有理数的减法导学案(1)
有理数减法导学案1
有理数减法导学案一.导入新课:语言直接导入二、自主学习 1.321-的绝对值是 , 的相反数是-22.4的相反数是 , -(-3)的相反数是 3.0的绝对值是 , 0的相反数是 4.最小的正整数是 , 最大的负整数是 5.绝对值小于2的整数有 6. 的绝对值等于4。
7.化简(1)-(-3)= (2)-(+2)= (3)+(-2)= (4)+(-3)= (5)-[+(-2)]= (6)-(+3)= (7)=--4 (8)-(-4)= (9)-(+0)=8.直接写出得数(1) (-7)+(-8)= (2) (-2)+1.5= (3) (-6)+(+6)= (4) (-7)+(+3)= (5) (+2)+(-1.2)= (6)0+(-4)= (7)(-1)+8= (8)(+3)(+2)= (9)(-7)+(+4)=(10)(-4)+7= (11)(43-)+41=三.反馈交流(组长检查,小组之间相互解决) 四、合作探究1.乌鲁木齐的最高温度为4°C 。
最低气温为-3°C 。
这天乌鲁木齐的温差为多少?依据题意可列算是为: 2.计算下列各式(1) 50-20= 50+(-20)= (2) 50-10= 50+(-10)=(3) 50-0= 50+0= (4) 50-(-10)= 50+10= (5) 50-(-20)= 50+20= 例1 计算下列各题(1)8-(-5) (2)(-2)-3 (3)(-6)-0解:原式= 8+ 解:原式= -2+ 解:原式= + = = = (4) 0-6 (5)(-2)-(-7) (6)4-(+7) 解:原式= + 解:原式=- + 解:原式== = = (6) 2-5= 2+(-5)=通过以上几个式题的计算,你得到的结论是有理数减法法则:减去一个数,等于 上这个数的相反数。
五.展示提升(小组板演)六.课堂小测1.(1)3-5 (2)3-(-5) (3)(-3)-5 (4)(-3)-(-5) (5)-6-(-6) (6)-7-0(7)0-(-7) (8)(-6)-6 (9)9-(-11)(10)-7-(+8)(11)(-4-7)(12)2-62.(1)-3-(-7)(2)(-10)-3 (3)13-(-17)(4)2-9 (5)0-12 (6)(-11)-0 (7)(-4)-16 (8)37-(-21)(9)10-(+17)(10)-4-12 得分:七.教师总结:有理数减法步骤是有理数减法法则:减去一个数,等于上这个数的相反数。
1.3.2有理数的减法(有理数的减法法则)教案
举例解释:
-通过具体的计算题,如3-2、-5-(-2)、7/4-3/4等,强调减法法则的应用,确保学生掌握重点知识。
-通过实际情境,如“小明向东走了5米,然后向西走了3米,他现在离起点多远?”,让学生将减法法则应用于实际问题中,加深对重点内容的理解。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数减法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数减法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我们探讨了有理数的减法法则,我发现学生们对这个概念的理解程度不尽相同。有的同学能够迅速掌握减法法则,而有的则在正负号的转换上犯了难。这让我意识到,在讲解理论知识时,需要更加注重个别差异,给予不同层次的学生更多的关注和指导。
在讲授过程中,我尝试通过数轴和实际案例来解释减法法则,希望让抽象的数学概念变得具体形象。从学生的反馈来看,这种方法似乎起到了一定的效果,但仍有一部分同学在应用时感到困惑。我想,下次可以尝试引入更多的生活实例,让学生在具体的情境中感受和理解减法的运用。
2.教学难点
-相反数的概念及其在减法运算中的应用。
-减法运算中正负号的处理,尤其是负负得正的规则。
-在实际问题中识别和应用减法法则。
1.3.2 有理数的减法(1)
困难像弹簧,看你强不强。
你强他就弱,你弱他就强!!!七年级数学 SX-----14-----010《1.3.2有理数的减法(1)》导学案编写人:陈宗玉 审核人: 编写时间:2014.9.12班级: 组名: 姓名: 等级:【学习目标】:(1)经历探索有理数减法法则的过程,发展学生的逻辑思维能力,培养学生的运算能力. (2) 掌握有理数的减法法则,通过把减法运算转化为加法运算,向学生渗透转化思想. (3)能较为熟练地进行两个有理数减法的运算;【学习重点】:掌握有理数的减法法则及运用,减法转化为加法,把减数变为它的相反数。
【学习难点】:有理数减法法则的推导和实际情境中体会减法运算的意义. 【知识链接】:(1)-2的相反数是_________,+0.3的相反数是_________。
(2)相反数是它的本身的数是_______,正数的相反数是 数,负数的相反数是 数。
(3)X+2=5,则X= 因为加法和减法是 运算。
【学习过程】:探究一:根据昨晚中央电视台的天气预报,今天宜昌的最低温度为 +3℃ ,而北国哈尔滨的最低气温为 -5 ℃ ,那么今天宜昌比哈尔滨的最低气温高多少?你是怎么算的。
探究二:问题1:如果今天宜昌的最低温度为 0℃ ,而北国哈尔滨的最低气温为 -5 ℃ ,那么今天宜昌比哈尔滨的最低气温高多少?如果今天宜昌的最低温度为-1℃呢?如果今天宜昌的最低温度为-6℃呢?问题2:练一练:3–(-5)= 3+5= ;0 –(-5)= 0+5= ;-1 –(-5) = -1 + 5= ;-6–(-5)= -6+5= ;问题3:想一想:观察比较上面的每一组前后两个式子的结果,你能发现其中的规律吗?规律:用字母表示: 计算:7– (– 5)(请规范写出每一步的计算过程!!!)探究三:计算下列各式:(请规范写出每一步的计算过程!) (1)9 – (– 5) (2)( – 3) – 1 (3)0 – 8 ; (4)( – 5) – 0(5) (– 9 )—(– 15) (6)0– 7 (7)7.2–( – 4.8) (8)【基础达标】:(1)(-5)+( )= -8;(-3)+( )=2(2)比2°C 低8°C 的温度是 ; 比-3°C 低6°C 的温度 ;比0小4的数 ; (3)下面等式正确的是( )A 、a-b=(-a)+ bB 、a-(-b)=(-a )+(-b)C 、(-a)-(-b)=(-a)+(-b)D 、a-(-b)=a+b (4)若m>0,n<0,则m-n 0; 若m<0,n>0, 则m-n 0。
