展开与折叠二

合集下载

初中数学七年级上册《1.2展开与折叠》第二课时教案

初中数学七年级上册《1.2展开与折叠》第二课时教案

初中数学七年级上册《1.2展开与折叠》第二课时教案教学目标一、知识与技能1.进一步认识立体图形与平面图形的关系,了解立体图形可由平面图形围成,立体图形可展开为平面图形;2.了解圆柱、圆锥的侧面展开图,能根据展开图判断立体模型;二、过程与方法1.培养学生观察、猜想、总结的能力;2.培养学生的动手能力和实践能力;三、情感态度和价值观通过展开与折叠的实践操作,在经历和体验图形的转换过程中,初步建立空间概念,发展几何直觉。

使学生不但学习知识,而且要学习方法,学会从不同方向去思考、去探索教学重点把正方体表面展开成平面图形.教学难点按预定的形状把正方体展开成平面图形.教学方法引导发现法、启发猜想、讲练结合法课前准备教师准备课件、多媒体;学生准备三角板,练习本;课时安排1课时教学过程一、导入新课如图,一只蚂蚁在正方体箱子的一个顶点A,它发现相距它最远的另一个顶点B处有它感兴趣的食物,这只蚂蚁想尽快得到食物,哪条路径最短?试在图中将路线画出来生活常识可知,两点之间线段最短。

若把这个正方体图形展开成平面图形,就不难发现答案。

日常生活中,要想包装一个正方体形状的物体,需要根据它的平面展开图来裁剪,今天就来讨论一些简单的多面体的展开图二、新课学习探究一(投影显示)把一个正方体的表面沿某条棱剪开,展开成平面图形,你能得到哪些平面图形?请与同伴进行交流。

做一做:可得到以下11种不同的平面图形。

强调:强调随便剪,剪错没关系,粘上重剪。

1.检查学生操作中出现的情况。

2.教师和学生交流剪法。

3.肯定学生在操作中所取得的成绩。

4.为什么会剪成不同的,说说自己的想法。

引导学生概括:多面体是由平面图形围成的立体图形,沿着多面体一些棱将它剪开,可以把多面体展开成一个平面图形。

5.让学生举例说明:同一立体图形,按不同方式展开得到的平面展开图是不一样的。

注意:有的表面上看似不同,但通过转动、翻转可得相同。

友情提示:一个正方体要将其展开成一个平面图形,必须沿7条棱剪开,可以形成11种不同的平面图形。

北师大版七年级数学1.2 展开与折叠(2)教案

北师大版七年级数学1.2 展开与折叠(2)教案

北师大版七年级数学上第一章《丰富的图形世界》1.2《展开与折叠》第二课时教案【教学目标】1.知识与技能〔1〕.通过展开与折叠活动,了解圆柱、圆锥、棱柱的侧面展开图;能认识棱柱的某些特性;能根据展开图判断或设计制作简单的立体模型。

. 〔2〕通过展开与折叠的实践操作,进一步认识立体图形与平面图形的对应关系。

〔3〕在经历和体验图形的展开与折叠过程中,初步建立空间观念,开展几何直觉,积累数学活动经验2.过程与方法通过数学活动体验图形的变化过程,培养学生动手解决问题的能力及语言归纳表达的能力,开展空间观念。

3.情感态度和价值观让学生主动探索,勇于发现,敢于表达,合作交流感受数学活动的生动魅力,激发学生学习数学的兴趣。

【教学重点】通过操作活动,体会立体图形与平面图形的展开与折叠过程,开展空间观念.【教学难点】通过展开与折叠的实践操作,进一步认识立体图形与平面图形的对应关系.外表展开图的识别【教学方法】合作、探究【课前准备】多媒体课件【教学过程】一、回忆思考正方体的11种不同的展开图141,132,33,222,二、探究新知1.圆柱的展开图圆A、B两点沿着侧面的最短线路是什么?锥的展开图3.棱柱的展开图将图中的棱柱沿某些棱剪开,展成一个平面图形,你能得到哪些形状的平面图形?以五棱柱为例三、归纳总结:长方体的展开图五棱柱的展开图四、闯关练习:1.如图,上面的图形分别是下面哪个立体图形展开的形状?把它们用线连起来。

2.以下图形是什么多面体的展开图?3以下哪些图形经过折叠可以围成一个棱柱?如果能,请说知名称。

4.判断以下哪些图可以是三棱柱的展开图?三棱柱的展开图可以是①②③有些立体图形展开平面图形;有些平面图形折叠立体图形。

总结:一个平面图形能折叠成棱柱的关键:1.侧面的个数要与底面的边数相同;2.两个底面要位于侧面的两侧。

五、稳固练习:1.下面几个图形是一些常见几何体的展开图,你能正确说出这些几何体的名字么?2、以下图形哪个不是长方体的外表展开图?〔B 〕3.如图的展开图能折叠成的长方体是( D )4.如图,添加一个小正方形,使该图形经过折叠后能围成一个四棱柱,不同的添法共有( B )A.7种B.4种C.3种D.2种由四棱柱四个侧面和上下两个底面的特征可知,不同的添法共有4种,即在没有小正方形的一侧,每一个长方形的宽的左边添加都可以.应选B.六、中考链接2.如图是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?假设能,请画出它的几何图形,并计算它的体积;假设不能,请说明理由.〔3〕折叠之后与A重合的是哪个字母?长方体的体积为3×2×1=6〔立方米〕.七、谈谈收获八、开放作业请你来当小小设计师:用一张美术用纸,通过画一画、折一折、剪一剪为某公司设计制作一个棱柱或棱锥形包装盒子,并说说你的创意。

