行星对太阳的引力

合集下载

太阳与行星间的引力万有引力定律讲课文档

太阳与行星间的引力万有引力定律讲课文档

地面对物体的支持力 FN 的作用,其合力充当__向__心___力___,FN 的大小等于物体的重力的大小.
(3)其他位置物体的重力随纬度的增加而___增__大____.
第二十六页,共41页。
学习互动
2.重力和高度的关系 Mm
若物体距地面的高度为h,在忽略地球自转的条件下有:mgh=___G__(__R__+_,h)可2得:gh= GM
第八页,共41页。
新课导入
师:开普勒在1609和1619年发表了行星运动的三个定律,解决了描述行星运动的问 题,但好奇的人们,面向天穹,深情地叩问:是什么力量支配着行星绕着太阳做如此 和谐而有规律的运动呢?这节课我们就来认识这些问题.
第九页,共41页。
知识必备
知识点一 太阳与行星间的引力 1.太阳对行星的引力 太阳对行星的引力,与行星的质量m成__正__比____,与行星和太阳间距离的二次方成
Mm 反比,即F=___G___r_2____.表达式中的G是比例系数,其大小与太阳和行星都无关.引力
的方向沿二者的连线.
第十一页,共41页。
知识必备
知识点二 万有引力定律 1.月—地检验 由于月球轨道半径约为地球半径的60倍,所以月球轨道上物体受到的引力是地球上的
1 _6__0_2____.根据牛顿第二定律,物体在月球轨道上运动时的加速度(月球公转的向心加速
1
A.5
B.5
1 C.25
D.25
第二十八页,共41页。
学习互动
[答案] C [解析] 设海王星绕太阳运行的轨道半径为 R1,周期为 T1,地球绕太阳公转的轨道半径
m __反__比____,即F∝____r__2__.
2.行星对太阳的引力 行星对太阳的引力,与太阳的质量M成______正__比,与行星和太阳间距离的二次方成

行星相互吸引的原因-概述说明以及解释

行星相互吸引的原因-概述说明以及解释

行星相互吸引的原因-概述说明以及解释1.引言1.1 概述行星相互吸引是宇宙中普遍存在的一种现象。

行星通过引力相互吸引,使它们绕着太阳轨道运动。

在本文中,我们将探讨行星相互吸引的原因及其重要性。

在太阳系中,每颗行星都围绕着太阳运动。

行星之间的相互吸引是由它们之间存在的引力所导致的。

根据质量和距离的差异,行星之间的引力也会产生不同的效应。

根据万有引力定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。

换句话说,质量越大,距离越近,引力就越强。

太阳的质量远远大于其他行星,因此它对行星的引力也是最强的。

行星受到太阳的引力作用,被吸引到太阳的方向上运动,并围绕太阳旋转。

同时,行星之间也会受到彼此的引力作用。

这种相互吸引的力量会对行星的运动轨道产生影响。

在太阳系中,行星间的相互吸引导致了一些重要的现象。

首先,这种吸引力决定了行星的轨道形状和运动速度。

行星在椭圆轨道上运动,而不是简单地围绕太阳做直线运动。

其次,行星相互吸引还会导致轨道的变化和扰动。

这种扰动会对行星的位置和运动产生微小的改变,进而影响太阳系的稳定性和演化。

了解行星相互吸引的原因对于理解太阳系的形成和演化过程至关重要。

通过研究行星之间的相互作用,科学家可以更好地解释行星形成的机制,并预测未来的演化趋势。

总之,行星的相互吸引是由它们之间的引力作用所导致的。

这种引力不仅使行星围绕太阳旋转,也会对行星的轨道和运动产生影响。

对于研究太阳系的形成和演化以及探索宇宙法则,了解行星相互吸引的原因至关重要。

1.2 文章结构文章结构主要包括引言、正文和结论三个部分。

引言部分是文章的开头,用来引起读者的兴趣并介绍文章的背景和目的。

在本文中,引言部分包括概述、文章结构和目的三个要点。

概述部分旨在简要介绍行星相互吸引的原因。

行星相互吸引是指行星或其他天体之间由于引力而产生的力,这是宇宙中普遍存在的一种现象。

理解行星相互吸引的原因对于解释行星运动、天体轨道和宇宙演化等方面都具有重要意义。

6.2太阳与行星间的引力 导学案

6.2太阳与行星间的引力 导学案

高一年级物理学科“问题导学案”【课题】:太阳与行星间的引力编写人:赵林燕审核人:高一全体教师【学习导航】:学习目标:1、理解太阳与行星间存在引力。

2、能根据开普勒行星运动定律和牛顿第三定律推导出太阳与行星间的引力表达式。

教学重点:据开普勒行星运动定律和牛顿第三定律推导出太阳与行星间的引力公式教学难点:太阳与行星间的引力公式的推导【自主学习问题探究】:1、在解释行星绕太阳运动的原因这一问题上,为什么牛顿能够成功,而其他科学家却失败了?你认为牛顿成功的关键是什么?2、行星绕太阳作匀速圆周运动,写出行星需要的向心力表达式,并说明式中符号的物理意义。

行星运动的线速度v与周期T的关系式如何?为何要消去v?写出要消去v后的向心力表达式。

如何应用开普勒第三定律消去周期T?为何要消去周期T?写出引力F与距离r的比例式,说明比例式的意义。

3、行星对太阳的引力与太阳的质量M 以及行星到太阳的距离r 之间又有何关系?4、综合以上推导过程,推导出太阳与行星间的引力与太阳质量、行星质量、以及两者距离的关系式。

看看能够得出什么结论。

【学生自主归纳未掌握的内容】:【实例探究】:火星绕太阳的运动可看作匀速圆周运动,火星与太阳间的引力提供火星运动的向心力。

已知火星运行的轨道半径为r ,运行的周期为T ,引力常量为G ,试写出太阳质量M 的表达式。

解析:火星与太阳间的引力表达式为2r Mm G F =,式中G 为引力常量,M 为太阳质量,m 为火星质量, r 为轨道半径。

设火星运动的线速度为v ,由F 提供火星运动的向心力,有r v m rMm G 22= 由线速度和周期的关系Tr v π2=, 得太阳质量 2324GT r M π=高一年级 物理学科练案【因人训练】(A 档)1、下面关于太阳对行星的引力说法中正确的是( )A .太阳对行星的引力等于行星做匀速圆周运动的向心力B .太阳对行星的引力大小与行星的质量成正比,与行星和太阳间的距离成反比C .太阳对行星的引力是由实验得出的D .太阳对行星的引力规律是由开普勒行星运行定律和行星绕太阳做匀速圆周运动的规律推导出来的2、下列关于行星对太阳的引力的说法中正确的是( )A .行星对太阳的引力与太阳对行星的引力是同一性质的力B .行星对太阳的引力与太阳的质量成正比,与行星的质量无关C .太阳对行星的引力大于行星对太阳的引力D .行星对太阳的引力大小与太阳的质量成正比,与行星距太阳的距离成反比3、关于太阳与行星间的引力,下列说法中正确的是( )A .太阳对行星的引力与行星对太阳的引力是一对平衡力B .太阳对行星的引力与行星对太阳的引力是作用力与反作用力的关系C .太阳与行星间的引力大小与太阳的质量、行星的质量成正比,与两者的距离的平方成反比D .以上说法均不对4、两个行星的质量分别为m 1和m 2,绕太阳运动的轨道半径分别为r 1和r 2,求:(1)它们与太阳间的引力之比;(2)它们的公转周期之比。

物理太阳与行星间的引力

物理太阳与行星间的引力

物理太阳与行星间的引力[要点导学]1.天体引力的假设:牛顿认为物体运动状态发生改变的原因是受到力的作用,如果没有力的作用物体将保持静止或匀速直线运动状态。

行星围绕太阳运动,一定受到了力的作用。

这个力是太阳对行星的引力。

2.太阳与行星间的引力推导思路(将椭圆轨道近似看作圆轨道来推导):(1)行星运动需要的向心力:,根据开普勒第三定律:得到:太阳对行星的引力(其中m为行星质量,r 为行星与太阳的距离)(2)太阳和行星在相互作用中的地位是相同的,只要作相应的代换,就可以得到结果。

