青岛版八年级下册数学期末测试卷(基础题)

合集下载

青岛版八年级下册数学期末测试卷及含答案(有一套)

青岛版八年级下册数学期末测试卷及含答案(有一套)

青岛版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知a=.b=的关系是()A.a>bB.a<bC.a=bD.无法确定2、若二次根式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x≤33、下列运算正确的是()A. B. C. D.4、已知一次函数的图象与轴交于点A,将直线= -1绕点A逆时针旋转90°后的直线表达式为( )A. B. C. D.5、汽车是人们出行的一种重要的交通工具。

下列汽车标志中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.6、如果不等式组的解集是x<2,那么m的取值范围是()A.m=2B.m>2C.m<2D.m≥27、已知实数a,b,c所对应的点在数轴上的位置如图所示.求=()A.aB.-aC.a+bD.b-a+c8、下列各式中,正确的是()A. =﹣3B.(﹣)2=9C.±=±3D. =﹣29、若有意义,则x的取值范围是()A.x>B.x≥C.x>D.x≥10、如图,是的中线,四边形是平行四边形,增加下列条件,能判断是菱形的是( )A. B. C. D.11、在数学拓展课《折叠矩形纸片》上,小林折叠矩形纸片ABCD进行如下操作:①把△ABF翻折,点B落在CD边上的点E处,折痕AF交BC下边于点F;②把△ADH翻折,点D落在AE边上的点G处,折痕AH交CD边于点H.若AD=6,AB=10,则的值是( )A. B. C. D.12、矩形ABCD的周长为56,对角线AC,BD交于点O,△ABO与△BCO的周长差为4,则AB的长是()A.12B.22C.16D.2613、下列函数中,一定是一次函数的是A. B. C. D.14、已知a>b,则下列不等式成立的是()A. a-c >b-cB.a+c <b+cC.ac >bcD. >15、如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE,设AC =12,BD=16,则OE的长为()A.8B.9C.10D.12二、填空题(共10题,共计30分)16、计算的结果是________.17、如图,正方形ABCD的边长为5,连接BD,在线段CD上取一点E,在线段BD上取点F,使得∠BEC=∠DEF,当S△DEF = S△EFB时,在线段BC上有一点G,使FG+EG最短,则CG=________.18、不等式组的解集是________ ;这个不等式组的整数解是________.19、如图,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,则AB=________.20、计算×结果是________21、如图,x轴、y轴上分别有两点、,以点A为圆心,为半径的弧交x轴负半轴于点C,则点C的坐标为________.22、如图,O为矩形ABCD的对角线交点,DF平分∠ADC交AC于点E,交BC于点F,∠BDF=15°,则∠COF=________°.23、若x,y为实数,且满足|x﹣3|+=0,则()2012的值是________24、x的与12的差不小于6,用不等式表示为________.25、如图,在矩形ABCD中,BC=4,CD=3,将△ABE沿BE折叠,使点A恰好落在对角线BD上的点F处,则DE的长是________.三、解答题(共5题,共计25分)26、计算27、如图,在正方形ABCD中,E为DC边上的点,连接BE,将绕点C 顺时针方向旋转得到,连结EF,若,求的度数.28、一个直角三角形的两条直角边的长分别为cm与cm,求这个直角三角形的面积和周长.29、直线y=kx﹣3经过点A(﹣1,﹣1),求关于x的不等式kx﹣3≥0的解集.30、为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:租金(单位:元/台•时)挖掘土石方量(单位:m3/台•时)甲型挖掘机100 60乙型挖掘机120 80(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、C5、C6、D7、B8、C9、D10、A11、D12、C13、A14、A15、C二、填空题(共10题,共计30分)16、18、19、20、21、23、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

青岛版八年级下册数学期末测试卷【通用】

青岛版八年级下册数学期末测试卷【通用】

青岛版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、若平行四边形的一边长为2,面积为,则此边上的高介于( )A.3与4之间B.4与5之间C.5与6之间D.6与7之间2、小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家妈妈8:30从家出发,乘车沿相同路线去姥姥家在同一直角坐标系中,小亮和妈妈的行进路程与北京时间的函数图象如图所示,根据图象得到如下结论,其中错误的是()A.9:00妈妈追上小亮B.妈妈比小亮提前到达姥姥家C.小亮骑自行车的平均速度是D.妈妈在距家13km处追上小亮3、下列说法中正确的是()A.平移和旋转都不改变图形的形状和大小B.任意多边形都可以进行镶嵌C.有两个角相等的四边形是平行四边形D.对角线互相垂直的四边形是菱形4、如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为()A.50B.50C.50 -50D.50 +505、如图,将绕点逆时针旋转得到点的对应点分别为则的长为()A. B. C. D.6、下列命题中:真命题的个数是()①两条对角线互相平分且相等的四边形是正方形;②菱形的一条对角线平分一组对角;③顺次连结四边形各边中点所得的四边形是平行四边形;④两条对角线互相平分的四边形是矩形;⑤平行四边形对角线相等.A.1B.2C.3D.47、对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与两坐标轴围成的三角形面积为18.C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,﹣6)8、关于的不等式只有2个正整数解,则的取值范围为A. B. C. D.9、的立方根是()A.8B.2C.4D.±410、如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O 逆时针旋转90°至OA′,则点A′的坐标是().A.(-4,3)B.(-3,4)C.(3,-4)D.(4,-3)11、下列选项中,对任意实数a都有意义的二次根式是()A. B. C. D.12、下列运算错误的是()A. B. C. D.13、在实数,,,中,最大的数是()A. B. C. D.14、甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A.甲的速度是4km/hB.乙的速度是10km/hC.乙比甲晚出发1h D. 甲比乙晚到B地3h15、一次函数y=-3x-2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共10题,共计30分)16、如图,三角形DEF是三角形ABC沿射线BC平移的得到的,BE=2,DE与AC 交于点G,且满足DG=2GE.若三角形CEG的面积为1,CE=1,则点G到AD的距离为________.17、不等式组的解集为________.18、的平方根是________,已知一个数的平方是,则这个数的立方是________.19、如图,在平面直角坐标系中,▱ABCD的顶点B位于y轴的正半轴上,顶点C,D位于x轴的负半轴上,双曲线y=(k<0,x<0)与▱ABCD的边AB,AD交于点E、F,点A的纵坐标为10,F(﹣12,5),把△BOC沿着BC所在直线翻折,使原点O落在点G处,连接EG,若EG∥y轴,则△BOC的面积是________.20、等腰三角形底边长10cm,周长为36cm,则一底角的正切值为________21、如图,Rt△ABC≌Rt△DCB,两斜边交于点O,如果AC=3,那么OD的长为________.22、在Rt△ABC中,∠C=90°,CA=8,CB=6,则△ABC内切圆的面积为________.23、如图,在Rt△ABC中,∠ACB = 90°,,点D、E分别在边AB上,且AD = 2,∠DCE = 45°,那么DE =________.24、如图,折叠直角三角形纸片的直角,使点C落在斜边AB上的点E处,已知CD=1,∠B=30°,则AC的长是________.25、如图,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,则△AB′C的面积为________三、解答题(共5题,共计25分)26、解不等式组:.27、如果一个正数的两个平方根是a+1和2a﹣22,求出这个正数的立方根.28、解不等式组,并把它的解集在数轴上表示出来.29、如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,且DE∥AC,AE∥BD.求OE的长.30、如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.若AB=6,AD=12,BE=8,求:DF的长,以及四边形DCEF的面积。