有理数的减法教案(通用3篇)
We have to laugh every day in life, and none of us know what happens in the next second of life.通用参考模板(页眉可删)有理数的减法教案(通用3篇)有理数的减法教案1知识与能力:1.使学生理解有理数的加减法法可以互相转化。
2.使学生熟练地进行有理数的加减混合运算。
过程与方法:1.体会有理数的加减法法可以互相转化的思想。
2.培养学生的运算能力。
情感态度与价值观:培养学生认真、仔细的良好学习态度。
重点准确迅速地进行有理数的加减混合运算。
教材提示:本节课是学习有理数减法的第二课时,在教学过程中,教师应该首先通过探究的方式组织学生分组讨论,借助于已有知识,体会有理数的加减法法可以互相转化的思想,如何省略加号,并且还要正确掌握省略加号后它们表示的是哪些数的和,强化混合运算的准确性。
教学过程:一、自主学习(一)、阅读教材23-24页。
(二)、导学练习 [活动1]:学生课前自主完成。
1.减法法则:,用字母表示为:2.计算(1)1-5= (2)8-11= (3)6-9=(4)9-(-9)= (5)(- )-(- )=[活动2]:学生先课前自主,然后在课堂上一起和大家交流讨论。
1、红星队在4场足球赛中的战绩是:第一场3:1胜,第二场2:3负,第三场0:0平,第四场2:5负。
红星队在4场比赛中总的净胜球数是多少?2、一20十3十(十5)十(一7)(读作,,,的和 )3、计算:(一20)十(十3)一(一5)一(十7). 注意:在进行有理数混合运算时,应该先将减法按规则统一成加法后再计算;第一个数前面的一常用括号括起来,但熟练后,第一个数带负号时,通常可以不用括号手起来。
4、计算在做有理数运算时,易出符号错误。
计算:(1)(一5)一(一4)一(十1)=(一5)十(一4)十(十1) =(一9)十(十1) =一8(2)(一7)一(十4) 十(一8)十(一3)一(一8) =一7十4一8一3一8 =一22. 以上两个小题均有错误,指出错在哪里,并改正。
七年级(人教版)集体备课教学设计:1.3.2《有理数的减法》(1)
七年级(人教版)集体备课教学设计:1.3.2《有理数的减法》(1)一. 教材分析《有理数的减法》是初中数学的重要内容,主要让学生掌握有理数减法的基本运算方法,理解有理数减法的运算规律,为后续的数学学习打下基础。
本节课的内容包括有理数减法的定义、法则以及运算方法,通过学习,让学生能够熟练地进行有理数的减法运算。
二. 学情分析七年级的学生已经掌握了有理数的基本概念和加法运算,但对减法运算可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生从已有的知识出发,逐步过渡到减法运算的学习,帮助学生建立知识体系。
三. 教学目标1.让学生掌握有理数减法的基本运算方法。
2.培养学生解决实际问题的能力。
3.提高学生的数学思维能力。
四. 教学重难点1.教学重点:有理数减法的运算方法。
2.教学难点:理解有理数减法的运算规律,以及如何运用减法运算解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究有理数减法的运算方法。
2.运用实例讲解法,让学生通过具体例子理解有理数减法的运算规律。
3.采用小组合作学习法,培养学生的团队协作能力。
六. 教学准备1.准备相关教学PPT,展示有理数减法的运算方法。
2.准备一些实际问题,让学生在课堂上进行练习。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾有理数加法的基本运算方法,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示有理数减法的定义和运算方法,让学生初步了解有理数减法的基本概念。
3.操练(10分钟)教师给出一些简单的有理数减法题目,让学生在课堂上进行练习,巩固所学知识。
4.巩固(10分钟)教师通过PPT展示一些复杂的有理数减法题目,引导学生运用所学知识解决问题,提高学生的运算能力。
5.拓展(10分钟)教师引导学生思考有理数减法在实际生活中的应用,让学生举例说明,培养学生的实际应用能力。
6.小结(5分钟)教师对本节课的主要内容进行总结,强调有理数减法的运算方法和规律。
有理数的减法(1)
难点
导学重点:有理数减法法则和运算
导学难点:有理数减法法则和运算
教学过程
修改内容
一、情境引入:
1、世界上最高的山峰珠穆郎玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为—154米,两处的高度相差多少呢?
试试看,计算的算式应该是.能算出来吗,画草图试试
2、长春某天的气温是―2°C~3°C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:°C)显然,这天的温差是3―(―2);
D零减去任何数,差都是负数.
3.若两个数的差不为0的是正数,则一定是()
A被减数与减数均为正数,且被减数大于减数.
B被减数与减数均为负数,且减数的绝对值大.
C被减数为正数,减数为负数.
4.下列计算中正确的是()
A(—3)-(—3)= —6 B 0-(—5)=5
C(—10)-(+7)= —3 D | 6-4 |= —(6-4)
试一试
做一个填空:(-8)+()= -5
容易得到(-8)+(+3)= -5②
思考:比较①、②两式,我们有什么发现吗?
3.验证:
(1)如果某天A地气温是3℃,B地气温是-5℃,A地比B地气温高多少?
3-(-5)=3+;
(2)如果某天A地气温是-3℃,B地气温是-5℃,A地比B地气温高多少?
