高中数学必修二-直线与方程及圆与方程测试题
(word完整版)高中数学必修二直线与方程及圆与方程测试题.docx
一选择题(共 55 分,每题 5 分)1. 已知直线经过点A(0,4)和点 B ( 1, 2),则直线 AB 的斜率为( )A.3B.-2C. 2D. 不存在2.过点 ( 1,3) 且平行于直线 x2 y3 0 的直线方程为()A . x 2y7 0 B . 2x y 1 0 C . x 2y 5 0 D . 2x y 5 0 3. 在同一直角坐标系中,表示直线y ax 与 yx a 正确的是()yyyyOxOxOxO xABCD4.若直线 x+ay+2=0 和 2x+3y+1=0 互相垂直,则a=()A .2B .2 C .33332D .(25.过 (x , y )和 (x , y )两点的直线的方程是)11 22A. yy 1 x x 1 y 2y 1 x 2 x 1 B.yy 1 x x 1 y 2 y 1x 1 x 2C.( y 2 y 1 )( x x 1) (x 2 x 1 )( y y 1) 0D.( x 2x 1)( x x 1) ( y 2 y 1 )( yy 1 ) 06、若图中的直线 L 1 、 L 2、 L 3 的斜率分别为 K 1、K 2、 K 3 则()A 、 K ﹤ K ﹤ KL 3123LB 、 K ﹤ K ﹤ K2 1 3C 、 K 3﹤ K 2﹤ K 1oxD 、 K 1﹤K 3﹤ K 2L 17、直线 2x+3y-5=0 关于直线 y=x 对称的直线方程为( )A 、 3x+2y-5=0B 、 2x-3y-5=0C 、 3x+2y+5=0D 、 3x-2y-5=08、与直线 2x+3y-6=0 关于点 (1,-1)对称的直线是()A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0A.a=2,b=5;B.a=2,b= 5 ;C.a= 2 ,b=5;D.a= 2 ,b= 5 .10、直线 2x-y=7 与直线 3x+2y-7=0 的交点是()A (3,-1)B (-1,3)C (-3,-1)D (3,1)11、过点 P(4,-1)且与直线 3x-4y+6=0垂直的直线方程是()A 4x+3y-13=0B 4x-3y-19=0C 3x-4y-16=0D 3x+4y-8=0二填空题(共20 分,每题 5 分)12.过点(1,2)且在两坐标轴上的截距相等的直线的方程_ __________;13 两直线 2x+3y- k=0 和 x- ky+12=0 的交点在y 轴上,则k 的值是14、两平行直线x 3y 4 0与 2x 6 y 9 0 的距离是。
高中数学必修二直线和圆的方程复习练习试题及答案(可编辑修改word版)
5一、 选择题(每题 3 分,共 54 分)1、在直角坐标系中,直线 x +3y - 3 = 0 的倾斜角是()5 2 A .B .C .D .6 3632、若圆 C 与圆(x + 2)2+ ( y - 1)2 = 1 关于原点对称,则圆 C 的方程是()A . (x - 2)2+ ( y + 1)2 = 1 B . (x - 2)2+ ( y - 1)2 = 1C . (x - 1)2+ ( y + 2)2 = 1D . (x + 1)2+ ( y - 2)2 = 13、直线 ax + by + c = 0 同时要经过第一、第二、第四象限,则 a 、b 、c 应满足( )A . ab > 0, b c < 0B . ab > 0, b c < 0C . ab > 0, b c > 0D . ab < 0, b c < 04、已知直线l 1 : y = 1 x + 2 ,直线l 2 21 过点 P (-2,1) ,且l 1 3到l 2的夹角为 45 ,则直线l 2的方程是( ) A. y = x - 1 B. y = x + 3 5C . y = -3x + 7D . y = 3x + 75、不等式 2x - y - 6 > 0 表示的平面区域在直线 2x - y - 6 = 0 的( )A .左上方B .右上方C .左下方D .左下方6、直线3x - 4 y - 9 = 0 与圆 x 2+ y 2= 4 的位置关系是()A .相交且过圆心B .相切C .相离D .相交但不过圆心7、已知直线 ax + by + c = 0(abc ≠ 0) 与圆 x 2+ y 2= 1相切,则三条边长分别为 a 、b 、c 的三角形()A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在8、过两点(-1,1)和(3,9) 的直线在 x 轴上的截距是() A.- 32B.- 2 32 C.D .259、点(0,5) 到直线 y = 2x 的距离为()5 3 A .B .C .D .22210、下列命题中,正确的是()A .点(0,0) 在区域 x + y ≥ 0 内B .点(0,0) 在区域 x + y + 1 < 0 内C .点(1,0) 在区域 y > 2x 内D .点(0,1) 在区域 x - y + 1 < 0 内二、填空题(每题 3 分,共 15 分)19、以点 (1,3)和(5,-1) 为端点的线段的中垂线的方程是5⎧b + 3 =a + 3b 4 20、过点 (3,4)且与直线3x - y + 2 = 0 平行的直线的方程是21、直线3x - 2 y + 6 = 0在x 、y 轴上的截距分别为k 22、三点(2,- 3),(4,3)及(5, ) 在同一条直线上,则 k 的值等于223、若方程 x 2+ y 2- 2x + 4 y + 1 + a = 0 表示的曲线是一个圆,则 a 的取值范围是三、解答题(第 24、25 两题每题 7 分,第 26 题 8 分,第 27 题 9 分,共 31 分) 24、若圆经过点 A (2,0), B (4,0), C (0,2) ,求这个圆的方程。
高中数学-人教版-必修二-直线与圆的方程综合复习题(含答案)