2023-2024学年山东省青岛市市南区八年级下学期期末数学试题

2023-2024学年山东省青岛市市南区八年级下学期期末数学试题

2023-2024学年山东省青岛市市南区八年级下学期期末数学试题1.微机课上,同学们用电脑设计出了很多美丽的图案,下列图形是某组同学设计的成果,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.若,下列不等式不一定成立的是()A.B.C.D .3.如图,在中,,点,分别是直角边,的中点,,则的长为()A.B.C .D .4.农场里有一个长方形鸡舍,长和宽分别为a ,b ,其周长为10,且,则鸡舍的面积为()A .6B .10C .3D .8 5.已知不等式的解集是,下面有可能是函数的图象的是()A .B .C.D.6.某学校八年级同学到劳动基地进行实践活动,第一天的任务是用100斤黄豆磨豆浆.由于操作不熟练,开始的半小时只磨完9斤黄豆,基地要求完成全部任务的时间不超4小时,若设在剩余时间内每小时需磨完x斤黄豆,则可列不等式为()A.B.C.D.7.小明在解关于x的分式方程时,发现墨水不小心把其中一个数字污染了,翻看答案上说此方程有增根无解,则被污染的数字为()A.B.1C.2D.8.如图,中,对角线和交于点,,是对角线上的点,添加以下条件,不能判定四边形是平行四边形的是()A.B.C.D.9.商场搞促销活动,某件商品的原售价为m元,现7折出售,仍获利,则该商品的进价为()A.B.C.D.10.如图,中,,,,将进行平移得到,若点D到三边的距离相等,则平移后重叠部分图形的周长为()A.B.C.D.11.将因式分解的结果为________.12.一个正n边形,其内角和是外角和的三倍,则n的值为__________.13.用地砖铺地,用瓷砖贴墙,都要求砖与砖严丝合缝,不留空隙,把地面或墙面全部覆盖.通常把这类问题叫做平面镶嵌.现施工材料里有几种边长相同的多边形瓷砖:①正三角形;②正方形;③正六边形;④正五边形;⑤正八边形,需要从中选择三种进行组合镶嵌,它们是(填序号)_________.14.不等式组无解,则a的取值范围为________.15.若关于x的方程解为正数,则m的取值范围是_____.16.如图,把绕直角顶点C顺时针旋转后得到,点F在线段上,延长交于点G,若,,则的面积为_______.17.请用直尺、圆规作图,不写作法,但要保留作图痕迹.在公园中有一块四边形的空地,需要规划栽种不同品种的植物,空地图纸如图所示,已知四边形,,在边上求作一点M,在边上求作一点N,使得、、的面积都相等.18.(1)因式分解:;(2)解不等式组:19.(1)化简:(2)解分式方程:20.在如图所示的平面直角坐标系中,三个顶点的坐标分别为,,.(1)作出将向左平移5个单位得到的图形;(2)作出将绕点A顺时针旋转得到的图形;(3)若与成中心对称图形写出对称中心的坐标_______.21.如图,等腰中,是腰上的高,在底边上截取,过点E作交于F.(1)求证:(2)若,求的度数.22.八年级研学小组的同学从学校出发参加课外实践活动,目的地距学校120千米.部分同学乘甲车先行,出发半小时后,另一部分同学乘乙车前往,乙车的速度是甲车的倍,结果乙车比甲车提前10分钟到达目的地,求甲车的速度.23.如图,F是线段和的中点,连接、,延长至点A,使,连接.(1)求证:四边形是平行四边形;(2)连接,已知_________(从以下两个条件中选择一个作为已知,填写序号)条件①:;条件②:平分.求证:(注:如果选择条件①条件②分别都进行解答,则按第一个解答计分)24.如图1,在中,是的角平分线.(1)若,,,可得到结论:__________;(2)若,,,可得到结论:__________;(3)图2中,,,,若是的外角平分线,与的延长线交于点E,可得到结论:__________.25.航空航天技术是一个国家综合国力的反映.我国航天事业的飞速发展引发了航空航天模型的热销,某航模店购进了“神舟”和“天宫”两款航空模型共套.设购进“神舟”模型x套,销售完这两种模型所获得的利润为y(元),已知这两种模型的进价与售价如下表所示:“神舟”模型“天宫”模型进价(元/套)售价(元/套)(1)求y与x之间的函数关系式;(2)若购进“神舟”模型的套数不少于“天宫”模型套数的4倍,求销售完这两种模型该航模店所获得的最大利润.26.如图①②,在四边形中,,顶点坐标分别为,,,,,动点从开始以每秒个单位长度的速度沿线段向运动,另一个动点以每秒个单位长度的速度从开始运动,、同时出发,当其中一点到达终点时,另一点也随之停止运动,设运动时间为秒.请回答下列问题:(1)__________,___________;(2)如图①,若点沿折线向运动,①为何值时,,请说明理由;②为何值时,以点、和四边形的任意两个顶点为顶点的四边形是平行四边形,请说明理由;(3)如图②,若点沿射线运动,当线段被平分时,直接写出点坐标为_______.。

青岛版2024年八年级数学下册期末检测题+答案2

青岛版2024年八年级数学下册期末检测题+答案2

八年级下学期期末检测题一、选择题1、若()2x 24,x 2+=+则的平方根为( )A.16B.±16C.2D.±22、一直角三角形的斜边长比一直角边长大1,另一直角边长为4,则斜边长为( )A.4B.8C.10D.123、下列命题正确的是( )A.矩形不是平行四边形B.相似三角形不一定是全等三角形C.等腰梯形的对角线未必相等D.两直线平行,同位角不一定相等4、如图,在菱形ABCD 中,∠ADC=120°,则OD :OC 等于( )A.3:2B.3:3C.1:2D.3:15、119的估算结果应在( )之间.A 、9到10B 、10到11C 、11到12D 、12到136、如图中字母M 所代表的正方形的面积为( )A.4B.8C.16D.647、甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.2环,方差分别为20.52S =甲,20.61S =乙,20.49S =丙,45.02=丁S ,则成绩最稳定的是( )A 、甲B 、乙C 、丙D 、丁8、如图,点O 王明家的位置,他家门前有一条东西走向的公路,水塔A 位于他家北偏东60°的300米处,那么水塔所在的位置到公路的距离是( )A.150米B.1503C.1003D.15029、如图△ABC 中,AD 垂直BC 于点D,BE 垂直AC 于点E ,AD 与BE 相交于点F ,若BF=AC ,那么∠ABC 的大小是( )AB C DEFA.40°B.45°C.50°D.60° 10、如图所示,在□ABCD 中,E 为AD 中点,已知△DEF 的面积为S ,则△ABE 的面积为( )A.SB.2SC.3SD.4S11、一组数据的方差为S 2,将这组数据的每个数据都加上2,所得到的一组新数据的方差为( )A.S 2B.2+S 2C.2S 2D.4S 212、在Rt △ABC 中,各边长度都扩大10倍,则锐角B 的正弦值( )A.扩大4倍B.扩大2倍C.不变D.缩小2倍二、填空题13、已知最简二次根式a +1与a 24-是同类二次根式,则a=____________.A B C DEF14、如图,已知AB=BE ,BC=BD ,∠1=∠2,那么图中 ≌ ,AC= ,∠ABC= .15、如图E 、F 、G 、H 分别是矩形ABCD 四边上的点,EF 垂直于GH ,若AB=2,BC=3,则EF :GH=____.A B C DEFG H 16、已知正方形的面积为3,点E 为DC 边上一点,DE=1,将线段AE 绕点A 旋转,使点E 落在直线BC 上,落点记为F ,则FC 的长为___________.17、如图:直角三角形纸片ABC 中,∠ABC=90o ,AC=8,BC=6,折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别为D 、E ,(1)DE 的长为_________;(2)将折叠后的图形沿直线AE 剪开,原纸片被剪成3快,其中最小一块的面积为________________.AB C DE三、解答题18、计算:222sin30tan 60cos 45︒+︒-︒19、如图所示,已知点A 、E 、F 、D 在同一条直线上,AE=DF ,BF ⊥AD ,CE ⊥AD ,垂足分别为F 、E ,BF=CE ,求证:AB ∥CD.A 2 1 DC B14EAFC EB D20、在△ABC 中,∠C=90o ,∠CAB=60°,AD 是∠BAC 的平分线,已知AB=23.求AD 的长.AB CD21、如图所示,在□ABCD 中,对角线AC 、BD 交于点O ,过点O 作直线EF ⊥BD ,分别交AD 、BC 于点E 和点F ,求证:BEDF 是菱形.A BC DE F O参考答案:1-5BCBBB 6-12DDABAAC13.1 14.略 15.3:217.4 4 18.41219.略 21.略。

(基础题)青岛版八年级下册数学期末测试卷

(基础题)青岛版八年级下册数学期末测试卷

青岛版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是( )A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B.把△ABC 绕点C顺时针方向旋转90°,再向下平移5格C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°2、如图,在矩形中,点是的中点,点在上,且若在此矩形上存在一点,使得是等腰三角形,则点的个数是()A. B. C. D.3、若数a使关于x的不等式组有解且所有解都是2x+6>0的解,且使关于y的分式方程+3= 有整数解,则满足条件的所有整数a的个数是()A.5B.4C.3D.24、下列实数是无理数的是()A.1.732B.C.D.05、估算× +2的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间6、亮亮准备用自己节省的零花钱买一台英语复读机,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.设x个月后他至少有300元,则可以用于计算所需要的月数x的不等式是()A.30x-45≥300B.30x+45≥300C.30x-45≤300 D.30x+45≤3007、三个正方形ABCD,BEFG,RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为()A.14B.16C.18D.208、直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是()A. B. C. D.9、下列图形是轴对称而不是中心对称图形的是()A.平行四边形B.等边三角形C.菱形D.正方形10、说法错误的个数是()①只有正数才有平方根;②-8是64的一个平方根③;④与数轴上的点一一对应的数是实数。

【新】青岛版八年级下册数学期末测试卷及含答案

【新】青岛版八年级下册数学期末测试卷及含答案

青岛版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列四个数中,无理数是()A.﹣B.﹣C.0D.|﹣2|2、化简的结果是()A.4B.C.D.3、如图,已知四边形ABCD为菱形,AD=5cm,BD=6cm,则此菱形的面积为()A.12cm 2B.24cm 2C.48cm 2D.96cm 24、一个四边形,对于下列条件,不能判定为平行四边形的是()A.对角线交点分别是两对角线的中点B.一组对边平行,一组对角相等 C.一组对边相等,一条对角线被另一条对角线平分 D.一组对边平行,一条对角线被另一条对角线平分5、已知是的一次函数,下表列出了部分与的对应值:-1 0 1 2-2 -1 0则的值为()A.-2B.1C.2D.36、已知一次函数y=(k+1)x+b的图象如图所示,则k的取值范围是()A.k<0B.k<﹣1C.k<1D.k>﹣17、如图,在平行四边形中,,平分交于点E,若,则的度数是()A.10°B.15°C.20°D.25°8、一次函数y=mx+n的图象如图所示,则方程mx+n=0的解为()A.x=2B.y=2C.x=-3D.y=-39、小明的父亲饭后出去散步,从家中走20min到一个离家900m的报亭看10min报纸后,用15min返回家里,图中表示小明父亲离家的时间与距离之间的关系是()A. B. C.D.10、-27的立方根与的算术平方根的和是( )A.0B.6C.6或一1D.0或611、在实数﹣3,0,5,3中,最小的实数是()A.﹣3B.0C.5D.312、如图,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F 是边BC上的任意一点,把BEF沿EF翻折,点B的对应点为G,连接AG,CG,则四边形AGCD的面积的最小值为()A. B. C. D.813、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.14、如图,一次函数的图象经过A、B两点,则关于x的不等式的解集()A. B. C. D.15、如图是某机器零件的设计图纸,用不等式表示零件长度的合格尺寸,则长度L的取值范围是()A.40<L≤40.2B.38≤L≤42C.39.8≤L≤40.2D.39.8<L<40.2二、填空题(共10题,共计30分)16、如图,在矩形ABCD的边AB上有一点E,且,DA边上有一点F,且EF=18,将矩形沿EF对折,A落在边BC上的点G,则AB=________.17、如果一个数的平方根是a+6和2a﹣15,则这个数为________.18、如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为________.19、当a=2时,二次根式的值是________。

