可控活性自由基聚合反应
原子转移自由基聚合概述
原子转移自由基聚合概述1.引言“活性”/可控自由基聚合不同于传统意义上的自由基聚合反应。
它克服了分子量及其分布不可控,难以合成嵌段聚合物等缺陷,做到了分子量可控,分子量分布较窄,聚合物结构可控等一系列要求。
这类聚合反应主要是有效降低了增长活性中心的浓度,抑制了双基终止的发生,延长了自由基的寿命和分子量的统一性;使用快引发的方式,保证不同分子链同时增长。
目前大致有以下几种不同的机理得到了较为深入地研究:基于引发-转移-终止剂(Initiator-chain transfer-terminator)的活性自由基聚合(Iniferter法)、基于氮氧稳定自由基的活性自由基聚合(Living nitroxide-mediated stable free radical polymerization-SFRP)、原子转移自由基聚合(Atom transfer radical polymerization-ATRP)、基于可逆加成碎裂链转移剂的活性自由基聚合(Living radical polymerization in the presence of reversible addition-fragmentation chain transfer-RAFT)和退化转移自由基聚合(degenerative transfer process-DT)等等。
在这些不同的实现“活性”/可控自由基聚合的方法当中,原子转移自由基聚合是目前最有希望实现工业化的一种方法。
2.原子转移自由基聚合概述原子转移自由基聚合是1995年由卡内基梅隆大学Matyjaszewski课题组提出的一种“活性”/可控自由基聚合新机理Wang, J-S; Matyjaszewski, K. Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117: 5614–5615.。
可逆加成断裂链转移可控活性自由基聚合
洪春雁等用于苯乙烯的RAFT聚合制得了以树星型聚合物的形 成机理示意图
可逆加成-断裂链转 移试剂的选择
可逆加成-断裂链转 移试剂(RAFT试剂) 主要有:二硫代酯 、三硫代碳酸酯、 芳基二硫代氨基甲 酸酯、黄原酸酯和 ω-全氟二硫代酯。
RAFT聚 合的应用
目前,利用 RAFT 聚合可实现对聚合物分子 量大小和分布的控制,并实现聚合物的分子设 计,合成具有特定结构和性能的聚合物,已成 为高分子合成研究最活跃的领域之一。 RAFT技术可以在温和的条件下方便地合成 结构可控的聚合物,如嵌段、接枝、星形、 树枝状、支化及超支化聚合物等。
对上面的4种RAFT试剂,可以将左 边与碳原子相连的基团都看成Z基 团,右边的与硫原子相连的基团看 成是R基团。RAFT试剂的性质主要 决定于Z基团、R基团以及所形成的 自由基(R)的性质。根据不同的单体 ,选择RAFT试剂时,要充分了解R 基团、Z基团的性质以及单体自由 基的活性等。其活性可以用自由基 对它的链转移常数Ctr表示。
硫酯化合物链转移常数很大,若试剂选择合适且 反应条件得当,则可以得到分子量分散系数很小 (<1.2)的产物;
由于RAFT试剂存在于聚合物链的末端,从而保持 02 了聚合物的活性,即若再加入单体,可生成嵌段、
星型和其他具有特殊结构的聚合物,还可以很好 地控制聚合物链端结构,制备带有端基官能团的 遥爪聚合物,该特性可以用于进行分子设计。
可以在温和的条件下方便地合成结构可控的聚合物,如 嵌段、接枝、星形、树枝状、支化及超支化聚合物等
与NMP、Ini erter 和ATRP 等方法相 比, RA FT 聚合适用的单体范围更广, 几 乎所有能进行自由基聚合的烯类单体都 能进行RAFT 聚合, 且反应条件比较 温和,没有聚合实施方法的限制, 适宜于 本体、溶液、乳液、悬浮等聚合方法。
可控活性自由基聚合
Iniferter研究进展
一、光Iniferter与热Iniferter结合 光Iniferter和热Iniferter能分别引发不同的单体进行活性自由基聚合, 并且具有各自的优点。钦曙辉等人将六取代乙烷型C—C 键和DC 基团 设计到一个分子中,合成出一种新的化合物DDDCS。
可以选择先光分解后热分解(或倒过来)的顺序进行MMA,St,异戊二 烯和乙酸乙烯酯(VAc)的聚合,制备一系列组分和链长度可控的ABA 型的三嵌段共聚物,尤其是制备PVAc-b-PSt-b-PVAc 三嵌段共聚物。
2)适用丙烯酸甲酯(MA)、乙酸乙烯酯(VAc)、丙烯腈(MAN)、甲基丙烯腈 (MAN)等单体的聚合;
3)用于聚合物的分子设计,如用单官能团、双官能团、多官能团Iniferter可 用于合成AB型、ABA型嵌段共聚物及星状聚合物
Iniferter法的优缺点
• 引发转移终止剂法对聚合过程控制的不是很好,所得聚合物的分子量与理论值 偏差较大,分子量分布较宽。 与RAFT、反向ATRP、SFRP法相比,Iniferter显著的优点是可聚合单体比较多, 能方便地制备接枝和嵌段共聚物。 对于反向ATRP,体系需要催化剂,使用传统引发剂(AIBN或BPO)会导致双 基终止严重。 RAFT法聚合产物的链端为活性基团、在反应最后阶段需进行基团转化。 SFRP法反应温度高时间长,需要加入加速剂。 Iniferter体系比较简单,实验条件温和。
引发转移终止剂
• 引发转移终止剂是指在自由基聚合过程中同时起到引发、转移和终止作用的 合物.
•
一般可分为热分解和光分解两种类型.