行星对太阳的引力(其中M为太阳的质量,r为太阳到行星的距离)(3)因为这两个力是作用力与反作用力,大小相等,所以概括起来,得到,写成等式,比例系数用G表示,有。

(4)虽然在中学阶段只能将椭圆轨道近似看作圆轨道来推导,但仍要明确:牛顿是在椭圆轨道下进行推导的。

牛顿是在前人的基础上做出了伟大发现,牛顿的发现还在于他有正确的科学思想和超凡的数学能力。

[范例精析]例题:证明开普勒第三定律中,各行星绕太阳公转周期的平方与公转轨道半径的三次方的比值k是与太阳质量有关的恒量。

解析:行星绕太阳运动的原因是受到太阳的引力,引力的大小与行星质量、太阳质量及行星到太阳的距离(行星公转轨道半径)有关。

这个引力使行星产生向心加速度,而向心加速度与行星公转的周期和轨道半径有关,这样就能建立太阳质量与行星公转周期和轨道半径之间的联系。

设太阳质量为M,某行星质量为m,行星绕太阳公转周期为T,半径为R。

将行星轨道近似看作圆,万有引力提供行星公转的向心力,有得到,其中G是行星与太阳间引力公式中的比例系数,与太阳、行星都没有关系。

可见星绕太阳公转周期的平方与公转轨道半径的三次方的比值k是与太阳质量有关的恒量。

拓展:在解决有关行星运动问题时,常常用到这样的思路:将行星的运动近似看作匀速圆周运动,而匀速圆周运动的向心力则由太阳对行星的引力提供。

研究其它天体运动也同样可以用这个思路,只是天体运动的向心力由处在圆心处的天体对它的引力提供。

万有引力定律-PPT课件

万有引力定律-PPT课件
Mm
R2
【典例示范1】 如图所示,P、Q为质量相同的两质点, 分别置于地球表面的不同纬度上,如果把地球看成一个 均匀球体,P、Q两质点随地球自转做匀速圆周运动,则 下列说法正确的是 ( )
A.P、Q做圆周运动的向心力大小相等 B.P、Q所受地球引力大小相等 C.P、Q做圆周运动的线速度大小相等 D.P所受地球引力大于Q所受地球引力
【解析】选B。P、Q两点的角速度相同,做圆周运动的
半径不同,根据F向=mrω 2可知向心力大小不相等,A错
误;P、Q两质点距离地心的距离相等,根据F=
知,
两Q两质质点点受角到速的度地大球小引相力等大,小做相圆等周,运故动B的正半确径、不DG错同MR误m2,;根P据、
v=rω 可知线速度大小不同,故C错误。
(3)两个质量分布均匀的球体间的引力大小可用万有引 力定律公式求解,公式中的r为两球心之间的距离。 (4)一个质量分布均匀的球体与球外一质点之间的引力 大小也可用万有引力定律公式求解,公式中的r为质点 到球心之间的距离。
【思考·讨论】
李出华:r认→为0时两,个F→人∞距离。非李常华近同时学,的根想据法公正式确F=吗G?m为r1m2什2 么得? (科学思维)
1.内容:自然界中任何两个物体都_相__互__吸__引__,引力的方 向的在乘积_它_成_们___的____连____线,_与_上_它_,们引之力间的的大距小离与r物的体二的次质方量成m_1和__m_2_。
正比 2四.、公引式力:F常=_G量__m_r1m_2 _2 _。
反比
1.测量者:_________。
提示:不正确,因为两个人距离非常近时,不能视为质点 ,此公式不成立。
【典例示范】
要使两物体间的万有引力减小到原来的 1 ,下列办

万有引力定律行星运动和地球重力

万有引力定律行星运动和地球重力

万有引力定律行星运动和地球重力万有引力定律是现代物理学的基本定律之一,它描述了质点之间的相互作用力与距离的关系。

根据这一定律,行星围绕太阳运动,地球的重力则是由地球质量所带来的。

本文将详细介绍万有引力定律以及行星运动和地球重力之间的关系。

一、万有引力定律万有引力定律是由英国物理学家牛顿在17世纪提出的。

该定律表明,任何两个物体之间都存在相互吸引的力,这种力与两个物体的质量成正比且与它们之间的距离的平方成反比。

其中的数学表达式为:F =G * (m1 * m2) / r^2其中,F为两个物体之间的引力,m1和m2分别为两个物体的质量,r为它们之间的距离,G为万有引力常数。

二、行星运动根据万有引力定律,行星围绕太阳运动。

太阳作为太阳系的中心,质量巨大,形成了强大的引力场。

行星在这个引力场中受力运动,维持着稳定的轨道。

这种受力运动可以用开普勒定律来描述:1. 开普勒第一定律(椭圆轨道定律):行星围绕太阳运动的轨道是一个椭圆,太阳位于椭圆的一个焦点上。

2. 开普勒第二定律(面积定律):行星在等时间内扫过的面积相等,即行星在距离太阳较近的时候运动较快,在距离太阳较远的时候运动较慢。

3. 开普勒第三定律(调和定律):行星公转周期的平方与轨道半长轴的立方成正比。

这些定律揭示了行星运动和万有引力定律之间的密切关系,为人们从理论上预测和解释行星运动提供了重要的依据。

三、地球重力地球的重力是由地球质量所带来的。

根据万有引力定律,地球对物体的吸引力与物体的质量成正比,与物体到地心的距离的平方成反比。

地球的质量非常巨大,因此地球的重力对人类生活具有至关重要的影响。

地球的重力影响着物体的下落和运动。

当一个物体从较高的位置落下时,地球的重力会对其产生作用,使其加速下落。

根据牛顿第二定律,物体受力后会产生加速度,因此下落的物体会加速度增大,直到达到一个稳定的速度,即终端速度。

地球的重力还能使物体绕地球旋转,例如人造卫星。

通过控制卫星的速度和轨道,可以使卫星保持在特定的轨道上,并且能够稳定地运行。

太阳与行星间的引力

太阳与行星间的引力

问题:
既然是太阳对行星的力使得行星不能飞离太阳,那么是什么力使得地面的物体不能离开地球, 总要落回地面呢?地球上使得树上苹果下落的力,与太阳、地球之间的吸引力是不是同一种力呢?
著名的月地检验
如果是同一种性质的力,则地球对苹果的力和地球对 月球的力都应该满足平方反比关系
地球
r月 月球
F
R地
地 球 对 月 球 的 引 力 : F2m 月 a月 m r月 月 2 地 球 对 苹 果 的 引 力 : F1=m 苹 gR m 地 苹 2
太阳与行星间的引力
▪ 行星为什么绕太阳如此和谐而又有规律地做椭圆运动?
科学 足迹
一切物体都有合并的趋势。
伽利略
行星的运动是受到了来自太阳的类似于磁力的作用 ,与距离 成反比。
开普勒 在行星的周围有旋转的物质(以太)作用在行星上,使得行星绕太阳运动。
笛卡尔
行星的运动是太阳吸引的缘故,并且力的大小与到太阳距离的 平方成反比。
飞船离月亮中心和地球中心的距离比为(

3、两颗行星的质量分别为M,m,他们绕太阳运行的轨道半径分别为R,r,则它们的公
转周期之比为(

精品课件!
精品课件!
4、两行星的运转周期之比是8:1,则它们椭圆轨道的半长轴之比
为(

5、已知两行星绕太阳运动的半长轴 之比为b,它们的公转周期之比 为( )
所 以 , 只 需 要 证 明 : a g 月 R r月 地 2 2= R r月 地 2= 6 1 0 2
当时已知的一些量:
地表重力加速度:g = 9.8m/s2
地球半径:
R = 6400×103m
月球周期:
T = 27.3天≈2.36×106s

行星对太阳的引力公式推导

行星对太阳的引力公式推导

行星对太阳的引力公式推导行星对太阳的引力是行星受到太阳引力的作用,根据万有引力定律,引力的大小与两个物体的质量和它们之间的距离有关。

对于行星和太阳这两个天体来说,它们之间的距离是可变的,所以我们需要推导出一个与距离有关的公式来描述行星对太阳的引力。

首先我们假设太阳是一个质点,行星的质量为m,行星与太阳之间的距离为r。

根据万有引力定律,行星受到的引力大小为:F=G*(m*M)/r^2其中,G是万有引力常数,M是太阳的质量。

我们需要推导出一个与距离有关的公式,所以我们需要找到行星质量m与距离r之间的关系。

为了简化推导,我们可以假设行星的轨道是一个圆,即行星距离太阳的距离是不变的。

这个假设是近似的,但在实际计算中是可行的。

根据牛顿第二定律,行星所受到的向心力与它的质量、速度和半径有关。

向心力可以用质量乘以加速度来表示,即:F=m*a行星在轨道上做匀速圆周运动,它的加速度可以表示为:a=v^2/r其中,v是行星在轨道上的速度。

将上面两个公式代入万有引力定律中,得到:m*a=G*(m*M)/r^2化简这个方程,得到:v^2=G*M/r将行星在轨道上的速度表示为圆周运动的速度,得到:v=(2*π*r)/T其中,T是行星绕太阳一周的时间(公转周期)。

将这个速度代入上面的方程中,得到:(2*π*r/T)^2=G*M/r再次化简方程,得到:r^3=(G*M*T^2)/(4*π^2)这个方程描述了行星与太阳之间的距离r与行星质量m、太阳质量M 以及行星绕太阳一周的时间T之间的关系。

为了得到行星对太阳的引力公式,我们将这个方程中的行星质量m替换为行星体积乘以密度m=V*ρ其中,V是行星的体积,ρ是行星的密度。

行星的体积可以表示为:V=(4/3)*π*r^3将这个体积代入方程中,得到:[(4/3)*π*r^3]*ρ=(G*M*T^2)/(4*π^2)化简这个方程,得到:4*π*r^3*ρ=G*M*T^2再次化简方程,得到:ρ=(3*G*M*T^2)/(4*π*r^3)这个方程描述了行星的密度ρ与行星对太阳的引力以及行星绕太阳一周的时间T、行星与太阳的距离r之间的关系。