直线与圆的方程综合复习(含答案)一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是( C ) A 3B 6C 23D 562.已知过点A(-2,m)和B (m,4)的直线与直线2x+y-1=0平行,则m 的值为( C ) A 0 B 2 C -8 D 103.若直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于( D ) A -1或2 B23C 2D -1 4.若点A (2,-3)是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点(a 1,b 1)和(a 2,b 2)所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=0 5.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m= 12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2y)-3=0相互垂直”的( B )A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件 7.已知A(7,-4)关于直线L 的对称点为B (-5,6),则直线L 的方程为(B ) A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).若直线2l 经过点(0,5)且1l 2l ,则直线2l 的方程为( B )A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为( A )A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x 10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是(A )22222211.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( C )A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为(D ), A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )A B 4 C 8 D 914.若直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为( B )A 1B -1C 3D -315.若直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba11+的最小值是( C ) A.41B.2C.4D.2116.若直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k的取值范围是 ( A )A.⎥⎦⎤ ⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,017.设两圆1C ,2C 都和两坐标轴相切,且过点(4,1),则两圆心的距离 ︱1C 2C ︱等于( C )A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c 的一个值为 ( C ) A.2B.5C.3D.3519.若直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211ba +≤1 D.2211ba +≥120.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为( B ) A.(-1,0)B.(1,0)C.⎪⎭⎫ ⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x +2(2)y =4相交于M 、N 两点,若︱MN ︱≥23,则k 的取值范围是( A )A [-34,0] B [-∞,-34] [0,∞) C [-33,33] D [-23,0] 22.(广东理科2)已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则AB 的元素个数为(C )A .0B .1C .2D .323.(江西理科9)若曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。
人教新课标A版高中数学必修2第四章圆与方程4.2直线、圆的位置关系同步测试
人教新课标A版高中数学必修2 第四章圆与方程 4.2直线、圆的位置关系同步测试共 25 题一、单选题1、将圆x2+y2 -2x-4y+1=0平分的直线是()A.x+y-1=0B.x+y+3=0C.x-y+1=0D.x-y+3=02、直线x-y=2被圆所截得的弦长为()A. B.C. D.43、圆和的位置关系是()A.相离B.外切C.相交D.内切4、圆与圆的位置关系是()A.外离B.外切C.相交D.内含5、已知圆的方程为,过点的直线被圆所截,则截得的最短弦的长度为 ( ).A. B.C. D.6、若圆C的半径为1,圆心在第一象限,且与直线和x轴都相切,则该圆的标准方程是( )A. B.C. D.7、已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是( )A.-10B.-8C.-4D.-28、过点A(﹣1,0),斜率为k的直线,被圆(x﹣1)2+y2=4截得的弦长为2,则k的值为( )A.±B.C.±D.9、圆C:x2+y2+2x=0与圆C2:x2+y2﹣4x+8y+4=0的位置关系是( )1A.相交B.外切C.内切D.相离10、若⊙O:x2+y2=5与⊙O2:(x﹣m)2+y2=20(m∈R)相交于A、B两点,且两圆在点A处的切线互相垂直,则线段AB 1的长度是( )A.1B.2C.3D.411、直线l过圆(x﹣2)2+(y+2)2=25内一点M(2,2),则l被圆截得的弦长恰为整数的直线共有( )A.8条B.7条C.6条D.5条12、已知两点O(0,0),A(﹣2,0),以线段OA为直径的圆的方程是( )A. B.C. D.13、两圆x2+y2﹣4x+2y+1=0与x2+y2+4x﹣4y﹣1=0的公切线有( )A.1条B.2条C.3条D.4条14、点P(2,﹣1)为圆(x﹣1)2+y2=25的弦AB的中点,则直线AB的方程为( )A.x+y﹣1=0B.2x+y﹣3=0C.x﹣y﹣3=0D.2x﹣y﹣5=015、圆A:x2+y2+4x+2y+1=0与圆B:x2+y2﹣2x﹣6y+1=0的位置关系是( )A.