正弦函数与余弦函数的图像与性质

合集下载

正弦函数和余弦函数的图像与性质

正弦函数和余弦函数的图像与性质
x 10, 3 2 , 0, 2 , 3
3. 求最小正周期: (1) f ( x) 3sin x 4cos x (2) f ( x) sin 2 x (3) f ( x) sin 2 x cos 2 x
y cos x , x R 的值域是 [1,1],最大值是 1,最小值是 1.
当 cos x 1时,x 2k (k Z). 当 cos x 1 时,x (2k 1) (k Z).
(2)周期性
一般地,对于函数 f ( x),如果存在一个常数 T (T 0), 使得当 x 取定义域 D 内的任意值时,都有 f ( x T ) f ( x) 成立,那么函数 f ( x) 叫做周期函数,常数 T 叫做函数 f ( x) 的周期。对于一个周期函数 f ( x) 来说,如果在所有的周期中 存在一个最小正数,那么这个最小正数叫做函数 f ( x) 的 最小正周期。
解: 偶函数; (1)
(2) f ( x) cos 2 x,偶函数;

2 (k Z)
(3)sin x 1 x 2k
x

,但 x 可以取 ,即 f ( x)的定义域不关于原点对称, 2 2

f ( x) 是非奇非偶函数。
(4) f ( x)
1 sin 2 x sin x 1 1 sin 2 x sin x 1
5 3 增:k , k (k Z), 减:k , k (k Z) 8 8 8 8
(4) y log 1 2cos x 3
2


3 解: x cos x 2 k , 2 k 2 6 6

正弦、余弦函数的图像和性质PPT优质课件

正弦、余弦函数的图像和性质PPT优质课件

作三角函数图象
描几点何法法:作查图三的角关函键数是表如得何三利角用函单数位值圆,描中点角(xx的,s正in弦x),线连,线巧. 妙地
如移:动x 到 直3 角查坐表标y系内s,i从n3而确0.8定对6应6的0点 (x,sinx).
y
描点 (3 ,0.866)0
1-
y
P
-Hale Waihona Puke 023 2
2
x
1 -
3
O M 1x
2020/12/10
9
练习:(1)作函数 y=1+3cosx,x∈[0,2π]的简图 (2)作函数 y=2sinx-1,x∈[0,2π]的简图
(1) y
x
2020/12/10
10
四川省天全中学数学组
2005.03
2020/12/10
11
余弦曲线
-
-
y-
1
-
6
4
2
o
-1
2
4
6
由于 ycox scosx)(sin [(x) ]sin x()
几何法:作三角函数线得三角函数值,描点(x,sinx),连线
如: x
3

3
的正弦线 MP ,
平移定点 (x, MP)
2020/12/10
5
函数 y six ,n x 0 ,2图象的几何作法
y
作法: (1) 等分
(2) 作正弦线
1-
P1
p
/ 1
(3) 平移 (4) 连线
6
o1
M -11A
o 6
3
正 弦 函 数、余 弦 函数的图象和性质
2020/12/10
1

正弦函数和余弦函数的图像与性质

正弦函数和余弦函数的图像与性质

y=sinx
y
1 2 3 4
y= cosx
y
1
图 象 定义域 值 域
-2
-
o
-1
x
-2
-
o
-1

2 3
4
x
R [1,1]
x 2k

R [1,1]
x 2k ( k Z )
最 值
ymax=1
x 2k
2
(k Z ) 时
其值从-1增至1 其值从 1减至-1
y=sinx
y
1 2 3 4
y= cosx
y
1
图 象 定义域 值 域
-2
-
o
-1
x
-2
-
o
-1

2 3
4
x
R [1,1]
x 2k

R [1,1]
x 2k ( k Z )
最 值
ymax=1
x 2k
2
(k Z ) 时
对于一个周期函数,如果在它的所有周期中
存在一个最小的正数,那么这个最小正数就叫做 它的最小正周期.
(2) 正弦函数的周期性
由公式 sin (x+k · 2 )=sin x (kZ) 可知:
正弦函数是一个周期函数,2 ,4 ,„ ,-2 ,
-4 ,„ , 2k (kZ 且 k≠0)都是正弦函数的周期. 2 是其最小正周期 .