(-3)-(-5)=(-3)+;
(1) (-3)―(―5);(2)0-7;
(3) 7.2―(―4.8);(4)-3 ;
请同学们先尝试解决
四.课堂演练:
1.课本P23 1.2
2、计算:
(1)(-37)-(-47);(2)(-53)-16;
(3)(-210)-87;(4)1.3-(-2.7);
新人教版七年级数学上1.3.2 有理数的减法(1)教案及教学反思
新人教版七年级数学上1.3.2 有理数的减法(1)教案及教学反思1.3.2有理数的减法(1)毛集试验初级中学朱苗苗一、教学目标㈠知识与技能1.理解掌控有理数的减法法那么2.会进行有理数的减法运算㈡过程与方法1.通过把减法运算转化为加法运算,向同学渗透转化思想2.通过有理数减法法那么的推导,进展同学的规律思维技能3.通过有理数的减法运算,培育同学的运算技能㈢情感立场与价值感通过揭示有理数的减法法那么,渗透事物间普遍联系、相互转化的辨证唯物主义思想二、学法引导1.教学方法:尽量引导同学分析、归纳总结,以同学为主体,师生共同参加教学活动。
2.同学学法:探究新知归纳结论练习巩固三、重、难点与关键1.重点:有理数减法法那么和运算2.难点:有理数减法法那么的推导3.关键:正确完成减法到加法的转化四、师生互动活动设计老师提出实际问题,同学积极参加探究新知,老师出示练习题,同学以多种方式争论解决。
五、教学过程㈠创设情境,引入新课1、计算〔口答〕⑴;⑵-3+〔-7〕⑶-10+3;⑷10+〔-3〕2、由实物投影显示课本第21页中的画面,假设这是淮南冬季里的某个周六,白天的最高气温是3℃,夜晚的最低气温是-3℃,这一天的最高气温比最低气温高多少?引导同学观测:生:3℃比-3℃高6℃师:能不能列出算式计算呢?生:3-〔-3〕师:如何计算呢?总结:这就是我们今日要学的内容.(引入新课,板书课题)㈡探究新知,讲授新课1、师:大家知道减法是与加法相反的运算,计算3-〔-3〕,就是要求出一个数χ,使χ与-3的和等于3,那什么数与-3的和等于3呢?生:6+(-3)=3师:很好!由此可知3-〔-3〕=6师:计算:3+〔+3〕得多少呢?生:3+〔+3〕=6师:让同学观测两式结果,由此得到3-〔-3〕=3+〔+3〕师:通过上述题,同学们观测减法是否可以转化为加法计算呢?生:可以师:是如何转化的呢?生:减去一个负数〔-3〕,等于加上它的相反数〔+3〕2、换几个数再试一试,计算以下各式:⑴0-〔-3〕=0+〔+3〕=⑵-5-〔-3〕=-5+〔+3〕=⑶9-8=9+〔-8〕=引导同学完成答题,并提问:通过上述的争论,你能得出什么结论?归纳得出:有理数的减法可以转化为加法来进行,“相反数“是转化的桥梁。
山东省德州市第七中学七年级数学上册 1.3.2 有理数的减法导学案1(新版)新人教版
有理数减法【学习目标】:1、经历探索有理数减法法则的过程,理解有理数的减法法则。
2、能较熟练的进行有理数的减法运算。
3、初步体验由减法运算转化为有理数加法运算的数学转化思想。
【学习重点】:有理数减法法则及运用【课前预习】:1.计算:(1)16+(—23)+ 24 +(—37)(2)187(0.534)(3)(0.466)(1)2525-+++-++2..如果 0=+b a ,那么a 与b 之间的关系是( )A .相等B .符号相同C .符号相反D .互为相反数3.数a ,b 在数轴上的位置如图所示,则b a +是( )(A )正数 (B )零(C )负数 (D )都有可能【课堂学习】:1、创设情景,提出问题。
某地一天的气温是3-℃~4℃,那么这天的温差(最高气温减去最低气温,单位:℃)就是 .这里用到了正数与负数的减法。
计算)3(4--,就是要求出一个数x ,使得x 与3-相加得4,因为 与3-相加得4,所以x 应该是___,即)3(4--=____ ①另一方面我们知道=++)3(4 ②由①②有=)3(4++ ③从③式可以看出减3-相当于加 ,把4换成0,-1,-5用上面的方法考虑+=--0)3(0 ;+-=---)1()3()1( ;+-=---)5()3()5( .从上面的式子中我们可以发现0,-1,-5减 -3的结果和它们加______的结果相同吗?【合作探究·释疑】:问题1:计算(1)9- 8 = , 9 +(- 8)= ;(2)15- 7 = , 15+(-7)= ;问题2:下列等式成立吗?(1)9 - 8= 9 +(- 8)(2)15- 7= 15+(-7)问题3 :上面的关系把有理数的减法转化成了有理数的 。
由此我们得到了有理数减法法则:减去一个数,等于 。
若用 a 、b 表示两数,有理数的法则也可以表示成a-b=__________例4、计算(1) );5()3(--- (2)0-7; (3)7.2-(-4.8);(4)415)213(-- 解:(1));5()3(---)5()3(++-=…………减法转换为加法 2= …………………… 依据加法法则计算:(2) :(3) :(4)【知识结构】:【课堂反馈】:完成课本P23练习1练习2做在学案上面::(1) :(2) :(3):(4) :(5) :(6):(1) :(2)2、下面的计算过程错在哪里?请你找到并改正。
人教版初中七年级上册数学《有理数加减混合运算》导学案
第一章有理数1.3 有理数的加减法1.3. 2 有理数的减法第2课时有理数的加减混合运算学习目标:1、能把有理数的加、减法混合运算的算式写成几个有理数的和式,并能正确地进行有理数加减混合运算。
2、能体会数学中的转化思想。
学习难点:有理数加减法的混合运算及其应用。
教学过程一、情境引入1.有理数的加法法则,有理数的减法法则。
2.一架飞机做特技表演,它起飞后的高度变化情况为:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此时飞机比起飞点高了多少千米?3.(-8)-(-10)+(-6)-(+4),这是有理数的加减混合运算题,你会做吗?请同学们思考练习。
根据有理数减法法则,有理数的加减混合运算可以统一为二、探索新知1.加法、减法统一成加法由于减法可以改写成加法进行运算,因此所有加法、减法的运算在有理数范围内都可以统一成加法运算。
如:(-12)+(-5)-(-8)-(+9)可以改写成(-12)+(-5)+(+8)+(-9)做一做:(1)(-9)-(+5)-(-15)-(+9)(2)2+5-8(3)14-(-12)+(-25)-172.有理数加法运算中,加号可以省略如:12+(-8)=12-8;(-12)+(-8)=(-12)-(+8)=(-12)-8(-9)+(-5)+(+15)+(-20)= -9-5+15-20练一练:将(-15)-(+63)-(-35)-(+24)+(-12)先统一成加法,再省略加号。