展开与折叠口诀

展开与折叠口诀

展开与折叠口诀
以下是五个符合要求的口诀:
《展开与折叠口诀一》
正方体呀要展开,一二三四分得清。

一个面有四个边,就像小方在立正。

二条棱边紧相连,如同小棒手牵手。

三个面儿成一组,好似伙伴在相聚。

展开图形仔细瞧,折叠回去也不难。

小朋友们认真记,数学世界乐趣添。

《展开与折叠口诀二》
展开折叠并不难,听我来把口诀传。

一条边呀是开始,好像火车头向前。

二块板子面对面,如同朋友在聊天。

三个图形连成片,好似花朵真鲜艳。

四四方方要认清,折叠还原就搞定。

简单口诀记心间,快乐学习每一天。

《展开与折叠口诀三》
要想学好展开折,这个口诀要掌握。

一先找到基准面,好像舞台搭起来。

二看相连有几个,如同演员要上台。

三个一组有规律,好似排队整齐站。

四面展开看清楚,折叠起来不迷糊。

小朋友们多练习,聪明才智展无疑。

《展开与折叠口诀四》
展开折叠有妙招,快来听我讲一讲。

一个中心不能忘,就像太阳放光芒。

二找相邻仔细看,如同星星围它转。

三个一组依次排,好似花瓣朵朵开。

四步完成展或折,轻松学会真不错。

大家快来一起念,知识海洋任你游。

《展开与折叠口诀五》
学习展开与折叠,口诀朗朗记心窝。

一条棱边是开头,好像小路引方向。

二面相对应记住,如同镜子照模样。

三个相连是关键,好似小桥连两岸。

四块图形成整体,折叠展开都容易。

小朋友们齐努力,数学天地创佳绩。

展开与折叠(2)课件 2022—2023学年苏科版数学七年级上册

展开与折叠(2)课件 2022—2023学年苏科版数学七年级上册
第五章 · 走进图形世界
5.3 展开与折叠(2) 第2课时 折叠
学习目标
学习目标
1.进一步感受立体图形与平面图形之间的关系,能根 据表面展开图判断、制作简单几何体;
2.感受正方体表面展开图中各个面之间的关系,会确 定正方体的对应面;
3.理解表面展开图中各个面之间的关系,会利用表 面展开图进行计算;

新知归纳
如果表面展开图由6个正方形组成,那么立体图形是正方体; 如果由3个或3个以上的三角形与1个多边形组成,那么立体图形是棱锥; 如果由3个或3个以上的长方形与2个形状、大小都相同的多边形组成, 那么立体图形是棱柱.
复习巩固
数学实验
3.如图,纸板上有10个无阴影的小正方形,从中选出1个,使 它与图中5个有阴影的正方形一起制作成一个正方体包装盒. 先想一想,再折一折,验证你的想法.
蚊子

你有何 高招?
壁虎 ● ●
壁 虎
拓展延伸
小壁虎的难题: 如图:如果圆桶改为正方体了呢?有多少条路径?哪条路径最短?
B
壁虎 ● A
B

蚊子
展开
B
A
B A 这样的路径有几条?
解:(1)这个包装盒是一个长方体. (2)此包装盒的表面积为2·b2+4·ab=2b2+4ab,体积为b2·a=ab2.
还原几何体是解答此类题的关键,动手操作是还原几何体的一个有效方法.
拓展延伸
小壁虎的难题:
如图:一只圆桶的下方有一只壁虎,上方有一只蚊子,壁虎要想尽快吃
到蚊子,应该走哪条路径?
● 蚊子
A
BCD
BCD
F
A
E
F
E
课堂小结
本节课你有什么新的收获!

北师大数学七年级上册第一单元《丰富的图形世界》1.2 展开与折叠2教案学案

北师大数学七年级上册第一单元《丰富的图形世界》1.2  展开与折叠2教案学案

1.2 展开与折叠2【学习目标】:1.通过折叠几何体,发展学生空间观念,积累数学活动经验。

2.能根据展开图判断和制作简单的立体模型。

3.经历和体验图形的变化过程,体会几何体与它的展开图之间的关系。

【学习重点】:利用模型将展开图折叠成几何体是重点。

【学习难点】:不用模型,展开想象,由展开图怎样叠成几何体。

导学过程:一、温故知新1:下面每个图片都是由6个大小相同的正方形组成,其中不能折成正方体的是 (B)2:下列图形中(每个小正方形皆为全等的正方形),可以是一个正方体表面展开图的是 (C)二、创设问题情景生活中,我们也经常见到其他几何体的盒子,如长方体的、三棱柱的,圆柱的等等的盒子。

为了设计和制作的需要,我们要了解它们的展开图。

那么,你知道长方体、其它棱柱等的展开图吗?三、探索其它棱柱的展开图解:棱柱是由两个完全相同的多边形底面和一些长方形侧面围成的.沿棱柱表面不同的棱剪开就可以得到不同的表面展开图.如图是棱柱的一种展开图.棱柱的表面展开图是两个完全相同的N边形(底面)和N个长方形(侧面).四、平面图形折叠成棱柱练一练:如图,请你在横线上写出哪种立体图形的表面能展开成下面的图形.解析:答案:三棱柱六棱柱长方体三棱柱五、探索圆柱、圆锥的侧面展开图08 圆柱圆锥侧面展开图形.swf六、练习巩固解:1图(1)底面是四边形,它是长方体的展开图;图(2)底面是五边形,它是五棱柱的展开图。