2
ymax=1
(k Z ) 时
x 2k (k Z ) 时
ymin= 1
ymin= 1
x k
y= 0
x k ( k Z )

正弦函数和余弦函数的图像与性质.ppt

正弦函数和余弦函数的图像与性质.ppt

, 0), (2 ,1)
2
2
并注意-4 曲线的“凹凸”变化.
课堂练习
1.作函数 y sin x 与 y sin x 1在 [0, 2 ]
上的大致图像. 2.指出1.中各图像与正弦函数图像的位置关系.
3.作函数 y cos x, x [ , ]的大致图像.
4.利用3.解不等式:cos x sin x, x [ , ]
-2
五个关键点:(0, 0), ( ,1), ( , 0), (3 , 1), (2 , 0)
2
2
利用五个关-4键点作简图的方法称为“五点法”
10
三、余弦函数的图像
根据诱导公式
cos
8
x
sin(

x) 可知余弦函数
y

cos
6
x的图像可由
y

2 sin
x
的图像向左平移
2
4
个单位得到.

1
2
2
-10
3-5
0
2
1
-2
余弦函数的值域是[1,1] -4
当且仅当 x 2k , k Z 时, -6
余弦函数取得最大值1;-8
5
2
35
x10
2
yP
OM x
当且仅当 x 2k , k-10 Z 时,
余弦函数取得最小值-1-1.2例1.求下列函数的源自大值与最小值,及取到最值6
课堂练习答案
12
1. y sin x, x [0, 2 ] y4
10
x
0
2

3 2
2
2 8
5
-10

正弦函数余弦函数的图像与性质

正弦函数余弦函数的图像与性质

三角函数在物理学中的应用
振动与波动
正弦和余弦函数是描述简谐振动和波动的基本函 数,广泛应用于声学、光学等领域。
交流电
交流电的电压和电流是时间的正弦或余弦函数, 用于驱动各种电器设备。
磁场与电场
在电磁学中,正弦和余弦函数用于描述磁场和电 场的分布和变工程中的许多振动问题都可以用 正弦和余弦函数来描述,如桥梁 振动、车辆振动等。
周期性
正弦函数具有周期性, 其周期为2π。
奇偶性
正弦函数是奇函数,满 足sin(-x) = -sin(x)。
余弦函数的定义
定义
余弦函数是三角函数的另一种形式,定义为直角三角形中锐角的邻边与斜边的比值,记作 cos(x)。
周期性
余弦函数也具有周期性,其周期为2π。
奇偶性
余弦函数是偶函数,满足cos(-x) = cos(x)。
奇偶性
总结词
正弦函数是奇函数,而余弦函数是偶 函数。
详细描述
奇函数满足$f(-x) = -f(x)$,偶函数满 足$f(-x) = f(x)$。对于正弦函数, $sin(-x) = -sin(x)$;对于余弦函数, $cos(-x) = cos(x)$。
最值与振幅
总结词
正弦函数和余弦函数都具有最大值和最小值,这取决于它们的振幅。
正弦函数余弦函数的图像与性质
目录
• 正弦函数与余弦函数的定义 • 正弦函数与余弦函数的图像 • 正弦函数与余弦函数的性质 • 正弦函数与余弦函数的应用 • 正弦函数与余弦函数的扩展知识
01 正弦函数与余弦函数的定 义
正弦函数的定义
定义
正弦函数是三角函数的 一种,定义为直角三角 形中锐角的对边与斜边 的比值,记作sin(x)。

1.4.1-1.4.2 正弦函数、余弦函数的图像与性质

1.4.1-1.4.2 正弦函数、余弦函数的图像与性质

例 1 求下列函数的周期. (1)y=sin2x+π3 (x∈R); (2)y=|sin 2x| (x∈R). (2)作出 y=|sin 2x|的图象.
由图象可知,y=|sin 2x|的周期为π2. 小结 对于形如函数 y=Asin(ωx+φ),ω≠0 时的周期求法常直 接利用 T=|2ωπ|来求解,对于 y=|Asin ωx|的周期情况常结合图象 法来求解.
1.4.1正弦函数的图象 与性质
第二课时
1.了解周期函数、周期、最小正周期的定义. 2.会求函数y=Asin(ωx+φ)的周期. 3.掌握函数y=sin x的奇偶性,会判断简
单三角函数的奇偶性.
定义 图