Iniferter的分类
一、热分解型(Thermoiniferter ) 热分解型Iniferter通常是对称的六取代乙烷类化合物,其中又以1, 2-二取代的四苯基乙烷衍生物居多。另外还有偶氮键的三苯甲基偶氮 苯(PAT)和S—S键的四乙基秋兰姆(TD)。
可控自由基聚合
• 1引发一转移一终止剂(INIFERTER)法
• 20 世 纪 80年代初,Otsu等在总结自己早期工作和其它研究者报道的结 果时发现:在自由基聚合体系中加入某些化合物,例如二硫代氨基甲酸盐、二 硫化合物等,聚合表现出某些活性聚合的特征。Otsu发现在这样的聚合体系 中,加入的二硫代氨基甲酸盐同时起到了引发剂、转移剂和终止剂的作用, 1982年,Otsu提出了Iniferter的概念, "Iniferter"是由“initiator"、“transfer"、 "terminater“ 这三个词各取三个字母合并而成的,这种化合物集引发、转移、 终止的功能于一身。其反应机理如图所示
4 原子转移自由基聚合(ATRP)
• 199 5年 , Matyjaszewski, Percec, Sawamoto等 三个研究小组几乎同时报道了三个不同的“活 性”/可控自由基聚合体系。它们的引发体系的组 分类似,都由卤化物和过渡金属络合物组成,且 聚合反应的机理也相似。王锦山,Matyjsszewski 把这类聚合反应命名为原子转移自由基聚合 (Atom Transfer Radical Polymerization,ATRP), ATRP是以简单的有机卤化物为引发剂,卤化亚 铜与联二吡啶的络合物为卤原子的载体,通过氧 化一还原反应,实现了活性种与休眠种中间的可 逆动态平衡,从而达到控制聚合反应的目的。
The structure of RAFT reagents
1.2.2 RAFT活性自由基聚合的特点 RA F T 活性自由基聚合和其它活性自由基聚合的区别在于: (1)RAFT适用 的单体范围较宽。用于RAFT聚合的单体可以带有羧基、羟基、二烷胺基等特 殊官能团,所以RAFT不仅适用于苯乙烯、(甲基)丙烯酸酯类、丙烯腈等常用单 体,还适用于丙烯酸、苯乙烯磺酸钠、甲基丙烯酸羟乙酯、甲基丙烯酸胺基乙 酯等质子性或酸碱性功能单体;(2)聚合所要求的聚合条件温和(60-70℃即可反应) 且反应过程无需保护和解保护;(3)可采用多种聚合方法实施,可用本体、溶液、 乳液、悬浮等方法来实现,可用间歇加料、半连续加料及连续加料法来进行。 (4)可以合成嵌段共聚物及特殊结构的高分子。 存在的问题 R A FT 聚 合所需的链转移剂双硫酷类化合物的制备过程需要多步有机合成, 聚合体系中也存在双基终止现象:双基终止生成的无活性死聚物,使产物的分子 量分散系数增大,而要减少双基终止,体系中的自由基浓度应远远低于RAFT试 剂的浓度,这在本体和溶液聚合中聚合速率会较低;RAFT聚合存在控制程度与分 子量的矛盾,单体浓度一定,要得到高分子量的产物,就必须减少链转移剂的用 量,链转移剂用量的减少会使聚合的可控性减弱。另外,RAFT活性自由基聚合 在新的反应介质中的聚合规律等还需要深入的研究。
自由基活性聚合
制备方法: 1.用竞聚率差别较大的两种单体一次加料直接共聚; 2.将一种单体连续加料
例:以2-溴异丁酸乙酯为引发剂,溴化亚铜/联二吡啶/铜为催 化剂,通过原子转移自由基聚合以及连续补加第二单体的方法 制备苯乙烯(St)-甲基丙烯酸甲酯 (MMA)的梯度共聚物。
制备聚合物刷:
聚合物刷是指通过物理吸附或者化学键的方式附着在特定 表面并呈现一定形貌的一层聚合物。聚合物刷的物理化学性质 及构象决定了其润湿特性、腐蚀特性、胶体稳定性、表面智能 及生物传感特性。
不足: 1.过渡金属催化剂的去除有一定困难; 2.需要使用较大量的催化剂来加速反应,却不能提高分子量; 3.对反应体系的pH值较敏感。
ATRP的应用:
大分子设计的有效工具
制备分布较窄的均聚物 制备无规、渐变、交替共聚物 制备具有特殊链端的聚合物 制备梯形、嵌段共聚物、星形聚合物 制备聚合物刷
制备梯形共聚物:
实现可控活性自由基聚合的方法:
1)引发转移终止剂法(Initiator-transfer Agent Terminator, Iniferter); 2)稳定自由基调控聚合法(Stable Free Radical Polymerization,SFRP),稳定自由基主 要是氮氧自由基; 3)可逆加成-裂解链转移聚合(Reversible Addition Fragment Chain Transfer, RAFT); 4)原子转移自由基聚合(Atom Transfer Radical Polymerization, ATRP)。
Rp kp M M
链终止速率方程:
Rt 2kt M 2
链终止反应 对自由基浓度的依赖程度更大
假若能使自由基浓度降低到某一程度,既可以维持可观的链增长速率, 又可以使链终止速率减少到相对于链增长可以忽略不计,这样便消除了自 由基可控聚合的主要症结。
可控活性聚合
那么问题来了。
究竟要采取什么策略才能使自由基再聚合过程中保持如 此低的浓度,从而使自由基聚合由不可控变为可控?
策略
通过可逆的链转移或链终止,使活性种(具有链 增长活性)和休眠种(暂时无链增长活性)进行快 速可逆转换:
• 以上活性种与休眠种的快速动态平衡的建立,使体系
中自由基的浓度控制得很低,便可控制双基终止,实
概述
在聚合体系中引入一种特殊的化合物,它与活性种链自由基
进行可逆的链终止或链转移反应,使其失活变成无增长活性的休 眠种,而此休眠种在实验条件下又可分裂成链自由基活性,这样 便建立了活性种与休眠种的快速动态平衡。这种快速动态的平衡 反应不但使体系中的自由基浓度控制得很低而且抑制双基终止, 而且还可以控制聚合产物的分子量和分子量分布,实现活性/可 控自由基聚合。
现活性可控。
主要的可控/活性聚合方法
(NMRP)
(ATRP) (RAFT)
引发转移终止剂法(iniferter)
• 引发转移终止剂:在聚合过程中同时起到引发、转移、
终止作用的一类化合物。根据目前已发现的可分为光
活化型和链活化型两种。
光引发转移终止剂
一般含有S-S键或者C-S弱键,主要指含有二硫
双基终止的解决办法
假若能使自由基浓度降低到某一程度,即可维持可观 的链增长速率,又可使链终止速率减少到相对于链增长 速率而言可以忽略不计,这样便消除了自由基可控聚合 的主要症结双基终止。 根据动力学参数估算: 当[P· ]≈10-8mol/L时,此时 Rt/Rp≈10-3~-4,即Rt相对 于Rp实际上可以忽略不计。
. NHCCH2 , CH3CH2OCCH2 . O O CH2OCCH2 .