2图(1)能折叠成三棱柱,图(2)因2个底面同侧,所以它不能折叠成长方体。

解:(1)为三棱柱;(2)为圆柱;(3)为六棱柱;(4)为圆锥七、当堂小测1、想一想,再折一折,下面两图经过折叠能否围成棱柱?2、如下图,哪些图形经过折叠可以围成一个棱柱?先想一想,再折一折.3、下面图形经过折叠能否围成棱柱?4、下图中哪一个是六棱柱的平面展开图5、生活中我们经常可以见到各种各样的包装盒,你能用线将图中的实物和它的平面展开图连接起来吗?(A)(C)(D)。

新北师大版初中数学七年级上册 (初一)第1章第2节展开与折叠 两个课时课件

新北师大版初中数学七年级上册 (初一)第1章第2节展开与折叠 两个课时课件
花花一一样样美美丽丽,,感感谢谢你你的的阅阅读读。。 87、天勇放下气眼兴通前亡往方,天匹堂只夫,要有怯我责懦们。通继往续20地,:28狱收2。获0:2的80季:3208节72.就01:42在.82前:0320方07T.。1u42e.0s2.d07a2.1y0,4TJ2uu0el.ys7d.11a44y,2,20J0u.72ly.01144。, 2020年7月14日星期二二〇二〇年七月十 四日 8、拥有梦想只是一种智力,实现梦想才是一种能力。20:2820:28:307.14.2020Tuesday, July 14, 2020
下列图形哪个不是长方体的表面展开图?
A C
B E
D
活动三
将下图中五角星状的图形沿虚线折叠,得 到一个几何体,你在生活中见过和这个几 何体形状类似的物体吗?
把左图中长方体的
E
F
表面展开图,折叠成一 A B C D
G
个长方体,那么与字母
J重合的点是哪几个?
NM
LI
H
KJ
有一正方体木块,它的六个面分别标上 数字1——6,下图是这个正方体木块从不同 面所观察到的数字情况。请问数字1和5对面 的数字各是多少?
这个棱柱有几个侧面,侧面的形状是什么图形
底面
2、棱柱的侧面形状都是长方形;
这个棱柱有几条侧棱,它们的长度之 间有什么关系?
侧面
3、棱柱的侧棱的长度都相等。
侧棱
这个棱柱侧面的个数与底面图形的边数 有什么关系?
棱柱侧面的个数和它底面图形的边 数相等
你还想到了什么结论?
棱柱的特点
(1)棱柱的所有侧棱长都相等。 (2)棱柱的上、下底面形状相同,大小相等。 (3)棱柱的侧面的形状都是长方形。 (4)侧面的个数和底面图形的边数相等。

5.3展开与折叠(第二课时)课件

5.3展开与折叠(第二课时)课件
这样的袭击方式容易暴露自己而让害虫跑掉,它想
给害虫一个出其不意,绕过油
罐来攻其不备,那么壁虎经过 什么路线,要跑多远的路程才 能用最少的时间捕到害虫? A B
作业


P165:4 设计作业(要注重美观与实用)
有一个底面直径为5cm,高为20cm的圆柱形茶 杯,厂家请你为它设计一个棱柱形包装盒,请完成你 的方案,做成样品,说明你的设想。
由表面展开图形想象其折叠围成立体图形的方法
你还有什么问题要提出来?
1.下列平面图形经过折叠后能得到一个无盖正方
体盒子的是(

A
B
C
D
2.下列图形中,经过折叠后能围成一个三棱柱的图 形有( )
A.2个
B.3个
C.4个
D.5个
3.如图是正方体表面的展开图,如果将其合成原来
的正方体的表面,则与点A重合的顶点是___
正方体折叠一
返回
正方体折叠二
返回
比赛提示
返回
1 4 6
点此演示
规则:各小组先分析作出选 择后,分别剪折,剪
2
3 5
坏了不能再用,成功
的不同情况多者胜.
7
9 10
8
考考你1
将下面几何体与能围成它们的图形连结起来
1
2
3
4
5
6
1
2
3
4
5
6
考考你2 要使平面展开图,折叠围成立体图形
后,相对两面上的数互为相反数, 则x= y=
小结
通过本课的学习,你有什么收获?
______.
L A N M K J I
B
C
D E F
G

2 展开与折叠

2 展开与折叠
第一章 丰富的图形世界
2.展开与折叠
导入新课
讲授新课
当堂练习
课堂小结
目录
CONTENTS 学习目标:
1.掌握正方体的展开图,能根据展开图判断立体模型. (重点)
2.熟悉棱柱的展开图,初步尝试展开圆柱、圆锥的侧 面.(重点)
3.熟悉几何体与它展开的平面图形的对应关系.(难点)
导入新课
情境引入 在生活中,我们经常见到正方体形状的盒子.
1
2
34
5
6
7
8
9
10
11
正方体的11种展开图
第一类:1-4-1型(共6种)(记忆口诀:1 4 1) 提问:请将上图上图中的所对面用相同颜色标出来.
议一议:判断以下几种展开图是否可以折叠成正方体,并说出原因.
一线不过四 田凹应弃之
说一说:下列的哪个图形能折叠成正方体?
一线不过四
图1
图2
田凹应弃之
2.(教材习题)如果将正方体的表面分别标上数字1,2,3,4,5,6,使它的 任意两个相对面的数字之和为7,将它沿某些棱剪开,能展开成下列的 平面图形吗?
展开 展开 展开
例2 如图,下列图形经过折叠不能围成一个棱柱的是( B ) 思考1:一个图形若能折叠成一个棱柱,需要遵循什么原则?
想一想: 下面几个图形是一些常见几何体的展开图,你能正确说出这些 几何体的名字么?
1.下图中,不可能围成正方体的是( D )
2.将下图中平面展开图折叠成正方体后,相对面上的两个数之和都为6,
则x=__5__,y=__3__.
1
23
xy
能力提升
左边的平面图形可以折叠成右边哪个立体图形?
课堂小结
图形 的展 开与 折叠

展开与折叠(二)演示文稿

展开与折叠(二)演示文稿

d
(B)
e
(C)
f
(D)
i
(Ⅵ)课堂小结,布置作业
同学们一定有许多感想与收获,能把自 己的感想与收获说出来与大家分享一下 吗?



