jw6数量关系解题技巧

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数量关系解题技巧—数学运算

数量关系有哪些解题方法?

答:数量关系部分主要有两种题型:数字推理和数字运算。

数字推理包含:等差数列及其变式;两项之和等于第三项;等比数列及其变式;平方型及其变式;立方型及其变式;双重数列;混合型数列;一些特殊的排列规律等类型。对这

几种题型解题方法如下:

(1)观察法。这种方法对数字推理的所有题型(较简单的,基础性的)均适用。观察法对考生的要求比较高,考生要对数字特别敏感,这样才能一眼看出题目所属的类型。

(2)假设法。在做题之前要快速扫描题目中所给出数列的各项,并仔细观察、分析各项之间的关系,然后大胆提出假设,从局部突破(一般是前三项)来寻找数列各项之间的规律。在假设时,可能一次假设并不能找到规律,这就要求考生有较好的心理素质,并迅速改变思路进行第二次假设。

(3)心算要多于笔算。笔算因为要在纸面上进行,从而会浪费很多时间。

(4)空缺项突破法。大体来说,如果空缺项在最后,要从前往后推导规律。如果空缺项在最前面,则相反。如果空缺项在中间,就需要看两边项数的多少来定,一般从项数多的一端来推导,然后延伸到项数少的一端来验证。

(5)先易后难法。考生或许都能意识到这一点。在做简单题时,考生有时突然就有了难题的思路。同时这种方法还能激发考生临场发挥的潜力。

数学运算包含:比例分配问题;和、倍、差问题;混合溶液问题;植树问题;预算问题等十余种。对这十余种题型解答的大体解法笔者亦总结如下:

(1)凑整法。这种方法是简便运算中最常用的方法。主要是利用交换率和结合律,把数字凑成整数,再进行计算,就简便多了。

(2)基准数法。当遇到两个以上的数字相加时,可以找一个中间数作为基准,然后再加上或减去每个加数与基准数的差,从而求得它们之和。

(3)查找隐含规律法。考生需记住,国家

公务员录用考试中的题目,几乎每一道数学运算题都有巧妙的解法,这些解法就是隐含的规律。找到这些规律,便会达到事半功倍的效果。

(4)归纳总结,举一反三法。考生在做模拟题时要充分做到归纳总结。这样才能在考场上做到举一反三,增强必胜的信心。

(5)常用技巧掌握法。掌握常用的解题技巧,如排除法、比较法等等。熟练掌握这些客观题解题技巧会帮助考生快速、准确地选出正确的答案,从而提高答题的效率。

数量关系中的第二种题型是数学运算题。这类试题一般较简短,其知识内容和原理总的来说比较简单。但因为有时间限制,所以要算得即快又准,应注意以下4个方面:一是掌握一些常用的数学运算技巧、方法和规律,尽量多用简便算法。二是准确理解和分析文字,正确把握题意,三是熟练掌握一定的题型及解题方法。四是加强训练,增强对数字的敏感程度,并熟记一些基本数字。以下我们列举一些比较典型的试题,对提高成绩很有帮助。

一、利用“凑整法”求解的题型

例题:5.2+13.6+3.8+6.4的值为

A.29

B.28

C.30

D.29.2

答案为A。“凑整法”是简便运算中最常用的方法,方法是利用交换律和结合律,把数字凑成整数,再进行计算,就简便多了。

二、利用“尾数估算法”求解的题型

例题:425+683+544+828的值是

A.2488

B.2486

C.2484

D.2480

答案为D。如果几个数的数值较大,又似乎没有什么规律可循,可以先考察几个答案项尾数是否都是唯一的,如果是,那么可以先利用个位数进行运算得到尾数,再从中找出唯一的对应项。如上题,各项的个位数相加=5348=20,尾数为0,所以很快可以选出正确答案为D。

三、利用“基准数法”求解的题型

例题:1997+1998+1999+2000+2001

A.9993

B.9994

C.9995

D.9996

答案为C。当遇到两个以上的数相加,且他们的值相近时,可以找一个中间数作为基准,然后再加上每个加数与基准的差,从而求得他们的和。在该题中,选2000作为基准数,其他数分别比2000少3,少2,少1,和多1,故五个数的和为9995。这种解题方法还可以用于求几个相近数的算术平均数。

1.比例分配问题

例题:一所学校一、二、三年级学生总人数450人,三个年级的学生比例为2:3:4,问学生人数最多的年级有多少人?

A.100

B.150

C.200

D.250

答案为C。解答这种题,可以把总数看作包括了234=9份,其中人数最多的肯定是占4/9的三年级,所以答案是200人。

2.路程问题

例题:某人从甲地步行到乙地,走了全程的2/5之后,离中点还有2.5公里。问甲乙两地距离多少公里?

A.15

B.25

C.35

D.45

答案为B。全程的中点即为全程的2.5/5处,离2/5处为0.5/5,这段路有2.5公里,因此很快可以算出全程为25公里。

3.工程问题

例题:一件工程,甲队单独做,15天完成;乙队单独做,10天完成。两队合作,几天可以完成?

A.5天

B.6天

C.7.5天

D.8天

答案为B。此题是一道工程问题。工程问题一般的数量关系及结构是:

工作总量

________ =工作时间

工作效率

我们可以把全工程看作“1”,工作要n天完成推知其工作效率为1/n,两组共同完成的工作效率为1/n11/n2,根据这个公式很快可以得到答案为6天。另外,工程问题还可以有许多变式,如水池灌水问题等等,都可以用这种思路来解题。

4.植树问题

例题:若一米远栽一棵树,问在345米的道路上栽多少棵树?

A.343

B.344

C.345

D.346

答案为D。这种题目要注意多分析实际情况,如本题要考虑到起点和终点两处都要栽树,所以答案为346。

1、8754896×48933=(D)

A.428303315966

B.428403225876

C.428430329 557

D.428403325968

解题思路:把两个乘积因子个位数相乘,其个位数应为8,即排除A、B、C。

2、3543278×2221515=(D)

A.7871445226160

B.7861445226180

C.75714452261

50 D.7871445226170

解题思路:把两个乘积因子的十位数相乘,其积应为70,即排除A、B、C。

3、36542×42312=(D)

A.1309623104

B.1409623104

C.1809623104

D.

未给出解题思路:以两个乘积因子头两位数相乘(36×42),其积应为1512,各选项中头两位数没有“15”的,所以,就没有正确答案。

4、50×62×70×82=(D)

A.12722410

B.12822340

C.17892520

D.177 94000

解题思路:由50×70可知其尾数有两个零,即排除A、B、C,得D。

5、125×618×32×25=(D)

A.61708000

B.61680000

C.63670000

D.61800000

解题思路:125×618×32×25=(125×8)×(4×25)×618=61800000。

相关文档
最新文档