. CH3CH2CH2CH2OCCH2 ,
活性可控自由基聚合反应
3.大分子单体的合成 大分子单体是末端含可聚合基团的线形聚合物。 在活性聚合中,加入不同的终止剂,可以获得端基带预 期官能团的聚合物。
CO2 H2C O CH2 H2C S CH2 CoCl2 ClCH2CH CH2
COOH
OH
SH
COCl
CH2CH
CH
CH2Li CH2Li
+ Cl + Cl
CH2CH CH2 OCH CH2
(4)ABC杂臂星形聚合物
氯硅烷法
苯乙烯-异戊二烯-丁二烯杂臂星形聚合物(PS-PI-PB) 的 合成
锂硅烷法
苯乙烯_二甲基硅氧烷_特丁基丙烯酸甲酯杂臂星形聚合物 (PS-PDMS-PtBuMA)的合成
(5)超支化聚合物 超支化聚合物概念: ABx(X≥2) 型的单体的缩聚反应 生成可溶性的高度支化的聚合
Kim,Y. Hபைடு நூலகம்; Webster, O. W. J. Am. Chem. Soc. 1990, 112, 4592
超支化聚合物的应用
酶的载体
利用酶的-NH2与超支化聚酰胺 的端基反应来实现酶的固定化。 用于合成超支化聚酰胺的单体 优点:效率高,结合强, 得到的固定酶很稳定
Cosulich, M. E.; Russo, S.; Pasquale, S.; Mariani, A. Polymer 2000, 41, 4951.
典型的活性聚合具备以下特点: (1)分子量大小可通过反应物的化学计量控制 ; (2)活性聚合体系中产物的平均聚合度可表示为 :
M 0 x Pn I 0
其中[M]0,[I]0分别为单体和引发剂的初始浓度, χ为单体转化率。上式表明产物数均分子量Mn与单 体转化率呈线性增长关系。 (3)数均分子量决定于单体和引发剂的浓度比 ; 因此 聚合产物的相对分子质量可控、相对分子质量分布很窄,并且可 利用活性端基制备含有特殊官能团的高分子材料。还可用来合成 复杂结构的聚合物。
乳液体系中的RAFT可控_活性自由基聚合研究进展
基金项目:国家自然科学基金资助项目(20276044),江苏省高校自然科学研究指导性计划项目(03KJD150188);作者简介:周晓东,男,硕士研究生,研究方向为乳液体系的活性聚合。
*联系人.Email:phni@.乳液体系中的RAFT 可控 活性自由基聚合研究进展周晓东,倪沛红*(苏州大学化学化工学院,江苏省有机合成重点实验室,苏州 215123)摘要:可逆加成 断裂链转移聚合(RAFT )是新近发展起来的可控 活性自由基聚合方法。
由于该方法具有适用单体范围广、反应条件温和、可采用多种聚合实施方法等优点,已成为一种有效的分子设计手段。
本文总结了近几年文献报道的在乳液和细乳液体系中实施RAFT 聚合反应的研究进展,对非均相体系的稳定性、聚合反应过程中的动力学特点、以及聚合产物的分子量及其分布等方面的研究进行了综述。
关键词:乳液聚合;细乳液聚合;可逆加成-断裂链转移(RAFT);活性聚合引言传统的自由基聚合由于慢引发、快增长、速终止的特点,难以获得分子量可控及分子量分布可控的聚合物,也不能合成嵌段共聚物和精致结构的聚合物。
而各种活性自由基聚合方法却能克服上述不足。
近年来,先后出现了多种活性自由基聚合体系,例如:TE MPO 稳定自由基存在下的可控自由基聚合[1]、原子转移自由基聚合(ATRP)[2]和可逆加成-断裂链转移聚合(RAFT)[3~5]。
RAFT 可控 活性自由基聚合方法是在传统的自由基聚合体系中加入二硫代酯类化合物作为链转移剂,通过可逆加成-断裂链转移聚合机理得到 活性 聚合物链,RAFT 聚合的一般机理如图1所示。
[4]图1 RAFT 聚合反应机理[4]Figure 1 Mechanism of the RAFT polymerization process [4]RAFT 聚合适用的单体范围广,带有羧基、羟基、叔胺基等官能团的单体都可以通过这种方法实现聚合。
聚合过程中,二硫代酯基S=C(Z)S 在活性链和休眠种之间转移,使得聚合物链保持活性,由此可以合成各种结构精致、且具有可控分子量和窄分子量分布的嵌段[6~9]、星型[10~13]、接枝[14]等特殊结构的聚合物。
光催化 可控自由基聚合 综述
光催化可控自由基聚合综述一、概述光催化可控自由基聚合是一种新兴的合成方法,通过光催化产生自由基,在可控条件下进行聚合反应,得到具有精确结构和性能的高分子材料。
本综述将从光催化原理、可控自由基聚合方法以及应用方面进行探讨。
二、光催化原理1. 光催化的基本原理光催化是指在光照条件下,光催化剂吸收光能,激发其电子并参与化学反应的过程。
光催化反应的关键是光催化剂的选择和光反应的机理研究。
2. 光催化产生自由基光催化反应中,光催化剂的激发态电子能够与其他分子发生反应,产生自由基。
这些自由基能够参与聚合反应,从而实现可控自由基聚合。
三、可控自由基聚合方法1. 控制自由基的产生通过合理选择光催化剂和光照条件,可以控制自由基的产生速率和数量,从而实现可控自由基的聚合。
2. 控制聚合反应条件在聚合过程中,可以通过调节温度、溶剂、反应时间等条件,来实现聚合反应的可控性,从而得到具有特定结构和性能的高分子材料。
四、光催化可控自由基聚合的应用1. 高性能功能材料的制备光催化可控自由基聚合可以合成具有特定结构和性能的高性能功能材料,如光催化剂、传感材料、电子材料等。
2. 环保高效合成方法与传统的聚合方法相比,光催化可控自由基聚合具有较高的选择性和效率,能够实现对废弃物料的有效利用,具有很大的环保意义。
五、挑战与展望光催化可控自由基聚合作为一种新兴的合成方法,仍然面临着许多挑战,如光催化剂的设计、反应条件的优化等。
未来,我们可以通过更深入的研究,进一步拓展其在材料合成和环境保护领域的应用。
光催化可控自由基聚合作为一种新兴的合成方法,具有重要的研究价值和应用前景。
通过深入理解其原理和方法,我们可以不断拓展其在高分子材料领域的应用,为解决能源和环境问题提供新的思路和方法。
期待在不久的将来,光催化可控自由基聚合能够为人类社会的发展做出更大的贡献。
光催化可控自由基聚合作为一种新兴的合成方法,近年来受到了广泛的关注和研究。
在过去的一段时间里,研究人员们对光催化原理和可控自由基聚合方法进行了深入的探讨和研究,取得了许多重要的进展。
“活性”可控自由基聚合
“活性”/可控自由基聚合熊鹏鹏2010214110 摘要: 自由基聚合是生产高分子量聚合物的重要方法, “活性”/ 可控自由基聚合综合了自由基聚合和离子聚合的优点, 使自由基聚合具有可控性。
本文对目前可以实现“活性”/ 可控自由基聚合的途径和各自机理进行介绍, 指出应该重视对“活性”/可控自由基聚合的研究。
关键词: “活性”/可控自由基聚合; 稳定自由基; 可逆加成-裂解链转移; 原子转移; 引发转移终止剂;退化转移。