相交B.相离C.相切D.内含二、填空题16、经过两圆x2+y2=9和(x+4)2+(y+3)2=8交点的直线方程为________17、过两圆x2+y2+4x﹣4y﹣12=0、x2+y2+2x+4y﹣4=0交点的直线方程是________18、直线y=x+2被圆M:x2+y2﹣4x﹣4y﹣1=0所截得的弦长为________19、若圆C:x2+y2=1与圆C2:x2+y2﹣6x﹣8y+m=0外切,则m=________120、过直线2x﹣y+1=0和圆x2+y2﹣2x﹣15=0的交点且过原点的圆的方程是________三、解答题21、求与x轴相切,圆心C在直线3x﹣y=0上,且截直线x﹣y=0得的弦长为2的圆的方程.22、已知⊙C过点P(1,1),且与⊙M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.求⊙C的方程;23、求圆心在x﹣y﹣4=0上,并且经过两圆C:x2+y2﹣4x﹣3=0和C2:x2+y2﹣4y﹣3=0的交点的圆方程.124、已知圆C:x2+y2﹣10x﹣10y=0和圆C2:x2+y2+6x+2y﹣40=0相交于A、B两点,求公共弦AB的长.125、已知圆C:(x﹣1)2+y2=4(1)求过点P(3,3)且与圆C相切的直线l的方程;(2)已知直线m:x﹣y+1=0与圆C交于A、B两点,求|AB|.参考答案一、单选题1、【答案】C【解析】【分析】易知圆x2+y2 -2x-4y+1=0的圆心为:,若直线平分圆,则直线一定过圆心,只有选项C中的直线过圆心,因此选C。
必修2专题--直线与圆的方程试卷及答案
必修2专题--直线与圆的方程试卷及答案高二文数专题复习——直线与方程一、选择题1.直线2x +ay +3=0的倾斜角为120°,则a 的值是 ( )223A. B C .23 D .-3332. 若A (1, 5) 、B (-2, -1) 、C (-1, m ) 三点共线,则m 的值为 ( ) A . 0 B .1 C . -2 D . 23.已知过A (-1,a ) 、B (a, 8) 两点的直线与直线2x -y +1=0平行,则a的值为( )A .-10 B.17 C.5 D .24.直线l 过点(-1,2) 且与直线2x -3y +4=0垂直,则l 的方程是 ( )A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=5.已知直线l 1:(k -3) x +(4-k ) y +1=0与l 2:2(k -3) x -2y +3=0平行,则k 的值是( )A .1或3 B.1或5 C.3或5 D.1或26.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是 ( )A .相离 B.相交 C.外切 D .内切7.若直线ax +by +c =0过第一、二、三象限,则 ( )A .ab >0,bc <0B .ab >0,bc >0C .ab <0,bc >0D .ab <0,bc <8.直线Ax +By -1=0在y 轴上的截距是-13x -y =33的倾斜角的2倍,则 ( ) A .A 3,B =1 B .A =-3,B =-1 C .A 3,B =-1 D .A =-3,B =19.已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,则过点M 的最短弦所在的直线方程是( )A .x +y -1=0 B.x -y -1=0 C.x -y +1=0 D.x +y +2=0110、圆x 2-6x +y 2+2y =0关于直线方程为y = x 对称的圆的方程 ( ).222A 、(x+1) +(y -3) =10 B、 (x -1) 2+(y +3)2=10 C 、(x -1) 2+(y -3) 2=10 D 、(x -1) 2+(y -3) 2=100二、填空题11.直线5x -4y -20=0在x 、y 轴上的截距分别是________.12.直线l 过点(-2,4) ,且在x 轴、y 轴上的截距相等,则l 的方程是________.13.不论m 怎么变化,直线(m-2) x -(2m+1)y -(3m+4)=0恒过定点________.14.若直线y =x -m 与曲线y =1-x 有两个不同的交点,则m 的取值范围是_______.三、解答题15.已知直线l 1的方程为3x +4y -12=0.(1)若直线l 2与l 1平行,且过点(-1,3) ,求直线l 2的方程;(2)若直线l 2与l 1垂直,且l 2与两坐标轴围成的三角形面积为4,求直线l 2的方程.16、. 已知三角形的三个顶点A (-2, -3) ,B (2,-1)C(0, 2), (1)求直线AB 的方程;(2)求直线AB 的垂直平分线的方程CD ;(3)求△ABC 面积。
高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)
直线与圆的方程综合复习(含答案)一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是( C ) A 3B 6C 23D 562.已知过点A(-2,m)和B (m,4)的直线与直线2x+y-1=0平行,则m 的值为( C ) A 0 B 2 C -8 D 103.若直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于( D )A -1或2B 23C 2D -14.若点A (2,-3)是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 (a 1,b 1)和(a 2,b 2)所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=05.