考研概率强化讲义(全题目)资料

合集下载

强化班讲义

强化班讲义

强化班讲义(概率统计)第一讲随机事件与概率内容提要(1)事件间的关系与运算(四种关系,三种运算)(2)概率及其简单性质(古典概型,几何概型,求逆公式,加法公式,减法公式)(3)条件概率及三大公式(乘法公式,全概率公式,Bayes公式)(4)事件独立性与Bernoulli概型(独立性的实质及应用,Bernoulli概型的三个模型)典型问题分析问题1: 事件的表示与运算例1.1从一批产品中,每次取出一个(取后不放回),抽取三次,用表示“第i次取到的是正品”,下列结论中不正确的是:A.表示“至少抽到2个正品”B. 表示“至少有1个是次品”C.表示“至少有1个不是正品”D.表示“至少有1个是正品”【B】【解】、和分别表示为至少抽到2个正品,它们的并的运算也应该是至少抽到2个正品,其余选项都正确。

【寓意】本题实质是考查用事件的运算符号来描述一用普通语言表达的随机事件,以便今后运用公式计算概率.问题2: 概率(包括条件概率)的基本公式及应用技巧:利用概率、条件概率的性质、事件间的关系和运算进行求解。

Venn图的直观。

例1.2某城市居民中订阅A报的有45%,同时订阅A报及B报的有10%,同时订阅A报及C报的有8%,同时订阅A,B,C报的有3%,则“只订阅A报”的事件发生的概率为A.0.655 B.0.30 C.0.24 D.0.73 【B】【解】由题用表示订阅A报表示既订阅A报又订阅B表示既订阅A报又订阅C表示既订阅A、B、C三种报则只“只订阅A报”即事件由题意知又因为都是真包含在事件中故选B。

例1.3已知,且,则等于(A) 0.1 (B) 0.2 (C) 0.3 (D) 0.4 【A】【解】所以例1.4 设事件A,B,C满足,, 则A,B,C 中不多于一个发生的概率为多大? 【】【解】“不多于一个发生”等价于事件“A,B,C中有一个发生或者一个都不发生”注:遇到“至少”、“至多”的问题时,利用求逆公式。

例1.5 设事件A, B同时发生时, 事件C一定发生, 则(A)(B)(C)(D)【B】【解析】例1.6 设随机变量X,Y均服从正态分布, 若概率,则【】【解】因为X,Y均服从正态分布,所以二维连续形随机变量有相同的分布律(X,Y)与(Y,X),又连续性随机变量在一点的概率为零,所以的值为。

概率论与数理统计强化讲义_数三_

概率论与数理统计强化讲义_数三_
考研帮课堂配套电子讲义—概率论与数理统计
概率论与数理统计 强化讲义 (数三)
考研帮课堂配套电子讲义—概率论与数理统计
课程配套讲义是学习的必备资源,帮帮为大家精心整理了高质量的配套讲 义,确保同学们学习的方便与高效。该讲义是帮帮结合大纲考点及考研辅导名师 多年辅导经验的基础上科学整理的。 内容涵盖考研的核心考点、 复习重点、 难点。 结构明了、 脉络清晰, 并针对不同考点、 重点、 难点做了不同颜色及字体的标注, 以便同学们复习时可以快速投入、高效提升。 除课程配套讲义外, 帮帮还从学习最贴切的需求出发, 为大家提供以下服务, 打造最科学、最高效、最自由的学习平台:
I 0.94 II Cn2 0.94 0.06 III 1 0.94
B 发生 A 不发生的概率相等,求 A 发生的概率.
第 2 页
考研帮课堂配套电子讲义—概率论与数理统计
【答案】
2 3
1 1 1 , P B A , P A B ,则 P A B ___ 4 3 2
例 8. P ( A ) 【答案】
1 3
题型二 三大概型
方法点拨: 三大概型是指古典概型、几何概型、伯努利概型。古典概型就是常说的排列组合 问题,考的少,几何概型注意体积、面积的计算,伯努利概型,需要注意一下“至 多”和“至少”的问题。 例 1.在区间 -1,1 之间任取两个数 X,Y 则二次方程 t 2 Xt Y 0 有两个正根的 概率为 ___ 【答案】
P max X , Y 0 =___