山东省青岛市青岛大学附属中学2023-2024学年八年级下学期期末数学试题

山东省青岛市青岛大学附属中学2023-2024学年八年级下学期期末数学试题

山东省青岛市青岛大学附属中学2023-2024学年八年级下学期期末数学试题一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 2.若关于x 的不等式2x -a ≤-1的解集是x ≤-1,则a 的值是( )A .0B .-3C .-2D .-13.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-4.如图,将ABC V 绕点A 逆时针旋转40︒得到ADE V ,AD 与BC 相交于点F ,若80E ∠=︒且AFC V 是以线段FC 为底边的等腰三角形,则BAC ∠的度数为( )A .55︒B .60︒C .65︒D .70︒5.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交AB AD ,于点M N ,;②分别以M N ,为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作射线AP ,交边CD 于点Q ,若34DC QC BC ==,,则平行四边形ABCD 周长为( )A .10B .18C .16D .206.若关于x 的分式方程122x x a x x --=--有增根,则a 的值为( ) A .4- B .4 C .2- D .27.已知点()23A -,, ()51B -,,将线段AB 平移至A B '',点A 的对应点A '在x 轴上,点B 的对应点B '在y 轴上,点A '的横坐标为a ,点B '的纵坐标为b ,则a b -的值为( ) A .7- B .1- C .7 D .18.我们知道,四边形具有不稳定性,如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D ¢处,则点C 的对应点C '的坐标为( )A .)B .()2,1C .(D .( 9.定义:若一个正整数能表示为两个连续自然数的平方差,那么就称这个正整数为“明德数”.如:22110=-,2321=-,22532=-,因此1,3,5这三个数都是“明德数”.则介于1到200之间的所有“明德数”之和为 ( )A .10000B .40000C .200D .2500二、填空题10.当x= 时,分式33||x x -+的值等于零. 11.一个正多边形的一个内角比它的外角的2倍多60°,则它的边数是.12.如图, 已知直线1y x a =+与2y kx b =+相交于点()1,2P -,则关于x 的不等式kx x a b -≥-的解集是13.正六边形ABCDEF 与平行四边形GHMN 的位置如图所示,若18ABG ∠=︒,则N M D ∠的度数是°.14.中山公园有很多长方形草地,草地里修了很多有趣的小路,如图长方形草地ABCD 长为50米,宽为30米,非阴影部分为1米宽的小路,沿着小路的中间从入口E 处走到出口F 处,所走的路线(图中虚线)长为.15.为了进一步优化环境,某区计划对长3000米的河道进行整治,原计划每天修x 米,为减少施工对居民生活的影响,实际施工时,每天的工作效率比原计划提高20%,那么实际整治这段河道的工期比原计划缩短了天.(结果化为最简)16.如图是五四广场用正六边形、正方形和正三角形地板砖铺设的图案,图案中央是一块正六边形地板砖,周围是正方形和正三角形的地板砖.从里向外第一层包括6块正方形和6块正三角形地板砖;第二层包括6块正方形和18块正三角形地板砖;以此递推.第n 层中含有块正三角形地板砖(用含n 的代数式表示).现打算在一个新建广场中央,采用如图样式的图案铺设地面,现有1块正六边形、150块正方形和420块正三角形地板砖,问:铺设这样的图案,最多能铺层.三、解答题17.作图题:请用直尺和圆规作图,不写作法,但要保留作图痕迹已知,线段a ,直线l 及l 外一点A ,求作:ABC V ,使AB AC =,BC a =,且点B C 、在直线l 上.18.(1)因式分解:32244b ab a b -+;(2)解分式方程:()222111x x x-+=--; (3)解不等式组()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩,并写出所有的整数解;(4)化简:2321222a a a a a ⎛⎫ ⎪⎝⎭-++-÷++,并在2-,1,3三个数中选取一个合适的数值作为a 的值,求出化简后的值.19.如图,ABC V 中,BE 平分ABC ∠,E 在AC 垂直平分线上,EF BC ⊥于F ,EG AB ⊥于G .(1)求证:AG CF =;(2)若10BC =,4AB =,求FC 的长.20.小丽有慢跑的习惯,她常使用某种运动软件来记录她的跑步数据.下面是她4次慢跑的具体数据.如你所见,她的慢跑速度相对稳定,基本不变.我们把小丽跑步的千米数记为()km x ,把她在此过程中消耗的总热量记为 y (大卡).(1)根据上述表格提供的数据,在下面的平面直角坐标系中描点、连线.按照这4次的规律,求:y 与x 之间的函数关系式;(2)某日,小丽购买面包和酸奶共计8件食品,已知每袋面包产生110大卡的热量,每杯酸奶产生50大卡的热量.她要跑步10km 才能将这8件食品所产生的热量全部消耗掉.跑步10km ,她消耗的总热量是多少大卡?她最多购买了几袋面包?请说明你的理由.21.已知:如图,在四边形ABCD 中,90BAC ACD ∠=∠=︒,12AB CD =,点E 是CD 的中点.(1)求证:四边形ABCE 是平行四边形;(2)若4AC =,AD =ABCE 的面积.22.今年荆州马拉松比赛召开前,某体育用品专卖店抓住商机,计划购进A B ,两种跑鞋共80双进行销售.已知9000元全部购进B 种跑鞋数量是全部购进A 种跑鞋数量的1.5倍,A 种跑鞋的进价比B 种跑鞋的进价每双多150元,A B ,两种跑鞋的售价分别是每双550元,500元. (1)求A B ,两种跑鞋的进价分别是多少元?(2)该体育用品专卖店根据以往销售经验,决定购进A 种跑鞋的数量不多于B 种跑鞋的23,销售时对B 种跑鞋每双降价25%出售.若这批跑鞋能全部售完,则如何购货才能获利最大?最大利润是多少?23.【图形定义】连接三角形两边中点的线段叫做三角形的中位线.类似的,我们把连接四边形对边中点的线段叫做四边形的中位线.例如:如图1, 在四边形ABCD 中,点M 是AB 的中点,点N 是CD 的中点,MN 是四边形ABCD 的中位线.【方法探究】如图2,已知MN 是ABC V 的中位线,以点N 为中心将ABC V 旋转180︒得到CB A '△,可证12MN BC =.【方法应用】(1)如图3,MN 是梯形ABCD 的中位线.若35AD BC ==,,则MN =;若AD a =,BC b =,且b a >,则MN =.(2)如图4,MN 是四边形ABCD 的中位线.若35AD BC ==,,AD 与BC 不平行,则MN 的取值范围是;若AD a BC b ==,,且b a >,AD 与BC 不平行,则MN 的取值范围是.(3)如图5,在五边形ABCDE 中,AE CD ∥,6120AB AE A ==∠=︒,,4CD =,若点F G ,分别是边BC DE ,的中点,则线段FG 的长是.24.如图1,在ABC V 中,90C ∠=︒,30ABC ∠=︒,12AB =,DEF V 中,90DFE ∠=︒,6EF DF ==,DEF V 从点C 开始沿射线CB 平移,直角边EF 始终在射线CB 上,连接AD 、BD ,如图2,设CE 的长度为(0x x <<.(1)是否存在点A 在BD 垂直平分线上的情况?存在,求x 的值;不存在,说明理由;(2)连接AE ,当x 为何值时,四边形AEBD 是平行四边形?说明理由;(3)将ABD △绕点B 逆时针旋转60︒,得到A BD ''V ,是否存在x 的值,使点D ¢落在ABC V 的边上?若存在,直接写出x 的值为;若不存在,说明理由.。