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m=12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2y)-3=0相互垂直”的( B )A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B (-5,6),则直线L 的方程为(B ) A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).若直线2l 经过点(0,5)且1l 2l ,则直线2l 的方程为( B )A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为( A )A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是(A )A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( C )A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为(D ), A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )A B 4 C 8 D 914.若直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为( B )A 1B -1C 3D -315.若直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba11+的最小值是( C )A.41B.2C.4D.2116.若直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 ( A )A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,17.设两圆1C ,2C 都和两坐标轴相切,且过点(4,1),则两圆心的距离 ︱1C 2C ︱等于( C )A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 ( C ) A.2B.5C.3D.3519.若直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211ba +≤1 D.2211ba +≥120.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为( B ) A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x+2(2)y =4相交于M 、N 两点,若︱MN ︱≥23,则k 的取值范围是( A )A [-34,0] B [-∞,-34] [0,∞) C [-33,33] D [-23,0] 22.(广东理科2)已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则AB 的元素个数为(C )A .0B .1C .2D .3 23.(江西理科9)若曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。
高中数学必修2第四章直线与圆方程单元测试
直线与圆的方程单元测试题一、选择题(本大题共12小题,每小题5分,共60分)。
1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是( )。
A 30° B 45° C 60° D 90°2.方程x 2+y 2+2a x-by+c=0表示圆心为C (2,2),半径为2的圆,则a ,c b ,的值 依次为( )。
A .2、4、4;B 。
-2、4、4;C 。
2、-4、4;D 。
2、-4、-43. 如果0<AC 且0<BC ,那么直线0=++C By Ax 不通过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限4.已知M (-2,0), N (2,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( )(A) 222=+y x (B) 422=+y x(C) )2(222±≠=+x y x (D) )2(422±≠=+x y x5. 点M(4,m )关于点N(n,-3)的对称点为P(6,-9),则( )A m =-3,n =10 B m =3,n =10 C m =-3,n =5 D m =3,n =56.自点1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( ) (A) 5 (B) 3 (C) 10 (D) 57. 设c b a ,,分别为 ABC 中∠A 、∠B 、∠C 对边的边长,则直线x sin A +a y +c =0 与直线bx -y sin B +sin C =0的位置关系( )(A )平行; (B )重合; (C )垂直; (D )相交但不垂直8.M (x 0,y 0)为圆x 2+y 2=a 2(a >0)内异于圆心的一点,则直线x 0x+y 0y=a 2与该圆的位置关系是( )A 、相切B 、相交C 、相离D 、相切或相交9.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )。
高中数学必修二直线和圆的方程复习练习试题及答案