sin
cos
tan
单位圆中
y
P(x,y) 。
α
O
A(1,0) x
y
x
y x
温故知新
一般地
解 ∵f(x)的最小正周期是 π, ∴f53π=f53π-2π=f-π3. ∵f(x)是 R 上的偶函数, ∴f-π3=fπ3=sin π3= 23.∴f53π= 23.
小结 解决此类问题关键是综合运用函数的周期性和奇偶性, 把自变量 x 的值转化到可求值区间内.
练习 若 f(x)是以π2为周期的奇函数,且 f π3=1, 求 f -56π 的值.
练习 1. 求下列函数的周期. (1)y=cos 32π-23x; (2)y=sin-12x+π3.
解 (1)y=-sin 23x,T=22π=3π. 3
(2)y=sin12x-3π,T=21π×12=2π. 2
例 2 定义在 R 上的函数 f(x)既是偶函数又是周期函数,若 f(x)的 最小正周期是 π,且当 x∈0,π2时,f(x)=sin x,求 f53π的值.

3.3.1正弦函数余弦函数的图象与性质

3.3.1正弦函数余弦函数的图象与性质
-1-
2
4
6
x
因为终边相同的角的三角函数值相同,所以
y=sinx x 2k ,2(k 1) , k Z且k 0 的图象在… 4 ,2
, 2 ,0, 0,2 ,2 ,4 , …与y=sinx,x∈[0,2π]的图象相同
问题:如何作余弦函数的图象?
余弦曲线
-
-
y-
1
6
4
2
o-
2
-1
4
6
由于cos x sin( x) sin(x )
7
36
6
4 3
3 5 23
(2 ,1)
11 6
2
x
-1 -
最低点: ( ,1)
例1.画出下列函数的简图
(1)y=sinx+1, x∈[0,2π] (2)y=-cosx , x∈[0,2π]
解:(1)列表
x
sin x
0
2
0

3 2
2
0
1 0
sin x 1
12
1
0
1
(2)
x
0
cos x
1
cos x -1
2
所以余弦函数
y
2
cos x, x R与函数
y
sin(x
), x R
2
是同一个函数;余弦函数的图像可以通过正弦曲线向左平移 2
个单位长度而得到.
你能用五点法作函数y cos x(x 0,2 )
的图像吗 ?
-
y
与x轴的交点:
最高点:1
(0,1)
-
3
( ,0) ( ,0)
2
2
-1

正弦函数、余弦函数的图象和性质

正弦函数、余弦函数的图象和性质
y
1
● ●
o
-1
● 2


3 2

2
x
例:画出下列函数的简图
(1)y=1+sinx, x [0, 2 ] (2)y= - cosx, x [0, 2 ]
解:(1)按五个关键点列表
x 0
2

0
1
3 2
2
sinx
1+sinx
y 2 1●
0
1
1
2
-1
0
0
1
y=1+sinx x [0, 2 ]
三、余弦函数y=cosx(xR)的图象
sin(
x+ 2
y 1
)= cosx
y=sinx的图象
2
0 2
-1
2
3 2
2
3
4
5
6
x
y=cosx的图象
余弦函数的“五点画图法”
3 (0,1)、( ,0)、( ,-1)、( ,0)、( 2 , 1) 2 2


●oຫໍສະໝຸດ 23 2●
2
x
(2)按五个关键点列表
x 0
2

-1
1
3 2
2
cosx
-cosx
y 1
1
-1
0
0
0
0
1
-1
y=-cosx x [0,2 ]

o
-1 ●
2


3 2

2

x
思考:
2、函数y=-cosx的图象与函数y=cosx的图象有什么关系?

正弦函数、余弦函数的图像和性质

正弦函数、余弦函数的图像和性质
-
图象的最高点 图象的最高点 与x轴的交点 轴的交点
x
1-
( 0 ,1 ) (2π ,1)
-1
o
-1 -
π
6
π
3
π
2
2π 3
5π 6
π
7π 6
4π 3
3π 2
5π 3
11 π 6
π ( π ,0 ) (32 ,0) 2π 2 图象的最低点 (π ,−1) 图象的最低点
-
应用“ 例1.应用“五点法”作图。 应用 五点法”作图。
π
π
例2.分别利用函数的图像和三角函数 先两种方法,求下列不等式的解集:
1 (1) sin x ≥ ; 2 1 5π (2) cos x ≤ (0 < x ≤ ); 2 2
例3.判断y = cos x + 1, x ∈ [0,2π ]与下列 直线交点的个数: 3 ( )y = 2; (2) y = ; (3) y = 0. 1 2


y
1-
数、 图

图象的最高点 ( ,1) 图象的最高点 2 与x轴的交点 轴的交点
( 0 , 0 ) (π , 0 ) (2π ,0)
x
π
-
-1
o
-1 -
π
6
π
3
π
2
2π 3
5π 6
π
7π 6
4π 3
3π 2
5π 3
11 π 6