(基础题)青岛版八年级下册数学期末测试卷

(基础题)青岛版八年级下册数学期末测试卷

青岛版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、将一副三角板按如图①的位置摆放,将△DEF绕点A(F)逆时针旋转60°后,得到如图②,测得CG=6 ,则AC长是()A.6+2B.9C.10D.6+62、若方程有两个不等的实数根,则m的取值范围是( )A.m=1B.C. 且D. 且3、不等式组的整数解是()A.15B.16C.17D.15,14、二次根式在实数范围内有意义,则x的取值范围是()A.x≥3B.x>3C.x≥0D.x>05、9的平方根是()A.±3B.3C.81D.±816、地铁是城市生活中的重要交通工具,地铁标志作为城市地铁的形象和符号,出现在城市的每个角落,它是城市文化的缩影.下列城市地铁的标志图案中(文字部分除外),既是轴对称图形又是中心对称图形的是()A. B. C. D.7、在函数自变量x的取值范围是( )A. B. C. D.8、如图,在中,对角线与相交于点O,点分别是的中点,连接.若,则的长为()A.8B.6C.4D.29、从3,﹣1,,1,﹣3这5个数中,随机抽取一个数记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a的值之积是()A. B.﹣2 C.﹣3 D.﹣10、如图,△ABC沿BC方向平移得到△DEF,已知BC=7,EC=4,那么平移的距离为()A.2B.3C.5D.711、如果关于x的不等式组的整数解仅为3,4,5,那么适合这个不等式组的整数对共有()A.8对B.12对C.15对D.20对12、下列说法中,不正确的个数有( ).①所有的正数都是整数. ② 一定是正数. ③无限小数一定是无理数.④ 没有平方根. ⑤不是正数的数一定是负数. ⑥带根号的一定是无理数.A.3个B.4个C.5个D.6个13、实数0是()A.有理数B.无理数C.正数D.负数14、如图,在菱形ABCD中,DE⊥AB,cosA=,BE=2,则tan∠CDB的值是()A. B.2 C. D.15、如图所示的四边形,与选项中的四边形一定相似的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AEF,延长EF交边BC于点G,连结AG,CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC =S△AFE;⑤S△FGC=;其中正确的结论有________.17、在平面直角坐标系xOy中,点P(2,﹣3)关于原点O对称的点的坐标是________.18、如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为________.19、解:(1)观察与归纳:在如图1所示的平面直角坐标系中,直线l与y轴平行,点A与点B是直线l上的两点(点A在点B的上方).①小明发现:若点A坐标为(2,3),点B坐标为(2,﹣4),则AB的长度为________ ;②小明经过多次取l上的两点后,他归纳出这样的结论:若点A坐标为(t,m),点B坐标为(t,n),当m>n时,AB的长度可表示为________ ;(2)如图2,正比例函数y=x与一次函数y=﹣x+6交于点A,点B是y=﹣x+6图象与x轴的交点,点C在第四象限,且OC=5.点P是线段OB上的一个动点(点P不与点0、B重合),过点P与y轴平行的直线l交线段AB于点Q,交射线OC于R,设点P横坐标为t,线段QR的长度为m.已知当t=4时,直线l 恰好经过点C.①求点A的坐标________②求OC所在直线的关系式________③求m关于t的函数关系式________20、如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3,P是AC上一动点,则PB+PE的最小值是________.21、已知△ABC中,点D为BC边上一点,且BD:CD=7:4,点A、E均在CD的垂直平分线上,BG⊥BD,连接GD交AB于点F,若∠AFD=45°,EC=GD,∠GDB+∠ECB=90°,AC= ,则CD=________.22、如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是________.23、观察下列各组勾股数,并寻找规律:①4,3,5;②6,8,10;③8,15,17;④10,24,26 ……请根据你发现的规律写出第⑦组勾股数:________.24、如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为________ .25、如图,在平面直角坐标系中,三角形②是由三角形①绕点P旋转后所得的图形,则旋转中心P的坐标是________.三、解答题(共5题,共计25分)26、解不等式组,并把解集在数轴上表示出来.27、如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,AD=16,求AB的长.28、某电梯的额定限载量为1000kg.两人要用电梯把一批货物从底层搬到顶层,已知这两个人的体重分别为70kg和60kg,货物每箱重50kg,问他们每次最多只能搬运货物多少箱?29、如图,E是▱ABCD的边AD的中点,连接CE并延长交BA的延长线于F,若CD=6,求BF的长.30、某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.参考答案一、单选题(共15题,共计45分)1、A2、D3、B4、A5、A6、D7、A9、C10、B11、C12、D13、A14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、30、。

青岛版八年级下册数学期末测试卷及含答案(完整版)

青岛版八年级下册数学期末测试卷及含答案(完整版)

青岛版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,已知两直线l1:y=x和l2:y=kx﹣5相交于点A(m,3),则不等式x≥kx﹣5的解集为()A.x≥6B.x≤6C.x≥3D.x≤32、如图,菱形ABCD的面积为96,正方形AECF的面积为72,则菱形的边长为()A.10B.12C.8D.163、64的立方根是()A.±8B.±4C.8D.44、实数,在数轴上的位置如图所示,则下列结论正确的是()A. B. C. D.5、如图,在菱形ABCD中,E,F分别是AB,AC的中点,如果EF=2,那么菱形ABCD周长是( )A.4B.8C.12D.166、某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节型货厢,甲种货物25吨和乙种货物35吨可装满一节型货厢,按此要求安排两种货厢的节数,有几种运输方案()A.1种B.2种C.3种D.4种7、如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC与B′C′相交于点H,则图中△AHC′的面积等于()A.12﹣6B.14﹣6C.18﹣6D.18+68、下列说法中,错误的是()A.有一条对角线平分一个内角的平行四边形是菱形B.对角线互相垂直且平分的四边形是菱形C.一条对角线平分另一条对角线的四边形是平行四边形D.三角形的一条中位线与第三边上的中线互相平分9、若a>b,则不等式的解集为()A.x≤bB.x<aC.b≤x<aD.无解10、如图,在矩形ABCD中,F是BC中点,E是AD上一点,且∠ECD=30º,∠BEC=90º,EF=4cm,则矩形的面积为( )cm2.A.16B.C.D.3211、如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A. B.2 C.2 D.12、不等式组的解集在数轴上表示正确的是A. B.C.D.13、已知四边形ABCD是平行四边形,若要使它成为正方形,则应增加的条件是()A.AC⊥BDB.AC=BDC.AC=BD且AC⊥BDD.AC平分∠BAD14、如图所示,平移后得到,已知,,则()A. B. C. D.15、8的立方根是()A. 4B.2C.±2D.-2二、填空题(共10题,共计30分)16、若实数a、b满足,则=________.17、如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的点F处,已知AD=10,AB=6,则FC的长是________.18、将函数y=x2﹣x﹣2的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的图形是函数y=|x2﹣x﹣2|的图象,已知过点D(0,4)的直线y=kx+4恰好与y=|x2﹣x﹣2|的图象只有三个交点,则k的值为________.19、对于实数a,b,我们定义符号max{a,b},其意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b;如:max{4,﹣2}=4,max{3,3}=3,若y关于x的函数关系式为:y=max{x+3,﹣x+1},则该函数y的最小值是________.20、如图,在一次测绘活动中,某同学站在点A处观测停放于B、C两处的小船,测得船B在点A北偏东75°方向150米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为________米(精确到0.1 ).21、如图,将矩形OABC置于一平面直角坐标系中,顶点A,C分别位于x轴,y 轴的正半轴上,点B的坐标为(5,6),双曲线y=(k≠0)在第一象限中的图象经过BC的中点D,与AB交于点E,P为y轴正半轴上一动点,把△OAP沿直线AP翻折,使点O落在点F处,连接FE,若FE∥x轴,则点P的坐标为________.22、如图,是一块钜形的场地,长=101米,宽=52米,从A、B两处入口的中路宽都为1米,两小路汇合处路口宽为2米,其余部分种植草坪面积为________米223、如图,在边长为8的菱形ABCD中,∠BAD=45°,BE⊥AD于点E,以B为圆心,BE为半径画弧,分别交AB、CB于点F、G,则图中阴影部分的面积为________(结果保留π)24、丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对________题.25、如图,∠A=15°,∠C=90°,DE垂直平分AB交AC于E,若BC=4cm,则AC=________cm.三、解答题(共5题,共计25分)26、计算:+ ﹣+3 ×.27、(1)计算:;(2)已知x=+1,y=﹣1,求代数式x2﹣y2的值.28、物理学中的自由落体公式:S= gt2, g是重力加速度,它的值约为10米/秒2,若物体降落的高度S=125米,那么降落的时间是多少秒?29、如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)30、如图,在△ABC中AC=BC,D,E,F分别是AB,AC,BC的中点,连接DE,DF.求证:四边形DFCE是菱形.参考答案一、单选题(共15题,共计45分)1、B2、A3、D4、D5、D6、C7、C8、C9、A10、C11、B12、A13、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

青岛版2020八年级数学下册第八章一元一次不等式单元综合基础测试题1(附答案)

青岛版2020八年级数学下册第八章一元一次不等式单元综合基础测试题1(附答案)