3.加、减混合运算中“+”“—”号的理解(1)可以看作是运算符号(第一个数除外)如:-5-3+8-7可读作负5减去3加上8减去7(2)可以看作是一个数的本身的符号如:-5-3+8-7可以看作是(-5)+(-3)+(+8)+(-7),可读作负5、负3、正8、负7的和4.省略加号的加法算式的运算练一练: (1)-3-5+4(2)-26+43-24+13-46三、 问题问题1.计算(1)(-4)+9-(-7)-13(2)11-39.5+10-2.5-4+19(3)54)1.3()53(4.2+-+--练习:课本33P 练一练; 34P 4、5问题2.寻道员沿东西方向的铁路进行巡视维护。
七年级数学《有理数的减法》教案 (公开课获奖)1
有理数的减法教学目标:1.通过实例,经历探索有理数减法法那么的过程。
2.理解有理数减法法那么,渗透化归思想。
3.掌握有理数的减法法那么,会运用法那么求两个有理数的差。
4.能利用有理数的减法解决简单的实际问题,体会数学与现实生活的联系。
教学重点:有理数的减法法那么教学难点:有理数减法法那么的探索过程教学过程:〔第一课时〕一温故互惠〔二人小组完成〕1.加法运算和减法运算有什么关系?2.填空:〔1〕4+_____=6, 6-4=____.〔2〕3+___=5, 5-3=_____.〔3〕-3+___=4, 4-〔-3〕=____.〔4〕4+___=-2, -2-4=____.3.说出以下各数的相反数.3 -5 -6二设问导读阅读教材P21-22完成以下问题:1.在温度计上,从零上4℃到零下3℃相差____℃,所以可以列算式为:_____,因为4+3=7对照这两个算式得到等式:____=____.2.探究:9-8=______. 9+〔-8〕=______.15-7=____. 15+〔-7〕=_____.0-〔-3〕=____. 0+3=_____.-1-〔-3〕=_____. -1+3=____.-5-〔-3〕=____. -5+3=___.观察上面算式你能发现什么结论?3.有理数的减法法那么:_______________也可以表示成_____________________.4.先阅读教材例5,从例5我们知道减法运算可以利用减法法那么转化为加法运算,即减负变加________,减正变加________三自我检测1.利用减法法那么计算以下各题:〔1〕15-〔-7〕;〔2〕〔-6〕-5;〔3〕0-〔-1〕;〔4〕〔-18〕-0〔5〕11-〔+10〕;〔6〕0-〔+4〕2.计算:〔1〕温度3℃比-8℃高_____;〔2〕温度-10℃比-2℃低_____;〔3〕海拨-10m比-30m高_____;〔4〕从海拨20m到-8m,下降了_____.四稳固训练1.计算:〔1〕〔+5〕-〔-3〕;〔2〕〔〕;〔3〕〔-61〕-〔-31〕.2.某地连续五天内每天最高气温与最低气温纪录如下表所示,哪一天的温差〔最高气温与最低气温的差〕最大?哪天的温差最小?1.3.〔1〕甲数是4 的相反数,乙数比甲数的相反数大3,求乙数比甲数大多少?〔2〕月球外表的温度中午是101℃,半夜是-153℃,中午比半夜的温度高多少? 五 拓展探究1.一个数加-3.6,和为-0.36,那么这个数是〔 〕 A.-2.24 B.-3.96 C2.以下计算正确的选项是〔 〕A.(-14)-(+5)=-9B.0-(-3)=3C.(-3)-(-3)=3D.|5-3|=-(5-3) 3.较小的数减去较大的数,所得的差一定是〔 〕4.以下结论正确的选项是〔 〕A.数轴上表示6的点与表示4的点两点之间的距离是10.B.数轴上表示-8的点与表示-2的点两点之间的距离是-10.C.数轴上表示-8的点与表示+2的点两点之间的距离是10.D.数轴上表示0的点与表示-5的点两点之间的距离是-5.5.以下结论正确的选项是〔〕A.有理数减法中,被减数不一定比减数大B.减去一个数,等于加上这个数六、教学反思15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 〔三〕情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. 〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕D CA BD CABDCA B[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到 ∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识.Ⅲ.随堂练习〔一〕课本练习 1、2、3. 练习2.如图,在以下等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.D CA B〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD .又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一EDCA B P三、例题分析四、随堂练习五、课时小结六、课后作业备课资料参考练习1.如果△ABC是轴对称图形,那么它的对称轴一定是〔〕A.某一条边上的高B.某一条边上的中线C.平分一角和这个角对边的直线D.某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是〔〕A.80°B.20°C.80°和20°D.80°或50°答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm.求这个等腰三角形的边长.解:设三角形的底边长为x cm,那么其腰长为〔x+2〕cm,根据题意,得2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm、6 cm和6 cm.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(b aa b b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a五、课后练习1.计算:(1))1)(1(y x xy x y+--+(2)22242)44122(a aa a a a a a a a -÷-⋅+----+(3)zx yz xy xyz y x ++⋅++)111(2.计算24)2121(a a a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.。
有理数的减法教学设计(实用7篇)
有理数的减法教学设计(实用7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!有理数的减法教学设计(实用7篇)有理数的减法教学设计(1)教学目标:【知识与技能】掌握有理数的减法法则,能运用有理数的减法法则进行运算。
《1.3.2 第1课时 有理数的减法法则》教案、同步练习(附导学案)