图象的最低点 (32 ,−1 图象的最低点 π )
简图作法 (1) 列表 列出对图象形状起关键作用的五点坐标) 列表( (2) 描点 定出五个关键点) 描点( y (3) 连线 用光滑的曲线顺次连结五个点) 连线(

正余弦函数图像及性质

正余弦函数图像及性质
函数 y sin x, x R 的图象。
y
1_
4 3 2 o

_
-1
2
3
正弦曲线
4 x
3.函数 y cos x, x R 的图象:
由诱导公式 y cos x sin( x )可以看出:
余弦函数
y

cos
x,
x

R
与函数
2
y
sin(
x
例题讲解:
例.用“五点法”作出函数y 1 sin x, x 0,2 的简图。
解:(1)按五个关键点列表:
x
0
2

3 2
2
sin x 0 1 0 1 0
sin x 1 1 2 1 0 1
(2)描点,连线
2y
1
0
1
2

x 3 2
2巩固Biblioteka 习:1.作函数 y cos x, x 0,2 的简图。
正弦函数、余弦函数的图象和性质 (一)
1. sin a, cos a, tan a 的几何意义是什么?
y
T
1P
A
oM 1 x
正弦线MP 余弦线OM 正切线AT
2.如何用描点法作出函数 y x2 2x的图象?
(1)列表
x
1 0 1 2 3
y
y x2 2x 3 0 1 0 3
(2) 描点 (3)连线
0
2

1
y
y cos x, x0,2 1
0
1
2

x 3 2
2
x 3 2
2
返回
1
.. 2 1 0 1. 2 x

6.1(3)正弦函数和余弦函数的图像和性质

6.1(3)正弦函数和余弦函数的图像和性质
2、一般地,函数 y=asinx+bcosx可以 化简为:
(3) y 3 sin x cos x
(4) y 2 sin x 3 sin x 2 (5) y sin x 3 sin x cos x
y a b sin x
2 2
3、换元法
4、降次公式法
2
三、例题与练习
例1 、 求函数 y 2 sin(3x )的最大值和最小值, 3 并求使其取得最大值、 最小值的x的集合. 2k 解:当3x 2k 即x (k Z )时, 3 2 3 18 ymin 2 3 2k 7 当3x 2k 即x (k Z )时, 3 2 3 18 ymax 2 2k 7 取得最大值的x的集合是{x x ,k Z }; 3 18 2k 取得最小值的x的集合是{x x ,k Z }. 3 18

6 并求使其取得最大 值和最小值的x的集合. 解:当2 x 2k 即x k (k Z )时,ymin 2
6 12 5 ymax 4 当2 x 2k 即x k (k Z )时, 6 12 5 取得最大值的x的集合是{x x k ,k Z }; 12 取得最小值的x的集合是{x x k
ex1、求y 1 3 cos(2 x

)的最大值和最小值,


12
,k Z }.
例2、 求下列函数的值域. 2 2 (1) y sin x cos x (2) y sin x cos x
1、将函数化为 y=Asin(ωx+φ)或 y=Acos(ωx+φ) 的形式即可求出函 数的最值或值域.