青岛版2020八年级数学下册第八章一元一次不等式单元综合基础测试题1(附答案) 1.(雅安校级月考)不等式组323x x ->⎧⎨<⎩的解集是( ) A .x <3B .3<x <5C .x >5D .无解 2.下列各题中,结论正确的是( )A .若a >0,b <0,则b a >0B .若a >b ,则a -b >0C .若a <0,b <0,则ab <0D .若a >b ,a <0,则b a<0 3.若不等式组5x 23x 5x 5a+≤-⎧⎨-+<⎩无解,则a 的取值范围是( )A .17a 2≤B .a 12≤C .17a 2<D .a 12<4.不等式组9511x x x a ++⎧⎨+⎩<> 的解集是x >2,则a 的取值范围是( ) A .a≤2 B .a≥2 C .a≤1 D .a >15.下列变形中,不正确的是( )A .由x -5>0可得x >5B .由12x >0可得x >0 C .由-3x >-9可得x >3 D .由-34x >1可得x <-43 6.下列说法错误的是( ).A .不等式x -3>2的解集是x >5B .不等式x <3的整数解有无数个C .x =0是不等式2x <3的一个解D .不等式x +3<3的整数解是0 7.若关于x 的不等式组221x m x m ->⎧⎨-<-⎩无解,则m 的取值范围( ) A .m >3 B .m <3C .m ≤3D .m ≥3 8.关于x 的不等式组0312(1)x m x x -≤⎧⎨->+⎩恰有四个整数解,则m 的取值范围是( ) A .78m <<B .78m <≤C .78m ≤<D .78m ≤≤ 9.不等式组3213x x -<⎧⎨-≤⎩的解集在数轴上表示正确的是( )10.-2x >6的解集为( )A .x >-3B .x <-3C .x≥-3D .x≤-311.若关于x 的不等式组31x x a <⎧⎨+≤⎩的解集为x<3,则a 的取值范围是______________. 12.已知x =3是方程2xa -=x +1的解,那么不等式(2-5a )y<13的解是________. 13.代数式2x-5的值不大于0,则x 的取值范围是 __________14.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x ,则可以列得不等组为:_________________15.不等式7-2x >1的解集为____________.16.若a<b ,则 3a________ 3b , -a+1 ________-b+1,(m 2+1)a _______(m 2+1)b .(用“ >”,“ <”或“=”填空)17.不等式组212x x m -≥⎧⎨+⎩<有三个整数解,则m 的取值范围是__. 18.已知a 、b 、c 是非负数,且2a+3b+c=10,a+b-c=4,如果S=2a+b-2c ,那么S 的最大值和最小值的和等于_________.19.已知不等式3x -0a ≤的正整数解恰是1,2,3,4,那么a 的取值范围是____________.20.解不等式组5323142x x x ①②+≥⎧⎪⎨-<⎪⎩,并把解表示在数轴上.21.解不等式(组):.22.甲乙两地相距200千米,一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,相向而行.已知客车的速度为60千米/小时,出租车的速度是100千米/小时.(1)多长时间后两车相遇?(2)若甲乙两地之间有相距50km 的A 、B 两个加油站,当客车进入A 站加油时,出租车恰好进入B 站加油,求A 加油站到甲地的距离.(3)若出租车到达甲地休息10分钟后,按原速原路返回.出租车能否在到达乙地或到达乙地之前追上客车?若不能,则出租车往返..的过程中,至少提速为多少才能在到达乙地或到达乙地之前追上客车?是否超速(高速限速为120千米/小时)?为什么?23.23.某次数学测验,共有16道选择题,评分方法是:答对一题得6分,不答或答错一题扣2分.某同学要想得分为60分以上,他至少应答对多少道题?(只列关系式) 24.某工厂签了1200件商品订单,要求不超过15天完成.现有甲、乙两个车间来完成加工任务。

精编青岛版八年级下册数学期末测试卷

精编青岛版八年级下册数学期末测试卷

青岛版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、满足下列条件的三角形中,不是直角三角形的是有()A.三内角之比为3:4:5B.三边长的平方之比为1:2:3C.三边长之比为3:4:5D.三内角比为1:2:32、下列性质中正方形具有而菱形不具有的是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.每一条对角线平分一组对角3、下列各实数中,最小的实数是()A.0B.C.-2D.4、下列运算正确的是( )A. B. C. D.5、不等式组的解集在数轴上表示为()A. B. C.D.6、在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②B0=BF;③CA=CH;④BE=3ED;正确的个数为( )A.1个B.2个C.3个D.4个7、对于问题:证明不等式a2+b2≥2ab,甲、乙两名同学的作业如下:甲:根据一个数的平方是非负数可知(a﹣b)2≥0,∴a2﹣2ab+b2≥0,∴a2+b2≥2ab.乙:如图1,两个正方形的边长分别为a、b(b≤a),如图2,先将边长为a 的正方形沿虚线部分分别剪成Ⅰ、Ⅱ、Ⅲ三部分,若再将Ⅰ、Ⅱ和边长为b的正方形拼接成如图3所示的图形,可知此时图3的面积为2ab,其面积小于或等于原来两个正方形的面积和,故不等式a2+b2≥2ab成立.则对于两人的作业,下列说法正确的是()A.甲、乙都对B.甲对,乙不对C.甲不对,乙对D.甲、乙都不对8、已知y= + +2,则x y的值为()A.9B.8C.2D.39、下列计算正确的是()A. B. C. ÷ D.10、下列计算正确的是()A.x 3+x 2=x 6B.a 3•a 2=a 6C.3 ﹣=3D. ×=711、以下四个条件中可以判定四边形是平行四边形的有( )①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线相等.A.1个B.2个C.3个D.4个12、周末,小明骑自行车从家里出发到野外郊游,从家出发0.5小时后到达甲地,游玩一段时间后,按原速前往乙地,小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象,已知妈妈驾车速度是小明的3倍.下列说法正确的有()个①小明骑车的速度是20km/h,在甲地游玩1小时②小明从家出发小时后被妈妈追上③妈妈追上小明时离家25千米④若妈妈比小明早10分钟到达乙地,则从家到乙地30km.A.1B.2C.3D.413、如图,将矩形ABCD沿对角线BD对折,使点C落在C′处,BC′交AD于F,下列不成立的是()A.AF=C′FB.BF=DF&nbsp;C.∠BDA=∠ADC′D.∠ABC′=∠ADC14、下列二次根式中,能与合并的是()A. B. C. D.15、有理数a、b在数轴上的位置如图所示,则下列各式:①a+b>0;②a﹣b>0;③|b|>a;④ab<0;⑤|b﹣a|=a﹣b,正确的有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,在一张直角三角形纸片中,,,,P是边上的一动点,将沿着折叠至,当与的重叠部分为等腰三角形时,则的度数为________.17、今年六一节期间,蓓蕾幼儿园的康老师准备用250元钱购买甲乙两种盒装牛奶共48盒分发给本班的48为小朋友,已知甲种牛奶每盒6元,乙种牛奶每盒4.5元,请你帮老师算一算,在不增加经费的情况下,最多能购买甲种牛奶________盒.18、比较大小:________ .(填“>”“<”或“=”)19、如图,正方形CDEF内接于Rt△ABC,点D、E、F分别在边AC、AB和BC 上,当AD=2,BF=3时,正方形CDEF的面积是________ .20、如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F 在BC、CD上滑动时,则△CEF的面积最大值是________.21、实数、在数轴上的位置如图所示,则的化简结果为________.22、已知函数y= x﹣1,如果函数值y>2,那么相应的自变量x的取值范围是________.23、函数自变量x的取值范围是 ________.24、如图,在平行四边形ABCD中,对角线交于点0,点E、F在直线AC上(不同于A、C),当E、F的位置满足________的条件时,四边形DEBF是平行四边形.25、一个正数的平方根为和,则这个正数为________.三、解答题(共5题,共计25分)26、计算:.27、如图,在四边形ABCD中,∠B=90°,AB=BC=4,CD=6,DA=2.求∠DAB的度数.28、(1)解方程组:(2)解不等式组,并将解集在数轴上表示出来..29、如图,正方形ABCD的对角线AC、BD相交于点O,E、F分别在OB、OC上,OE=OF.求证:AE=BF.30、如图,已知△ABC中,AB=AC,把△ABC绕A点顺时针方向旋转得到△ADE,连接BD,CE交于点F,求证:△AEC≌△ADB.参考答案一、单选题(共15题,共计45分)1、A2、B3、C4、D5、C6、C7、A8、A9、C10、D11、C12、B13、C14、D15、D二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

青岛版八年级数学下册期末试卷

青岛版八年级数学下册期末试卷

青岛版八年级数学下册期末试卷期末数学试卷一、选择题1.下列二次根式中,是最简二次根式的是(B)。

2.下列命题中的真命题是(A)。

3.实数$\sqrt{2}+\sqrt{3}+\sqrt{5}+\sqrt{7}$(多一个),其中无理数有(C)个。

4.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF 交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是(C)。

5.若一个直角三角形的两边长分别为3和4,则它的第三边长为(A)。

6.函数y=-4x-3的图象经过(B)第一、二、四象限。

7.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是(B)BC=EFC。

8.已知:如图,在矩形ABCD中,E、F、G、H分别为边AB、BC、CD、DA的中点.若AB=2,AD=4,则图中阴影部分的面积为(A)8.9.下列图形中,绕某个点旋转180°能与自身重合的图形有(A)2个:正方形和圆。

10.化简:$\sqrt{a^2}+\sqrt{a^2+4a+4}$的结果是(B)$a+2$。

11.已知关于x的不等式组$x+2>0.2x-1<0$的整数解共有4个,则a的最小值为(D)1.12.已知(-5,y1),(-3,y2)是一次函数y=kx+b图象上的两点,则y1与y2的关系是(A)y1<y2.二、填空题13.若最简二次根式与$\sqrt{a^2+4a+4}$是同类二次根式,则a=(2)。

14.一次函数y=-x-3与x轴交点的坐标是(3,0)。

15.如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和10cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是(7)cm。

16.一个图象过点(1,2),且y随x的增大而减小的一次函数解析式可以是y=4-2x。

D、被开方数为2的倍数,且无法化简,符合条件,故D 为正确选项。

青岛版八年级下册数学期末试卷 (1)

青岛版八年级下册数学期末试卷 (1)