一、选择题(每题3分,共54分)1、在直角坐标系中,直线033yx 的倾斜角是()A .6B .3C .65D .322、若圆C 与圆1)1()2(22y x 关于原点对称,则圆C 的方程是()A .1)1()2(22y x B .1)1()2(22y x C .1)2()1(22yx D .1)2()1(22yx 3、直线0cbyax 同时要经过第一、第二、第四象限,则c b a 、、应满足()A .0,0bc abB .0,0bcab C .0,0bcabD .,0bc ab 4、已知直线221:1xy l ,直线2l 过点)1,2(P ,且1l 到2l 的夹角为45,则直线2l 的方程是()A .1x y B .5331xyC .73x y D .73xy 5、不等式062yx表示的平面区域在直线062yx 的()A .左上方B .右上方C .左下方D .左下方6、直线0943y x 与圆422yx的位置关系是()A .相交且过圆心B .相切C .相离D .相交但不过圆心7、已知直线)0(0abc c by ax 与圆122yx 相切,则三条边长分别为c b a 、、的三角形()A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在8、过两点)9,3()1,1(和的直线在x 轴上的截距是()A .23B .32C .52D .29、点)5,0(到直线x y 2的距离为()A .25B .5C .23D .2510、下列命题中,正确的是( )A .点)0,0(在区域0y x 内B .点)0,0(在区域01y x内C .点)0,1(在区域x y2内D .点)1,0(在区域01yx 内二、填空题(每题3分,共15分)19、以点)1,5()3,1(和为端点的线段的中垂线的方程是20、过点023)4,3(y x 且与直线平行的直线的方程是21、直线y x yx、在0623轴上的截距分别为22、三点)2,5()3,4(32k及),,(在同一条直线上,则k 的值等于23、若方程014222a y x yx表示的曲线是一个圆,则a 的取值范围是三、解答题(第24、25两题每题7分,第26题8分,第27题9分,共31分)24、若圆经过点)2,0(),0,4(),0,2(C B A ,求这个圆的方程。
高中数学(必修二)直线与圆的方程测试习题及答案
直线与圆的方程习题1、在直角坐标系中,直线033=-+y x 的倾斜角是( ) A .6πB .3πC .65πD .32π2、若圆C 与圆1)1()2(22=-++y x 关于原点对称,则圆C 的方程是( )A .1)1()2(22=++-y xB .1)1()2(22=-+-y xC .1)2()1(22=++-y xD .1)2()1(22=-++y x 3、直线0=++c by ax 同时要经过第一、第二、第四象限,则c b a 、、应满足( )A .0,0<>bc abB .0,0<>bc abC .0,0>>bc abD .0,0<<bc ab5、不等式062>--y x 表示的平面区域在直线062=--y x 的( )A .左上方B .右上方C .左下方D .左下方6、直线0943=--y x 与圆422=+y x 的位置关系是( ) A .相交且过圆心 B .相切 C .相离 D .相交但不过圆心7、已知直线)0(0≠=++abc c by ax 与圆122=+y x 相切,则三条边长分别为c b a 、、的三角形()A .是锐角三角形 B .是直角三角形C .是钝角三角形 D .不存在8、过两点)9,3()1,1(和-的直线在x 轴上的截距是( ) A .23-B .32-C .52D .29、点)5,0(到直线x y 2=的距离为( )A .25 B.5C .23D .2511、由点)3,1(P 引圆922=+y x 的切线的长是 ( ) A .2 B .19 C .1 D .412、三直线102,1034,082=-=+=++y x y x y ax 相交于一点,则a 的值是( )A .2-B .1-C .0D .1 13、已知直线01:,03:21=+-=+y kx l y x l ,若1l 到2l 的夹角为 60,则k 的值是 ( )A .03或 B .03或- C .3 D .3-14、如果直线02012=-+=++y x y ax 与直线互相垂直,那么a 的值等于( )A .1B .31- C .32-D .2-16、由422=+=y x x y 和圆所围成的较小图形的面积是( ) A .4πB .πC .43πD .23π17、动点在圆122=+y x 上移动时,它与定点)0,3(B 连线的中点的轨迹方程是( )A .4)3(22=++y xB .1)3(22=+-y xC .14)32(22=+-y xD .21)23(22=++y x19、以点)1,5()3,1(-和为端点的线段的中垂线的方程是 20、过点023)4,3(=+-y x 且与直线平行的直线的方程是 21、直线y x y x 、在0623=+-轴上的截距分别为22、三点)2,5()3,4(32k及),,(-在同一条直线上,则k 的值等于23、若方程014222=+++-+a y x y x 表示的曲线是一个圆,则a 的取值范围是25、求到两个定点)0,1(),0,2(B A -的距离之比等于2的点的轨迹方程。
高中数学必修二直线和圆练习(含答案)
高中数学必修二直线和圆练习一、选择题1.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x2.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )A .0B .8-C .2D .103.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 4.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为 (1,1)M -,则直线l 的斜率为( )A .23B .32C .32-D . 23-. 5. 圆C 1:x 2+y 2+4x-4y+7=0和圆C 2:x 2+y 2-4x-10y+13=0的公切线有( )6. 已知空间两点A(1,3,5)、B(-3,1,3),则线段AB 的中点坐标为( )A.(-1,2,4)B.(2,1,1)C.(1,0,4)D.(3,3,-1)7.若直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为( )A.1、-1B.2、-2C.18.已知圆C :(x-a)2+(y-2)2=4(a>0)及直线l :x-y+3=0,当直线l 被圆C 截得的弦长为32时,则a 等于( ) A.2 B.22-C.12-D.12+二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.经过点P(1,2)与圆x 2+y 2=1相切的直线方程为______________.3. 与两平行直线x+3y-5=0和x+3y-3=0相切,圆心在直线2x+y+3=0上的圆的方程是________.4. 已知圆x 2+y 2-4x+6y-12=0的内部有一点A(4,-2),则以A 为中点的弦所在的直线方程为______________________.三、解答题1.求经过点(2,2)A -并且和两个坐标轴围成的三角形的面积是1的直线方程。