7.2 万有引力定律 学案 -2023学年高一下学期物理人教版(2019)必修第二册

7.2 万有引力定律  学案 -2023学年高一下学期物理人教版(2019)必修第二册

第2节 万有引力定律(1)【学习目标】 1.掌握并理解万有引力定律。

2.知道万有引力常量的测定。

合作探究、自主学习 学习目标一 行星与太阳间的引力 1.模型简化:行星以太阳为圆心做 ,太阳对行星的引力提供了行星做匀速圆周运动的 。

2.太阳对行星的引力:引力提供行星做匀速圆周运动的向心力。

3、行星对太阳的引力:4、行星与太阳间的引力:应用:例1(多选)关于太阳与行星间的引力,下列说法中正确的是( )A .由于地球比木星离太阳近,所以太阳对地球的引力一定比对木星的引力大B .行星绕太阳沿椭圆轨道运动时,在从近日点向远日点运动时所受引力变小C .由F =GMm r 2可知G =Fr 2Mm,由此可见G 与F 和r 2的乘积成正比,与M 和m 的乘积成反比D .行星绕太阳的椭圆轨道可近似看成圆形轨道,其向心力来源于太阳对行星的引力学习目标二 月—地检验三、月—地检验1.牛顿的思考:地球对月球的引力、地球对地面上物体的引力为同一种力。

2.检验过程:对月球绕地球做匀速圆周运动,由F =G m 月m 地r 2和a 月=F m 月,可得:a 月= 对苹果自由落体,由F =G m 地m 苹R 2和a 苹=F m 苹,得:a 苹= 由r =60R ,可得:a 月a 苹=【事实检验】请根据天文观测数据(事实)计算月球所在处的向心加速度:当时,已能准确测量的量有:(即事实)地球表面附近的重力加速度:g = 9.8m/s 2,地球半径: R = 6.4×106m ,月亮的公转周期:T =27.3天≈2.36×106s ,月亮轨道半径:r =3.8×108m ≈ 60R 。

根据以上条件如何处理?学习目标3 万有引力定律1.内容:自然界中任何两个物体都 ,引力的方向在它们的 ,引力的大小与物体的质量m 1和m 2的 成正比、与它们之间距离r 的 成反比。

2.表达式: 式中,质量的单位用 ,距离的单位用 ,力的单位用 。

开普勒第三定律k中g和m的关系

开普勒第三定律k中g和m的关系

开普勒第三定律是天文学中的一个重要定律,它描述了行星运行轨道的周期和半长轴之间的关系。

这一定律由德国天文学家约翰内斯·开普勒在17世纪初提出,被认为是近代天文学的开端之一。

开普勒第三定律表明,行星公转周期的平方与其椭圆轨道长半径的立方成正比。

开普勒第三定律可以用数学表达为:T^2 ∝ a^3。

其中,T代表行星的公转周期,a代表行星与太阳之间的平均距离。

在本文中,我们将探讨开普勒第三定律中k、g和m的关系。

其中,k 表示比例常数,g代表引力常数,m代表太阳的质量。

通过深入分析,我们可以揭示出这三者之间的具体关系,进一步了解行星运行轨道的规律性。

一、开普勒第三定律的数学表达式在开普勒第三定律中,T^2 ∝ a^3的表达式可以进一步转化为T^2 = k · a^3。

其中,k为比例常数,表示行星公转周期和椭圆轨道长半径之间的关系。

开普勒第三定律的数学表达式为实际观测数据提供了理论基础和数值计算方法。

二、引力常数和太阳质量对开普勒第三定律的影响1. 引力常数g的影响:根据万有引力定律,两个物体之间的引力与它们的质量和距离的平方成反比。

引力常数g表示了单位质量之间的引力,它对于行星运行轨道的形状和周期起着至关重要的作用。

当引力常数g增大时,行星与太阳之间的引力增大,行星的公转周期会相应减小;反之,当引力常数g减小时,行星的公转周期会增大。

引力常数g的变化直接影响着开普勒第三定律中的比例常数k。

2. 太阳质量m的影响:太阳作为行星轨道运行的中心天体,其质量对行星运行轨道的形状和周期同样产生重要影响。

根据牛顿运动定律和万有引力定律,行星的公转周期与太阳质量成正比,即太阳质量越大,行星的公转周期越长;反之,太阳质量越小,行星的公转周期越短。

太阳的质量m对于开普勒第三定律中的比例常数k同样有着决定性的影响。

三、比例常数k的计算方法比例常数k是开普勒第三定律中的重要物理量,它描述了行星运行轨道的具体规律。

万有引力定律

万有引力定律

(1)猜想:太阳对行星的引力F应该与 行星到太阳的距离r有关,许多经验使 人很容易想到这一点。那么F与r的定量 关系是什么? (2)简化模型:行星轨道按照“圆”来 处理;
7
(3)计算
将行星运动近似为圆轨道上的匀速圆 周运动:太阳和行星间的距离为r,行星 运动的周期为T,行星的质量为m。请你 学着牛顿的方法,证明太阳对行星的引 力F与r的二次方成反比。
28
例题: 已知地球表面的重力加速度为 g , 地球半径为R,万有引力恒量为G,用 以上各量表示,地球质量M为多少?
Mm 解:由于 G 2 mg R
R g 所以,地球质量: M G
29
2
问题2 月球绕地球的公转周期27.3 5 天,轨道半径3.84×10 km,地球表面 的物体受到地球的引力可近似认为等 于物体的重力,物体的重力加速度为 9.8m/s2. 地球的半径为月球绕地球运 转半径的 1 .
量有关吗?
(4)对称:根据牛顿第三定律,行星与太阳间的 吸引力是相互作用的,是大小相等、性质相同 的力(一对作用力、反作用力).
• 牛顿认为,行星对太阳的引力大小也存在与上 述关系对称的结果,即和太阳的质量成正比. 若用M表示太阳的质量,则有:
M F 2 r
10
(5)推导:根据(3)和(4),得 到太阳与行星间的引力大小:
1.1686年牛顿发现万有引力定律后,曾经设想过 几种测定引力常量的方法,却没有成功. 2.其间又有科学家进行引力常量的测量也没有成 功. 3.直到1789年,英国物理学家卡文迪许巧妙地利 用了扭秤装置,第一次在实验室里对两个物体间 的引力大小作了精确的测量和计算,比较准确地 测出了引力常量.
21
G值的测量:卡文迪许扭秤实验

太阳与行星间的引力

太阳与行星间的引力
类 比 法
'
牛 三
. 行星对太阳的引力F′ 行星对太阳的引力 太阳的 太 行 行星 太阳 的 阳 星 F F′ .
M F ∝ 2 r
科 探究 太阳与行星间的引力F 探究3: 学 G 太阳 m 探 与太阳 行星 F ∝ 2 与行星间的 究 r F F′ 力 类 牛 牛三 力 比 Mm Mm 三 法 太阳 F=G 2 F∝ F 2 r M 行星 m的 的 r
对每个行星来说, 对每个行星来说,太阳和行星的连 线在相等的时间扫过相等的面积; 线在相等的时间扫过相等的面积
开普勒第三定律——周期定律 周期定律 开普勒第三定律
所有行星的轨道的半长轴的三次方 跟公转周期的二次方的比值都相等. 跟公转周期的二次方的比值都相等
a k= 2 T
3
问题探究
• 行星为什么绕太阳如此 和谐而又有规律地做椭 圆运动? 圆运动?
v=
2πr T
共 勉
• Keep your eyes on the stars and your feet on the ground. • -----Theodore Roosevelt • Thank you!
笛卡尔
行星的运动是太阳吸引的缘 故,并且力的大小与到太阳距 离的平方成反比。 离的平方成反比。
胡克
科 学 足 迹
牛顿 (1643—1727) (1643— 英国著名的物理学家
当年牛顿在前人研 究的基础上, 究的基础上,并凭借其 超凡的数学能力和坚定 的信念,深入研究, 的信念,深入研究,最 万有引力定律。 终发现了万有引力定律 终发现了万有引力定律
r
建 立 模 型

行星 m

太阳 M
F
诱思: 诱思: 太阳对行 星的引力 提供作为 向心力, 向心力, 那这个力 大小有什 么样定量 关系? 关系?