自由基聚合是工业上和实验室中生产高分子量聚合物的重要方法, 该法具有可聚合的单体种类多、反应条件宽松、以水为介质、容易实现工业化生产等优点, 但也存在着缺陷, 如自由基聚合的本质( 慢引发, 快速链增长, 易发生链终止和链转移等) 决定了聚合反应的失控行为,其结果常常导致聚合产物呈现宽分布, 分子量和结构不可控, 有时甚至会发生支化、交联等,从而严重影响聚合物的性能, 此外, 传统的自由基聚合也不能用于合成指定结构的规整聚合物。
鉴于离子聚合和配位聚合可以很好地控制聚合物结构, 而能不能控制自由基聚合体系则成为当前的研究热点, 但近年来从离子聚合和可控有机自由基反应的研究进展来看, 答案是肯定的。
就聚合反应而言, 要合成具有确定结构的聚合物, 则要求所有的链应同时引发, 增长相似, 这就需要快速引发, 在聚合结束前增长链应保持活性, 链转移和链终止的效应可以忽略, 而自由基聚合的本质( 慢引发, 快终止) 与之正好相反。
所以实现可控自由基聚合要基于以下三个原则:1) 自由基体系中的增长反应应对自由基敏感, 终止反应对自由基浓度的敏感度次之。
这样, 在自由基浓度很低时, 链增长反应与终止反应的速率比才足够高, 才能合成出分子量很大的聚合物。
2) 增长链的浓度必须比初始游离自由基的浓度高得多, 在整个反应过程中所有的链均需保持活性, 且游离自由基与高浓度休眠链处于动态平衡之中, 这种持续自由基效应对任何控制自由基反应来说都是最重要的。
原子转移_活性_可控自由基聚合引发体系的研究进展
原子转移“活性”可控自由基聚合引发体系的研究进展汪存东1,2,乔 波1(11中北大学化工学院,山西太原 030051;21北京理工大学材料学院,北京 100081) 摘 要:原子转移自由基聚合反应(A TRP)是实现活性聚合的一种颇为有效的途径,可以合成分子量可控、分子量分布窄的各种形状的聚合物。
本文介绍了“活性”可控A TRP的研究进展,包括RA TRP、SR&N I A TRP、A GET A TRP、假卤素转移自由基聚合以及一些新催化剂体系下的新型A TRP,并说明了各种引发体系A TRP的反应机理。
关键词:原子转移自由基聚合;“活性”可控自由基聚合;引发体系;研究进展 中图分类号:TQ3161322 文献标识码:A 文章编号:167129905(2009)1220019204 活性聚合可以得到分子质量分布极窄的聚合物,是控制聚合物分子质量和分子质量分布最理想的方法[1]。
其中原子转移自由基聚合(A TRP)是20世纪90年代新发展的活性自由基聚合技术,该技术作为一种有效的大分子设计工具已用于许多烯烃单体的聚合,并已成功地合成出了结构确定的均聚物、共聚物、交替共聚物、梯形共聚物、嵌段/接枝共聚物和新型的聚合物刷,星形、树枝状大分子及有机/无机杂化材料。
该聚合方法集自由基聚合和活性聚合优点于一体,具有传统自由基聚合的诸多优点,如适用单体范围广(如丙烯酸及其酯、丙烯酰胺、苯乙烯及二烯类,聚合方法多样化(本体、溶液和乳液聚合),聚合条件温和等,可合成各种结构可控、相对分子质量分布窄、分子末端带特定功能基团的聚合物[2]。
由于A TRP存在着诱人的工业化前景,自发现以来在这方面的研究很活跃,并产生了多种引发体系,本文将着重介绍原子转移自由基聚合方法的最近研究进展。
1 原子转移自由基聚合研究进展111 正向原子转移自由基聚合(A TRP) 原子转移自由基聚合是1995年由Wang, Matyjaszewski研究小组报道的一种活性自由基聚合(A TRP)[3]也称金属催化自由基聚合[4]。
活性聚合
•
• • •
• ……
可控/“活性” 可控 “活性”自由基聚合 (CRP)
CRP成为当今高分子合成化学发展最迅速的领域 原因:大量可供聚合的单体,简单的反应装置,不苛刻的反应 条件对自由基的有效控制。 更重要的是,CRP产品具有巨大的市场潜力,不过要 充分发挥其潜力,在很多方面还需要研究。 今后的研究方向:开发新的引发/催化体系、 拓宽单体种类、合成结构清晰可控的新型 聚合物。更重要的是缩短工业化的进程。
三、对CRP的综合讨论与比较
所有可控自由基聚合具有一些共同的特征:链增长自由
基和各种休眠种达到动态平衡是所有可控自由基 聚合体系的关键。 聚合体系的关键。
四、CRP CRP的应用与前景 CRP
•
具有水溶性的双亲性嵌段共聚物已被成功用作表面活性剂,并且用于一 些高端产品,例如染料分散剂、添加剂、保健品和化妆品等。具有纳米形态 的嵌段共聚物可用作电子器件。接枝共聚物可用作聚合物共混增溶剂,并且 可以可以用到嵌段共聚物所能适用的许多领域。梯度共聚物非常有望用作表 面活性剂、噪音和振荡阻尼材料。 通过对支化度的调节,可以精确的控制聚合物加工过程中的熔融粘度。 这些聚合物(包括梳形和星形聚合物)可以用作黏度调节剂和润滑剂。大分 子拓扑结构控制的一个突出例子是大分子刷,这些聚合物经轻度交联可得到 超软弹性体。 CRP在链末端功能化方面也具有独特的优势 目前,结构规整的官能化聚合物与无机组分或者天然物质通过共价键结合成 的分子杂化材料受到了广泛关注,并且将会带来许多具有新功能的材料。( 分子纳米复合材料……) 潜在的应用包括微电子材料、软刻印刷技术、光电子元件、特种膜、传感器 和微流体组分
让我们坚强永不放弃 让我们勇敢面对困境 让我们对生活的爱和希望 燃烧在心里 付诸于行动 让我们微笑生活继续 让我们努力创造奇迹 让我们期待 这场属于我们的胜利
活性自由基聚合反应合成苯乙烯与丙烯酸酯嵌段共聚物及相关共聚物
31998212211收稿,1999203205修稿;国家自然科学重点基金资助项目(基金号2963401022);33通讯联系人活性自由基聚合反应合成苯乙烯与丙烯酸酯嵌段共聚物及相关共聚物3程广楼 胡春圃33 应圣康(华东理工大学活性聚合实验室 上海 200237)摘 要 用Cu (phen )2Br/12PEBr 催化引发体系合成了分子量为5000左右的溴端基聚苯乙烯(PS 2Br ).以后者为大分子引发剂,在Cu (phen )2Br 存在下引发甲基丙烯酸甲酯(MMA )或丙烯酸丁酯(BA )聚合,合成了二嵌段共聚物PS 2b 2PMMA 和PS 2b 2PBA ,并通过GPC 、IR 、1H 2NMR 及DSC 等进行了表征.实验发现,丙烯酸甲酯(MA )在Phen/CuCl/CCl 4催化引发下发生爆聚反应,仅当和异丁基乙烯基醚(IBV E )才发生可控的自由基共聚合反应.当MA 和IBV E 的投料摩尔比为1∶1时,所得共聚物中两种单体链节的组成比为1∶117左右.关键词 活性自由基共聚合反应,苯乙烯2甲基丙烯酸甲酯嵌段共聚物,苯乙烯2丙烯酸丁酯嵌段共聚物,丙烯酸甲酯2异丁基乙烯基醚共聚物 自1995年Wang 和Matyjaszewski [1,2]采用邻二吡啶(bpy )/卤化亚铜(CuX )/卤代烷烃(RX )催化引发体系成功地实现苯乙烯(St )、丙烯酸酯类及丙烯腈等单体的“活性”/可控原子转移自由基聚合(A TRP )以来,由于适用的单体范围广,受到人们的广泛关注.