3 4 , P X 0 P Y 0 , 则 7 7
【答案】
5 7
设 A,B,C 是 随 机 事 件 , 且

考研概率强化讲义(全题目)资料

考研概率强化讲义(全题目)资料

考研概率与数理统计第一章 随机事件和概率第一节 基本概念例题例1.1:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,没有平局,试问总共输的场次是多少?例1.2:到美利坚去,既可以乘飞机,也可以坐轮船,其中飞机有战斗机和民航,轮船有小鹰号和Titanic 号,问有多少种走法?例1.3:到美利坚去,先乘飞机,后坐轮船,其中飞机有战斗机和民航,轮船有小鹰号和Titanic 号,问有多少种走法?例1.4:10人中有6人是男性,问组成4人组,三男一女的组合数。

例1.5:两线段MN 和PQ 不相交,线段MN 上有6个点A 1,A 2…,A 6,线段PQ 上有7 个点B 1,B 2,…,B 7。

若将每一个A i 和每一个B j 连成不作延长的线段A i B j (i=1,2,…6;j=1,2,…,7),则由这些线段 A i B j 相交而得到的交点最多有A . 315个B . 316个C . 317个D . 318个例1.6:3封不同的信,有4个信箱可供投递,共有多少种投信的方法?例1.7:某市共有10000辆自行车,其牌照号码从00001到10000,求有数字8的牌照号码的个数。

例1.8:3白球,2黑球,先后取2球,放回,至少一白的种数?(有序)151513=∙C C 2112121515=∙-∙C C C C例1.9:3白球,2黑球,先后取2球,不放回,至少一白的种数?(有序)121413=∙C C 1811121415=∙-∙C C C C例1.10:3白球,2黑球,任取2球,至少一白的种数?(无序)121413=∙C C 92225=-C C 例1.11:化简 (A+B)(A+B )(A +B)例1.12:)()()(C B C A C B A = 成立的充分条件为: (1)C A ⊂ (2) C B ⊂例1.13:3白球,2黑球,先后取2球,放回,至少一白的概率?例1.14:3白球,2黑球,先后取2球,不放回,至少一白的概率?例1.15:3白球,2黑球,任取2球,至少一白的概率?例1.16:袋中装有α个白球及β个黑球。

3、张宇考研数学概率论与数理统计讲义强化班(无水印文字版)-41页

3、张宇考研数学概率论与数理统计讲义强化班(无水印文字版)-41页

张宇考研数学概率论与数理统计强化讲义
【注】
犉(狓)=△ 犘{犡 ≤狓}= 犘{- ∞ ≤ 犡 ≤狓}

∫ = 犳(狋)d狋(连) -∞
4犡~犉(狓)<狆犳犻(狓→)分→布概律率密度
= ∑狆犻.(离) 狓犻≤狓
烄① 单调不减;
(1)犉(狓)是某个狓 的分布函数 烅②犉(- ∞)=0,犉(+ ∞)=1;

烆犘(犃1犃2犃3)= 犘(犃1)犘(犃2)犘(犃3).④
【注】若只满足 ①②③,称犃1,犃2,犃3 两两独立.
【例】[取自《张宇概率论与数理统计9讲》P23,例1.33]
将一枚硬币独立地掷两次,引进事件:犃1 = {掷第一次出现正面},犃2 = {掷第二次出
现正面},犃3 = {正反面各出现一次},犃4 = {正面出现两次},则事件( ).
【例2】[取自《张宇考研数学闭关修炼一百题·习题分册》P42,81] 要验收一批乐器,共100件,从中随机地取3件来测试(设3件乐器的测试是相互独立 的),如果3件中任意一件经测试被认为音色不纯,这批乐器就被拒绝接收.设一件音色不 纯的乐器经测试被查出的概率为0.95,而 一 件 音 色 纯 的 乐 器 经 测 试 被 误 认 为 不 纯 的 概 率 为0.01.如 果 已 知 这100件 乐 器 中 有4件 是 音 色 不 纯 的 ,问 这 批 乐 器 被 接 收 的 概 率 是 多少? 【分析】
④(犡,犢)的犉(狓,狔),犳(狓,狔); ⑤犣 =犵(犡,犢)的犉犣(狕),犳犣(狕);
⑥犘{(犡,犢)∈犇}= 犳(狓,狔)dσ. 犇
(3)求数字特征. (4)狀→ ∞ 时的若干重要概率规律. (5)估计与评价.
—1—
张宇考研数学概率论与数理统计强化讲义