高中物理必修二---太阳与行星间的引力 第3节 万有引力定律

高中物理必修二---太阳与行星间的引力 第3节 万有引力定律

第2节 太阳与行星间的引力 第3节 万有引力定律 1.知道行星绕太阳做匀速圆周运动的向心力来源. 2.知道太阳与行星间引力的方向和表达式,知道牛顿运动定律在推导太阳与行星间引力时的作用,知道万有引力定律的适用范围.(难点) 3.理解万有引力定律,会用万有引力定律解决简单的引力计算问题,并且了解引力常量G 的测定在科学历史上的重大意义.(重点)一、太阳与行星间的引力1.太阳对行星的引力:设行星质量为m ,行星到太阳中心的距离为r ,则太阳对行星的引力:F ∝m r2. 2.行星对太阳的引力:太阳与行星的地位相同,因此行星对太阳的引力和太阳对行星的引力规律相同(设太阳质量为M ),即F ′∝M r2. 3.太阳与行星间的引力:根据牛顿第三定律F =F ′,又由于F ∝m r 2、F ′∝M r 2,则有F ∝Mm r2,写成等式F =G Mm r2,式中G 为比例系数,与太阳、行星都没有关系. 二、月—地检验1.猜想:维持月球绕地球运动的力与使物体下落的力是同一种力,遵从“平方反比”的规律.2.推理:物体在月球轨道上运动时的加速度大约是它在地面附近下落时的加速度的1602. 3.结论:计算结果与预期符合得很好.这表明:地面物体所受地球的引力、月球所受地球的引力,与太阳、行星间的引力遵从相同的规律.三、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比.2.表达式:F =G m 1m 2r2. 3.引力常量G :由英国物理学家卡文迪许测量得出,常取G =6.67×10-11N ·m 2/kg 2.判一判 (1)地球表面的物体的重力必然等于地球对它的万有引力.( )(2)若只知道某行星的自转周期和行星绕太阳做圆周运动的半径,则可以求出太阳的质量.( )(3)已知地球绕太阳转动的周期和轨道半径,可以求出地球的质量.( )(4)海王星是依据万有引力定律计算的轨道而发现的.( )(5)在地面上发射人造卫星的最小速度是7.9 km/s.( )(6)在地面上发射火星探测器的速度应为11.2 km/s<v <16.7 km/s.( )提示:(1)× (2)× (3)× (4)√ (5)√ (6)√做一做 在牛顿的月-地检验中有以下两点:(1)由天文观测数据可知,月球绕地球运行周期为27.32天,月球与地球间相距3.84×108 m ,由此可计算出加速度a =0.002 7 m/s 2;(2)地球表面的重力加速度为9.8 m/s 2,月球的向心加速度与地球表面重力加速度之比为1∶3 630,而地球半径(6.4×106 m)和月球与地球间距离的比值为1∶60.这个比值的平方1∶3 600与上面的加速度比值非常接近.以上结果说明( )A .地面物体所受地球的引力与月球所受地球的引力是同一种性质的力B .地面物体所受地球的引力与月球所受地球的引力不是同一种性质的力C .地面物体所受地球的引力只与物体质量有关,即G =mgD .月球所受地球的引力除与月球质量有关外,还与地球质量有关提示:选A .通过完全独立的途径得出相同的结果,证明了地球表面上的物体所受地球的引力和月球所受地球的引力是同一种性质的力,故选项A 正确.想一想 如何通过天文观测计算月球绕地球转动时的向心加速度呢?提示:通过天文观测我们可以获得月球与地球之间的距离以及月球的公转周期,所以我们可以利用a n =4π2T2r 计算月球绕地球运动时的向心加速度.对天体间引力的理解1.太阳与行星间的引力是相互的,沿两个星体连线方向,指向施力星体.2.公式中G 为比例系数,与行星和太阳均没有关系.3.太阳与行星间的引力规律也适用于行星和卫星间.4.该引力规律普遍适用于任何有质量的物体之间.与行星绕太阳运动一样,地球卫星之所以能绕地球运动也同样是因为它受到地球的引力,假设有一颗人造地球卫星,质量为m ,绕地球运动的周期为T ,轨道半径为r ,则应有F =4π2mr T2.由此有人得出结论:地球对卫星的引力F 应与r 成正比,你认为该结论是否正确?若不正确错在何处?[解析]不正确.F与r成正比,是建立在周期T不变的前提下的,由开普勒第三定律,人造地球卫星的轨道半径r发生变化时,周期T也在变化,所以不能说F与r成正比.[答案]见解析求解天体间或实际物体间的引力问题时,限于具体条件,有些物理量不便直接测量或直接求解,此时可利用等效的方法间接求解,或通过舍去次要因素、抓住主要因素的方法建立简化模型,或通过相关公式的类比应用消去某些未知量.(多选)下列说法正确的是( )A.在探究太阳对行星的引力规律时,我们引用了F=mv2r,这个关系式实际上是牛顿第二定律的公式,是可以在实验室中得到验证的B.在探究太阳对行星的引力规律时,我们引用了v=2πrT,这个关系式实际上是匀速圆周运动的一个公式,它是由速度的定义式得到的C.在探究太阳对行星的引力规律时,我们引用了r3T2=k,这个关系式实际上是开普勒第三定律,是可以在实验室中得到验证的D.在探究太阳对行星的引力规律时,使用的三个公式都是可以在实验室中得到验证的解析:选AB.物理公式或规律,都是在满足一定条件下建立的.有些是通过实验获得,并能在实验室进行验证的,如本题中选项A、B.但有些则无法在实验室证明,如开普勒的三大定律,是根据行星运动的观察结果而总结归纳出来的规律,每一条都是经验定律,都是从观察行星运动所取得的资料中总结出来的,故开普勒的三大定律都是在实验室无法验证的定律.公式F=GMmr2来源于开普勒定律,无法得到验证.故本题正确选项是A、B.对万有引力定律的理解内容自然界中任何两个物体都互相吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成正比,与它们之间距离r的二次方成反比公式F=Gm1m2r2,其中G=6.67×10-11N·m2/kg2,称为引力常量,m1、m2分别为两个物体的质量,r为它们之间的距离适用条件(1)严格地说,万有引力定律只适用于质点间的相互作用(2)万有引力定律也适用于计算两个质量分布均匀的球体间的相互作用,其中r是两个球体球心间的距离(3)计算一个均匀球体与球外一个质点间的万有引力也适用,其中r为球心与质点间的距离(4)两个物体间的距离远远大于物体本身的大小时,公式也近似适用,其中r为两物体质心间的距离特性 普遍性万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力 相互性两个有质量的物体之间的万有引力是一对作用力和反作用力,符合牛顿第三定律 宏观性 在地面上的一般物体之间,由于质量比较小,物体间的万有引力比较小,与其他力比较可忽略不计,但在质量巨大的天体之间,或天体与其附近的物体之间,万有引力起着决定性作用特殊性 两个物体之间的万有引力只与它们本身的质量和它们间的距离有关,与所在空间的性质无关,与周围是否存在其他物体无关命题视角1 对万有引力定律的理解对于质量为m 1和质量为m 2的两个物体间的万有引力的表达式F =G m 1m 2r2,下列说法中正确的是( )A .两物体所受引力总是大小相等,方向相反,是一对平衡力B .当两物体间的距离r 趋于0时,万有引力无穷大C .当有第三个物体放入这两个物体之间时,这两个物体间的万有引力将不变D .两个物体所受的引力性质可能相同,也可能不同[解析] 物体间的万有引力是一对相互作用力,始终等大反向,故选项A 错误.当物体间距离趋于0时,物体就不能看成质点,因此万有引力定律不再适用,物体间的万有引力不会变得无穷大,选项B 错误.物体间万有引力的大小只与两物体的质量m 1、m 2和物体间的距离r 有关,与是否存在其他物体无关,故选项C 正确.物体间的万有引力是一对同种性质的力,选项D 错误.[答案] C命题视角2 引力常量的测定正是由于卡文迪许测定了引力常量G ,才使得万有引力定律在天文学的发展上起了重要的作用.此实验不仅证明了万有引力的存在,更使得万有引力定律有了真正的实用价值.例如,可以用测定地球表面物体重力加速度的方法测定地球的质量,也正是由于这一应用,使卡文迪许被人们称为是“能称出地球质量的人”.若重力加速度g 取9.8 m/s 2,则还需要知道哪些物理量就能运用所学知识得出地球的质量,并具体估算一下地球质量大约为多少?[解析] 由地球表面物体重力近似等于万有引力得mg =G mM R 2,即M =gR 2G,因此,要求出地球质量,还要知道引力常量G ,地球半径R .将G =6.67×10-11 N ·m 2/kg 2,R =6.40×106m 代入可得M ≈6.02×1024 kg.