尤其在合成嵌段共聚物方面,目前已通过A TRP 法合成了一系列嵌段与交替共聚物[1~6].前文[7~9]及Destarac 等[10]已报道,1,102邻二氮菲(Phen )/CuX/RX 和Cu (phen )2X/RX 是一类用于St 及丙烯酸酯类均聚的新型A TRP 催化引发体系.本文进一步用这类催化引发体系合成了St 与丙烯酸丁酯(BA )和St 与甲基丙烯酸甲酯(MMA )的嵌段共聚物以及丙烯酸甲酯(MA )与异丁基乙烯基醚(IBV E )的共聚物,并通过GPC 、IR 、1H 2NMR 及DSC 等进行了表征.1 实验部分111 原料苯乙烯依次用5%NaOH 、去离子水洗至中性,然后分别用无水Na 2SO 4和CaH 2干燥2天,最后在CaH 2存在下于氩气保护下减压蒸馏两次后封管置于冰箱(<-20℃)备用.MMA 及BA 使用前依次经5%NaOH 、5%NaCl 洗涤后,用CaCl 2浸泡,然后经CaH 2干燥24h 后在氩气保护下减压蒸馏备用.IBV E 使用前经10%NaOH 、去离子水洗涤后,用KOH 干燥24h ,再用CaH 2回流4h ,然后蒸馏备用.Cu (phen )2Br 按文献[11]方法合成.实验室合成的Cu (phen )2Br 通过元素分析测定(C 57101%,N 11114%,H 3118%),与理论值(C 57114%,N 11111%,H 3117%)极为接近.氯化亚铜按文献报道的方法精制[12].Phen 从丙酮中重结晶两次后,在氩气保护下备用.12溴212苯基乙烷(12PEBr )在氩气保护下经减压蒸馏后使用.CCl 4在氩气保护下经常压蒸馏后使用.112 聚合反应过程将一定量的固化催化剂置于预先烘干的反应器中,反复充氩气抽真空数次后,将液体单体、催化剂通过注射器加入.将反应器置于一定温度的油浴中,磁力搅拌下进行聚合反应一定时间后,终止聚合反应.对于由St 均聚后制备的含溴端基的聚苯乙烯(PS 2Br )终止液为甲醇,对于嵌段共聚物终止液为沸程在40~60℃的石油醚,对于MA 2IBV E 交替共聚物终止液为含5%氨水的甲醇溶液.沉淀物经过滤后在40℃下真空烘干至恒重,然后进行表征.113 聚合物的表征试样的相对分子量及分布用Waters150型凝胶渗透色谱仪(RI 检测器)测定,THF 为溶剂,流速110mL/min ,温度25℃,色谱柱尺寸分别为第2期2000年4月高 分 子 学 报ACTA POL YM ERICA SIN ICANo.2Apr.,200021010nm和1000nm,聚苯乙烯(PS)标样校正.红外测试在Nicolet550IR仪上进行,CHCl3为溶剂.试样的1H2NMR测定在Brucker DPX2500上进行,CDCl3为溶剂,TMS为内标.试样的1H2NMR 谱峰归属及分子量计算参见文献[1,2].试样的DSC曲线用Universal V1110BA Instruments测定,升温速率为10℃/min.2 结果和讨论211 PS2B r及嵌段共聚物的合成与表征前文[13]已述及,在phen/CuX/RX催化引发体系高得多.如用phen/CuBr/allylBr催化引发St 本体聚合时所得PS的最高分子量可达2×104,而在相应的bpy体系中活性中心的稳定性,要比相应的bpy体系中,PS的分子量仅为2,500.为此我们首先将Cu(phen)2Br/12PEBr催化引发苯乙烯本体聚合,合成了分子量为5,000左右的大分子引发剂(PS2Br),然后在Cu(phen)2Br存在下,以对二甲苯为溶剂,分别引发BA和MMA的A TRP反应,合成了二嵌段共聚物P(St2b2BA)和P(St2b2MMA).表1显示出,通过GPC或NMR 测定的PS2Br的分子量相当吻合,并与理论值接近.T able1 Synthesis and characterization of PS2Br,P(St2b2BA)and P (St2b2MMA)M n,th M WD M n,GPC M n,NMR T g(℃) PS2Br a5080 1.3249804800+62 P(St2b2BA)b18750 1.791310015360-23P(St2b2MMA)c12120 1.801206012400a)[Cu]:[12PEBr]:[St]=1:2:400,T=136℃,t=110h,St converson=2414%;b)[Cu]:[PS2Br]:[BA]=1:1:180,BA/p2 xylene(V/V)=1:1,T=130℃,t=12h,BA convesion=6015%;c)[Cu]:[PS2Br]:[MMA]=1:1:240,MMA/p2xylene(V/V) =1:1,T=90℃,t=15h,MMA conversion=3110% 图1分别列出大分子引发剂PS2Br及其形成的嵌段共聚物的GPC谱图,发现GPC曲线的峰值向高分子量方向移动,未发现任何肩峰,说明合成了纯的嵌段共聚物.图2列出了这两种嵌段共聚物的IR谱图,其中除了3060cm-1、3026cm-1、756cm-1和700cm-1处都出现PS的特征吸收峰外,图2a中还存在PBA在1730cm-1、963cm-1和942cm-1处的特征吸收峰,而图2b中呈现出PMMA在1732cm-1和1194cm-1处的特征吸收峰.上述结果表明,确实合成了St与BA或MMA所形成的嵌段共聚物.Fig.1 GPC traces of PS2Br Retentime time(min)andblockpolymersFig.2 IR spectra of some block copolymersa)P(St2b2BA);b)P(St2b2MMA) 图3和图4分别列出了P(St2b2MMA)和P (St2b2BA)的1H2NMR谱图.图3中δ=614~712处(峰a)为共聚物中苯乙烯链节上苯环氢的特征化学位移;δ=314~410处(峰a′)为MMA链节中酯甲基的化学位移,δ=110附近的一组多重峰为MMA链节中甲基氢的特征化学位移.由1H2 NMR图谱中峰a和峰a′的积分面积之比以及大Fig.3 1H2NMR spectrum of P(St2b2MMA)1122期程广楼等:活性自由基聚合反应合成苯乙烯与丙烯酸酯嵌段共聚物及相关共聚物分子引发剂的分子量计算出共聚物的组成为(St)48(MMA)74.图4中δ=614~712处(峰b)为共聚物中苯乙烯链节上苯环氢的特征化学位移;δ=410~413处(峰b′)的峰为BA链节中与氧相连的亚甲基的特征化学位移.由1H2NMR图谱中峰b和峰b′的积分面积之比和大分子引发剂的分子量计算出共聚物的组成为(St)48(BA)81.