1.3.2有理数的减法《第1课时有理数的减法法则》教案【教学目标】:1.经历探索有理数减法法则的过程,理解有理数减法法则.2.会熟练进行有理数减法运算.【教学重点】:有理数减法法则和运算.【教学难点】:有理数减法法则的推导.【教学过程】(一)创设情景,导入新课观察温度计:你能从温度计看出4℃比-3℃高出多少度吗?学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(最高气温减最低气温,单位℃)如何用算式表示?按照刚才观察到的结果,可知4-(-3)=7 ①,而4+(+3)=7 ②,∴由①②可知:4-(-3)=4+(+3) ③,上述结论的获得应放手让学生回答.(二)动手实践,发现新知观察、探究、讨论:从③式能看出减-3相当于加哪个数吗?结论:减去-3等于加上-3的相反数+3.(三)类比探究,总结提高如果将4换成-1,还有类似于上述的结论吗?先让学生直观观察,然后教师再利用“减法是与加法相反的运算”引导学生换一个角度去验算.计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2 ①,又因为(-1)+(+3)=2 ②,由①②有(-1)-(-3)=-1+(+3) ③,即上述结论依然成立.试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?让学生利用“减法是加法的相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论.再试:把减数-3换成正数,结果又如何呢?计算9-8与9+(-8);15-7与15+(-7)从中又能有新发现吗?让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数.归纳:由上述实验可发现,有理数的减法可以转化为加法来进行.减法法则:减去一个数,等于加上这个数的相反数.用字母表示:a-b=a+(-b).(在上述实验中,逐步渗透了一种重要的数学思想方法——转化)(四)例题分析,运用法则【例】计算:(1)(-3)-(-5); (2)0-7;(3)7.2-(-4.8); (4)-3-5.(五)总结巩固,初步应用总结这节课我们学习了哪些数学知识和数学思想?你能说一说吗?教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的知识.1.3.2 有理数的减法《第1课时有理数的减法法则》同步练习l.有理数的减法法则是:减去一个数等于加上这个数的___________,用字母表示成:_______________________________2.下列括号内应填什么数?(1)(-2)-(-5)=(-2)+(______); (2)0-(-4)=0+(______); (3)(-6)-3=(-6)+(______); (4)1-(+37)=1+(______).3.温度3℃比-7℃高_______;温度-8℃比-2℃低_______.4.海拔-200m 比300m 高________;从海拔250m 下降到100m ,下降了________.5.数轴上表示数-3的点与表示数-7的点的距离为________.6.85减去1的差的相反数等于________;352-的相反数为________. 7.3--比-(-3)小________;比-5小-7的数是________;比0小-3的数是________.8.下列结论中正确的是( )A .两个有理数的和一定大于其中任何一个加数B .零加上一个数仍得这个数C .两个有理数的差一定小于被减数D .零减去一个数仍得这个数8.下列说法中错误的是( )A .减去一个负数等于加上这个数的相反数B .两个负数相减,差仍是负数C .负数减去正数,差为负数D .正数减去负数,差为正数9.下列说法中正确的是( )A .减去一个数等于加上这个数B .两个相反数相减得OC .两个数相减,差一定小于被减数D .两个数相减,差不一定小于被减数10.下列说法正确的是( )A .绝对值相等的两数差为零B .零减去一个数得这个数的相反数C .两个有理数相减,就是把它们的绝对值相减D .零减去一个数仍得这个数11.差是-7.2,被减数是0.8,减数是( )A .-8B .8C .6.4D .-6.412.若0>a ,且b a >,则b a -是( )A .正数B .正数或负数C .负数D .0 13.计算:(1)(-5)-(-3); (2)0-(-7); (3)(+25)-(-13);(4)(-11)-(+5); (5)12-21; (6)(-1.7)-(-2.5);(7)⎪⎭⎫ ⎝⎛--2132; (8)⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-3161; (9)()8.1546--⎪⎭⎫ ⎝⎛-.1.3.2 有理数的减法《第1课时 有理数的减法法则》导学案【学习目标】:1.理解有理数减法法则, 能熟练进行减法运算.2.会将减法转化为加法,进行加减混合运算,体会化归思想.【学习难点】有理数的减法法则的理解,将有理数减法运算转化为加法运算.【自主学习】:一、情境引入:1.昨天,国际频道的天气预报报道,南半球某一城市的最高气温是5℃,最低气温是-3℃,你能求出这天的日温差吗?(所谓日温差就是这一天的最高气温与最低气温的差)2.珠穆朗玛峰和吐鲁番盆地的海拔高度分别是8848米和-155米,问珠穆朗玛峰比吐鲁番盆地高多少?探索新知:(一)有理数的减法法则的探索1.我们不妨看一个简单的问题:(-8)-(-3)=?也就是求一个数“?”,使(?)+(-3)=-8根据有理数加法运算,有(-5)+(-3)= -8所以(-8)-(-3)= -5 ①2.这样做减法太繁了,让我们再想一想有其他方法吗?试一试做一个填空:(-8)+()= -5容易得到(-8)+(+3 )= -5 ②思考:比较①、②两式,我们有什么发现吗?3.验证:(1)如果某天A地气温是3℃,B地气温是-5℃,A地比B地气温高多少?3-(-5)=3+ ;(2)如果某天A地气温是-3℃,B地气温是-5℃,A地比B地气温高多少?(-3)-(-5)=(-3)+ ;(2)如果某天A地气温是-3℃,B地气温是5℃,A地比B地气温高多少?(-3)-5=(-3)+ ;(二)有理数的减法法则归纳1.说一说:两个有理数减法有多少种不同的情形?2.议一议:在各种情形下,如何进行有理数的减法计算?3.试一试:你能归纳出有理数的减法法则吗?由此可推出如下有理数减法法则:减去一个数,等于加上这个数的相反数。
鲁教版-数学-七年级上册-鲁教版-七年级上册数学2.5有理数的减法导学案