二OO七年一月
A
B
C
D
(2008 徐州)下列平面展开图是由 5 个大小相同的正方形组成,其中沿正方形的边不能折成 .. 无盖小方盒的( .. )
19.(2008 江苏 常州)如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四 位同学补画,其中正确的是
A.
B.
C.
D.
(2008 山西太原)右图是一个正方体的平面展开图,这个正方体是(
(Ⅰ)创设情境,导入课题
活动一
观察圆柱形纸筒展开的侧面是一个什么图形
圆柱展开动画演示
(Ⅰ)创设情境,导入课题
活动一
观察圆锥形圣诞帽的侧面是什么图形?
圆锥侧面展开演示
(Ⅱ)动手操作,探究新知
活动二
• 将到哪些平面图形? 与同伴进行交流.

A.
B.
C.
D.
(Ⅲ)先猜想再实践,发展几何直觉
想一想,做一做
如图是一个正方体纸盒的展开图,想一想,再 试一试面A,面B,面C的对面各是哪个面?
A B C D F E
(2010 年宁波市)骰子是一种特的数字立方体(见图) ,它符合规则:相对两面的点数之和 总是 7,下面四幅图中可以折成符合规则的骰子的是( )
(Ⅲ)先猜想再实践,发展几何直觉
想一想,做一做
把一个正方体的表面沿某些棱剪开, 展成一个平面图形,你能得到下面的 些平面图形吗?
7、 (2007 云南)在下面的图形中,不是正方体表面展开图的是( ..

展开与 折叠

展开与 折叠
(3)侧面的个数与底面图形的边数 有什么关系? (4)这个棱柱有几条侧棱? 它们的长度之间有什么关系?
棱柱名称 听一听、议一议 底面
1.棱柱有上下两个底面, 它们的形状相同.
2.侧面的个数和底面图形 的边数相等. 侧棱 3.侧面的形状都是长方形.
4. 所 其他面在什么情况下相同?
观察圆锥形圣诞帽的侧面是什么图形?
展开与折 叠.exe
考考你
如图,上面的图形分别是下面哪个立体图 形展开的形状?把它们用线连起来。
田凹应弃之
×
×
×
×
下面是一个正方体的展开图,图中已标出三个面 在正方体中的位置,E表示前面,F表示右面,D表示 上面,你能判断另外三个面A、B、C在正方体中的位 置吗? A B C D E F
展开与折叠(二)
棱柱名称
1、定义 在棱柱中,任何相邻两个面的交线都叫做棱。 在棱柱中,相邻两个侧面的交线都叫做侧棱
底面
2、棱柱的种类
三棱柱、四棱柱、五棱柱、六棱柱、…… n棱柱:底面图形的形状为n边形 的棱柱 叫做n棱柱。
侧棱
侧面
议一议
(1)这个棱柱的上下底面一样吗?
(2)这个棱柱有几个侧面?
侧面的形状是什么图形?
把下面的正三角形沿虚线折叠后 的几何体是什么?
这是一个正四面体(正三棱锥),请画出 它的表面展开图
棱柱的特点
(1)棱柱的所有侧棱长都相等。 (2)棱柱的上、下底面形状相同。 (3)棱柱的侧面的形状都是长方形。 (4)侧面的个数和底面图形的边数相等。
棱柱的顶点、棱、侧棱、侧面数量之间的关系 棱 顶点 面 侧棱 侧面 (个) (条) (个) (条) (个) 三棱柱 四棱柱
6
9
5

1.2 展开与折叠(2)

1.2 展开与折叠(2)

第五环节:当堂检测 (1)(2008 年双柏县)圆锥侧面展开图可能是下列图中的( )
A.
B.
C.
D.
(2)下列立体图形中,侧面展开图是扇形的是( )
A.
B.
C.
D.
(3) (2008 年广州市)下面四个图形中,是三棱柱的平面展开图的是(

布置作业: 《同步伴读》P7 课堂学习 A
4
学生归纳:
设计意图:教师演示圆柱、圆锥的展开图,使学生更直观地感受立体图形的展 开的形状。 学生自己经历通过观察分析归纳总结的过程, 有利于培养几何直觉。 教师
第四环节:分层操练 A、课本 11 页习题 1.4 知识技能 1 B、同步伴读 7 页课堂练习 B 组 5、6、7 C、同学们猜一猜,这个图形能围成什么?
第二环节:动手操作,探究新知 教师: (播放幻灯片) 1、想一想:这四个图形是不是立体图形的展开图, 如果是猜想这些立体图形 的名称是什么呢? 试一试:以小组为单位,把下面四个图形剪下来并折一折看看。
1
2、 观察一下, 这些图形具有什么共同的特征?想一想什么样的图形能折叠围成,底面就几边。 练习:完成课本 11 页随堂练习第 1、2 题 3、完成 P 课本 10 页想一想。 (1)以下哪些图形经过折叠可以围成一个棱柱?
3
课堂小结 教师:通过本节课的学习,你学到哪些知识?学习过程中遇到哪些疑难问题? 学生:我们知道圆柱侧面展开图是长方形,圆锥的侧面展开图是扇形。 „„ 学生:解决“展开与折叠”问题的方法:一是动手实践,二是发挥空间想像, 合情推理。 设计意图:培养学生的概括能力,检验学生对本节课的掌握情况,同时也给学 生发现、探究、反思、总结、发展的空间,养成学习――总结――再学习的良 好习惯。