必修2第三章直线与方程、第四章圆和方程测试题复习课程
高一数学必修2测试题第三章直线与方程、第四章圆和方程一、选择题:本大题共l0小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.平行直线x -y +1 = 0,x -y -1 = 0间的距离是 ( ) A .22B .2C .2D .22 2.已知直线l 1:x +ay +1=0与直线l 2:x -2y +2=0垂直,则a 的值为 ( )A .2B .-2C .-21 D .21 3.已知直线l 过点M (-1,0),并且斜率为1,则直线l 的方程是 ( ) A .x +y +1=0 B .x -y +1=0 C .x +y -1=0D . x ―y ―1=0 4.直线x -ay +a 2=0(a >0且a ≠1)与圆x 2+y 2=1的位置关系是 ( )A .相交B .相切C .相离D .不能确定5.已知直线l 1与l 2的夹角的平分线为y =x ,如果l 1的方程是ax +by +c =0(ab >0),那么l 2的方程是( )A .bx +ay +c =0B .ax -by +c =0C .bx +ay -c =0D .bx -ay +c =0 6.如果直线y =ax +2与直线y =3x +b 关于直线y =x 对称,那么( ) A .a=31, b=6 B .a=31, b=-6 C .a=3, b=-2 D . a=3, b=67.过定点(1, 3)可作两条直线与圆x 2+y 2+2kx +2y +k 2-24=0相切,则k 的取值范围是( ) A . k>2 B . k<-4 C .k>2或k<-4 D .-4<k<2 8.一束光线从点A (-1, 1)出发经x 轴反射,到达圆C :(x -2)2+(y -3)2=1上一点的最短路程( )A . 4B . 5C . 32-1D . 269.不论k 为何实数,直线(2k -1)x -(k +3)y -(k -11)=0恒通过一个定点,这个定点的坐标是( ) A . (5, 2) B . (2, 3)C .(5, 9)D .(-21,3)10.与三条直线y =0, y =x +2, y =-x +4都相切的圆的圆心是 ( )A .(1, 23+2)B .(1, 32+3)C .(1, 32-3)D .(1, -32-3)二、填空题:本大题共5小题,每小题5分,共25分.11.曲线21y x =- 与直线(1)2y k x =-+有两个交点时,实数k 的取值是________12.点M (x 0,y 0)是圆x 2+y 2=a 2(a >0)内异于圆心的点,则直线x 0x +y 0y =a 2与该圆的位置关系是13.设a+b=2,则直线系ax+by=1恒过定点的坐标为___________________________. 14.已知两点A (2+x ,2+y )、B (y ―4,6―x )关于点C (1,-1)对称,则实数x 、y 的值分别为_____________________________。
高中数学必修二--直线与方程及圆与方程测试题
一选择题(共55分,每题5分)1. 已知直线经过点A(0,4)和点B (1,2),则直线的斜率为( )A.3 2 C. 2 D. 不存在 2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )A .072=+-y xB .012=-+y xC .250x y --=D .052=-+y x3. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )x y O x y O x y O xyOA B C D 4.若直线2=0和231=0互相垂直,则( ) A .32- B .32 C .23- D .23 5.过(x 1,y 1)和(x 2,y 2)两点的直线的方程是( )112121112112211211211211...()()()()0.()()()()0y y x x A y y x x y y x x B y y x x C y y x x x x y y D x x x x y y y y --=----=-------=-----=6、若图中的直线L 1、L 2、L 3)A 、K 1﹤K 2﹤K 3B 、K 2﹤K 1﹤K 3C 、K 3﹤K 2﹤K 1xoD 、K 1﹤K 3﹤K 27、直线235=0关于直线对称的直线方程为( ) A 、325=0 B 、235=0 C 、325=0 D 、325=08、与直线236=0关于点(11)对称的直线是( ) A.326=0 B.237=0 C. 3212=0 D. 238=09、直线5210=0在x 轴上的截距为a,在y 轴上的截距为b,则( ) 25; 25-; 2-5; 2-5-.10、直线27与直线327=0的交点是( ) A (31) B (-1,3) C (-31) D (3,1)11、过点P(41)且与直线346=0垂直的直线方程是( ) A 4313=0 B 4319=0 C 3416=0 D 348=0二填空题(共20分,每题5分)12. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 _ ;13两直线23y -0和x -12=0的交点在y 轴上,则k 的值是L 114、两平行直线0962043=-+=-+y x y x 与的距离是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修二 第三章直线方程测试题考试时间:100分钟 总分:150分一选择题(共55分,每题5分)1. 已知直线经过点A(0,4)和点B(1,2),则直线AB 的斜率为( )A .3 B.-2 C. 2 D. 