[答案] 引力常量G ,地球半径R 6.02×1024 kg引力常量测定的意义(1)卡文迪许利用扭秤装置通过改变小球的质量和距离,证实了万有引力的存在及万有引力定律的正确性.(2)引力常量的确定使万有引力定律能够进行定量的计算,显示出真正的实用价值.(3)卡文迪许扭秤实验是物理学上非常著名和重要的实验,扭秤实验巧妙地利用等效法合理地将微小量进行放大,开创了测量弱力的新时代.【通关练习】1.(2020·江西上饶期中)下面有关万有引力的说法不正确的是( )A .F =G m 1m 2r2中的G 是比例常数,其值是牛顿通过扭秤实验测得的 B .地面附近自由下落的苹果和天空中运行的月亮,受到的都是地球引力C .苹果落到地面上,说明地球对苹果有引力,苹果对地球也有引力D .万有引力定律是牛顿在总结前人研究的基础上发现的解析:选A.G 是比例常数,其值是卡文迪许通过扭秤实验测得的,A 错误;由万有引力定律可知,地面附近自由下落的苹果和天空中运行的月亮,受到的都是地球引力,B 正确;地球吸引苹果的力与苹果吸引地球的力是相互作用力,因此地球对苹果有引力,苹果对地球也有引力,C 正确;万有引力定律是牛顿在总结前人研究的基础上发现的,D 正确.2.(多选)关于引力常量,下列说法正确的是( )A .引力常量是两个质量为1 kg 的质点相距1 m 时的相互吸引力B .牛顿发现了万有引力定律,测出了引力常量的值C .引力常量的测定,证明了万有引力的存在D .引力常量的测定,使人们可以测出天体的质量解析:选CD.引力常量的大小等于两个质量为1 kg 的质点相距1 m 时的万有引力的数值,而引力常量不能说是两质点间的吸引力,选项A 错误;牛顿发现了万有引力,但他并未测出引力常量,引力常量是卡文迪许巧妙地利用扭秤装置在实验室中第一次比较精确地测出的,所以选项B 错误;引力常量的测出,不仅证明了万有引力的存在,而且也使人们可以测出天体的质量,这也是测出引力常量的意义所在,选项C 、D 正确.万有引力定律的应用1.重力与万有引力的关系在地球表面上的物体所受的万有引力F 可以分解成重力mg 和随地球转动做圆周运动所需要的向心力F ′,如图所示.其中F =G Mm R2,而F ′=mω2r .从图中可以看出: (1)当物体在赤道上时,F 、mg 、F ′三力同向,此时F ′为最大值F ′max =mω2R ,重力为最小值,G min =F -F ′=G Mm R2-mω2R . (2)当物体在两极时,F ′=0,F =mg ,此时重力等于万有引力,重力为最大值,G max =G Mm R 2. 当物体由赤道向两极移动的过程中,向心力逐渐减小,重力逐渐增大,只有物体在两极时物体所受的万有引力才等于重力.(3)在高空中(如绕地球转动的卫星),重力等于万有引力,即mg ′=G Mm (R +h )2.由此可知,离地面的高度h 越高,所在处的重力加速度g ′就越小.(4)在地球表面,重力加速度随地理纬度的增加而增大;在地球上空,重力加速度随距地面高度的增大而减小.总之,除在两极外,都不能说重力等于地球对物体的万有引力,但由于分力F ′远小于引力F ,所以在忽略地球自转的问题中,通常认为重力等于万有引力,即mg =GMm R2. 2.对重力加速度的“再认识”(1)天体表面的重力加速度在天体表面处,万有引力等于或近似等于重力,则G Mm R 2=mg ,所以g =GM R2(R 为星球半径,M 为星球质量).由此推得,两个不同天体表面重力加速度的关系为g 1g 2=R 22R 21·M 1M 2. (2)某高度处的重力加速度若设离天体表面高h 处的重力加速度为g h ,则G Mm (R +h )2=mg h ,所以g h =GM (R +h )2.可见,随高度的增加重力加速度逐渐减小.由以上分析可推得,天体表面和某高度处的重力加速度的关系为g h g =R 2(R +h )2. 命题视角1 万有引力的大小计算两艘轮船,质量都是1.0×104 t ,相距10 km ,它们之间的万有引力是多大?这个力与轮船所受重力的比值是多少?(g 取10 m/s 2)[解析] 轮船之间的万有引力F =G m 1m 2r 2=6.67×10-11×1.0×107×1.0×107(10×103)2N =6.67×10-5 N.轮船的重力G =mg =1.0×107×10 N =1.0×108 N. 两轮船间的万有引力与轮船所受重力的比值为 F G = 6.67×10-13. [答案] 6.67×10-5 N 6.67×10-13命题视角2 “填补法”在引力求解中的应用有一质量为M 、半径为R 的密度均匀球体,在距离球心O为2R 的地方有一质量为m 的质点,现在从M 中挖去一半径为R 2的球体,如图所示,求剩下部分对m 的万有引力F 为多大?[思路点拨] 挖去一球体后,剩余部分不再是质量分布均匀的球体,不能直接利用万有引力定律公式求解.可先将挖去部分补上来求引力,求出完整球体对质点的引力F 1,再求出被挖去部分对质点的引力F 2,则剩余部分对质点的引力为F =F 1-F 2.[解析] 完整球质量M =ρ×43πR 3 挖去的小球质量M ′=ρ×43π⎝⎛⎭⎫R 23=18ρ×43πR 3=M 8由万有引力定律得F 1=G Mm (2R )2=G Mm 4R 2 F 2=G M ′m r ′2=G M 8m ⎝⎛⎭⎫3R 22=G Mm 18R 2 故F =F 1-F 2=G Mm 4R 2-G Mm 18R 2=7GMm 36R 2. [答案] 7GMm 36R 2命题视角3 天体重力加速度的相关问题火星半径是地球半径的12,火星质量大约是地球质量的19,那么地球表面上质量为50 kg 的宇航员.(1)在火星表面上受到的重力是多少?(2)若宇航员在地球表面能跳1.5 m 高,那他在火星表面能跳多高?(在地球表面的重力加速度g 取10 m/s 2)[思路点拨] 本题涉及星球表面重力加速度的求法,应先求火星表面的重力加速度,再求宇航员在火星表面所受的重力;然后再利用竖直上抛运动规律求上升的高度.[解析] (1)在地球表面有mg =G Mm R 2,得g =G M R2同理可知,在火星表面上有g ′=G M ′R ′2 即g ′=G ⎝⎛⎭⎫19M ⎝⎛⎭⎫12R 2=4GM 9R 2=49g =409 m/s 2 宇航员在火星表面上受到的重力G ′=mg ′=50×409N =222.2 N. (2)在地球表面宇航员跳起的高度H =v 202g在火星表面宇航员跳起的高度h =v 202g ′综上可知,h =g g ′H =10409×1.5 m =3.375 m. [答案] (1)222.2 N (2)3.375 m1.涉及重力与引力关系时应注意的问题(1)由物体所受的重力近似等于地球对物体的引力可知,地球表面的重力加速度g =GM R2,即GM =gR 2,这是一个常用的“黄金代换式”.(2)重力是万有引力的一个分力,故受力分析时不能重复分析,即分析万有引力时就不必再分析重力.(3)对相对于地面的运动,通常只分析重力;对随地球的自转运动或卫星问题只分析万有引力.(4)除非专门研究随地球自转问题,计算时都可认为重力与万有引力相等.2.运用万有引力定律分析求解相关综合问题时,首先必须明确问题涉及哪些知识内容,需要运用哪些物理规律,并注意把握以下几点:(1)无论问题是涉及运动学规律,还是动力学规律,联系的桥梁都是重力加速度g ,要注意重力加速度的变化,特别是明确星球表面上g 0=G M R 2,高度h 处g =G M (R +h )2,即g 随h 增加而减小.(2)在地球上运用的运动学规律和动力学规律,在其他星球上仍然适用,只是重力加速度g 不同.3.应用挖补法时应注意的两个问题(1)找到原来物体所受的万有引力、挖去部分所受的万有引力与剩余部分所受的万有引力之间的联系.(2)所挖去的部分为规则球体,剩余部分不再为球体时适合应用挖补法.若所挖去部分不是规则球体,则不适合应用挖补法. 【通关练习】 1.宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为( )A .0B .GM (R +h )2C .GMm (R +h )2D .GM h2 解析:选B.由G Mm (R +h )2=mg 得,g =GM (R +h )2,故B 项正确. 2.假设地球是一半径为R 、质量分布均匀的球体.一矿井深度为d .已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为( )A .1-d RB .1+d RC .