七年级数学第一章 第二节 展开与折叠 第2课时Microsoft Word 文档

七年级数学第一章  第二节  展开与折叠   第2课时Microsoft Word 文档

七年级数学第一章第二节展开与折叠第2课时教学目标:1.通过展开与折叠活动,了解棱柱、圆柱、圆锥的侧面展开图;能认识棱柱的某些特性;能根据展开图判断和制作简单的立体模型.2.经历展开与折叠、模型制作等活动,发展空间观念,积累数学活动经验;培养学生的观察与比较、类比与联想、分析与归纳的逻辑思维能力,培养学生动手操作能力.3.初步获得动手制作的乐趣及制作成功后的成就感;在制作实践的过程中学会与人合作,学会交流自己的思维与方法,感受生活中立体图形的美.教学重点:在具体情境中让学生动手实践,让学生在实践中理解棱柱、圆柱、圆锥的展开与折叠.了解棱柱、圆柱、圆锥的侧面展开图,能在操作实践中认识棱柱的某些性质.教学难点:发展学生空间观念,培养观察能力和动手能力.教法学法:对于教师来说,上好本节课的关键是弱化概念,重视操作实践.发挥多媒体的声、像、动画功能,动态展示展开与折叠的全过程,直观而形象的反映棱柱等的性质,从而突破难点.对于学生来说,上好这节课要求“仔细观察、大胆探索、勇于发现、善于概括.”教学准备:教师准备:1.棱柱、圆柱、圆锥实物、展开图的模板图形.2.多媒体课件.学生准备:1.收集一些实际生活中棱柱、圆柱、圆锥的例子.2.剪刀、直尺及硬纸板,用于做实际的模型.教学过程:一、创设情境,导入课题教师:让学生观看生活中常见的棱柱、圆柱、圆锥图片.并问:同学们你们认识这些几何体吗?学生:棱柱、圆柱、圆锥(踊跃回答).教师:同学们上一节课我们学习了正方体的展开与折叠,这节课我们共同学习棱柱、圆柱、圆锥的展开与折叠.引出本节课题《1.2展开与折叠(2)》并在黑板上板书.二、动手操作,探究新知活动一:教师:将下图中的棱柱沿某条棱剪开,展成一个平面图形,你能得到哪些形状的平面图形?学生进行裁剪,教师巡视.把学生剪好的平面图形贴在黑板上并编号(重复的不再贴),可以得出棱柱不同的展开图:如:三棱柱:……四棱柱:……五棱柱:……教师:如果你剪出的平面图形与其它同学的不一样,你可以验证其他同学的平面图形,看他们的剪出的平面图形是否可以折叠成对应的棱柱.学生:开始验证.在教师的指导下每个学习小组动手折叠,粘贴成棱柱.学生展示自己制作的棱柱,教师将折好的棱柱贴在黑板上.活动二:教师:按照如图所示的方法把圆柱、圆锥的侧面展开,会得到什么图形?先想一想,再试一试.学生先思考,再进行裁剪,教师巡视.把学生剪好的圆柱、圆锥的侧面展开图贴在黑板上.教师:下面我将圆柱、圆锥的侧面展开的过程展示给同学们看.(用几何画板进行演示)学生:认真观察演示.圆柱的侧面展开图是长方形,圆锥的侧面展开图是扇形.三、巩固训练,应用新知内容:(教师用多媒体展示)1.如图,哪些图形经过折叠可以围成一个棱柱?先想一想再折一折.一部分学生马上说出了答案(1)、(3)不能,还有一部分学生还在思索.教师:同学们再动手试一试,检验一下自己猜想是否正确.学生动手折叠.教师:现在能说出哪几个能折成棱柱,哪几个不能吗?学生:(1)、(3)不能;(2)、(4)能.教师:为什么(1)、(3)不能学生:把1图围起来还差1个侧面.学生:3图围起有一个底面没有,另一个底面有2个底面重合了.教师:同学们能不能把(1)、(3)图修改一下,使它能围成棱柱?(学生踊跃举手)学生:将(1)图改为了教师:同学们看一看这样修改对不对,经他这样一改,可以围成什么?学生:围成三棱柱.教师:真不错,这种方法连老教师都没想到.教师:下面同学还有其他改法吗?你来试一试.学生:改为教师:这位同学这样改对吗?教师:这时能围成什么?教师:图(3)该怎样修改一下呢?学生上黑板改成教师:这位同学这样修改后可以围成棱柱吗?教师:其他的同学都做好了吗?交给你的同伴看一看.(学生交换自己的修改图,有的互相指出问题.)教师:通过我们的修改、折叠,现在黑板上的平面图形都能折叠成棱柱.