青岛版八年级下册数学期末试卷一、选择题(本大题共12个小题,共36分,每小题给出的四个选项中,只有一个选项符合题意)1.(3分)在,,0,﹣2这四个数中,为无理数的是( )A.B.C.0D.﹣22.(3分)的平方根是( )A.B.±C.2D.±23.(3分)下列二次根式中,最简二次根式是( )A.B.C.﹣D.4.(3分)已知点A(a,1)与点B(﹣4,b)关于原点对称,则a﹣b的值为( )A.﹣5B.5C.3D.﹣35.(3分)代数式+中x的取值范围在数轴上表示为( )A.B.C.D.6.(3分)设a、b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是( )A.1.5B.2C.2.5D.37.(3分)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点A 到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是( )A.向左平移1个单位,再向下平移1个单位B.向左平移(2﹣1)个单位,再向上平移1个单位C.向右平移个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位8.(3分)如图,▱ABCD的对角线AC,BD相交于点O,且AC=4,E,F,G分别是AO,OB,OC的中点,且△EFG的周长为7,则▱ABCD的周长为( )A.10B.15C.20D.259.(3分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是( )A.(4,5)B.(5,4)C.(4,4)D.(5,3)10.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买( )A.16个B.17个C.33个D.34个11.(3分)如图,在矩形ABCD中,BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上F处,则EF的长是( )A.3B.C.5D.12.(3分)小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是( )A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小华到学校的时间是7:55D.小明跑步的平均速度是100米/分二、填空题(本题共5小题,每小题3分,满分15分,只要求填写最后的结果)13.(3分)一个正数的平方根分别是x+1和x﹣5,则x= .14.(3分)已知不等式组的解集是2<x<3,则a+b的值是 .15.(3分)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是 .16.(3分)如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′D=6,则BN的长是.17.(3分)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为 .三、解答题(本题共8小题,共69分,解答应写出必要的文字说明、推理过程或演算步骤)18.(7分)解下列不等式或不等式组,并把解集在数轴上表示出来:(1)﹣≥1;(2).19.(8分)计算:(1)5﹣+2;(2)(+2)+(﹣)2.20.(8分)如图,在平行四边形ABCD中,点M是边AD上的点,连接MB,MC,点N为BC边上的动点,点E,F为MB,MC上的两点,连接NE,NF,且∠BNE=∠CMD,∠BEN=∠NFC.求证:四边形MENF为平行四边形.21.(8分)在平面直角坐标系中,△ABC顶点坐标分别为:A(2,5)、B(﹣2,3)、C(0,2).线段DE的端点坐标为D(2,﹣3),E(6,﹣1).(1)线段AB先向 平移 个单位,再向 平移 个单位与线段ED重合;(2)将△ABC绕点P旋转180°后得到的△DEF,使AB的对应边为DE,直接写出点P 的坐标,并画出△DEF;(3)求点C在旋转过程中所经过的路径l的长.22.(8分)已知在四边形ABCD中,作AE∥BC交BD于O点且OB=OD,交DC于点E,连接BE,∠ABD=∠EAB,∠DBE=∠EBC.求证:四边形ABED为矩形.23.(10分)某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司5月份运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?24.(10分)在直角坐标系中,已知A,B是x轴上的两点,且A(6,0),AB=10,点M 是y轴上一点,连接BM,将△ABM沿过A,M的直线AM折叠,点B恰好落在y轴的点B′处.(1)求直线AB′的函数表达式;(2)求直线AM的函数表达式.25.(10分)如图,等腰三角形ABC中,AB=AC,AD平分∠BAC交BC于点D,在线段AD上任取一点P(点A除外),过点P作EF∥AB,分别交AC,BC于点E和点F,作PQ∥AC,交AB于点Q,连接QE.(1)求证:四边形AEPQ为菱形;(2)当点P在何处时,菱形AEPQ的面积为四边形EFBQ面积的一半?参考答案与试题解析一、选择题(本大题共12个小题,共36分,每小题给出的四个选项中,只有一个选项符合题意)1.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:,0,﹣2是有理数,是无理数,故选:A.2.【分析】根据计算立方根,再根据平方根的定义解答即可.【解答】解:=2,2的平方根为:,故的平方根为:,故选:B.3.【分析】根据最简二次根式的定义判断即可.【解答】解:A、=,故此选项不符合题意;B、=2,故此选项不符合题意;C、﹣是最简二次根式,故此选项符合题意;D、=|a|,故此选项不符合题意.故选:C.4.【分析】利用关于原点对称点的坐标性质得出a的值即可.【解答】解:∵点A(a,1)与点B(﹣4,b)关于原点对称,∴a=4,b=﹣1.∴a﹣b=4﹣(﹣1)=5.故选:B.5.【分析】根据被开方数是非负数且分母不能为零,可得答案.【解答】解:由题意,得3﹣x≥0且x﹣1≠0,解得x≤3且x≠1,在数轴上表示如图,故选:A.6.【分析】由该三角形的周长为6,斜边长为2.5可知a+b+2.5=6,再根据勾股定理和完全平方公式即可求出ab的值.【解答】解:∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5,①∵a、b是直角三角形的两条直角边,∴a2+b2=2.52,②由②得a2+b2=(a+b)2﹣2ab=2.52∴3.52﹣2ab=2.52ab=3,故选:D.7.【分析】过点B作BH⊥OA,交OA于点H,利用勾股定理可求出OB的长,进而可得点A向左或向右平移的距离,由菱形的性质可知BC∥OA,所以可得向上或向下平移的距离,问题得解.【解答】解:过B作射线BC∥OA,在BC上截取BC=OA,则四边形OACB是平行四边形,过B作BH⊥x轴于H,∵B(1,1),∴OB==,∵A(,0),∴C(1+,1)∴OA=OB,∴则四边形OACB是菱形,∴平移点A到点C,向右平移1个单位,再向上平移1个单位而得到,故选:D.8.【分析】由平行四边形的性质得出OA=OC,AB=CD,AD=BC,由三角形中位线定理可得出EF=AB,FG=BC,求出EG=2,则可求出EF+FG,可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵E,F,G分别是AO,OB,OC的中点,∴EG=AC,EF=AB,FG=BC,∵AC=4,∴EG=2,∵△EFG的周长为7,∴EF+FG=7﹣2=5,∴AB+BC=2EF+2FG=2×(EF+FG)=2×5=10,∴▱ABCD的周长为2AB+2BC=2×10=20.故选:C.9.【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故选:B.10.【分析】设买篮球m个,则买足球(50﹣m)个,根据购买足球和篮球的总费用不超过3000元建立不等式求出其解即可.【解答】解:设买篮球m个,则买足球(50﹣m)个,根据题意得:80m+50(50﹣m)≤3000,解得:m≤16,∵m为整数,∴m最大取16,∴最多可以买16个篮球.故选:A.11.【分析】由折叠可得BF=AB=6,AE=EF,可求DF=4,根据勾股定理可求EF的长.【解答】解:∵四边形ABCD是矩形∴AB=CD=8,∠A=90°∵AB=6,AD=8∴BD==10∵将△ABE沿BE折叠,使点A恰好落在对角线BD上F处∴AB=BF=6,AE=EF,∠A=∠BFE=90°∴DF=4Rt△DEF中,DE2=EF2+DF2(8﹣AE)2=AE2+16∴AE=3即EF=3故选:A.12.【分析】根据函数图象中各拐点的实际意义求解可得.【解答】解:A.由图象可知,小明吃早餐用时13﹣8=5(分钟),此选项不合题意;B.小华到学校的平均速度是1200÷(13﹣8)=240(米/分),此选项不合题意;C.小华到学校的时间是7:53,此选项符合题意;D.小明跑步的平均速度是(1200﹣500)÷(20﹣13)=100(米/分),此选项不合题意;故选:C.二、填空题(本题共5小题,每小题3分,满分15分,只要求填写最后的结果)13.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.14.【分析】根据不等式组的解集即可得出关于a、b而愿意方程组,解方程组即可得出a、b值,将其代入计算可得.【解答】解:解不等式x+1<2a,得:x<2a﹣1,解不等式x﹣b>1,得:x>b+1,所以不等式组的解集为b+1<x<2a﹣1,∵不等式组的解集为2<x<3,∴b+1=2、2a﹣1=3,解得:a=2、b=1,∴a+b=3,故答案为:3.15.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x>ax+3的解集即可.【解答】解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x>ax+3的解集为x<﹣1.故答案为:x<﹣116.【分析】由正方形的性质得出BC=CD=9,则B'C=3,由折叠的性质得出BN=B'N,设BN=x,由勾股定理列出方程可得出答案.【解答】解:∵四边形ABCD是正方形,∴BC=CD=9,∵B'D=6,∴B'C=3,∵将四边形ABCD沿MN折叠,使点B落在CD边上的B′处,∴BN=B'N,设BN=x,∵B'N2=B'C2+CN2,∴x2=32+(9﹣x)2,∴x=5.故答案为5.17.【分析】根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.【解答】解:作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴有,解得:,∴直线CD′的解析式为y=﹣x﹣2.令y=0,则0=﹣x﹣2,解得:x=﹣,∴点P的坐标为(﹣,0).故答案为(﹣,0).三、解答题(本题共8小题,共69分,解答应写出必要的文字说明、推理过程或演算步骤)18.【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)去分母,得:3x﹣2(x﹣1)≥6,去括号,得:3x﹣2x+2≥6,移项,得:3x﹣2x≥6﹣2,合并同类项,得:x≥4,表示在数轴上如下:(2)解不等式5x﹣7<3(x+1),得:x<5,解不等式x﹣1≥7﹣x,得:x≥4,∴不等式组的解集为4≤x<5,表示在数轴上如下:19.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根据二次根式的乘法法则和完全平方公式计算.【解答】解:(1)原式=﹣2+6=5;(2)原式=+2×6+6﹣2+3=6+12+6﹣6+3=21.20.【分析】由平行四边形的性质得AD∥BC,则∠MCB=∠CMD,再证EN∥MC,得∠NFC =∠ENF,然后证NF∥MB,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠MCB=∠CMD,∵∠BNE=∠CMD,∴∠BNE=∠MCB,∴EN∥MC,∴∠NFC=∠ENF,∵∠BEN=∠NFC,∴∠BEN=∠ENF,∴NF∥MB,∴四边形MENF为平行四边形.21.【分析】(1)直接利用平移的性质得出平移规律即可;(2)利用旋转的性质得出对应点位置进而得出答案;(3)利用弧长公式进而求出答案.【解答】解:(1)AB先向右平移4个单位,再向下平移6个单位与ED重合;故答案为:右,4,下,6;(2)如图所示:P(2,1),画出△DEF;(3)点C在旋转过程中所经过的路径长l=.22.【分析】证OA=OB,OE=OB,则OA=OE,再由OB=OD,得四边形ABED是平行四边形,然后证AE=BD,即可得出结论.【解答】证明:∵∠ABD=∠EAB,∴OA=OB,∵AE∥BC,∴∠AEB=∠EBC,∵∠DBE=∠EBC,∴∠AEB=∠DBE,∴OE=OB,∴OA=OE,∵OB=OD,∴四边形ABED是平行四边形,∵OA=OB,OA=OE,∴OA=OE=OB=OD,∴AE=BD,∴平行四边形ABED为矩形.23.【分析】(1)设A种货物运输了x吨,设B种货物运输了y吨,根据题意可得到一个关于x的不等式组,解方程组求解即可;(2)运费可以表示为x的函数,根据函数的性质,即可求解.【解答】解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司5月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的运输费为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.24.【分析】(1)由题知,AB沿AM翻转到AB′,可通过折叠的性质推出,线段AB=AB′=10,利用勾股定理即可求得B′的坐标,然后根据待定系数法即可求得AB′的解析式;(2)利用勾股定理求出点M坐标,然后根据待定系数法即可求得直线AM的解析式.【解答】解:(1)∵A(6,0),AB=10,∴OA=6,AB′=10,∵AB′2=AO2+B′O2∴OB′=8,∴B′(0,±8),设直线AB′的解析式为y=kx±8,把A(6,0)代入得,0=6k±8,∴k=﹣或,∴直线AB′的函数表达式为y=﹣x+8或y=x﹣8;(2)在△MOB中,设OM=a,则MB=OB′﹣MO=8﹣a,∵AB=10,OA=6,∴OB=4,∴OB2=MB2﹣MO2即16=(8﹣a)2﹣a2,∴a=3,M(0,±3),设直线MA的解析式为y=kx+b,∴或,解得:或,∴直线AM的解析式为:y=﹣x+3或y=x﹣3.25.【分析】(1)先证出四边形AEPQ为平行四边形,关键是找一组邻边相等,由AD平分∠BAC和PE∥AQ可证∠EAP=∠EP A,得出AE=EP,即可得出结论;(2)S菱形AEPQ=EP•h,S平行四边形EFBQ=EF•h,若菱形AEPQ的面积为四边形EFBQ面积的一半,则EP=EF,因此P为EF中点时,S菱形AEPQ=S四边形EFBQ.【解答】(1)证明:∵EF∥AB,PQ∥AC,∴四边形AEPQ为平行四边形,∴∠BAD=∠EP A,∵AB=AC,AD平分∠CAB,∴∠CAD=∠BAD,∴∠CAD=∠EP A,∴EA=EP,∴四边形AEPQ为菱形.(2)解:P为EF中点,即AP=AD时,S菱形AEPQ=S四边形EFBQ∵四边形AEPQ为菱形,∴AD⊥EQ,∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴EQ∥BC,又∵EF∥AB,∴四边形EFBQ为平行四边形.作EN⊥AB于N,如图所示:则S菱形AEPQ=EP•EN=EF•EN=S四边形EFBQ.。