不存在 2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )A .072=+-y x B.012=-+y x C.250x y --= D .052=-+y x 3. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )x y O x y O x y O xyOA B C D 4.若直线x +a y+2=0和2x +3y+1=0互相垂直,则a =( ) A.32-B.32ﻩ C .23- D.235.过(x 1,y 1)和(x 2,y 2)两点的直线的方程是( )112121112112211211211211...()()()()0.()()()()0y y x x A y y x x y y x x B y y x x C y y x x x x y y D x x x x y y y y --=----=-------=-----=6、若图中的直线L 1、L2、L 3的斜率分别为KA 、K 1﹤K2﹤K 3B 、K2﹤K 1﹤K 3C 、K 3﹤K 2﹤K 1D、K1﹤K 3﹤K 27、直线2x+3y-5=0关于直线y=x A 、3x +2y -5=0 B、2x-3y-5=0 C 、3x+2y+5=0 D 、3x-2y-5=08、与直线2x +3y-6=0关于点(1,-1)对称的直线是( )A .3x-2y-6=0 B.2x+3y+7=0 C . 3x-2y-12=0 D. 2x+3y +8=0x9、直线5x-2y-10=0在x轴上的截距为a,在y 轴上的截距为b,则( ) A.a=2,b=5; B .a =2,b=5-; C.a=2-,b =5; D.a =2-,b=5-.10、直线2x-y =7与直线3x+2y-7=0的交点是( ) A (3,-1) B (-1,3) C (-3,-1) D (3,1)11、过点P(4,-1)且与直线3x-4y +6=0垂直的直线方程是( ) A 4x +3y-13=0 B 4x-3y -19=0 C 3x-4y-16=0 D 3x+4y -8=0二填空题(共20分,每题5分)1 2. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 _ __________;13两直线2x +3y-k=0和x -ky+12=0的交点在y 轴上,则k的值是14、两平行直线0962043=-+=-+y x y x 与的距离是 。
15空间两点M 1(-1,0,3),M2(0,4,-1)间的距离是三计算题(共71分) 16、(15分)已知三角形ABC 的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC 边上的中点。
(1)求AB 边所在的直线方程;(2)求中线A M的长(3)求AB 边的高所在直线方程。
17、(12分)求与两坐标轴正向围成面积为2平方单位的三角形,并且两截距之差为3的直线的方程。
18.(12分) 直线062=++y m x 与直线023)2(=++-m my x m 没有公共点,求实数m的值。
19.(16分)求经过两条直线04:1=-+y x l 和02:2=+-y x l 的交点,且分别与直线012=--y x (1)平行,(2)垂直的直线方程。
20、(16分)过点(2,3)的直线L 被两平行直线L 1:2x-5y +9=0与L 2:2x-5y-7=0所截线段A B的中点恰在直线x-4y-1=0上,求直线L的方程高中数学必修二 第三章直线方程测试题答案1-5 B ACAC 6-10 AADBA 11 A 12.y=2x 或x+y-3=0 13.±6 14、20101516、解:(1)由两点式写方程得121515+-+=---x y ,……………………3分 即 6x-y+11=0……………………………………………………4分或 直线A B的斜率为 616)1(251=--=-----=k ……………………………1直线AB的方程为 )1(65+=-x y ………………………………………3分即 6x-y+11=0…………………………………………………………………4分 (2)设M 的坐标为(00,y x ),则由中点坐标公式得1231,124200=+-==+-=y x 故M(1,1)………………………6分 52)51()11(22=-++=AM …………………………………………8分(3)因为直线AB 的斜率为k AB =51632+=--+········(3分)设AB 边的高所在直线的斜率为k则有1(6)16AB k k k k ⨯=⨯-=-∴=··········(6分) 所以AB 边高所在直线方程为13(4)61406y x x y -=--+=即········(10分) 17.解:设直线方程为1x y a b +=则有题意知有1342ab ab =∴=又有①314(a b b b -===-则有或舍去)此时4a =直线方程为x+4y-4=0 ②341440b a b a x y -===+-=则有或-1(舍去)此时直线方程为 18.方法(1)解:由题意知260(2)320x m y m x my m m ⎧++=⎨-++=⎩⇒∴23232即有(2m -m +3m)y=4m-12因为两直线没有交点,所以方程没有实根,所以2m -m +3m =0(2m-m +3)=0m=0或m=-1或m=3当m=3时两直线重合,不合题意,所以m=0或m=-1方法(2)由已知,题设中两直线平行,当2222322303116132316m m m m mm m m m mm m m m m --≠≠==-≠≠±=-时,=由=得或由得所以当m=0时两直线方程分别为x+6=0,-2x=0,即x =-6,x =0,两直线也没有公共点, 综合以上知,当m =-1或m =0时两直线没有公共点。
19解:由⎩⎨⎧=+-=-+0204y x y x ,得⎩⎨⎧==31y x ; (2)∴1l 与2l 的交点为(1,3)。
…………………………………………………….3′(1) 设与直线012=--y x 平行的直线为02=+-c y x ………………4′ 则032=+-c ,∴c =1。
…………………………………………………..6′ ∴所求直线方程为012=+-y x 。