2.5 有理数的减法【学习目标】经历探索有理数的减法法则的过程,能熟练地进行有理数的减法运算【学习重难点】有理数的减法运算【学习过程】一.复习回顾1、计算12+(-13)= -2+(-3)=二、深入探究自主学习:认真解读教材40-41页内容,尝试完成下列问题:1、计算:(1)3-(-5)=______ ;3+5=____ .3-(-5)等于3+5吗?你发现什么样的规律?2、通过计算你发现了什么?减法可以转化成加法吗?是怎样转化的?3、怎样叙述有理数的减法法则?4、有理数的减法法则怎样用公式来表示?教师点拨强调:运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数三、课堂小结这节课的收获随堂训练1. 填空题:(1)3-(-3)=_______;(2)(-11)-2=_______;(3)0-(-6)=_______;(4)(-7)-(+8)=_______;(5)-12-(-5)=________;(6)3比5大_________;(7)-8比-2小_________;(8)-4-(______)=10.2、我市2011年的最高气温为39 ℃,最低气温为零下7 ℃,则计算2011年温差列式正确的是()A.(+39)-(-7)B.(+39)+(+7)C.(+39)+(-7)D.(+39)-(+7)3、下列说法错误的是( ).A.两个负数相减,差仍然是负数;B.负数减去正数,差是负数;C.正数减去负数,差是正数;D.减去一个负数,等于加上一个正数4.判断下列语句是否正确(1)两个数相减,就是把绝对值相减; ( )(2)若两数的差为0,则这两数必相等; ( )(3)两数的差一定小于被减数; ( )(4)两个负数之差一定是负数; ( )(5)两个数的和一定大于这两个数的差; ( )(6)减去一个数等于加上这个数. ( )(7)零减去一个数,仍得这个数()5.一个整数与2的差的绝对值大于2006而小于2008,则这个整数是多少?。
有理数的减法数学教案
有理数的减法数学教案标题:有理数的减法数学教案一、教学目标:1. 知识与技能:理解并掌握有理数的减法运算,能熟练地进行有理数的加减混合运算。
2. 过程与方法:通过观察、思考和讨论,引导学生理解和掌握有理数的减法法则,并能在实际问题中应用。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生的思维能力和解决问题的能力。
二、教学重点:有理数的减法运算法则的理解和运用。
三、教学难点:理解有理数减法的实质是加法的逆运算。
四、教学过程:(一)引入新课教师出示一些生活中的例子,如购物时的找零、比赛中的得分等,让学生体会到生活中处处都有减法运算的存在。
然后引出本节课的主题——有理数的减法。
(二)讲解新课1. 有理数减法的定义教师先复习有理数的加法定义,然后指出有理数的减法就是有理数的加法的逆运算,即a-b=a+(-b)。
2. 有理数减法的运算法则教师引导学生观察有理数加法运算法则,提出疑问:“既然减法是加法的逆运算,那么有理数的减法运算法则又是什么呢?”激发学生的探索欲望。
3. 有理数减法的实例分析教师给出几个具体的有理数减法的例子,让学生尝试计算,然后教师再进行详细的解答和解释。
4. 加减混合运算教师讲解有理数的加减混合运算的步骤和注意事项,让学生在做题过程中逐步掌握。
(三)课堂练习教师设计一系列有关有理数减法的问题,包括基本的计算题和应用题,让学生在实践中巩固所学知识。
(四)课堂小结教师带领学生回顾本节课的主要内容,强调有理数减法的运算法则和加减混合运算的方法。
五、作业布置教师根据学生的实际情况,布置适当的课后作业,以巩固课堂教学效果。
六、教学反思在教学过程中,教师应时刻关注学生的学习情况,及时调整教学策略,以达到最佳的教学效果。
同时,教师也应对自己的教学方法进行反思和改进,不断提高教学质量。
七、教学评估通过对学生课堂表现、作业完成情况和测验成绩的综合评价,了解学生对有理数减法知识的掌握程度,以便进行针对性的教学辅导。
1.3.2有理数的减法导学案 (1)
§1.3.2 有理数的减法(1) 学习目标:1.记住有理数减法法则,并能熟练地进行有理数减法运算 2.能用有理数的减法解决实际问题。
复习导入:(2分钟) 1、有理数加法法则 2、计算 1、(–3)+(–9)= 2、85+(+15)= 3、(–3 )+(–3 )= 4、(–3.5)+(–5 )= 5、(–45) +(+23)= 6、(–1.35)+6.35= 7、(–9)+ 0 = 8、0 +(+15)= 自主学习: (一)自主探究,合作归纳(10分钟) 1、-3的相反数是 , 2、计算:(1)-4+1= (2)(+8)+(-3)= (3)(-3.4)+(-5.6)= 3、比10℃低2℃的温度是 ,比-1℃低2℃的温度是 。
你能用算式表达上面第3题中的两个运算关系吗?试试看。
(1) (2) 4、计算:(3)10+(-2)= (4)(-1)+(-2)= 5、观察比较以上两题中的(1)、(3)算式,你有什么发现?(2)和(4)呢?是否也符合你的发现?试着把你的发现描述出来吧。
归纳总结:有理数的减法法则: 。
表达式为:a-b= (二)应用法则,规范步骤(用5分钟时间阅读课本P22例4,完成以下各题) (1)11-(+7) (2)-1.2-(+2.1) (3) (32-)-(31-) (4)0-(-3.5)思考: 1、有理数相减的运算过程中,改变的是哪些?不变的是哪些? 2、小学里学习的减法,差总是小于被减数。
有理数减法中,差一定小于被减数吗? 两人互动小游戏:(5分钟) 请同学们自己准备三道利用有理数的减法进行运算的题目,和同桌交换来做,看谁做得又快又好! 巩固拓展:(15分钟) 1、计算1-|-2|结果正确的是 ( ). A. 3 B. 1 C. -1 D. -3 2、世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8848米,吐鲁番盆地的海拔高度大约是-155米.珠穆朗玛峰比吐鲁番盆地高度 米。
有理数的加减混合运算(一)
七年级上数学课题:2.6有理数的加减混合运算(一)导学案班级:________ 姓名:_________ 学号:__________学习目标:1、能熟练地进行有理数的加减混合运算。
2、在将加减混合运算统一成加法运算并省略加号及括号的过程中,理解省略加号后的写法和读法。
3、在进行有理数的加减混合运算的过程中体会“转化”的数学思想。
教学过程:一、温故旧知:填空:1、有理数的加法运算法则是:____________________________ _______________________________________________________2、有理数的加法运算律有:______________________________ _______________________________________________________3、有理数的减法运算法则是:____________________________ _______________________________________________________二、导学过程:(一)、勇于探索,敢于发现1、计算:5—(—4)+(—3)21—(—31)+1—3—(—1)—(+2)问题: 1、请同学们观察这个算式中有什么运算?2、同学们能否将这些运算都统一成加法运算?这样做的根据是什么?总结:有理数的加减混合运算的步骤是:① __________________②________________2、计算并回答回答问题。