⎝⎛⎭⎫R -d R 2D .⎝⎛⎭⎫R R -d 2解析:选A.如图所示,根据“质量分布均匀的球壳对壳内物体的引力为零”可知,地面处的球壳对地面与矿井底部之间的环形部分的引力为零.设地面处的重力加速度为g ,地球质量为M ,由地球表面的物体m 1受到的重力近似等于万有引力,可得m 1g =G Mm 1R 2,即g =GM R2;再将矿井底部所在的球壳包围的球体取出来进行研究,设矿井底部处的重力加速度为g ′,取出的球体的质量为M ′,半径r =R -d ,同理可得矿井底部处的物体m 2受到的重力m 2g ′=G M ′m 2r 2,即g ′=GM ′r2,又M =ρV =ρ·43πR 3,M ′=ρV ′=ρ·43π(R -d )3,联立解得g ′g =1-d R,选项A 正确.[随堂检测]1.万有引力定律首次揭示了自然界中物体间一种基本相互作用的规律.以下说法正确的是( )A .物体的重力不是地球对物体的万有引力引起的B .人造地球卫星离地球越远,受到地球的万有引力越大C .人造地球卫星绕地球运动的向心力由地球对它的万有引力提供D .宇宙飞船内的宇航员处于失重状态是由于没有受到万有引力的作用解析:选C.物体的重力是由地球的万有引力产生的,万有引力的大小与质量的乘积成正比,与距离的二次方成反比,选项A 、B 错误;人造地球卫星绕地球运动的向心力是由万有引力提供的,选项C 正确;宇宙飞船内的宇航员处于失重状态,是因为宇航员受到的万有引力全部提供了宇航员做圆周运动所需的向心力,选项D 错误.2.一名宇航员来到一个星球上,如果该星球的质量是地球质量的一半,它的直径也是地球直径的一半,那么这名宇航员在该星球上所受的万有引力大小是他在地球上所受万有引力大小的( )A .0.25B .0.5C .2倍D .4倍解析:选C.根据万有引力定律得:宇航员在地球上所受的万有引力F 1=GM 地m R 2地,在星球上所受的万有引力F 2=GM 星m R 2星,所以F 2F 1=M 星R 2地M 地R 2星=12×22=2,故C 正确. 3.某行星可看成一个均匀的球体,密度为ρ,若在其赤道上随行星一起转动的物体对行星表面的压力恰好为零,则该行星的自转周期为(引力常量为G )( )A .4πG 3B .3πG 4C . 3πρGD . πρG解析:选C.根据G Mm r2=m ⎝⎛⎭⎫2πT 2r ,可得T =2πr 3GM ,将M =43πr 3ρ代入,可得T =3πρG ,故选项C 正确. 4.如图所示,一个质量为M 的匀质实心球,半径为R .如果从球的正中心挖去一个直径为R 的球,放在相距为d 的地方.求两球之间的引力是多大.解析:根据匀质球的质量与其半径的关系M =ρ×43πR 3∝R 3,两部分的质量分别为m =M 8,M ′=7M 8根据万有引力定律,这时两球之间的引力为F =G M ′m d 2=7GM 264d 2. 答案:7GM 264d 25.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t ,小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处.(取地球表面重力加速度g =10 m/s 2,空气阻力不计)(1)求该星球表面附近的重力加速度g ′的大小;(2)已知该星球的半径与地球半径之比为R 星∶R 地=1∶4,求该星球的质量与地球质量之比M 星∶M 地.解析:(1)设竖直上抛小球初速度为v 0,则 v 0=12gt =12g ′×5t ,所以g ′=15g =2 m/s 2.(2)设小球的质量为m , 则mg =G M 地m R 2地,mg ′=G M 星m R 2星所以M 星∶M 地=g ′R 2星gR 2地=15×116=180.答案:(1)2 m/s 2 (2)1∶80[课时作业] 【A 组 基础过关】1.地球可近似看成球形,由于地球表面上物体都随地球自转,所以有( ) A .物体在赤道处受的地球引力等于两极处,而重力小于两极处 B .赤道处的角速度比南纬30°大C .地球上物体的向心加速度都指向地心,且赤道上物体的向心加速度比两极处大D .地面上的物体随地球自转时提供向心力的是重力解析:选A.由F =G MmR 2可知,若将地球看成球形,则物体在地球表面任何位置受到地球的引力都相等,此引力的两个分力一个是物体的重力,另一个是物体随地球自转的向心力.在赤道上,向心力最大,重力最小,A 对;地表各处的角速度均等于地球自转的角速度,B 错;地球上只有赤道上的物体向心加速度指向地心,其他位置的向心加速度均不指向地心,C 错;地面上物体随地球自转的向心力是万有引力与地面支持力的合力,D 错.2.如图所示,两球的半径小于R ,两球质量均匀分布,质量分别为m 1、m 2,则两球间的万有引力大小为( )A .G m 1m 2R 21B .G m 1m 2R 22C .G m 1m 2(R 1+R 2)2D .G m 1m 2(R 1+R 2+R )2解析:选D.由万有引力定律公式中“r ”的含义知:r 应为两球心之间的距离,故D 正确. 3.(多选)甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是( )A .甲的运行周期大于乙的运行周期B .乙的速度大于第一宇宙速度C .甲的加速度小于乙的加速度D .甲在运行时能经过北极的正上方 答案:AC4.(多选)质量为m 的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动.已知月球质量为M ,月球半径为R ,月球表面重力加速度为g ,引力常量为G ,不考虑月球自转的影响,则航天器的( )A .线速度v =GMRB .角速度ω=gRC .运行周期T =2πRgD .向心加速度a =GmR2解析:选AC.根据万有引力提供卫星做圆周运动的向心力和万有引力等于重力得出:G MmR 2=m v 2R ,得v =GMR,故A 正确;根据mg =mω2R ,得ω=gR,故B 错误;根据mg =m 4π2T 2R ,得T =2πR g ,故C 正确;根据万有引力提供向心力得G Mm R 2=ma ,a =GM R2,故D 错误.5.两颗行星的质量分别为m 1和m 2,它们绕太阳运行的轨道半径分别是r 1和r 2,若它们只受太阳引力的作用,那么这两颗行星的向心加速度之比为( )A .1B .m 2r 1m 1r 2C .m 1r 2m 2r 1D .r 22r 21解析:选D.设行星m 1、m 2的向心力分别为F 1、F 2,由太阳与行星之间的作用规律可得:F 1∝m 1r 21,F 2∝m 2r 22,而a 1=F 1m 1,a 2=F 2m 2,故a 1a 2=r 22r 21,D 正确.6.两个质量均为m 的星体,其连线的垂直平分线为MN ,O 为两星体连线的中点,如图所示,一个质量也为m 的物体从O 沿OM 方向运动,则它受到的万有引力大小变化情况是( )A .一直增大B .一直减小C .先减小,后增大D .先增大,后减小解析:选D.m 在O 点时,所受万有引力的合力为0,运动到无限远时,万有引力为0,在距O 点不远的任一点,万有引力都不为0,因此D 正确.7.设地球表面重力加速度为g 0,物体在距离地心4R (R 是地球的半径)处,由于地球对物体的万有引力的作用而产生的加速度为g ,则gg 0为( )A .1B .19C .14D .116解析:选D.地球表面处的重力加速度和在离地心高4R 处的加速度均由地球对物体的万有引力产生,所以有地面上:G MmR2=mg 0①离地心4R 处:G Mm(4R )2=mg ②由①②两式得g g 0=⎝⎛⎭⎫R 4R 2=116.【B 组 素养提升】8.2019年1月,我国嫦娥四号探测器成功在月球背面软着陆.在探测器“奔向”月球的过程中,用h 表示探测器与地球表面的距离,F 表示它所受的地球引力,能够描述F 随h 变化关系的图象是( )解析:选D.在嫦娥四号探测器“奔向”月球的过程中,根据万有引力定律,可知随着h 的增大,探测器所受的地球引力逐渐减小但并不是均匀减小的,故能够描述F 随h 变化关系的图象是D.9.某星球的质量约为地球质量的9倍,半径约为地球半径的一半,若从地球表面高h 处平抛一物体,射程为60 m ,则在该星球上,从同样高度以同样的初速度平抛同一物体,射程应为( )A .10 mB .15 mC .90 mD .360 m解析:选A.由平抛运动公式可知,射程x =v 0t =v 02h g ,即v 0、h 相同的条件下x ∝1g.。