按此可计算出它们的分子量分别为1124×104[P(St2b2MMA)]和11536×104[P(ST2b2BA)],与GPC测定值接近(见表1).Fig.4 1H2NMR spectrum of P(St2b2BA)众所周知,若嵌段共聚物的嵌段之间或接枝共聚物的骨架与侧链之间的相容性较差时,往往会出现微观分相的形态.然而,是否形成微观相分离,在很大程度上还取决于嵌段或侧链的长度[14].马克勤等通过大单体技术合成了具有预期结构BA与St的接枝共聚物(PBA为骨架,PS为侧链),发现骨架与侧链并不相容;当PS侧链分子量超过6000时,它们才呈现出部分微观相分离行为[15].为此通过DSC测定了P(St2b2BA)的玻璃化转变温度(T g),如图5所示.图5中大分子引发剂PS2Br显示出一个T g(62℃),比一般PS的T g(100℃)[16]要低得多.已知,当聚合物的分子量较低时,它的T g与分子量有关;当分子量超过某一临界值时,T g才趋于定值.聚合物的T g与分子量的关系为:T g=T g(∞)-K/M n式中T g(∞)为具有无穷大分子量的聚合物的T g,K为常数,M n为分子量.按此可估算PS2Br的K=1184×10-5,与文献报道值(1180×10-5)[17]一致. 图5表明,P(St2b2BA)仅出现一个T g(-23℃),它介于PS2Br的T g与PBA的T g(-56℃)[17]之间(见表1).由此可见,这一嵌段共聚物系均相体系,归因于PS链段长度太短,故未发生微观相分离[15].已知,对于相容性较好的嵌段共聚物的T g,可按计算无规共聚物T g的公式估算:T g(av)=W1T g1+W2T g21/T g(Fox)=W1/T g1+W2/T g2式中W1与W2分别为共聚物中两种链节的质量分数,T g1与T g2分别为各自均聚物的T g.按此可算得T g(av)=-20℃,T g(Fox)=-29℃,与实测的T g(-23℃)较为吻合,表明我们合成的嵌段共聚物中PS链段和PBA链段具有良好的相容性.Fig.5 DSC spectra of PS2Br,P(St2b2BA),P(St2b2MMA)and poly(MA2co2IBVE)212 MA和IBVE的共聚合反应给电子单体和受电子单体共聚时往往形成交替共聚物[18],它们的特殊化学结构决定了其特殊的物理力学性能[19].Coca等[6]用Bpy/CuBr/12PEBr催化引发MA和IBV E共聚合得到了交替共聚物.为此初步探索了Phen/CuCl/CCl4催化引发体系对MA和IBV E的交替共聚反应的可能性,结果如表2所示.实验发现,当在聚合体系中只有受电子单体MA时发生爆聚反应,而给电子单体IBV E在相同条件下不发生聚合,只有同时存在MA与IBV E时,才发生可控的自由基共聚反应. 图6是表2中No.3样品的1H2NMR图谱,δ=0195处(d′峰)是IBV E中饱和甲基氢的特征化学位移,δ=3168处(d峰)是MA中酯甲基氢的特征化学位移.按这两个峰的积分面积之比,可计算出共聚物的组成:IBV E=d′/(d′+2d)=01375与沉淀称重法(01380)相吻合[6].图5列出了这一样品的DSC谱图,呈现出两个T g(-31℃和-314℃).据文献报道[6],在bpy/CuBr/RBr催化212高 分 子 学 报2000年T able 2 Homopolymerization and copolymerization of MA by using phen/CuCl/CCl 4system at 25℃Sample No.MA/IBVE/Phen/CuCl/CCl 4tMA yield (%)Composition of IBVE in copolymer 3M n ,th M n ,GPC M WDT g(℃)150∶0∶2.5∶1∶110min 100/4300130,000 3.5+3.6250∶50∶2.5∶1∶112h 950.33363309560 1.93-20,-3.7350∶50∶5.0∶2∶210h960.375347040502.26-31,-3.43IBVE content determined by 1H 2NMRFig.6 1H 2NMR spectrum of poly (MA 2co 2IBVE )引发体系中,当MA 和IBV E 的投料摩尔比为1∶1时,所生成的Poly (MA 2co 2IBV E )中IBV E 的组成通常为0150,且只呈现一个T g (-3113℃).由此可见,用phen/CuCl/CCl 4催化引发体系合成的Poly (MA 2co 2IBV E )中可能存在某些未交替排列的MA 链节,有待进一步研究.REFERENCES1 Wang J S ,Matyjaszewski K.J Am Chem S oc ,1995,117:5614~56152 Wang J S ,Matyjaszewski K.Macromolecules ,1995,28:7901~79093 G aynor S G ,Matyjaszewski K.Am Chem S oc Polym Prep ,1996,37(2):272~2734 Zhang Z B (张兆斌),Shi Z Q (施志清),Y ing S K (应圣康).China Synthetic Rubber Industry (合成橡胶工业),1997,20(5):3155 Zhang S F (张士福),Luo N (罗宁),Y ing S K (应圣康).China Synthetic Rubber Industry (合成橡胶工业),1998,21(1):566 Coca S ,Matyjaszewski K.Am Chem S oc Polym Prep ,1996,37(1):573~5747 Cheng G L (程广楼),Hu C P (胡春圃),Y ing S K (应圣康).China Synthetic Rubber Industry (合成橡胶工业),1997,20(2):1168 Cheng G L ,Hu C P ,Y ing S K.Polymer ,1999,40:2167~21699 Cheng G L ,Hu C P ,Y ing S K.Macromol Rapid Commun ,1999,20:303~30710 Destarac M ,Bessiere J M ,Boutevin B.Macromol Rapid Commun ,1997,18:967~96911 Munakata M ,Nishibayashi S ,Sakamoto H.J Chem S oc Chem Commun ,1980:219~22112 Whitesides G M ,Sadowski