(+12)—(—7)+(—5)—(+30)问题:(1)加减混合运算统一成加法运算后,你能说出这个加法运算中有哪些加数吗?(2)我们可以省略加法运算中的加号和括号,写成这个形式12+7-5-30。
读作___________________;从运算上来说,也可以读作___________________________。
最新人教版七年级数学上册第一章有理数《有理数的减法》教案(第1课时)
最新人教版七年级数学上册第一章有理数《有理数的减法》教案(第1课时)1.3.2有理数的减法(第一课时)整体设计重点难点教学重点:有理数减法法则及应用.教学难点:运用有理数减法法则解决数学问题.教学目标1.经历探索有理数减法法则的过程,理解有理数的减法法则.2.能较熟练地进行有理数的减法运算.3.初步体验由减法法则把有理数的减法运算转化为有理数加法运算的数学转化思想.教材处理本节将从学生熟悉的问题入手探索有理数的减法运算及减法法则的学习过程.教学方法通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索.教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下的一种自主探索的学习过程.方案一教学过程一、创设情境,提出问题设计说明举出现实生活中的实际问题,让学生发现利用相关的数学知识来解决,从而激发学生自主学习的兴趣和积极性.问题1:如图1.3.21,(1)15℃比5℃高多少?(或5℃比15℃低多少?)(2)15℃比-5℃高多少?(或-5℃比15℃低多少?)图1.3.21问题2:如图1.3.22,世界最高峰是珠穆朗玛峰,陆上最低处是位于亚洲西部名为死海的湖,两处高度相差多少?图1.3.22教学说明教师提出问题,引导学生思考应利用有理数减法运算来解决以上问题,从而导入新课.二、探究新知,解决问题设计说明通过对问题的解决,让学生经历减法法则得出的过程,从而加深对知识的理解和掌握.问题1:你能列式解决上面的问题吗?(1)15℃-5℃=10℃.(2)15℃-(-5℃)=20℃.(3)8844.43-(-415)=9259.43.问题2:你能在横线上填上适当的数吗?(1)15+________=10.(2)15+________=20.(3)8844.43+________=9259.43.问题3:下列等式成立吗?(1)15-5=15+(-5).(2)15-(-5)=15+5.(3)8844.43-(-415)=8844.43+415.问题4:上面的关系式把有理数的减法转化成了有理数的加法,由此我们得到了有理数的减法法则,你能用文字语言来描述吗?减去一个数,等于加上这个数的相反数问题5:若用a、b表示两数,你能用数学式子描述有理数的减法法则吗?教学说明本环节设计的五个问题引导学生经历了有理数减法法则形成的过程.问题4、5的教学是本节课重难点的突破口,既有文字语言的描述又有符号语言的体现:①应利用关系式体现把减法转化为加法的数学转化思想;②让学生弄清楚在转化过程中发生的变化有两处,一处是运算符号的变化,另一处是性质符号的变化.三、变式训练,发散思维设计说明通过不同形式的练习,从不同的角度帮助学生进一步加深对有理数减法运算的理解和运用,形成初步的技能.1.例题解析:计算(-3)-(-5).解:(-3)-(-5)↓↓=(-3)+(+5)减法转化为加法=2依据加法法则运算教学说明通过例题给学生展示规范的解题步骤,并以箭头标注,体现运算法则,帮助学生理解掌握.2.课堂检测计算:①7.2-(-4.8);②0-7;③-5-(-8);1111④(-3)-5;⑤0-(-7);⑥5-3.2424教学说明让一部分学生板演,目的是发现学生存在的问题,组织学生自评、互评,最后师生纠正规范.3.帮帮小马虎解:①(-23)-(+8)③(-12)-(-21)=-23+8=12+21=-15;=33;②5.4-(-8.7)④-13-25=5.4-8.7=-13+25=-3.3;=12.教学说明让学生在发现问题、纠正错误中成熟自己.四、总结反思,情意发展1.本节课你学习了什么?2.本节课你有哪些收获?3.通过今天的学习,你想进一步探究的问题是什么?可以归纳为如下几点:(1)本节主要学习了有理数的减法法则及其应用.(2)主要用到的思想方法是化归思想.(3)注意的问题:进行有理数的减法运算的关键是先将有理数的减法转化为加法,然后运用有理数的加法法则进行运算.五、布置作业1.课本第25页习题1.3第3、4题.2.思考:在小学阶段我们做减法时,只有在a大于或等于b时,才会做减法a-b,现在a小于b时我们也会做减法a-b,小数减大数的差是什么数?六、拓展练习1.计算:(1)4.8-(+2.3);(2)(-1.24)-(+4.76);(3)(-3.28)-1;(4)2-(-3).22.计算:(1)[(-4)-(+7)]-(-5);(2)3-[(-3)-12];(3)8-(9-10);(4)(-3-5)-(6-10).3.求出下列每对数在数轴上的对应点之间的距离.(1)3与-2.2;(2)-4与(-4.5);(3)4.75与2.25.你能发现所得的距离与这两数的差有什么关系吗?评价与反思本节内容是七年级数学上册第一章的第三节,主要学习有理数的减法法则及其应用.在本节课中教师重点引导学生去探索,发现有理数的减法可以转化为加法来进行,并着重帮助学生把有理数的减法法则用字母简明地表示出来,这有助于学生理解和记忆.教师给学生提供充分的自主学习、合作交流的时间和空间,提高了学生发现问题、解决问题的能力.设计者:王红方案二教学过程一、创设情境,提出问题问题1:如图1.3.21,小文说:“我知道-5℃~15℃这一天的温差是多少,但我不知道15-(-5)该怎么算?”你能从温度计上看出15℃比-5℃高多少吗?(1)15℃比5℃高多少?(或5℃比15℃低多少?)(2)15℃比-5℃高多少?(或-5℃比15℃低多少?)教师引导学生观察:生:10℃比-5℃高15℃.师:能不能列出算式计算呢?生:10-(-5).师:如何计算呢?这就是我们今天要学的内容.(引入新课,板书课题)设计说明通过一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题既复习巩固有理数加法法则,同时为进行有理数减法运算打下基础,从而点明课题——有理数的减法.二、探究新知,解决问题问题1.归纳法则(1)让学生观察两式结果:(+10)-(+3)=________;(+10)+(-3)=________.