同学们观察一下这些图形具有什么特征,从中你能发现什么样的图形折叠后能围成棱柱,同学们分小组讨论一下.(学生热烈讨论交流,教师巡视指导.)学生:(指着自己展开图形的上、下底面)我们发现要折成棱柱,这两部分应分别位于这部分的两侧,不能在同一侧,中间这部分是几个长方形,可以围成棱柱的侧面.学生:我们发现图形要围成棱柱要分三部分,中间是由几个长方形组成的可围成棱柱的侧面,上、下两部分位于长方形的两侧,可以围成底面,这两个底面形状大小要相同.教师:很好,还有其他特点吗?学生:我们还发现了,上、下两个部分有几条边,中间就应有几个长方形,比如(指着四棱柱的展开图),这个图上、下两个面是长方形有4条边,中间就有4个长方形.(指着三棱柱展开图)这个图形上、下底面是三角形,有三条边,中间是三个长方形……教师:同学们观察得很仔细,归纳得很全面,利用同学们刚才发现的特征你能否设计一个四棱柱的展开图,涂上你喜欢的颜色.(学生动手设计,教师巡视作个别指导,将先画好的设计图贴在黑板上.)教师:现在我们来判断一下,黑板上这些同学设计的图形能围成四棱柱吗?教师:你们都设计好了吗?我们不能一一来检查,请把你的设计图给你的同伴互相验证一下,如果不能,请帮助他修改一下.(学生开始互相检查、折叠,有的指出问题,进行修改.)教师:现在告诉老师,你设计的图形能围成四棱柱吗?学生:能(自豪地举起手中五颜六色的棱柱).教师:真棒,同学们设计的真好,请同学们看这里.2、教师把一个涂有黄色的四棱锥开图贴在黑板上,同学们猜一猜,这个图形能围成什么?(学生七嘴八舌,有的学生答圆锥,有学生答四棱柱,有学生答四棱锥.)教师:同学们动手试一试.能折成什么?学生:四棱锥.教师:生活中同学们见到过这种物体吗?学生:见过,如金字塔.学生:不对,金字塔是三棱锥.学生分成两派一边喊是三棱锥,一边喊是四棱锥.教师:这样吧,同学们下去查一查金字塔有关资料,看一看金字塔到底是四棱锥还是三棱锥.教师:将五角星贴到黑板上,猜一猜这个漂亮的五角星能折成什么?(部分学生大声说出五棱锥,有的学生还在思索.)教师:这个问题就留给同学们下去折一折,看一看能折成什么?四、课堂小结,升华认知教师:通过一节课的学习,同学们一定有许多感想与收获,能把自己的感想与收获说出来与大家分享一下吗?学生:我知道了什么样的图形能折成棱柱.学生:我学会了怎样设计一个展开图折成棱柱,通过这节课,提高了我的想象力.……教师:同学们一定还有其他的感受不能一一说出来,就请同们把你的感受与收获写到你的数学日记中.五、达标检测,应用反馈必做题:1.哪种几何体的表面能展开成下面的平面图形?(1)(2)(3)(4)2.图中的两个图形经过折叠能否围成棱柱?(1)(2)选做题:3.如图所示图是长方体的表面展开图,折叠成一个长方体,那么与字母 J重合的点是哪几个?六、布置作业必做题:习题1.4第2题选做题:习题1.4第3题七、板书设计教学反思:本节课通过生活中的立体图形自然地引入本课课题,让学生感受数学知识在活中的应用,激发学生学习兴趣.让学生自己动手对几何体进行的展开成平面图形,将学生发现的结论提到应用的高度来解决实际问题,使学生的空间想象力得到发展,同时培养了学生的创造精神及动手能力.整个教学活动突出了课标的基本理念,充分让学生动手操作,自主探索,合作交流,以积累有关图形的经验和数学活动经验.在开放式教学过程中,注重学生动手实践,在实际的操作过程中去体验探索;注重让学生充分合作交流,让学生在合作中互相实现信息与资源的整合,不断扩充和完善自我认识,学会参与,学会倾听;注重引导学生主动探索,敢于实践,善于发现的科学精神.教学中,教师是合作学习的组织者、引导者、参与者,学生是活动的主人、主体.教师深入到学生中认真倾听,通过指导,排除障碍,充分尊重学生,鼓励学生从不同角度认识、感受、体验、交流自己想法,学生的参与程度高,学生活动多,教师的展示行为、引导语言和激励语言,起到了突出重点、突破难点、和谐课堂气氛等积极作用,课堂气氛活跃,学生学习兴趣浓厚.。