J S.J Am Chem S oc ,1974,96:282913 Cheng G L ,Hu C P ,Y ing S K.Chemical Research in Chinese Universities ,1999,15(4):358~36314 Ceresa R J.Block and Graft Copolymerization.New Y ork :Interscience Pub ,1973.150~15115 Ma K Q (马克勤),Hu C P (胡春圃),Wang S R (王世容),Wu S S (吴树森),Y ing S K (应圣康).Chemical Journal of Chinese Universities(高等学校化学学报),1990,11:402~40816 Polymer Phsics Laboratory of China University of Science and Technology (中国科技大学高分子物理教研室).Structures and Properties ofPolymers (高聚物的结构与性能).Beijing (北京):Science Press (科学出版社),1983.17117 Li B C.Structures and Physical Properties of Polymers (高聚物的结构和物理性能).Beijing (北京):Science Pub (科学出版社),1989.267~26818 Y ing S K (应圣康),Yu F N (余丰年).Principles of Copolymerization (共聚合原理).Beijing (北京):Chemical Industry Press (化学工业出版社),1984.151~15219 Cowie J M G.Alternating Copolymers.New Y ork :Plenum Pub ,1985.237~2593122期程广楼等:活性自由基聚合反应合成苯乙烯与丙烯酸酯嵌段共聚物及相关共聚物412高 分 子 学 报2000年SY NTHESIS AN D CHARACTERIZATION OF P(St2b2MMA),P(St2b2BA)AN D POLY(MA2co2IBVE)B Y USING PHEN2ATRP SYSTEMSCHEN G Guanglou,HU Chunpu,YIN G Shengkang(L aboratory of L iving Polymeriz ation,East China U niversity of Science and Technology,S hanghai 200237))Abstract A bromine capped polystyrene(PS2Br)with an M n of around5,000was synthesized by using Cu(phen)2Br/12PEBr as catalyst and initiator to polymerize styrene(St)according to atom transfer radical polymerization(A TRP)mechanism.Then,by using such a PS2Br as a macro2initiator,some block copolymers[P(St2b2MMA)and P(St2b2BA)]were also prepared through phen2A TRP.These block copolymers have been characterized by means of GPC,IR,1H2NMR and DSC,respectively.It was found that there were no any homopolymers in these block copolymer systems and P(St2b2BA)exhibited a compatible system due to the short length of both blocks,although the miscibility between these two blcoks was poor.By using phen/CuCl/RCl as catalyst and initiator,the explosive polymerization phenomenon of methacrylate(MA)was observed.However,the copolymerization of MA and iso2butyl vinyl ether(IBV E) could be controlled in A TRP.The obtained poly(MA2co2IBV E)was characterized and discussed by using DSC and1H2NMR.K ey w ords A TRP,“Living”/controlled radical polymerization,P(St2b2MMA),P(St2b2BA),Poly(MA2 co2IBV E)。
自由基聚合反应(1)
可编辑版
21
单官能度
CH2
SCN
C2H5 C2H5
可编辑版
4
活性自由基聚合的 理 论 基 础
自由基聚合机理:
链引发 链增长
链终止
可编辑版
5
考虑链终止反应的影响:
根据自由基聚合理论
Rt Rp
kt kp
[P] [M ]
式中Rp、 Rt、kt、kp、[P·]、[M]分别为链增长速率,链终止速率、
连增长速率常数、链终止速率常数、自由基瞬时浓度和单体
瞬时浓度。
X 通常是有机金属化合物 如 AlR3
可编辑版
13
3.增长自由基与链转移剂之间的可 逆钝化转移
Pn+PL-Rktr Pn-R+PL
例如: 双硫酯类化合物, 烷基典化物等。
可编辑版
14
活性自由基聚合的几种重要方法:
1. 引发-转移-终止法(iniferter法) 2. TEMPO引发体系 3. 可逆加成-断裂链转移自由基聚合(RAFT) 4. 原子转移自由基聚合(ATRP)
合。用这个方法可制得单分散高分子、嵌段共聚物、其他
“分子设计”而成的高分子 可编辑版
2
活性聚合
阳离子活性聚合
阴离子活性聚合
配位活性聚合
活性自由基聚合
开环活性聚合
可编辑版
3
与其它类型聚合反应相比, 活性自由基聚合 集活性聚合与自由基聚合的优点为一身, 不但 可得到相对分子量分布极窄, 相对分子量可控, 结构明晰的聚合物, 而且可聚合的单体多, 反应 条件温和易控制,容易实现工业化生产. 所以, 活 性自由基聚合具有极高的实用价值, 受到了高 分子化学家们的重视.