由此得到(+10)-(+3)=(+10)+(-3).①通过上述举题,同学们观察减法是否可以转化为加法计算:减去一个正数(+3),等于加上它的相反数(-3).设计说明教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法运算可以转化为加法运算.(2)再看一题,计算(-10)-(-3).教师启发:要解决这个问题,根据有理数减法的意义,就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.教师给出另外一个问题:计算(-10)+(+3).生:(-10)+(+3)=-7.教师引导、学生观察上述两题结果,由此得到:(-10)-(-3)=(-10)+(+3).②总结:由①、②两式可以看出减法运算可以转化成加法运算.设计说明由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?学生活动:同学们思考,并要求学生与同桌相互叙述并纠正补充,然后举手回答,其他同学进行更正或补充.师:给出有理数减法法则:减去一个数,等于加上这个数的相反数上面的关系式把有理数的减法转化成了有理数的加法,由此我们得到了有理数的减法法则,你能用文字语言来描述吗?若用a、b表示两数,你能用数学式子描述有理数的减法法则吗?a-b=a+(-b).设计说明本环节设计的这些问题引导学生经历了有理数减法法则形成的过程,是本节课重难点的突破口,既有文字语言的描述又有符号语言的体现:①应利用关系式体现把减法转化为加法的数学转化思想;②让学生弄清楚在转化过程中发生的变化有两处,一处是运算符号的变化,另一处是性质符号的变化.问题2.例题讲解:例1计算:(1)(-3)-(-5);(2)0-7.11例2计算:(1)7.2-(-4.8);(2)(-3)-5.24例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化;(2)进行加法运算.例2由两个学生板演,其他学生做在练习本上,然后师生讲评.设计说明学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数(小数),即有理数.例3如图1.3.22,世界最高峰是珠穆朗玛峰,海拔高度是8844.43米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-415米,两处高度相差多少?解:8844.43-(-415)=8844.43+415=9259.43.所以两地高度相差9259.43米.设计说明问题3.组织学生自己编题,学生回答.设计说明教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固所学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力;另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于出现的错误及时改正.三、巩固训练1.计算(口答):(1)6-9;(2)(+4)-(-7);(3)(-5)-(-8);(4)(-4)-9;(5)0-(-5);(6)0-5.2.计算:(1)(-2.5)-5.9;(2)1.9-(-0.6);3112(3)(-)-;(4)-(-).4243学生活动:找四个学生板演,其他同学做在练习本上.设计说明学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不只是简单机械地将减法化成加法.四、总结反思,情意发展1.通过本节课的学习,你掌握了哪些知识?2.通过学习你了解到了哪些数学思想?3.通过今天的学习,你想进一步探究的问题是什么?五、内容与方案一相同,省略.六、拓展训练1.填空题(1)3-(-3)=________;(2)(-11)-2=________;(3)0-(-6)=________;(4)(-7)-(+8)=________;(5)-12-(-5)=________;(6)3比5大________;(7)-8比-2小________;(8)-4-()=10;(9)如果a>0,b<0,则a-b的符号是________.2.判断题(1)两数相减,差一定小于被减数.()(2)(-2)-(+3)=2+(-3).()(3)零减去一个数等于这个数的相反数.()(4)方程某+8=5在有理数范围内无解.()(5)若a<0,b<0,|a|>|b|,a-b<0.()评价与反思内容与方案一相同,省略.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、学以致用 (1) (-3)―(―5); (2)0-7;
(3) 7.2 (―4.8);
(4)-3
1 2
5
1 4
;
2、 长春某天的气温是―2°C~3°C,这一天的温差是多少呢?(温差 是最高气温减最低气温,单位:°C)显然,这天的温差是 3―(―2); 想想看,温差到底是多少呢?那么,3―(―2)= 二、合作探究 1、还记得吗,被减数、减数差之间的关系是:被减数—减数 = ;差+减数= 。 四、课堂小结: 总结归纳有理数相减的运算步骤:第一步,改变两个符号,把减 法转化为 计算。 五、当堂检测 1、比 10℃低 2℃的温度是 . ;比-1℃低 2℃的温度是 。 ;第二步按照有理数的 法则进行 ; (5)0-(-8)-(-2)-(+5) (6) ( ) ( ) ( )
)
2、计算(1)3-[ (-3)-12]
(2) (3-4)-(6-10)
—1+3; 0+3; 3、2、已知 m 15 , n 27 ,且 m n m n ,则 m-n 的值等 于…………………………………………………………………( A、-12 B、42 C、-12 或-42 D、-42
2 3 4 1 1 1
2、小组内同学一起探究、交流: 要计算 3―(―2)=?,实际上也就是要求:?+(—2)=3,所以这 个数(差)应该是 再看看,3+2= ;也就是 3―(―2)=5; ;所以 3―(―2) 3+2;
由上你有什么发现?请写出 3、换两个式子计算一下,看看上面的结论还成立吗? —1—(—3)= 0—(—3)= 4、归纳总结 (1)法则: (2)字母表示: ,—1+3= , 0+3= ,所以—1—(—3) ,所以 0—(—3)
永宁中学七年级数学(上)导学案
备课组长: 教研组长: 设计人 程靖飞 教科室:
课题
1.3.2 有理数的减法
第
1 课时
共
2
课时
学习目标:1、经历探索有理数减法法则的过程,理解并掌握有理数减法法则,会正确进行有理数减法运算; 2、体验把减法转化为加法的转化思想;
学过程:
一、自主学习 1、 世界上最高的山峰珠穆郎玛峰海拔高度约是 8844 米, 吐鲁番盆 地的海拔高度约为 —154 米,两处的高度相差多少呢? 试试看,计算的算式应该是 。