《正余弦函数图像》课件

《正余弦函数图像》课件

余弦函数基本概念介绍
定义与特点
余弦函数是周期性变化的函数,描述了单位圆上一个点的横坐标随角度变化而变化的规律。
公式
余弦函数公式为y = A * cos(B * (x - C)) + D,其中A、B、C、D分别影响振幅、周期、相位 和纵坐标偏移。
图像特征
余弦函数图像呈现周期性的波浪曲线,对称于x轴和y轴,振幅与A值相关。
《正余弦函数图像》PPT 课件
本课程将介绍正弦函数和余弦函数的基本概念,探索它们的图像及性质,比 较分析两者的图像,并以小测验来巩固所学知识。最后给出结论和参考资料。
正弦函数基本概念介绍
1 定义与特点
正弦函数是周期性变化的函数,描述了单位圆上一个点的纵坐标随角度变化而变化的规 律。
2 公式
正弦函数公式为y = A * sin(B * (x - C)) + D,其中A、B、C、D分别影响振幅、周期、相 位和纵坐标偏移。
相似性
正弦函数和余弦函数都是周 期性的函数,呈现波动或波 浪形状的图像。
差异性
相位差:正弦函数和余弦函 数的图像相位差90度。
振幅:正弦函数图像纵向的 上下震动幅度,而余弦函数 图像横向的左右震动幅度。
应用
正弦函数常用于描述周期性 变化的现象,如音波、电流 等;余弦函数通常用于描述 旋转变化的现象,如天体运 动等。
余弦函数图像及性质
1
调节振幅
2
余弦函数图像的振幅可以通过改变A
的值来调节,振幅表示纵向的上下震
动幅度。
3
波动与震动
余弦函数图像呈现连续的波动曲线, 每个周期具有相同的形状,与正弦函 数的图像相位差90度。
平移与初始位置
改变C的值可以使整个图像左右平移, 影响图像的起始位置。