(基础题)青岛版八年级下册数学期末测试卷

(基础题)青岛版八年级下册数学期末测试卷

青岛版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、不等式组的解集在数轴上表示正确的是()A. B.C. D.2、的平方根是,用式子表示正确的是( )A. B. C. D.3、(﹣2)2008(+2)2007的值等于()A.2B.﹣2C.D.4、如图,∠MON=90°,矩形 ABCD 在∠MON 的内部,顶点 A,B 分别在射线OM,ON 上,AB=4,BC=2,则点 D 到点O最大距离是()A. B. C. D.5、若x2m-1-8>5是一元一次不等式,则m的值为( )A.0B.1C.2D.36、正比例函数y=kx的图象是经过原点的一条()A.射线B.双曲线C.线段D.直线7、已知,在平面直角坐标系xOy中,点A(-4,0),点B在直线y=x+2上.当A、B两点间的距离最小时,点B的坐标是()A.( ,)B.( ,)C.(-3,-1) D.(-3,)8、下列二次根式中,是最简二次根式的是()A. B. C. D.9、为了迎接在崇和门广场举行的“中国·临海无核蜜桔节”开幕式,某校学生设计了如图所示的宣传图标,图标中的字母是中心对称图形的是()A.LB.HC.YD.Q10、如图,在四边形ABCD中,AB=BC=2 ,AD=2,∠B=∠D=90°,则CD等于()A.2B.C.2D.11、一个正方形的面积为64cm2,则它的对角线长为( )A.4cmB. cmC. cmD.6cm12、下列图案既是轴对称图形,又是中心对称图形的是A.4个B.3个C.2个D.1个13、下列命题正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线互相垂直的平行四边形是正方形D.对角线相等且互相垂直的四边形是正方形14、如果表示a,b两个实数的点在数轴上的位置如图所示,那么化简的结果等于()A.2bB.0C.-2aD.-2a-2b15、若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A. B. C.D.二、填空题(共10题,共计30分)16、如图,将长方形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于点E,若AB=4,BC=8,则△ACE的面积为________.17、如图,四边形ABCD是平行四边形,AC与BD相交于点O,添加一个条件:________,可使它成为菱形.18、的平方根为________.19、写出一个负无理数________20、已知正方形ABCD的边长为3,点P是直线AD上一点,且AD=3AP,连接BP,过点P做BP的垂线交直线CD于点Q,则线段DQ的长为________。

(基础题)青岛版八年级下册数学期末测试卷

(基础题)青岛版八年级下册数学期末测试卷

青岛版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、一个门框的尺寸如图所示,下列长×宽型号(单位:m)的长方形薄木板能从门框内通过的是()A. B. C. D.2、如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;② = ;③△ABC的面积等于四边形AFBD的面积;④BE2+DC2=DE2⑤BE+DC=DE其中正确的是()A.①②④B.③④⑤C.①③④D.①③⑤3、一个菱形的边长为,面积为,则该菱形的两条对角线的长度之和为( )A. B. C. D.4、与﹣2的乘积是有理数的是()A. ﹣2B.C.2﹣D. +25、下列运算中,正确的运算是()A.a 3+a 3=a 6B. - =C. =3D.(a﹣b)2=a 2﹣b 26、已知函数y=(m+1)是正比例函数,且图象在第二、四象限内,则m的值是()A.2B.-2C.±2D.7、不等式组的最小整数解是()A.-1B.0C.2D.38、如图,在四边形中,分别是的中点,要使四边形是菱形,则四边形满足的一个条件是()A.四边形是矩形B.四边形是菱形C.D.9、下列实数中,是无理数的为()A.3.14B.C.D.10、下列运算正确的是()A.a+2a=2B. + =C. = ﹣9D.11、下列各组数据中,不是勾股数的是A.3,4,5B.7,24,25C.8,15,17D.5,7,912、把不等式组的解集表示在数轴上,下列不符合题意的是()A. B. C. D.13、上面图案中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.14、以下说法正确的是().A.在同圆或等圆中,相等的弦所对的圆周角相等B.对角线相等的四边形是矩形 C.方程有两个相等的实数根 D.15、下列计算正确的是()A. (2a2)3=8a5B. ()2=9C. 3﹣=3D. ﹣a8÷a4=﹣a4二、填空题(共10题,共计30分)16、如图,四边形ABCD为正方形,△ADE为等边三角形,AC为正方形ABCD的对角线,则∠EAC=________.17、已知,,则________.18、如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边BC于点E,AH⊥DE 于点H,连接CH并延长交边AB于点F,连接AE交CF于点O.给出下列命题:①∠AEB=∠AEH;②DH=EH;③HO=AE;④BC﹣BF=EH其中正确命题的序号是________ (填上所有正确命题的序号).19、如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A'B'C可以由△ABC绕点C顺时针旋转得到,其中点A'与点A是对应点,点B与点B是对应点,连接AB',且A、B’、A'在同一条直线上,则AA’的长为________.20、如图,正方形的边长为1,边在x轴负半轴上,反比例函数的图象经过点B和边中点E,则k的值为________.21、余干二中秋季运动会上,小捷掷出的铅球在场地上砸出一个小坑(如图),其中AB为8cm,小坑的最大深度为2cm,则该铅球的直径为________cm.22、在下列各数中,选择合适的数填入相应的集合中.,,,,- ,0,-5.123 45…,,- .有理数集合:{________,…}无理数集合:{________,…}正实数集合:{________,…}负实数集合:{________,…}23、如图,平行四边形ABCD中,∠A的平分线AE交CD于E,AB=5,BC=3,则EC的长为________.24、计算﹣的结果是________25、在平面直角坐标系中,点A、B的坐标分别为( 2,0 ),(4,0),点C 的坐标为(m,m)(m为非负数),则CA+CB的最小值是________三、解答题(共5题,共计25分)26、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?27、如图,已知四边形中,,,,,,求四边形的面积.28、如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=900.小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?29、(1)已知关于x的一元二次方程x2﹣4x+m﹣1=0有两个相等的实数根,求m的值及方程的根.(2)如图,已知▱ABCD,E、F是对角线BD上的两点,且BE=DF①求证:四边形AECF是平行四边形;②当AE垂直平分BC且四边形AECF为菱形时,直接写出AE:AB的值.30、如图,四边形ABCD是正方形,E是AD上任意一点,延长BA到F,使得AF=AE,连接DF:(1)旋转△ADF可得到哪个三角形?(2)旋转中心是哪一点?旋转了多少度?(3)BE与DF的数量关系、位置关系如何?为什么?参考答案一、单选题(共15题,共计45分)1、A2、C3、C4、D5、C6、B7、A8、D9、C10、D11、D12、C13、B14、D15、D二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、30、。