…………………………………………7′ 方法2:∵所求直线的斜率2=k ,且经过点(1,3),…………………..5′ ∴求直线的方程为)1(23-=-x y ,……………………….. …………..…6′ 即012=+-y x 。
………………………………………….….. ……………7′ (2) 设与直线012=--y x 垂直的直线为02=++c y x ………………8′ 则0321=+⨯+c ,∴c=-7。
…………………………………………….9′ ∴所求直线方程为072=-+y x 。
……………………………………..…10′ 方法2:∵所求直线的斜率21-=k ,且经过点(1,3),………………..8′ ∴求直线的方程为)1(213--=-x y ,……………………….. ………….9′ 即072=-+y x 。
………………………………………….….. ……….10′20、解:设线段AB 的中点P的坐标(a,b ),由P到L 1,、L 2的距离相等,得⎣⎦=++-2252952b a ⎣⎦2252752+--b a经整理得,0152=+-b a ,又点P 在直线x-4y -1=0上,所以014=--b a解方程组⎩⎨⎧=--=+-0140152b a b a 得⎩⎨⎧-=-=13b a 即点P 的坐标(-3,-1),又直线L 过点(2,3)所以直线L 的方程为)3(2)3()1(3)1(----=----x y ,即0754=+-y x高中数学必修二 圆与方程练习题一、选择题1. 圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) A.22(2)5x y -+= ﻩﻩﻩB .22(2)5x y +-= C. 22(2)(2)5x y +++=ﻩ ﻩﻩD .22(2)5x y ++= 2. 若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( ) A. 03=--y x ﻩB . 032=-+y x C. 01=-+y x ﻩD. 052=--y x3. 圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A . 2 B . 21+ C.221+D. 221+4. 将直线20x y λ-+=,沿x 轴向左平移1个单位,所得直线与圆22240x y x y ++-=相切,则实数λ的值为( ) A. 37-或B. 2-或8ﻩ C. 0或10D. 1或115. 在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( )A. 1条 B. 2条 C. 3条 D. 4条6. 圆0422=-+x y x 在点)3,1(P 处的切线方程为( ) A.023=-+y x B. 043=-+y x C. 043=+-y x D. 023=+-y x二、填空题1. 若经过点(1,0)P -的直线与圆032422=+-++y x y x 相切,则此直线在y 轴上的截距是 . .2. 由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0,,60A B APB ∠=,则动点P 的轨迹方为 .3. 圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程为 .4. 已知圆()4322=+-y x 和过原点的直线kx y =的交点为,P Q 则OQ OP ⋅的值为________________.5. 已知P 是直线0843=++y x 上的动点,,PA PB 是圆012222=+--+y x y x 的切线,,A B 是切点,C 是圆心,那么四边形PACB 面积的最小值是________________. 三、解答题 1. 点(),P a b 在直线01=++y x 上,求22222+--+b a b a 的最小值.2. 求以(1,2),(5,6)A B --为直径两端点的圆的方程.3. 求过点()1,2A 和()1,10B 且与直线012=--y x 相切的圆的方程.4. 已知圆C 和y 轴相切,圆心在直线03=-y x 上,且被直线x y =截得的弦长为72,求圆C 的方程.高中数学必修二 圆与方程练习题答案一、选择题1. A (,)x y 关于原点(0,0)P 得(,)x y --,则得22(2)()5x y -++-= 2. A 设圆心为(1,0)C ,则,1,1,12CP AB AB CP k k y x ⊥=-=+=-3. B 圆心为max (1,1),1,21C r d ==4. A 直线20x y λ-+=沿x 轴向左平移1个单位得220x y λ-++=圆22240x y x y ++-=的圆心为2(1,2),5,5,3,75C r d λλλ-+-====-=或5. B 两圆相交,外公切线有两条6. D2224x y -+=()的在点)3,1(P 处的切线方程为(12)(2)34x --+= 二、填空题1. 1 点(1,0)P -在圆032422=+-++y x y x 上,即切线为10x y -+= 2.224x y += 2OP = 3.22(2)(3)5x y -++= 圆心既在线段AB 的垂直平分线即3y =-,又在 270x y --=上,即圆心为(2,3)-,5r =4. 5 设切线为OT ,则25OP OQ OT ⋅==5. 22 当CP 垂直于已知直线时,四边形PACB 的面积最小 三、解答题1. 22(1)(1)a b -+-(1,1)到直线01=++y x 的距离而3222d ==,22min 32222)2a b a b +--+=.2. 解:(1)(5)(2)(6)0x x y y +-+-+=得2244170x y x y +-+-= 3. 解:圆心显然在线段AB 的垂直平分线6y =上,设圆心为(,6)a ,半径为r ,则222()(6)x a y r -+-=,得222(1)(106)a r -+-=,而r =22(13)(1)16,3,5a a a r --+===22(3)(6)20x y ∴-+-=.4. 解:设圆心为(3,),t t 半径为3r t=,令d ==而22222,927,1r d t t t =--==± 22(3)(1)9x y ∴-+-=,或22(3)(1)9x y +++=。