6.1正弦函数和余弦函数的图像与性质2

6.1正弦函数和余弦函数的图像与性质2

由sin
x
y 1 1,得 1
y
2
1
(sin x 1) y 1
sin x 1
cos x 1
解不等式有
y
1 2
故函数的值域为
,
1 2
求值域
例8判断f(x)=xsin(+x)奇偶性
解 函数的定义域R关于原点对称 f (x) xsin( x) xsin x
f (x) (x)sin(x) f (x) f (x) f (x)
在[ π ,π] 上是减函数,
2
所以 sin 2 π > sin 3 π .
3
4
例7 求下列函数的值域 y= sin x 2
解 由y sin x 2 得到
sin x 1
sin x 1
正余弦函数的有界性
( y 1)sin x y 2
(上式中y 1,否则有0 3)
所以sin x y 2
[k , k 3 ]
8
8
[k 3 , k 7 ]
8
8
(3) y= ( tan 7 )sinx
6
解:
0 tan 7
tan
3 1
6
63
单调减区间为 [2k ,2k ],(k Z )
2
2
单调增区间为 [2k ,2k 3 ],(k Z )
2
2
(4)
y log 1
cos( x
是减函数。
② 函数y=cos(x+/2),xR ( A )
A 是奇函数; B 是偶函数; C 既不是奇函数也不是偶函数; D 有无奇偶性不能确定。
2 不通过求值,比较下列各组中两个三角函数值的大小:
sin 250 >_ sin 260
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年全国卷数学文科第一轮复习资料第三节 正弦函数与余弦函数的图像与性质A 组1.已知函数f (x )=sin(x -π2)(x ∈R ),下面结论错误的是.①函数f (x )的最小正周期为2π②函数f (x )在区间[0,π2]上是增函数③函数f (x )的图象关于直线x =0对称④函数f (x )是奇函数2.函数y =2cos 2(x -π4)-1是________.①最小正周期为π的奇函数 ②最小正周期为π的偶函数③最小正周期为π2的奇函数 ④最小正周期为π2的偶函数3.若函数f (x )=(1+3tan x )cos x ,0≤x <π2,则f (x )的最大值为________.4.已知函数f (x )=a sin2x +cos2x (a ∈R )图象的一条对称轴方程为x =π12,则a 的值为________.5.(原创题)设f (x )=A sin(ωx +φ)(A >0,ω>0)的图象关于直线x =π3对称,它的最小正周期是π,则f (x )图象上的一个对称中心是________(写出一个即可).6.设函数f (x )=3cos 2x +sin x cos x -32.(1)求函数f (x )的最小正周期T ,并求出函数f (x )的单调递增区间; (2)求在[0,3π)使f (x )取到最大值的所有x 的和.B 组1.函数f (x )=sin(23x +π2)+sin 23x 的图象相邻的两条对称轴之间的距离是________.2.给定性质:a 最小正周期为π;b 图象关于直线x =π3对称.则下列四个函数中,同时具有性质ab 的是________.①y =sin(x 2+π6) ②y =sin(2x +π6) ③y =sin|x | ④y =sin(2x -π6)3.若π4<x <π2,则函数y =tan2x tan 3x 的最大值为__.4.函数f (x )=sin 2x +2cos x 在区间[-23π,θ]上的最大值为1,则θ的值是________.5.若函数f (x )=2sin ωx (ω>0)在[-2π3,2π3]上单调递增,则ω的最大值为________.6.设函数y =2sin(2x +π3)的图象关于点P (x 0,0)成中心对称,若x 0∈[-π2,0],则x 0=________.7.已知函数y =A sin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式是________. ①y =4sin(4x +π6)②y =2sin(2x +π3)+2③y =2sin(4x +π3)+2 ④y =2sin(4x +π6)+28.有一种波,其波形为函数y =sin π2x 的图象,若在区间[0,t ]上至少有2个波峰(图象的最高点),则正整数t 的最小值是________. 9.已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是________.10.已知向量a =(2sin ωx ,cos 2ωx ),向量b =(cos ωx,23),其中ω>0,函数f (x )=a ·b ,若f (x )图象的相邻两对称轴间的距离为π.(1)求f (x )的解析式;(2)若对任意实数x ∈[π6,π3],恒有|f (x )-m |<2成立,数m 的取值围11.设函数f (x )=a ·b ,其中向量a =(2cos x,1),b =(cos x ,3sin2x +m ).(1)求函数f (x )的最小正周期和在[0,π]上的单调递增区间;(2)当x ∈[0,π6]时,f (x )的最大值为4,求m 的值.12.已知函数f (x )=3sin ωx -2sin2ωx2+m (ω>0)的最小正周期为3π,且当x ∈[0,π]时,函数 f (x )的最小值为0. (1)求函数f (x )的表达式;(2)在△ABC 中,若f (C )=1,且2sin 2B =cos B +cos(A -C ),求sin A 的值.第四节 函数f (x )=A sin(ωx +φ)的图像A 组1.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是________.2.年高考卷改编)将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位后,得到函数y =sin(x -π6)的图象,则φ等于________.3.将函数f (x )=3sin x -cos x 的图象向右平移φ(φ>0)个单位,所得图象对应的函数为奇函数,则φ的最小值为________.4.如图是函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π<φ<π),x ∈R 的部分图象,则下列命题中,正确命题的序号为________.①函数f (x )的最小正周期为π2;②函数f (x )的振幅为23;③函数f (x )的一条对称轴方程为x =712π;④函数f (x )的单调递增区间为[π12,712π];⑤函数的解析式为f (x )=3sin(2x -23π).5.(原创题)已知函数f (x )=sin ωx +cos ωx ,如果存在实数x 1,使得对任意的实数x ,都有f (x 1)≤f (x )≤f (x 1+2010)成立,则ω的最小值为________.6.已知函数f (x )=sin 2ωx +3sin ωx ·sin(ωx +π2)+2cos 2ωx ,x ∈R (ω>0),在y 轴右侧的第一个最高点的横坐标为π6.(1)求ω;(2)若将函数f (x )的图象向右平移π6个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )的最大值及单调递减区间.B 组1.