考研概率论讲义

考研概率论讲义
概率论与数理统计考研辅导讲义
白云霄
第一章 随机事件及其概率
1、随机事件、样本空间、概率的定义
例1. 写出下列试验的样本空间与事件A的样本点 1. 同时掷两颗骰子,记录其点数之和;A:点数之和为偶数 2. 相继掷两次硬币。A:第一次出现正面 3. 研究甲、乙两件产品的销售状况(畅销、滞销) 4. 经过三个十字路口遇到红灯的个数
例12 设随机变量X的概率密度为,若k使, 则k的取值范围是
例13 随机变量X的密度函数为,且,是X的分布函数。则对于任意实数
a,有( )
(A) (B)
(C)
(D)
例14已知随机变量的分布函数则_________,_________, 密度函 数为 例15设随机变量的概率密度为:。 试求:(1)系数,(2)求;(3)的分布函数。 例16使用了小时的电子元件在以后小时内损坏的概率等于球电子元件
(C) (D) 例11.设0<p(A)<1 ,0<p(B)<1, ,则有( )
(A) 事件A与B互不相容 (B) 事件A与B 相互对立 (C) 事件A与B 不独立 (D) 事件A与B 相互独立
3.条件概率 例1 一批产品共有10个正品和2个次品,任意抽取2个,每次抽取一个,抽
取后不再放回,则第一次为正品,第二次抽取的也是正品的概率。
例5设随机变量的概率密度为,求及 例6设,,且与相互独立。
求(1)的联合概率密度;
(2); (3)。
例7已知,的分布律如下,且与相互独立,
-1 0 1
1/4 1/2 1/4 -1 0 1
1/4 1/2 1/4
(1)求和的联合分布表; (2)EX,EY,COV(X,Y) 例8设二维随机变量的概率密度函数为, 求(1)常数;(2)判断是否独立,为什么?(3)。

方浩概率强化讲义

方浩概率强化讲义
A不独立 B独立 C 不相关但不一定独立 D相关
35
D x, y 0 x 1,| y | x 上 服 从 均 匀 分 布 ,
求随机变量Z 2X 1的方差D(Z ).
20
【 例 4.14 】 设 X 的 分 布 律 为
PX
k
2k 3k1
,k
0,1, 2
,求期望与方
差E X ,DX .
21
【例】设随机变量 X 服从参数为 1 的指数分
布,则E X 2e2X ___
Xi
则(
)
25
(A)Cov
X1
,Y
2
n
(B)Cov X1,Y 2
(C)
D
X1
Y
n
n
2
2
(D)
D
X1
Y
n
n
1
2
26
【 例 】 设 随 机 变 量 X ,Y 的 概 率 密 度 为
f
x,
y
1,
0,
y x,0 x 1 其它


EX , EY ,Cov X ,Y
27
【例】随机变量 X ,Y 分别服从正态分布,
且 X 1,32 ,Y 0,42 ,且相关系数XY 0.5,
令Z X Y
32
(1)求E Z , D Z
(2)求 X , Z 的相关系数,别说明是否独立 (3)求Z 的分布 (4)随机变量2X Y 与 X Y 的相关系数
28
【例 4.12】设随机变量 X N 0,1,Y
且相关系数XY 1,则( )
EX ab
2
G p
D
X
(1
p) p2
U a,b

清华大学考研数学强化班讲义-概率

清华大学考研数学强化班讲义-概率
n n n n
1
2 2
n
1 1
n n 两种系统图
2 图 1.1
系统 b
二.选择题 例 1.5(类似 232)下列命题中不成立的是 ( (A) P{( A ∪ B)( A ∪ B)( A ∪ B )( A ∪ B )} = 0; (B) P{ AB ∪ A B ∪ AB ∪ A B } = 1 ; (C) P ( A ∪ BC ) = P ( A B C ) ; ).
例 1.3(230)两人相约于晚 7 点到 8 点间在某处会面,到达者等足 20 分钟 后便立即离去, 求两人能会面的概率 p =_______ 【 5/9】 (类似题补充) 在区间(0,1)中随机的取两个数,则这两个数之差的绝 1 对值小于 的概率为______。 【 3/4】 2 例 1.4 (231) 设某类元件的可靠度 (即元件能正常工作的概率) 均为 r ∈(0,1), 且各元件能否正常工作是相互独立的. 2 n 1 现在将 2n 个元件组成下面图示的两种 系统 a 系统,则系统 a 的可靠度 =_______ , 系统 b 的可靠度 =_______ . 【 r (2 − r ) , r (2 − r ) 】
【3/4】
3.(2007)(负二项分布)某人向统一目标独立重复射击,每次射击命中目标的概率为
p (0 < p < 1) ,则此人第 4 次射击恰好第 2 次命中目标的概率为:(
(A) 3 p (1 − p )
2 2
) 。
(B) 6 p (1 − p )
2 2
2
(C) 3 p (1 − p )
(D) 6 p (1 − p )
注:与例 1.9 类似的例题: 设 A, B, C 是三个相互独立的随机事件, 且 0 < P(C ) < 1 。 则在下列给定的四 对事件中不相互独立的是 ( (A) A ∪ B 与 C ; ) (B) AC 与 C ;