(基础题)青岛版八年级下册数学期末测试卷

(基础题)青岛版八年级下册数学期末测试卷

青岛版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是()A. B. C. D.2、如图,矩形的顶点为坐标原点,点在轴上,点的坐标为.如果将矩形绕点旋转旋转后的图形为矩形,那么点的坐标为()A.(2, 1)B.(-2, 1)C.(-2, -1)D.(2, -l)3、下列图形,从图甲到图乙的变换是()A.轴对称变换B.平移变换C.旋转变换D.相似变换4、如果是方程组的解,则一次函数y=mx+n的解析式为(()A.y=﹣x+2B.y=x﹣2C.y=﹣x﹣2D.y=x+25、如图,点、、、、都在方格子的格点上,若是由绕点按顺时针方向旋转得到的,则旋转的角度为( )A.60°B.135°C.45°D.90°6、如图,在等腰直角△ABC中,∠B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB’C’则∠BAC’ 等于()A.60°B.105°C.120°D.135°7、直角三角形的周长为2+ ,斜边上的中线长为1,则它的面积是()A.1B.C.D.8、下列命题中①9的算术平方根是3 ②﹣8的立方根为2 ③平方根等于它本身的数有0和1 ④﹣8没有平方根正确的有()A.一个B.两个C.三个D.四个9、不等式组的解集是()A.﹣1<x<2B.x>﹣1C.x<2D.﹣2<x<110、如图将△ABC水平向右平移到△DEF,若A、D间的距离为1,CE=2,则BF=()A.3B.4C.5D.不能确定11、使式子有意义的x的取值范围是().A.x≤1B.x≤1且x≠﹣2C.x≠﹣2D.x<1且x≠﹣212、不等式组的整数解共()A.3个B.4个C.5个D.6个13、下列几组数中,是勾股数的有()①5、12、13②13、1415③3k、4k、5k(k为正整数)④ 、2、A.1组B.2组C.3组D.4组14、在实数,,,,-1.414,3.14159265,0.1010010001……中,无理数有()A.3个B.2个C.1个D.0个15、将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()A. B. C.D.二、填空题(共10题,共计30分)16、比较大小:________ (填“>”,“<”,或“=”).17、已知方程|x|=ax+1有一个负根但没有正根,则a的取值范围是________18、如图,13 个边长为 1 的小正方形,排列形式如图,把它们分割,使分割后能拼成一个大正方形.请在如图所示的网格中(网格的边长为 1)中,用直尺作出这个大正方形,其边长为________19、如图,在△ABC中,tanB= ,AB=10,AC=2 ,将线段AB绕点A旋转到AD,使AD∥BC,连接CD,则CD=________.20、一个数的平方根与它的立方根相等,则这个数是________.21、如图,△ABC的内切圆与三边分别切于点D,E,F,若∠C=90°,AD=3,BD=5,则△ABC的面积为________.22、在实数1.414、、0、π、、、中,无理数有________个.23、计算:(﹣1)0+|1﹣|=________.24、将直线向上平移4个单位,得到直线________.25、已知点与在同一条平行轴的直线上,且到原点的距离为,则点的坐标为________.三、解答题(共5题,共计25分)26、化简:27、已知3a-2的算术平方根是4,2a+b-2的算术平方根是3,求a、b的值.28、如图,在B港有甲、乙两艘渔船,若甲船沿北偏东30°的方向以每小时8海里速度前进,乙船沿南偏东60°的方向以每小时6海里速度前进,两小时后,甲船到M岛,乙船到N岛,求M岛到N岛的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青岛版八年级下册数学期末测试卷
一、单选题(共15题,共计45分)
1、如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为()米.
A.4
B.8
C.12
D.
2、在中,,两直角边,,在三角形内有一点到各边的距离相等,则这个距离是()
A.1
B.2
C.3
D.4
3、下列函数是一次函数的是()
A.y=﹣8x
B.y=﹣
C.y=
D.y=﹣+2
4、下列函数图象中,当x>0时,y随x的增大而减小的是()
A.y=﹣
B.y=x
C.y=x 2
D.y=﹣(x+1)2
5、如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()
A.a户最长
B.b户最长
C.c户最长
D.三户一样
6、如图所示的车标,可以看作由“基本图案”经过平移得到的是()
A. B. C. D.
7、下列说法中不正确的是()
A.-1的平方是1
B.-1的立方是-1
C.-1的平方根是-1
D.-1的立方根是-1
8、点A , B , C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A , B , C , D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()
A.1个
B.2个
C.3个
D.4个
9、如图,在平行四边形中,,,,则
的长是()
A. B. C.3 D.5
10、某市为了鼓励节约用水,按以下规定收水费:每户每月用水量不超过
,则每立方米水费为元,每户用水量超过,则超过的部分每立方米水费2元,设某户一个月所交水费为元,用水量为,则y与x的函数关系用图象表示为()
A. B. C.
D.
11、下列实数中,是无理数的是()
A.﹣0.101001
B.
C.
D.﹣
12、正比例函数图象y=(1-m)x的图像经过第一,三象限,则m的取值范围是()
A.m=1
B.m>1 &nbsp;
C.m<1
D.m≥1
13、如图,已知点A(﹣8,0),B(2,0),点C在直线y=﹣上,则使△ABC是直角三角形的点C的个数为()
A.1
B.2
C.3
D.4
14、如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()
A.2
B.
C.
D.
15、估计的结果在().
A.6至7之间
B.7至8之间
C.8至9之间
D.9至10之间
二、填空题(共10题,共计30分)
16、如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AH⊥BD于点H,若AB=2,BC=2 ,则AH的长为________.
17、计算6 -15 的结果是________.
18、计算________.
19、比较大小:________ .
20、如图,正五边形ABCDE绕点A顺时针旋转后得到正五边形
AB′C′D′E′,旋转角为α(0°≤α≤90°),若DE⊥B′C′,则∠α=________°
21、一辆汽车由A地开往B地,它距离B地的路程s(km)与行驶时间t(h)之间的关系如图所示,如果汽车一直快速行驶,那么可以提前________小时到达B 地.
22、如图,,,,,,
,垂足分别为D,E,则的长为________.
23、不等式组的解集是________ .
24、已知,矩形ABCO的对角线AC、BO相交于点D,△ADO是等边三角形,且A 点的坐标为(0,2),则点D的坐标为________.
25、)如图,Rt△ABC中,C= 90o,以斜边AB为边向外作正方形 ABDE,且正方形对角线交于点D,连接OC,已知AC=5,OC=6 ,则另一直角边BC的长为________.
三、解答题(共5题,共计25分)
26、先化简,再求值:,其中X的值从不等式组
的整数解中选取.
27、如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF,求证:四边形ADCF是菱形.
28、某超市店庆期间开展了促销活动,出售A,B两种商品,A种商品的标价为60元/件,B种商品的标价为40元/件,活动方案有如下两种,顾客购买商品时只能选择其中的一种方案:
A B
方案一按标价的“七折”优惠按标价的“八折”优惠
方案二若所购商品达到或超过35件(不同商品可累计),均按标价的“七五折”优惠
若某单位购买A种商品x件(x>15),购买B种商品的件数比A种商品件数多10件,求该单位选择哪种方案才能获得更多优惠?
29、判断下列各式哪些是等式,哪些是不等式,哪些既不是等式也不是不等式.
① x+y;② 3x>7;③ 5=2x+3;④ x2>0;⑤ 2x-3y=1;⑥ 52;⑦ 2>
3.
30、计算:()﹣2+(π﹣3.14)0﹣| |﹣2cos30°.
参考答案
一、单选题(共15题,共计45分)
1、C
2、B
3、A
4、D
5、D
6、B
7、C
9、B
10、C
11、B
12、C
13、C
14、D
15、B
二、填空题(共10题,共计30分)
16、
17、
18、
19、
20、
21、
22、
23、
24、
25、
三、解答题(共5题,共计25分)
29、
30、。

相关文档
最新文档