已知函数y =sin(ωx +φ)(ω>0,-π≤φ<π)的图象如图所示,则φ=________.2.已知函数y =sin(ωx +φ)(ω>0,|φ|<π)的图象如图所示,则φ=________.3.已知函数f (x )=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx 的图象,只要将y =f (x )的图象________.4.已知函数f (x )=A cos(ωx +φ) 的图象如图所示,f (π2)=-23,则f (0)=________.5.将函数y =sin(2x +π3)的图象向________平移________个单位长度后所得的图象关于点(-π12,0)中心对称.6、定义行列式运算:⎪⎪⎪⎪⎪⎪a 1 a 2a 3 a 4=a 1a 4-a 2a 3,将函数f (x )=⎪⎪⎪⎪⎪⎪3 cos x 1 sin x 的图象向左平移m 个单位(m >0),若所得图象对应的函数为偶函数,则m 的最小值是________.7.若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx+π6)的图象重合,则ω的最小值为________.8.给出三个命题:①函数y =|sin(2x +π3)|的最小正周期是π2;②函数y =sin(x -3π2)在区间[π,3π2]上单调递增;③x =5π4是函数y =sin(2x +5π6)的图象的一条对称轴.其中真命题的个数是________.10.设函数f (x )=(sin ωx +cos ωx )2+2cos 2ωx (ω>0)的最小正周期为2π3.(1)求ω的值;(2)若函数y =g (x )的图象是由y =f (x )的图象向右平移π2个单位长度得到,求y =g (x )的单调增区间.11.已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的周期为π,且图象上一个最低点为M (2π3,-2).(1)求f (x )的解析式;(2)当x ∈[0,π12]时,求f (x )的最值.12.已知函数f (x )=sin(ωx +φ),其中ω>0,|φ|<π2.(1)若cos π4cos φ-sin 3π4sin φ=0,求φ的值;(2)在(1)的条件下,若函数f (x )的图象的相邻两条对称轴之间的距离等于π3,求函数f (x )的解析式;并求最小正实数m ,使得函数f (x )的图象向左平移m 个单位后所对应的函数是偶函数.第六章 三角恒等变形第一节 同角三角函数的基本关系A 组 1. 已知sin α=55,sin(α-β)=-1010,α、β均为锐角,则β等于_______ 2.已知0<α<π2<β<π,cos α=35,sin(α+β)=-35,则cos β的值为________.3.如果tan α、tan β是方程x 2-3x -3=0的两根,则sin(α+β)cos(α-β)=________.4.(已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是___.6.已知α∈(π2,π),且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈(π2,π),求cos β的值.B 组1.cos2α1+sin2α·1+tan α1-tan α的值为________. 2.已知cos(π4+x )=35,则sin2x -2sin 2x1-tan x的值为________.3.已知cos(α+π3)=sin(α-π3),则tan α=________.4.设α∈(π4,3π4),β∈(0,π4),cos(α-π4)=35,sin(3π4+β)=513,则sin(α+β)=________.5.已知cos α=13,cos(α+β)=-13,且α,β∈(0,π2),则cos(α-β)的值等于________.6.已知角α在第一象限,且cos α=35,则1+2cos(2α-π4)sin(α+π2)=________.7.已知a =(cos2α,sin α),b =(1,2sin α-1),α∈(π2,π),若a ·b =25,则tan(α+π4)的值为________.8.tan10°tan70°tan70°-tan10°+tan120°的值为______. 9.已知角α的终边经过点A (-1,15),则sin(α+π4)sin2α+cos2α+1的值等于________.10.求值:cos 20°sin20°·cos10°+3sin10°tan70°-2cos40°.11.已知向量m =(2cos x 2,1),n =(sin x2,1)(x ∈R ),设函数f (x )=m ·n -1.(1)求函数f (x )的值域;(2)已知锐角△ABC 的三个角分别为A ,B ,C ,若f (A )=513,f (B )=35,求f (C )的值.12.已知:0<α<π2<β<π,cos(β-π4)=13,sin(α+β)=45.(1)求sin2β的值;(2)求cos(α+π4)的值.第二节 两角和与差及二倍角的三角函数A 组1.若sin α=35,α∈(-π2,π2),则cos(α+5π4)=________.2.已知π<θ<32π,则12+1212+12cos θ=________. 3.计算:cos10°+3sin10°1-cos80°=________.4.函数y =2cos 2x +sin2x 的最小值是__________________.6.已知角α∈(π4,π2),且(4cos α-3sin α)(2cos α-3sin α)=0.(1)求tan(α+π4)的值;(2)求cos(π3-2α)的值.1.若tan(α+β)=25,tan(β-π4)=14,则tan(α+π4)=_____.2.若3sin α+cos α=0,则1cos 2α+sin2α的值为________.5.若tan α+1tan α=103,α∈(π4,π2),则sin(2α+π4)的值为_________.6.若函数f (x )=sin2x -2sin 2x ·sin2x (x ∈R ),则f (x )的最小正周期为________. 7.2cos5°-sin25°cos25°的值为________.8.向量a =(cos10°,sin10°),b =(cos70°,sin70°),|a -2b |=________________.10.已知tan α=2.求(1)tan(α+π4)的值;(2)sin2α+cos 2(π-α)1+cos2α的值.11.如图,点A ,B 是单位圆上的两点,A ,B 两点分别在第一、二象限,点C 是圆与x 轴正半轴的交点,△AOB 是正三角形,若点A 的坐标为(35,45),记∠COA =α.(1)求1+sin2α1+cos2α的值;(2)求|BC |2的值.12.△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,tan C =sin A +sin Bcos A +cos B,sin(B -A )=cos C .(1)求角A ,C .(2)若S △ABC =3+3,求a ,c .。

相关文档
最新文档