概率强化讲义

概率强化讲义

概率论与数理统计第一章 随机事件和概率1、概念网络图⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧-+→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧Ω→贝努利概型贝叶斯公式/)(独立性全概公式和乘法公式条件概率减法加法五大公式几何概型古典概型随机事件样本空间基本事件随机试验BC C B C B C B A P A E ω2、重要公式和结论第二章 随机变量及其分布第一节 基本概念1、概念网络图⎭⎬⎫⎩⎨⎧-→⎭⎬⎫⎩⎨⎧≤<→⎭⎬⎫⎩⎨⎧)()()()(a F b F A P b X a A X 随机事件随机变量基本事件ωω→≤=)()(x X P x F 分布函数: 函数分布正态分布指数分布均匀分布连续型几何分布超几何分布泊松分布二项分布分布离散型八大分布→⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧-102、重要公式和结论第三章 二维随机变量及其分布第一节 基本概念1、概念网络图⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=+=⎭⎬⎫⎩⎨⎧→⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧→分布分布分布三大统计分布函数分布正态分布均匀分布常见二维分布独立性条件分布边缘分布连续型分布密度离散型分布律联合分布F t X X X Z Y X Z Y X n 221),,min(max,),(χξ2、重要公式和结论第四章 随机变量的数字特征第一节 基本概念1、概念网络图⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧→切比雪夫不等式矩方差期望一维随机变量⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧→协方差矩阵相关系数协方差方差期望二维随机变量2、重要公式和结论第五章 大数定律和中心极限定理第一节 基本概念1、概念网络图⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→辛钦大数定律伯努利大数定律切比雪夫大数定律大数定律⎭⎬⎫⎩⎨⎧→棣莫弗-拉普拉斯定理列维-林德伯格定理中心极限定理二项定理 泊松定理2、重要公式和结论第六章 数理统计的基本概念第一节 基本概念1、概念网络图正态总体下的四大分布统计量样本函数样本个体总体数理统计的基本概念→⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧ 2、重要公式和结论第七章 参数估计第一节 基本概念1、概念网络图⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎭⎬⎫⎩⎨⎧区间估计一致性有效性无偏性估计量的评选标准极大似然估计矩估计点估计从样本推断总体2、重要公式和结论。

