程和二阶常系数非齐次方程的解法。

以上是大一高数上册重要知识点的简要介绍,掌握这些知识点对于我们顺利学习高等数学具有重要意义。

希望同学们能够认真学习,理解这些知识点,并通过大量的练习提高自己的解题能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学上册的复习重点
高等数学上册的复习重点
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。

以下是店铺整理的高等数学上册的复习重点,仅供参考,大家一起来看看吧。

第一章、函数、极限与连续
本章函数部分主要是从构建函数关系,或确定函数表达式等方面进行考查。

而极限作为高等数学的理论基础,不仅需要准确理解它的概念、性质和存在的条件,而且要会利用各种方法求出函数(或数列)的极限,还要会根据题目所给的极限得到相应结论。

连续是可导与可积的重要条件,因此要熟练掌握判断函数连续性及间断点类型的方法,特别是分段函数在分段点处的连续性。

与此同时,还要了解闭区间上连续函数的.相关性质(如有界性、介值定理、零点定理、最值定理等),这些内容往往与其他知识点结合起来考查。

本章的知识点可以以多种形式(如选择题、填空题、解答题均可)考查,平均来看,本章内容在历年考研试卷中数学一、数学三大约占10分,数学二大约占19分。

本章重要题型主要有:
1、求极限;
2、已知极限反求参数;
3、无穷小阶的比较;
4、间断点类型的判断。

第二章、一元函数微分学
本章按内容可以分为两部分:第一部分是导数与微分,主要涉及微分学的基本概念、可导性与可微性的讨论,以及导数和微分的计算。

此部分一定要注意导数的定义,对它有一个正确的理解,包括导数概念的一些充要条件要清楚;同时要能熟练求一元复合函数、反函数、隐函数、由参数方程所确定函数的二阶导数。

第二部分是微分中值定
理及导数的应用,主要是利用导数研究函数的性态,以及利用中值定理证明或解决一些问题.这是一个比较大的内容,函数的单调性、凹凸性以及方程根的应用都会在这块内容当中出题,这是一个难点,还有一个难点,就是关于微分中值定理,关于这一部分的证明题,需要大家掌握常见的解题思路。

有关可导性、可微性、导数和微分的计算以及导数的应用,可以结合其他知识点以任何形式出题。

而微分中值定理常用在解答题中,特别是用于证明有关中值的等式或不等式.平均来看,本章内容在历年考研试卷中数学一大约占12分,数学二大约占36分,数学三大约占10分.
本章重要题型有:
1、导数定义和几何意义;
2、复合函数、反函数、隐函数和参数方程所确定的函数的求导;
3、含中值等式或不等式的证明;
4、利用导数研究函数的形态(判断单调、求极值与最值、求凹凸区间与拐点);
5、方程的根的个数的讨论;
6、渐近线;
7、求边际和弹性(数三)。

第三章、一元函数积分学
本章内容中,不定积分和定积分是积分学的基本概念,不定积分和定积分的计算是积分学的基本计算,利用定积分表示并计算一些几何、物理、经济量是积分学的基本应用。

这一部分要特别注意变限积分,它的各种性质都是我们考查的重点。

变上限积分函数跟微分方程结合的一个点也可以出题的。

还有定积分的应用,求平面图形面积,求旋转体的体积,一定要熟悉,要掌握好微元法。

本章对概念部分的考查主要是出现在选择题中,对运算部分的考查通常出现在填空题和解答题中,而定积分的应用和有关定积分的证明题大多出现在解答题中。

平均来看,本章内容在历年考研试卷中,数学一大约占15分,数学二大约占33分,数学三大约占20分。

本章重要题型有:
1、不定积分、定积分和反常积分的基本运算;
2、定积分等式或不等式的证明;
3、变上限积分的相关问题;
4、利用定积分求平面图形的面积和旋转体的体积。

第四章、向量代数与空间解析几何(数一)
本章内容不是考研重点,很少直接命题。

直线与平面方程是多元函数微分学的几何应用的基础,常见二次曲面的图形被应用到三重积分、曲面积分的计算中,用于确定积分区域。

下载全文。

相关文档
最新文档