第六章 太阳与行星间的引力 万有引力定律2 3(学生版)

第六章 太阳与行星间的引力  万有引力定律2 3(学生版)

2 太阳与行星间的引力3 万有引力定律知识梳理一、太阳与行星间的引力1.太阳对行星的引力:太阳对不同行星的引力,与行星的质量成 ,与行星和太阳间距离的二次方成 ,即F ∝mr 2.2.行星对太阳的引力:太阳与行星的地位相同,因此行星对太阳的引力和太阳对行星的引力规律相同,即F ′∝Mr 2.3.太阳与行星间的引力:根据牛顿第三定律F =F ′,所以有F ∝Mm r 2,写成等式就是F =G Mmr 2.二、月—地检验1.猜想:维持月球绕地球运动的力与使得苹果下落的力是同一种力,同样遵从“ ”的规律.2.推理:根据牛顿第二定律,物体在月球轨道上运动时的加速度大约是它在地面附近下落时的加速度的1602. 3.结论:地面物体所受地球的引力、月球所受地球的引力,与太阳、行星间的引力遵从 (填“相同”或“不同”)的规律.三、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的 ,引力的大小与物体的 成正比、与它们之间 成反比.2.表达式:F =G m 1m 2r2.3.引力常量G :由英国物理学家卡文迪许测量得出,常取G = N·m 2/kg 2.即学即用1.判断下列说法的正误.(1)万有引力不仅存在于天体之间,也存在于普通物体之间.( )(2)质量一定的两个物体,若距离无限小,它们间的万有引力趋于无限大.( ) (3)把物体放在地球中心处,物体受到的引力无穷大.( )(4)由于太阳质量大,太阳对行星的引力大于行星对太阳的引力.( ) (5)牛顿发现了万有引力定律,并测出了引力常量.( )2.两个质量都是1 kg 的物体(可看成质点),相距1 m 时,两物体间的万有引力F =_____ N ,一个物体的重力F ′=____ N ,万有引力F 与重力F ′的比值为_____.(已知引力常量G =6.67×10-11N·m 2/kg 2,取重力加速度g =10 m/s 2)重点探究一、对太阳与行星间引力的理解 导学探究1.是什么原因使行星绕太阳运动? 答案: .2.在推导太阳与行星的引力时,我们对行星的运动怎么简化处理的?用了哪些知识? 答案: .知识深化太阳与行星间引力关系的得出过程例1 (多选)根据开普勒关于行星运动的规律和圆周运动的知识知:太阳对行星的引力F ∝mr 2,行星对太阳的引力F ′∝Mr 2,其中M 、m 、r 分别为太阳质量、行星质量和太阳与行星间的距离,下列说法正确的是( )A.由F ′∝M r 2和F ∝mr2,得F ∶F ′=m ∶M B.F 和F ′大小相等,是作用力与反作用力C.F 和F ′大小相等,是同一个力D.太阳对行星的引力提供行星绕太阳做圆周运动的向心力 二、万有引力定律导学探究(1)通过月—地检验结果表明,地面物体所受地球的引力、月球所受地球的引力,与太阳、行星间的引力遵从相同的规律.一切物体之间都存在这样的引力,那么,为什么通常两个人(如下图)间的万有引力我们却感受不到?(2)地球对人的万有引力与人对地球的万有引力大小相等吗?答案 (1) . (2) .知识深化1.万有引力定律表达式F =G m 1m 2r 2,G =6.67×10-11 N·m 2/kg 2.2.万有引力定律公式适用的条件(1)万有引力定律适用于两个质点间的相互作用.(2)一个均匀球体与球外一个质点,r 为球心到质点的距离. (3)两个质量均匀的球体,r 为两球心间的距离. 例2 关于万有引力和万有引力定律的理解正确的是( ) A.不能看做质点的两物体间不存在相互作用的引力 B.只有能看做质点的两物体间的引力才能用F =Gm 1m 2r2计算C.由F =Gm 1m 2r 2知,两物体间距离r 减小时(没有无限靠近),它们之间的引力增大D.引力常量的大小是牛顿首先测出来的,且约等于6.67×10-11N·m 2/kg 2例3 如下图所示,两球间的距离为r 0,两球的质量分布均匀,质量分别为m 1、m 2,半径分别为r 1、r 2,则两球间的万有引力大小为( )A.Gm 1m 2r 02B.Gm 1m 2r 12C.Gm 1m 2(r 1+r 2)2D.Gm 1m 2(r 1+r 2+r 0)2例4一个质量均匀分布的球体,半径为2r ,在其内部挖去一个半径为r 的球形空穴,其表面与球面相切,如下图所示.已知挖去小球的质量为m ,在球心和空穴中心连线上,距球心d =6r 处有一质量为m ′的质点,求:(1)被挖去的小球挖去前对m ′的万有引力为多大? (2)剩余部分对m ′的万有引力为多大? 三、重力和万有引力的关系1.物体在地球表面上所受引力与重力的关系除两极以外,地面上其他点的物体,都围绕地轴做圆周运动,这就需要一个垂直于地轴的向心力.由地球对物体引力的一个分力F ′提供向心力,另一个分力为重力G ,如上图所示.(1)当物体在两极时:G =F 引,重力达到最大值G max =G MmR 2.(2)当物体在赤道上时:F ′=mω2R 最大,此时重力最小 G min =GMmR 2-mω2R (3)从赤道到两极:随着纬度增加,向心力F ′=mω2R ′减小,F ′与F 引夹角增大,所以重力G 在增大,重力加速度增大. 因为F ′、F 引、G 不在一条直线上,重力G 与万有引力F 引方向有偏差,重力大小mg <G MmR 2.2.重力与高度的关系若距离地面的高度为h ,则mg ′=G Mm(R +h )2(R 为地球半径,g ′为离地面h 高度处的重力加速度).在同一纬度,距地面越高,重力加速度越小. 3.特别说明(1)重力是物体由于地球吸引产生的,但重力并不是地球对物体的引力.(2)只有在两极,mg =G Mm R 2,其他地方mg <G Mm R 2,但相差不大,在忽略地球自转的情况下,认为mg =G MmR 2.(3)在两极、赤道,两个力的方向相同,其他地方二者方向不同,略有偏差.引力的方向指向地心,重力的方向竖直向下.例5 (多选)万有引力定律能够很好地将天体运行规律与地球上物体运动规律具有的内在一致性统一起来.用弹簧测力计称量一个相对于地球静止的质量为m 的小物体的重力,随称量位置的变化可能会有不同的结果.已知地球质量为M ,引力常量为G .将地球视为半径为R 、质量均匀分布的球体.下列说法正确的是( )A.在北极地面称量时,弹簧测力计读数为F 0=G Mm R 2B.在赤道地面称量时,弹簧测力计读数为F 1=G MmR 2C.在北极上空高出地面h 处称量时,弹簧测力计读数为F 2=G Mm(R +h )2D.在赤道上空高出地面h 处称量时,弹簧测力计读数为F 3=G Mm(R +h )2例6 火星半径是地球半径的12,火星质量大约是地球质量的19,那么地球表面上质量为50 kg 的宇航员(地球表面的重力加速度g 取10 m/s 2)(1)在火星表面上受到的重力是多少? (2)若宇航员在地球表面能跳1.5 m 高,那他在火星表面能跳多高?随堂演练1.(对万有引力定律的理解)对于万有引力定律的表达式F =G m 1m 2r2,下列说法正确的是( )A.公式中G 为引力常量,它是由实验测得的,而不是人为规定的B.当r 趋近于零时,万有引力趋于无穷大C.对于m 1与m 2间的万有引力,质量大的受到的引力大D.m 1与m 2受到的引力是一对平衡力2.(月—地检验)(2018·北京卷)若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律,在已知月地距离约为地球半径60倍的情况下,需要验证( ) A.地球吸引月球的力约为地球吸引苹果的力的1602 B.月球公转的加速度约为苹果落向地面加速度的1602C.自由落体在月球表面的加速度约为地球表面的16D.苹果在月球表面受到的引力约为在地球表面的1603.(万有引力定律的简单应用)两个完全相同的实心均质小铁球紧靠在一起,它们之间的万有引力为F .若将两个用同种材料制成的半径是小铁球2倍的实心大铁球紧靠在一起,则两个大铁球之间的万有引力为( ) A.2F B.4F C.8F D.16F4.(重力加速度的计算)据报道,在太阳系外发现了首颗“宜居”行星,设其质量为地球质量的k 倍,其半径为地球半径的p 倍,由此可推知该行星表面的重力加速度与地球表面重力加速度之比为( ) A.k p B.k p 2 C.k 2p D.k 2p2 课时对点练考点一 万有引力定律的理解1.(2019·肥东高级中学高一下期末)下列关于行星对太阳的引力的说法中正确的是( ) A.行星对太阳的引力与太阳对行星的引力是同一种性质的力B.行星对太阳的引力与太阳的质量成正比,与行星的质量无关C.太阳对行星的引力大于行星对太阳的引力D.行星对太阳的引力与太阳的质量成正比,与行星距太阳的距离成反比 2.(多选)关于引力常量G ,下列说法中正确的是( ) A.在国际单位制中引力常量G 的单位是N·m 2/kg 2B.引力常量G 的大小与两物体质量的乘积成反比,与两物体间距离的平方成正比C.引力常量G 在数值上等于两个质量都是1 kg 的可视为质点的物体相距1 m 时的相互吸引力D.引力常量G 是不变的,其数值大小由卡文迪许测出,与单位制的选择无关3.(2019·北京牛栏山一中期中)下图(a)是用来“显示桌(或支持)面的微小形变”的演示实验;图(b)是用来“测量万有引力常量”的实验.由图可知,两个实验共同的物理思想方法是( )A.极限的思想方法B.放大的思想方法C.控制变量的方法D.猜想的思想方法考点二 万有引力定律的简单应用4.(2019·永春县第一中学高一期末)要使两物体间的万有引力减小到原来的14,下列办法不正确的是( )A.使两物体的质量各减小一半,距离不变B.使其中一个物体的质量减小到原来的14,距离不变C.使两物体间的距离增大到原来的2倍,质量不变D.使两物体的质量和距离都减小到原来的145.某物体在地面上受到地球对它的万有引力为F .若此物体受到的引力减小到F4,则此物体距离地面的高度应为(R 为地球半径)( ) A.2R B.4R C.R D.8R6.地球半径为R ,地球表面的重力加速度为g ,若高空中某处的重力加速度为g2,则该处距地球表面的高度为( )A.(2-1)RB.RC.2RD.2R7.(多选)如下图所示,三颗质量均为m 的地球同步卫星等间隔分布在半径为r 的圆轨道上,设地球质量为M ,半径为R ,下列说法正确的是( )A.地球对一颗卫星的引力大小为GMm(r -R )2B.一颗卫星对地球的引力大小为GMmr 2C.两颗卫星之间的引力大小为Gm 23r2D.三颗卫星对地球引力的合力大小为3GMmr28.(2020·全国卷Ⅰ)火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( )A .0.2B .0.4C .2.0D .2.5能力综合练9.如下图所示,一个质量均匀分布的半径为R 的球体对球外质点P (图中未画出)的万有引力为F .如果在球体中央挖去半径为r 的一部分球体,且r =R2,则原球体剩余部分对质点P 的万有引力变为( )A.F 2B.F 8C.7F 8D.F 410.(多选)宇宙中存在着由四颗星组成的孤立星系.如下图所示,一颗母星处在正三角形的中心,三角形的顶点各有一颗质量相等的小星围绕母星做圆周运动.如果两颗小星间的万有引力为F ,母星与任意一颗小星间的万有引力为9F .则( )A.每颗小星受到的万有引力为(32+9)F B.每颗小星受到的万有引力为(3+9)FC.母星的质量是每颗小星质量的3倍D.母星的质量是每颗小星质量的33倍11.若地球半径为R ,把地球看做质量分布均匀的球体.“蛟龙”号下潜深度为d ,“天宫一号”轨道距离地面高度为h ,“蛟龙”号所在处与“天宫一号”所在处的重力加速度之比为[在匀质球体内部距离球心r 处的质点(m )受到的万有引力等于球体内半径为r 的同心球体(M ′)对它的万有引力]()A.R -d R +hB.(R -d )2(R +h )2C.(R -d )(R +h )2R 3D.(R -d )(R +h )R 212.某地区的地下发现了天然气资源,如下图所示,在水平地面P 点的正下方有一球形空腔区域内储藏有天然气.假设该地区岩石均匀分布且密度为ρ,天然气的密度远小于ρ,可忽略不计.如果没有该空腔,地球表面正常的重力加速度大小为g ;由于空腔的存在,现测得P 点处的重力加速度大小为kg (k <1).已知引力常量为G ,球形空腔的球心深度为d ,则此球形空腔的体积是( )A.kgd GρB.kgd 2Gρ C.(1-k )gd Gρ D.(1-k )gd 2Gρ13.已知太阳的质量为M ,地球的质量为m 1,月球的质量为m 2,当发生日全食时,太阳、月球、地球几乎在同一直线上,且月球位于太阳与地球之间,如下图所示.设月球到太阳的距离为a ,地球到月球的距离为b ,则太阳对地球的引力F 1和对月球的引力F 2的大小之比为多少?14.某物体在地面上受到的重力为160 N ,将它放置在卫星中,在卫星以a =12g 的加速度随火箭向上加速升空的过程中,当物体与卫星中支持物的相互挤压的力为90 N 时,卫星距地球表面有多远?(地球半径R 地=6.4×103 km ,g 表示地面处重力加速度,g 取10 m/s 2) 拓展提升15.地球可视为质量均匀分布的球体.某物体在地球北极点静止时对水平地面的压力为F N0,物体在地球赤道上静止时对水平地面的压力为F N ;地球自转周期为T ,万有引力常量为G ,地球密度的表达式为( ) A.3πF N0GT 2(F N0-F N )B.3π(F N0-F N )GT 2F N0C.3πF N0GT 2D.3πF N0GT 2F N。