2011考研数学概率论与数理统计强化课程讲义全

2011考研数学概率论与数理统计强化课程讲义全

2011考研强化班概率论与数理统计讲义第1讲随机事件和概率1.1 知识网络图1.2 重点考核点的分布(1)样本空间与随机事件.*(2)概率的定义与性质(含古典概型、几何概型、加法公式).*(3)条件概率与概率的乘法公式.**(4)事件之间的关系与运算(含事件的独立性).**(5)全概公式与贝叶斯(Bayes)公式.(6)伯努利(Bernoulli)概型.各个考核点前面加“**”表示重点考核点;“*”表示次重点考核点;括号前没有标注的表示一般考核点(下同).1.3 课上复习内容1.3.1 预备知识在复习“概率论”之前,我们需要掌握“二值集合”、“组合分析中的几个定理”、“随机现象及其统计规律”和“微积分”等内容,下面将有关内容作一简单介绍:1.3.1.1 二值集合集合是一个不能给出数学定义的概念,尽管如此,我们仍然可以给它一个定性描述.所谓集合就是按照某些规定能够识别的一些具体对象或事物的全体.构成集合的每一个对象或事物叫做集合的元素.集合通常用大写字母A,B,C表示,其元素用小写字母a,b,c表示.设A是一个集合,如果a是A的元素,记作a∈A,用“1”表示这一隶属关系;如果a 不是A的元素,记作a∈A(或a∉A),用“0”表示这一隶属关系.因此,我们称这种集合为“二值集合”,在初等概率论中,我们只研究这样的集合.有关二值集合的表示方法、基本性质在初等数学中已作过详细讨论,这里不再重复.下面仅就集合的“相等”与“等价”概念以及集合分类情况作一简单介绍.例1设A={2,4,8},则集合A的所有子集是,{2},{4},{8},{2,4},{2,8},{4,8},{2,4,8}.注意,在考虑集合A的所有子集时,不要把空集和它本身忘掉.设A,B是两个集合.如果A⊂B,B⊂A,那么称集合A与B相等,记作A=B.很明显,含有相同元素的两个集合相等.例2设A={0,2,3},B={x|x为方程x3-5x2+6x=0的解},则A=B.设A,B是两个集合.如果B的每一个元素对应于A的唯一的元素,反之A的每一个元素对应于B的唯一的元素,那么就说在A和B的元素之间建立了一一对应关系,并称A与B等价,记作A~B.与自然数集N等价的任何集合,称为可列集.显然,一切可列集彼此都是等价的.今后我们常称这类集合中元素的个数为可列个(或可数个),并把有限个或可列个统称为至多可列个(或至多可数个).例3设A={a|a=2n,n∈N},B={b|b=n2+1,n∈N},则A~B.由上面的讨论可以看出,集合的分类如下:1.3.1.2 组合分析中的几个定理1.加法原理定理1设完成一件事有n类方法,只要选择任何一类中的一种方法,这件事就可以完成.若第一类方法有m1种,第二类方法有m2种,……,第n类方法有m n种,并且这m1+m2+…+m n种方法里,任何两种方法都不相同,则完成这件事就有m1+m2+…+m n种方法.2.乘法原理定理2设完成一件事有n个步骤,第一步有m1种方法,第二步有m2种方法,……第n步有m n种方法,并且完成这件事必须经过每一步,则完成这件事共有m1m2…m n种方法.3.排列定义1 从n个不同元素中,每次取出m个元素,按照一定顺序排成一列,称为从n 个元素中每次取出m个元素的排列.定理3从n个不同元素中,有放回地逐一取出m个元素进行排列(简称为可重复排列),共有n m种不同的排列.例4 袋中有N个球,其中M个为白色,从中有放回地取出n个:①N=10,M=2,n=3;②N=10,M=4,n=3.考虑以下各事件的排列数:(Ⅰ)全不是白色的球.(Ⅱ)恰有两个白色的球.(Ⅲ)至少有两个白色的球.(Ⅳ)至多有两个白色的球.(Ⅴ)颜色相同.(Ⅵ)不考虑球的颜色.答案是:①当M=2时,(Ⅰ)83.(Ⅱ)3×22×8.(Ⅲ)3×22×8+23.(Ⅳ)3×22×8+3×2×83+83(或103-23).(Ⅴ)23+83.(Ⅵ)103.②当M=4时,将上面的2→4,8→6即可.分析这是一个可重复的排列问题.由定理3,可求出其排列数.问题恰有两个白色球的答案中为什么是3倍的22×8,而不是1倍或6倍的?提示根据加法原理.定理4 从n 个不同元素中,无放回地取出m 个(m ≤n )元素进行排列(简称为选排列)共有)!(!)1()1(m n n m n n n -=+--种不同的排列.选排列的种数用mn A (或mn P )表示,即)!