最新六年级数学上册1.2展开与折叠 2鲁教版五四制优选教学课件

最新六年级数学上册1.2展开与折叠 2鲁教版五四制优选教学课件
你的承诺和誓言总归太遥远,你总归太缥缈。当我不在是你生命中的独一无二,我宁愿离去,也不愿在一份残缺的爱里苦苦挣扎。 你总归是我命中未了的缘和劫,我们也终究错过了!如果上天能够重新来过,我会绕过那个和你认识的地方,遇见你也许就是没有结果,可我也能释怀了。 我不能抱着那些回忆来折磨自己,我也不想就这样颓废的麻木的去过每一天了。你给的一切在回忆的沼泽里只会让我放不下,你走后在每一个似曾相识的场景里我总是会不由自主的想起你,我会盯着你送的东西久久的发呆,也会因为看到某个熟悉的背影,而伤心落泪。
我终于能很轻松地说我们错过了,你终究是那个错的人,我也决定放下了!余生很长,放下错的人,才能拥抱属于我的幸福。徐志摩曾说过:“一生中至少该有一次,为了某个人而忘记了自己,不求结果,不求同行,不求曾经拥有,甚至不求你爱我,只求在我最美的年华里,遇见你。”我不知道自己是何等的幸运能在茫茫人海中与你相遇?我也不知道你的出现是恩赐还是劫?但总归要说声“谢谢你,谢谢你曾来过……” 还记得初相识时你那拘谨的样子,话不是很多只是坐在那里听我不停地说着各种不着边际的话。可能因为紧张我也不知道自己想要表达什么?只知道乱七八糟的在说,而你只是静静地听着,偶尔插一两句。想想自己也不知道一个慢热甚至在不熟的人面前不苟言笑的我那天怎么会那么多话?后来才知道那就是你给的莫名的熟悉感和包容吧! 有一句话说:“人的一生会遇到两个人,一个惊艳了时光,一个温柔了岁月。” 惊艳了时光的那个人,是青春回忆里最绚烂、最耀眼的存在,不后悔跟他经历过的快乐与感动,哪怕后来的大风大浪都是他给的,但还是想对他说,有生之年,欣喜相逢。
终于下定决心把你归还于人海了!其实很早就在逼自己慢慢的去放手了,每次听着你那冠冕堂皇的话我尽然差点相信了我和你会有以后…… 我没有你善于伪装,我学不会做最坏的人,我也不想浪费太多的时间和精力去等一个不可能的结果!虽然先动心、动情的人是你,无数次主动和挽留的人也是你,可我还是学不会去做一个你渴望中的人。 这一路有快乐、有坎坷、有心酸。记得你曾对我说过:“这一路来太多的心酸和坎坷自己必须好好珍惜才是……”你也说过:“我不必有顾虑,你会珍惜你会好好保护着我……”这些话在耳边响起犹如昨天,那么悦耳那么清晰。可我不想这样原地不动的去等待和期望了,我准备回头了,回到我的原点,回到不是和你开始的原地了……。

《展开与折叠》第2课时示范公开课教学设计【七年级数学上册北师大】

《展开与折叠》第2课时示范公开课教学设计【七年级数学上册北师大】

第一章丰富的图形世界1. 2 展开与折叠第 2 课时◆教学目标1.经历展开与折叠、模型制作等活动过程,发展空间观念,积累数学学习的经验.2.在操作活动中认识棱柱的某些特征;了解棱柱、圆柱、圆锥的侧面展开图,能根据展开图判断和制作简单的立体模型.3.培养合作学习的能力.◆教学重难点◆【教学重点】利用实物模型,发现并认识棱柱的一些特征.【教学难点】对棱柱性质的理解和空间想像的验证.◆课前准备◆学生准备:预习本堂课内容;课纸板;本堂课所需的五棱柱、六棱柱、三棱柱、四棱柱的展开图;剪刀、粘胶.教师准备:标上号码、上面可以活动的五棱柱及展开图;一底面可以活动的六棱柱、三棱柱的展开图;正方体、长方体模型.◆教学过程一、创设情境,引入新知将图中的棱柱沿某些棱剪开,展成一个平面图形,你能得到哪些形状的平面图形?引入课题:展开与折叠1.做一做.(1)让学生把准备好的五棱柱的平面展开图拿出来,沿折痕进行折叠,看看能否折成如图2的棱柱.【把各小组中制作最好的进行展示,以激发学生的兴趣及上进心.】(2)问题的出现:由于事先教师故意不告诉学生怎样制作图1的纸板,使一些同学只能用“描红”的方法,这样的棱柱过小,不易制作;也有些同学剪出的纸板折不成五棱柱.(教师给予鼓励,并引导发现为何不能的原因.)而一些爱动脑子的学生不仅制作成功,而且把图1放大了.(教师给予大力表扬.)(3)问题的解决:让制作成功的同学上台讲述如何制作图1.①先画正五边形,画一个长方形,使长方形的长等于五边形的周长,然后确定折痕,对应线段相等.②先画长方形,确定折痕,然后利用五条线段画出五边形.③把纸片对折,画出一个五边形和半个长方形,再剪开.(4)新问题的出现:教师拿出上底面活动的五棱柱模型,故意不小心把上底面掉在地上,捡回后错放对应边的位置,请求学生帮忙如何把上底面装回去,让学生分组讨论解决的方法.(5)引导学生概括:只要对应边相连,都能把上底面装回去.进一步引导学生考虑:图1的上底面可不可以移动位置?如何移下底面呢?图2棱柱还可以由哪些平面图折成?【通过层层设问,不断鼓励探求新的解决方法,可以培养学生探求新知的能力及语言表达能力.】2.知识的概括:在展开与折叠过程中的变化,激发学生思考图形并从中发现棱柱的一些特性,让学生将模型展开时测量棱长等,加深对棱柱性质的理解,并对棱柱的分类进行探讨.3.想一想.(1)先让学生想一想,以培养学生空间想像能力,然后再折一折,让学生发现能折好或不能折好的规律,要进行归纳整理,发现规律.(2)面是指侧面和底面,应加以强调.引导学生发现n棱柱有3n条棱,2n个顶点,(n+2)个面.4.侧面展开图.(1)探索圆柱的侧面展开图把圆柱的侧面展开,会得到什么图形?(2)探索圆锥的侧面展开图把圆锥的侧面展开,会得到什么图形?三、巩固新知1. 哪种几何体的表面能展开成下面的平面图形?2. 图中的两个图形经过折叠能否围成棱柱?3. 你能用一张纸片,通过剪一剪、折一折,制作一个棱柱形的盒子.四、归纳小结1.通过本堂课的教学,你了解立体图形和平面图形的关系了吗?2.一个立体图形的平面展开图是否惟一?略.。

5.3展开与折叠(2)