太阳与行星间的引力

太阳与行星间的引力

M F` 2 r
Mm F G 2 r
(1) G是比例系数,与行星、太阳均无关 (2)引力的方向沿太阳和行星的连线
行星绕太阳运动遵守这个规律, 那么在其他地方是否适用这个规律 呢?
月地检验
1.根据圆周运动知识及实验测量数据 可求得月亮加速度为:
2π 2 2 3.14 a月 ( ) r月=( )2 60 R地= 2.72 10 3 T 27.3 24 3600

100多年后,英国人卡文迪许利用扭秤才 巧妙地测出了这个恒量
万有引力常量:
-11 G=6.67×10 N 2 2 m /kg
应用与所有的物体之间。
追寻牛顿的足迹
3、根据开普勒第三定律

r k 2 T
3
r T k
2
3
代入得
2 2 4 F m( ) r m 2 r T T
2
所以
m F 4 k 2 r
3
3 1 2 1
3
k值与中心天体有关, 而与环绕天体无关
什么力来维持行星绕太阳的 运动呢?
科学的足迹
1、伽利略:一切物体都有合并的趋势,这种趋势 导致物体做圆周运动。 2、开普勒:受到了来自太阳的类似与磁力的作用。
3、笛卡儿:在行星的周围有旋转的物质(以太)作 用在行星上,使得行星绕太阳运动。
4、胡克、哈雷等:受到了太阳对它的引力,证明了 如果行星的轨道是圆形的,其所受的引力大小跟 行星到太阳的距离的二次方成反比,但没法证明 在椭圆轨道规律也成立。
在文化发展史上的重大意义:使人们 了有能力理解天地间的各种事物的信心,解 放了人们的思想,在科学文化的发展史上起 了积极的推动作用。
1. 万有引力恒量的测定

必修2 6.2 太阳与行星间的引力 课件

必修2 6.2 太阳与行星间的引力 课件

二、太阳与行星间的引力
引力 太阳对 行 星的引 力 行星对 太 阳的引 力 规律 太阳对不同行星的引力 , 与行星的质量成正比 , 与行星
m 和太阳间距离的二次方成反比, 即 F∝ 2 r M 阳间距离的二次方成反比 , 即 F' ∝ 2 r
.
行星对太阳的引力与太阳的质量成正比, 与行星和太 .
引 力 太 阳 与 行 星 间 的 引 力
规律
太阳与行星间引力的大小与太阳的质量、行星的质量成正 比, 与两者距离的二次方成反比 , 即 F =G
Mm , G 为比例系 2 r
数, 其大小与太阳和行星的质量无关 , 引力的方向沿两者的 连线.
探究感悟 1: 做圆周运动的物体必定有力提供向心 力, 行星的运动是由什么力提供向心力的? 答案: 太阳对行星的引力提供向心力. 探究感悟 2: 太阳与行星间的引力公式 F =G 中各符号的含义是什么? 答案: G 为比例系数, 与太阳和行星无关; M 和 m 分别 为太阳的质量和行星的质量; r为太阳与行星间的 距离.
22
在本题中, 所求量不能直接用公式进行求解, 必须利用等 效的方法间接求解, 即把椭圆运动等效成圆周运动, 建立 一个合理的物理模型( 匀速圆周运动模型) , 利用相应的规 律( 引力与圆周运动的规律) , 寻找解题的途径.
针对训练: 一颗小行星绕太阳做匀速圆周运动的轨道半径是地 球公转半径的 4 倍, 则这颗小行星运行速率是地球运行速率的 ( ) B. 2倍 D. 16倍
1 2
1 = , 故正确选项为 C. 2
答案: C.
点击进入课时训练
Mm r2
的得出, 概括起来导出过程如图所示:
简化处理: 椭圆轨道按“圆”轨道处理 → 引力提供向心力 F = m

人教版高中物理必修二第六章第二节《太阳与行星间的引力》说课稿+教学设计

人教版高中物理必修二第六章第二节《太阳与行星间的引力》说课稿+教学设计

《太阳与行星间的引力》说课稿我课题选自人教版全日制普通高级中学教科书,必修二第六章第二节《太阳与行星间的引力》。

我将从教材分析,学情分析,教法与学法,教学设计,板书设计,五个方面展开我的说课,首先让我们开始说课第一部分教材分析。

教材的地位和作用,从行星运动规律到万有引力定律的建立过程,是本章的重要内容,是极好的科学探究过程教育素材。

在行星运动规律与万有引力定律两节内容间安排本节内容,是为了更突出发现万有引力定律的这个科学内容。

从问题的提出、猜想与假设、演绎与推理、结论的得出、检验论证等,是一次很好的探究性学习过程。

通过探究太阳与行星间的引力,即巩固了开普勒运动定律,又为今后万有引力定律的得出打下基础,因此在知识结构上有承上启下的作用,在本章知识体系中占据着重要的地位。

鉴于此,我设计了以下三维教学目标。

知识与技能目标:1、知道行星绕太阳运动的原因是到太阳引力的作用。

2、知道行星绕太阳做匀速圆周运动的向心力来源。

3、知道太阳与行星间引力的方向和表达式,知道牛顿定律在推导太阳与行星间的引力时的作用。

4、领会应用易测量的量去求引力。

过程与方法目标:1、了解太阳与行星间的引力公式的建立和发展过程。

2、体会推导过程中的数量关系。

情感态度与价值观1、了解关于行星绕太阳运动的不同观点和引力思想形成的历程。

2、了解太阳和行星间的引力关系,体会大自然的奥秘。

针对教学重难点我是这样理解的,结合新课标,我将把重点放在太阳与行星间的引力公式的理解上,而将难点放在太阳与行星间的引力公式的推导过程上。

通过对学生和教材的深入研究后,我将进行以下学情分析:在知识层面上学生已经知道了做匀速圆周运动需要向心力,及开普勒三大定律等,在能力层面上已经具备了观察分析能力,解决问题的能力。

在对新事物有着强烈好奇心的作用下,完全有能力通过探究性学习来完成本节课的内容。

那么有了以上的基础又该如何教如何学呢!让我们一起进入教法与学法,针对教学重难点,我将采取以下教法:思维引导法,一步步的引导学生对太阳与行星间的引力的科学探究过程。

6.2太阳与行星的引力

6.2太阳与行星的引力

K是一个常数,与行星无关,只与中心天体太阳有关,不 是一个常数,与行星无关,只与中心天体太阳有关, 同的系统k 同的系统k值不一样。
问题1:什么力来维持行星运动呢? 问题1:什么力来维持行星运动呢? 1:什么力来维持行星运动呢
科学的足迹 会不会是所有物 体都有合并趋 势。。。。
合并趋势
伽利略
伽利略:一切物体都有合并的趋势, 伽利略 一切物体都有合并的趋势,这种趋势导致物体
复习 开普勒行星运动规律: 开普勒行星运动规律:
(1)开普勒第一定律: 开普勒第一定律:
a b 太 阳 o
d c
轨道定律:椭圆,太阳在焦点。 轨道定律:椭圆,太阳在焦点。 (2)开普勒第二定律: 开普勒第二定律: 面积定律:相等时间内扫过的面积相等。 面积定律:相等时间内扫过的面积相等。 (3)开普勒第三定律: 开普勒第三定律: 周期定律:a3/T2=k 周期定律:
牛顿 (1643—1727)
,
Mm ⇒F ∝ 2 r
Mm F =G 2 r
英国著名的物理学家
著名的“ 著名的“月—地”检验
地球对月球的引力与地球拉苹果下落的力会不会 是 同一种力,遵循同样的规律呢? 同一种力,遵循同样的规律呢? 假设是同一种力,且已知月球轨道是地球半径的60 假设是同一种力,且已知月球轨道是地球半径的 倍,同一物体在月球轨道所受到的力应是在地面附 近的引力的( 近的引力的 1/3600) F = G Mm 2
在行星上,使得行星绕太阳运动。 在行星上,使得行星绕太阳运动。
太阳引力
胡克
F
哈雷
F
胡克、哈雷等:受到了太阳对它的引力,证明了如果行星 胡克、哈雷等:受到了太阳对它的引力,
的轨道是圆形的, 的轨道是圆形的,其所受的引力大小跟行星到太阳的距离 的二次方成反比,但没法证明在椭圆轨道规律也成立。 的二次方成反比,但没法证明在椭圆轨道规律也成立。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档