(!m n n A m n -=特别地,当m =n 时的排列(简称为全排列)共有n ·(n -1)(n -2)·…·3·2·1=n ! 种不同排列.全排列的种数用P n (或nn A )表示,即P n =n !,并规定0!=1.4.组合定义2 从n 个不同元素中,每次取出m 个元素不考虑其先后顺序作为一组,称为从n 个元素中每次取出m 个元素的组合.定理5 从n 个不同元素中取出m 个元素的组合(简称为一般组合)共有(1)(1)!!!()!n n n m n m m n m --+=-种不同的组合.一般组合的组合种数用mn C (或⎪⎪⎭⎫⎝⎛m n )表示,即 ,)!(!!m n m n C m n -=并且规定.10=n C 不难看出m m nnm A C p =⋅例5 袋中有N 个球,其中M 个为白色,从中任取n 个: ①N =10,M =2,n =3;②N =10,M =4,n =3. 考虑以下各事件的组合数: (Ⅰ)全不是白色的球. (Ⅱ)恰有两个白色的球. (Ⅲ)至少有两个白色的球. (Ⅳ)至多有两个白色的球. (Ⅴ)颜色相同. (Ⅵ)不考虑球的颜色. 答案是:①当M =2时,(Ⅰ).0238C C (Ⅱ).1822C C (Ⅲ).1822C C(Ⅳ)211203328282810().C C C C C C C ++或 (Ⅴ).38C (Ⅵ)⋅310C②当M =4时,(Ⅰ).0436C C (Ⅱ).1624C C (Ⅲ).06341624C C C C +(Ⅳ))(34310360426141624C C C C C C C C -++或. (Ⅴ).3634C C +(Ⅵ)⋅310C分析(略)定理6 从不同的k 类元素中,取出m 个元素.从第1类n 1个不同元素中取出m 1个,从第2类n 2个不同的元素中取出m 2个,……,从第k 类n k 个不同的元素中取出m k 个,并且n i ≥m i >0(i =1,2,…,k )(简称为不同类元素的组合),共有iik k m n ki m n m n m n C CC C ∏==12211 种不同取法.例6 从3个电阻,4个电感,5个电容中,取出9个元件,问其中有2个电阻,3个电感,4个电容的取法有多少种?解 这是一个不同类元素的组合问题.由定理6知,共有60151413252423==C C C C C C即60种取法.例7 五双不同号的鞋,从中任取4只,取出的4只都不配对(即不成双),求(Ⅰ)排列数;(Ⅱ)组合数.答案是:(Ⅰ)141618110C C C C ;(Ⅱ).1212121245C C C C C分析(略)1.3.1.3 微积分概率论可以分为“高等概率论”与“初等概率论”.初等概率论是建立在排列组合和微积分等数学方法的基础上的.全国硕士研究生入学统一考试数学考试大纲中的“概率论”就是初等概率论.微积分作为初等概率论的基础知识,除了我们已经比较了解的“函数、极限、连续、可导、可积”等概念之外,还应了解下面的有关概念.1.可求积与不可求积在微积分中,求不定积分与求导数有很大不同,我们知道,任何初等函数的导数仍为初等函数,而许多初等函数的不定积分,例如x x x x x xx x x x x d 1,d sin ,d ln 1,d sin ,d e 322+⎰⎰⎰⎰⎰- 等,虽然它们的被积函数的表达式都很简单,但在初等函数的范围内却积不出来.这不是因为积分方法不够,而是由于被积函数的原函数不是初等函数的缘故.我们称这种函数是“不可求积”的.因此,我们可以将函数划分为:在初等概率论中,正态分布密度函数就是属于可积而不可求积的一类函数. 2.绝对收敛(1)任意项级数的绝对收敛所谓任意项级数是指级数的各项可以随意地取正数、负数或零.下面给出绝对收敛与条件收敛两个概念.定义3 若任意项级数nn u∑∞=1的各项取绝对值所成的级数||1nn u∑∞=收敛,则称级数nn u ∑∞=1是绝对收敛的;若||1nn u∑∞=发散,而级数n n u ∑∞=1收敛,则称级数n n u ∑∞=1是条件收敛的.例如,级数nn n 1)1(11+∞=-∑是收敛的,但各项取绝对值所成的级数 ++++=-+∞=∑nn n n 1...211|1)1(|11是发散的,因而级数n n n 1)1(11+∞=-∑是条件收敛.又如,级数2111)1(n n n +∞=-∑各项取绝对值所成级数++++=-+∞=∑222111211|1)1(|nnn n是收敛的,因而级数2111)1(n n n +∞=-∑是绝对收敛的. 