5.3展开与折叠(2)
课时编号 备课时间 课 题 5.3 展开与折叠(2)[教案] 1、 了解简单几何体的表面展开图形。 能想象并画出简单几何体的表面展开图形, 能根据表面展开图形想象并制作简单的几何体。 2、经历展开与折叠的过程,感受立体图形与平面图形的关系,体验图形的变化 过程,积累数学学习的经验。 3、经历合作与探索、竞赛的学习过程,养成学生研究性学习、合作学习的习惯, 培养学生的合作学习的精神,激发学生对数学的兴趣。
教学目标
教学重点 教学难点
经历数学活动的过程,感受平面图形与立体图形的关系,发展空间想 象力 想象简单几何体表面展开图形的形状, 由简单几何体的表面展开图形, 想象其折叠成立体图形的过程
教 教学内容 学 过 程 学生活动 学生积极思考。 口 头回答问题 图(1)不对,图 (2)对 图 (3) 下面四小 : 正方形围成正方 体周围四个面, 上 面两个正方形都 成为上面的盖, 缺 了下面, 因此不能 围成正方体的表 面。图(4) :我说 不清楚, 只是有点 感觉。 教师活动 1 2 5 6 图(2) 3 4 老师课前也画了两个正方体的表 面展开图形(图 1、2) ,请发挥你 的想象力,判断老师画的是否正 确?(它们能折叠围成正方体 吗?) 你是如何想象的?能说出你的想 法吗?
情境创设 1、 2、
例 1:……
例 2:……
习题 ……
…… ……
…… ……
…… ……
作业布置
课后随笔
1 3 4 5 图(1)
2 6
通过刚才的学习, 同学们一定急于施 展自己的才华了,这里有一个问题, 对于(2) ,有哪一位同学愿意谈 看哪个小组完成的最好。 (放映问题: 一下自己的想法? 如图(3)纸板上有 10 个无阴影的正 方形,从中先出一个,与图中 5 个有 同学们可能有许多自己的想法, 老师在这里也谈一下自己的做 2 3 1 法,供同学们参考。 (边讲边动画 4 演示,先图(3)后图(4)的折 5 叠的过程) 6 7 8 (1)先假定一个基准在面(不 动)(2)再考虑四周应是哪几个 , 9 10 面,从最容易确定的开始找。 (3) 最后考虑此基准面的对面是哪个 图(3) (教师边演示中间过程,边让 阴影的正方形连在一起, 折叠成一个 面。 有盖的正方体纸盒, 有哪几种不同的 学生观察思考,发挥空间想象力, 预测下一步结论) 做法?规则:①各小组发挥集体智 慧,先设计方案,再动手操作;②剪 坏的不能再用(每小组 4 张) ;③以 成功的不同方案多者为优胜。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

展开与折叠二
教学目标
知识与技能
1、进一步理解立体图形与平面图形的关系,了解立体图形可由平面图形围成,立体图形可展开为平面图形;
2、了解圆柱、圆锥的侧面展开图,能根据展开图判断立体模型;
过程与方法:通过展开与折叠的实践操作,在经历和体验图形的转换过程中, 初步建立空间概念,发展儿何直觉.
悄感态度价值观:体验数学与日常生活是密切相关的,理解到很多数学研究的原型都源于生活实际,反过来,众多的实际问题也能够借助数学方法来解决.
教材分析
重点:在操作活动中,发展空间观点,积累数学活动经验.理解棱柱的某些特征,形成规范的语言.
难点:根据棱柱的展开图判断和操作简单的立体图形.
教具:电脑、投影仪
教学过程
一、创设情景,导入课题
内容:教师拿出圆柱形圆锥形实物展示沿虚线展开,侧面是一个什么图形会是什么图形?
教师拿出一个制作漂亮的正方体纸盒展示给学生看,乂拿出另外一个同样制作的正方体纸盒的平面展开图给学生看并用手慢慢地折叠成正方体纸盒.
教师:人们是如何将平面纸做成如此漂亮的纸盒的呢?
导入新课:展开与折叠(二)
二、动手操作,探究新知
教师:请同学们将准备好的小正方体纸盒沿某条棱任意剪开,看看能得到哪些平面图形?注意剪开正方体棱的过程中,正方体的6个面中每个面至少有一条棱与其它面相连.
学生实行裁剪,教师巡视.把学生剪好的平面图形贴在黑板上(重复的不再
贴),能够得出11种不同的展开图:
教师:能否将得到的平面图形分类?你是按什么规律来分类的?
学生讨论得出分为4类
教师:一个正方体要将其展开成一个平面图形,必须沿儿条棱剪开?
学生:因为正方体有12条棱,6个面,将其表面展成一个平面图形,面与 面之间相连的棱有5条(即未剪开的棱),所以需要剪开7条棱.
教学过程
三、先猜想再实践,发展儿何直觉
内容:练习1
教师:将一个正方体的表面沿某些棱剪开,展成以下平面图形.先想一想, 再动手剪,剪错了不要紧,再粘上,重剪.
学生思考,再动手剪,然后与同伴交流.请剪好的学生介绍自己的剪法. 练习2 教师:贴出一个正方体的展开图.
教师:面A 、面B 、面C 的对面各是哪个面?
学生思考,猜想答案.
教师请一位同学用透明胶粘贴成正方体展示给同学们看,验证答案
. TTT
B
C
匚二HI 肘n D (1) (2)
四、课堂小结:正方体十一种展开图
五、布置作业:练习册展开与折叠(2) 课后反思:。

相关文档
最新文档