活性可控自由基聚合反应
05
结论与展望
活性可控自由基聚合反应的贡献与价值
高效制备高分子材料
活性可控自由基聚合反应能够实现高分子材料的快速、高 效制备,提高生产效率和降低成本。
合成新型高分子材料
通过活性可控自由基聚合反应,可以合成具有特定结构、 性能和功能的新型高分子材料,满足各种应用需求。
促进高分子科学的发展
活性可控自由基聚合反应的深入研究,推动了高分子科学 的发展,为高分子材料的设计、合成和应用提供了新的理 论和技术支持。
氮氧稳定自由基聚合(NMP)
02
利用氮氧稳定自由基作为引发剂,通过氮氧稳定自由基的均裂
和结合实现聚合。
可逆加成断裂链转移聚合(RAFT)
03
利用可逆加成断裂链转移反应,通过在聚合物链中引入活性端
基实现聚合。
活性可控自由基聚合反应的机理
01
02
03
引发
通过加入引发剂产生自由 基,启动聚合反应。
增长
自由基与单体反应,生成 新的自由基,并不断增长。
链终止
自由基之间相互结合或与 阻聚剂反应,终止增长。
活性可控自由基聚合反应的特点和优势
可控性
通过调节反应条件,如 温度、压力、浓度等, 实现对聚合过程的有效
控制。
高分子量
活性可控自由基聚合能 够合成高分子量的聚合 物,具有优异的性能。
结构可控
通过选择不同的单体和 反应条件,可以合成具 有特定结构和性质的聚
合物。
适用范围广
活性可控自由基聚合适 用于多种单体,包括苯
乙烯、丙烯酸酯等。
03
活性可控自由基聚合反应 的应用
高分子合成中的应用
高分子合成
活性可控自由基聚合反应在合成高分 子材料中具有广泛的应用,如合成聚 合物、嵌段共聚物、星形聚合物等。
ATRP
24/0142/210/241/14
5
• 这些由过渡金属化合物与配体为催化剂,有机卤化物为引 发剂引发不饱和乙烯单体进行自由基聚合的过程,具有有 机合成反应中原子转移自由基加成反应(Atom transfer radical addition, ATRA)的特征,故这种类型的聚合, Matyjaszewski称之为原子转移自由基聚合(Atom transfer radical polymerization, ATRP),或者称之为催化引发原子 转移自由基聚合(Catalyzed Initiated Atom Transfer Radical Polymerization,CIATRP)
10
a)苯乙烯及取代苯乙烯
如对氟苯乙烯、对氯苯乙烯、对溴苯乙烯、对甲基苯乙烯、 间甲基苯乙烯、对氯甲基苯乙烯、间氯甲基苯乙烯、对三氟 甲基苯乙烯、间三氟甲基苯乙烯、对叔丁基苯乙烯等。
b)(甲基)丙烯酸酯
如(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙 烯酸正丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸异冰 片酯、(甲基)丙烯酸-2-乙基己酯、(甲基)丙烯酸二 甲氨基乙酯等;
24/0142/210/241/14
31
体系的其它两个研究热点
(1)研究催化体系、引发剂、单体的结构、溶剂 及反应温度与ATRP反应常数的关系,目的是为 了选择和设计合适的配体、开发更为有效的催 化体系以及确定合适的ATRP反应条件。 (2)研究并探索克服与ATRP反应同时发生的各类 副反应的有效方法。
由于SR&NI ATRP体系利用传统自由基引发剂分解 产生有机自由基对催化体系进行活化,此过程中 不可避免产生少量均聚物,因此通过这种体系不 能获得纯净的嵌段共聚物。
24/0142/210/241/14
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近半个世纪以来,活性聚合已成为高分子化学领域最具 学术意义和应用价值的研究方向之一。采用活性聚合反 应可以达到一般聚合反应无法达到的3个不同的目的 ① 严格控制单体与引发剂的浓度比,即可合成具有确定 相对分子质量的聚合物,即所谓计量聚合
② 按照特定的顺序加入不同的单体,即可合成具有指定 大分子链段结构的嵌段共聚物 ③ 活性聚合物与特定的低分子化合物反应制得遥爪聚合 物,进而合成加聚-缩聚嵌段共聚物以及具有各种复杂结 构的星型、环状聚合物
CH3 CH3 C CN
CH3 CH3 C + N CN
CH3 N=N C CH3 CN 2 CH3
CH3 C + N2 CN
.
.
O
.
CH3 CH3 C CN O N
+ n St
பைடு நூலகம்
+ n St
CH3 CH3 C CN
[ CH2
CH
]n-1 CH2
.
.
CH
+
N O
CH3 CH3 C CN
[ CH2
CH
而休眠种又可在可控条件下尽可能稳定而低速地离解成为
活性自由基,体系中的活性自由基浓度就可控制在尽可能 低的水平。 这有些类似于水库在暴雨洪水季节蓄水同时缓慢而匀速地 向下游泄水。
按照控制活性自由基浓度所采用方法的不同,或者说体 系中存在休眠种的不同,大体可分为可逆终止、可逆加 成-断链-转移以及原子转移等3种历程 3.14.2 可逆终止自由基聚合 目前主要包括硫代氨基甲酸苄酯、三苯甲基偶氮苯和烷 氧基胺等3大类引发剂体系
① 硫代氨基甲酸苄酯类
日本著名高分子学者大江隆行于1982年首次报道,在光照 下,以硫代氨基甲酸苄酯作为引发剂引发某些取代乙烯类 单体进行自由基聚合反应,可实现聚合反应在一定程度的 可控,所得聚合物的相对分子质量分布也较窄
S CH2 S C N
Et BDC Et
S Et Et N C S CH2 CH2 S
3.14.1 可控/活性自由基聚合反应原理
可控/活性自由基聚合的基本思路,就是设法通过降低聚 合反应体系内活性自由基的浓度或活性,有效抑制双基终 止反应和链转移反应,使之降到可忽略的程度,从而使链 增长反应处于绝对主导地位。 vt / vp = kt / kp × [R.] / [M] = 1/υ 由此可见kt / kp比值大小很大程度上决定于体系中自由基 的瞬时浓度,即 kt / kp ≈ 10 000 [R.]。
3. 14 可控/活性自由基聚合反应
本节内容仅供学习时参考,不一定作课堂教学内容
自由基聚合反应是目前最普遍、实施最方便、工业化程 度最高的连锁聚合反应,其产量超过合成聚合物总产量 的70%。 客观而论自由基聚合物却存在不足或缺陷,如相对分子 质量分布较宽、分子结构难控制、支化和交联难避免
这些缺陷的根本原因,则是自由基聚合反应所具有的慢 引发、快增长、速终止和易转移的反应历程。
Et Et
+ S
S CH2
Et N Et
[ CH2
CH X
] n-1CH2
C
② 三苯甲基偶氮苯类
N=N
C
. + .C
n CH2 = CH - X
+ N2
[
CH2
CH]n-2 CH2 X
.CH + .C
X
[
CH2
CH]n-2 CH2 X
.CH + .C
X
[CH2
CH]n-2 CH2 X
CH X
C
③ 烷氧基胺体系
可逆终止,从而达到降低自由基浓度和控制聚合反
应的目的
S CH2 S C N
Et Et
hυ
.
[ CH2
CH2
+
.
S C N
Et Et
S
n CH2
CH - X
CH2
CH X
] n-1CH2
. .
CH X
S C N
Et Et
+ S
CH2
[ CH2
CH X
] n-1CH2
. .
CH X
CH X S
S C N
]n-1 CH2
CH
O
N
自由基聚合反应的过程中如何始终保持低自由基浓度,以 及采用何种手段控制产物的聚合度呢? 人们确定实现可控自由基聚合的基本途径必须是:在自由 基聚合反应体系中引入一种能够与链自由基之间存在偶合 - 离解可逆反应的所谓“活性休眠种”的化合物,借以抑 制链自由基浓度终。
对活性休眠种的基本要求 高浓度活性自由基能与该化合物迅速反应转变为休眠种,
S C N
Et Et XDC
S Et Et Et Et N N C S C S CH2 CH2 S S CH2 CH2 S
S C S C N N
Et Et Et Et DDC
在光照下硫代氨基甲酸苄酯分子内较弱的C-S键能 发生共价键的均裂,生成活泼碳自由基和稳定的硫 自由基,前者能与乙烯类单体加成反应而开始链增 长,后者不能引发单体而只能与活性链自由基进行