定理7 若级数nn u∑∞=1绝对收敛,则nn u∑∞=1必定收敛.证明 令),2,1()0(0)0(|)|(21=⎩⎨⎧<≥=+=n u u u u u v n n n n n n ,,于是 )⋯=≥≥,2,1(0||n v u n n . 由||1nn u∑∞=收敛,根据正项级数的比较判别法,可知级数n n v ∑∞=1是收敛的.考虑到 ,||2n n n u v u -= 根据级数的基本性质,可知级数nn u∑∞=1也是收敛的.根据上面的定理,判断任意一个级数nn u∑∞=1的收敛性,可以先判断它是否绝对收敛.如果||1nn u∑∞=收敛,则n n u ∑∞=1也收敛.这样一来,我们可以借助于正项级数的判别法来判断任意项级数的敛散性了.但是,当级数||1nn u∑∞=发散时,不能由此推出级数n n u ∑∞=1也发散.在初等概率论中,我们将用绝对收敛这一概念来给出离散型随机变量均值的定义. (2)无穷积分的绝对收敛定义4 如果函数f (x )在任何有限区间[a ,b ](b >a )上可积,并且积分x x f ad |)(|⎰+∞收敛,那么,我们称积分x x f ad )(⎰+∞是绝对收敛的.此时,我们也称函数f (x )在无穷区间[a ,+∞)上绝对可积.定理8 若积分x x f ad )(⎰+∞绝对收敛,则x x f ad )(⎰+∞必定收敛.上面的定理的逆定理并不成立,也就是说,从x x f ad )(⎰+∞的收敛性,不能推出x x f ad |)(|⎰+∞也收敛,例如,积分⎰+∞-d sin x xx是收敛的,但是积分x xx d |sin |0⎰+∞却发散.这一点与定积分不同,对于定积分,从x x f bad )(⎰的存在性,必能推出xx f bad |)(|⎰存在.若积分x x f ad )(⎰+∞收敛,而积分x x f ad |)(|⎰+∞发散时,则称积分x x f ad )(⎰+∞为条件收敛的.例如积分x xxad sin ⎰+∞是条件收敛的. 在初等概率论中,我们将用绝对可积这一概念来给出连续型随机变量均值的定义. 1.3.2 样本空间与随机事件1.随机现象及其统计规律性在客观世界中存在着两类不同的现象:确定性现象和随机现象. 在一组不变的条件S 下,某种结果必定发生或必定不发生的现象称为确定性现象.这类现象的一个共同点是:事先可以断定其结果.在一组不变的条件S 下,具有多种可能发生的结果的现象称为随机现象.这类现象的一个共同点是:事先不能预言多种可能结果中究竟出现哪一种.一般来说,随机现象具有两重性:表面上的偶然性与内部蕴含着的必然规律性.随机现象的偶然性又称为它的随机性.在一次实验或观察中,结果的不确定性就是随机现象随机性的一面;在相同的条件下进行大量重复实验或观察时呈现出来的规律性是随机现象必然性的一面,称随机现象的必然性为统计规律性.2.随机试验与随机事件为了叙述方便,我们把对随机现象进行的一次观测或一次实验统称为它的一个试验.如果这个试验满足下面的三个条件:(1)在相同的条件下,试验可以重复地进行.(2)试验的结果不止一种,而且事先可以确知试验的所有结果.(3)在进行试验前不能确定出现哪一个结果.那么我们就称它是一个随机试验,以后简称为试验.一般用字母E表示.问题“一个具体的人,在一次乘车郊游时,因发生交通事故而受伤”,是否为随机试验?在随机试验中,每一个可能出现的不可分解的最简单的结果称为随机试验的基本事件或样本点,用ω表示;而由全体基本事件构成的集合称为基本事件空间或样本空间,记为Ω.例8设E1为在一定条件下抛掷一枚匀称的硬币,观察正、反面出现的情况.记ω1是出现正面,ω2是出现反面.于是Ω由两个基本事件ω1,ω2构成,即Ω={ω1,ω2}.例9 设E2为在一定条件下掷一粒骰子,观察出现的点数.记ωi为出现i个点(i=1,2,…,6).于是有Ω={ω1,ω2,…,ω6}.问题例8、例9中样本空间Ω的子集个数是多少?为什么?所谓随机事件是样本空间Ω的一个子集,随机事件简称为事件,用字母A,B,C等表示.因此,某个事件A发生当且仅当这个子集中的一个样本点ω发生,记为ω∈A.在例9中,Ω={ω1,ω2,…,ω6},而E2中的一个事件是具有某些特征的样本点组成的集合.例如,设事件A={出现偶数点},B={出现的点数大于4},C={出现3点},可见它们都是Ω的子集.显然,如果事件A发生,那么子集{ω2,ω4,ω6}中的一个样本点一定发生,反之亦然,故有A={ω2,ω4,ω6};类似地有B={ω5,ω6}和C={ω3}.一般而言,在例9中,任一由样本点组成的Ω的子集也都是随机事件.1.3.3 事件之间的关系与运算事件之间的关系有:“包含”、“等价(或相等)”、“互不相容(或互斥)”以及“独立”四种.事件之间的基本运算有:“并”、“交”以及“逆”.如果没有特别的说明,下面问题的讨论我们都假定是在同一样本空间Ω中进行的.1.事件的包含关系与等价关系设A,B为两个事件.如果A中的每一个样本点都属于B,那么称事件B包含事件A,或称事件A包含于事件B,记为A⊂B或B⊃A.如果A⊃B与B⊃A同时成立,那么称事件A与事件B等价或相等,记为A=B.在下面的讨论中,我们经常说“事件相同、对应概率相等”,这里的“相同”指的是两个事件“等价”.2.事件的并与交设A,B为两个事件.我们把至少属于A或B中一个的所有样本点构成的集合称为事件A与B的并或和,记为A∪B或A+B.设A ,B 为两个事件.我们把同时属于A 及B 的所有样本点构成的集合称为事件A 与B 的交或积,记为A ∩B 或A ·B ,有时也简记为AB .3.事件的互不相容关系与事件的逆设A ,B 为两个事件,如果A ·B =,那么称事件A 与B 是互不相容的(或互斥的). 对于事件A ,我们把不包含在A 中的所有样本点构成的集合称为事件A 的逆(或A 的对立事件),记为.A 我们规定它是事件的基本运算之一.在一次试验中,事件A 与A 不会同时发生(即A ·A =,称它们具有互斥性),而且A与A 至少有一个发生(即A +A =Ω,称它们具有完全性).这就是说,事件A 与A 满足:⎪⎩⎪⎨⎧=+∅=⋅.,ΩA A A A 问题 (1)事件的互不相容关系如何推广到多于两个事件的情形?(2)三个事件A ,B ,C ,ABC =与⎪⎩⎪⎨⎧∅=∅=∅=BC AC AB ,, 关系如何?根据事件的基本运算定义,这里给出事件之间运算的几个重要规律: (1)A (B +C )=AB +AC (分配律). (2)A +BC =(A +B )(A +C )(分配律).(3)B A B A ⋅=+ (德·摩根律).(4)B A B A +=⋅(德·摩根律).有了事件的三种基本运算我们就可以定义事件的其他一些运算.例如,我们称事件AB 为事件A 与B 的差,记为A -B .可见,事件A -B 是由包含于A 而不包含于B 的所有样本点构成的集合.例10 在数学系学生中任选一名学生.设事件A ={选出的学生是男生},B ={选出的学生是三年级学生},C ={选出的学生是科普队的}.(1)叙述事件ABC 的含义.(2)在什么条件下,ABC =C 成立? (3)在什么条件下,C ⊂B 成立?解 (1)事件ABC 的含义是,选出的学生是三年级的男生,不是科普队员.(2)由于ABC ⊂C ,故ABC =C 当且仅当C ⊂ABC .这又当且仅当C ⊂AB ,即科普队员都是三年级的男生.(3)当科普队员全是三年级学生时,C 是B 的子事件,即C ⊂B 成立. 4.事件的独立性设A ,B 是某一随机试验的任意两个随机事件,称A 与B 是相互独立的,如果P (AB )=P (A )P (B ).可见事件A 与B 相互独立是建立在概率基础上事件之间的一种关系.所谓事件A 与B 相互独立就是指其中一个事件发生与否不影响另一个事件发生的可能性,即当P (B )≠0时,A 与B 相互独立也可以用)()|(A P B A P =来定义.由两个随机事件相互独立的定义,我们可以得到:若事件A 与B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立.如果事件A ,B ,C 满足⎪⎪⎩⎪⎪⎨⎧====),()()()(),()()(),()()(),()()(C P B P A P ABC P C P A P AC P C P B P BC P B P A P AB P 则称事件A ,B ,C 相互独立.注意,事件A ,B ,C 相互独立与事件A ,B ,C 两两独立不同,两两独立是指上述四个式子中前三个式子成立.因此,相互独立一定是两两独立,但反之不一定.例11 将一枚硬币独立地掷两次,引进事件:A ={掷第一次出现正面},B ={掷第二次出现正面},C ={正、反面各出现一次},则事件A ,B ,C 是相互独立,还是两两独立?解 由题设,可知P (AB )=P (A )P (B ),即A ,B 相互独立.而1()(())()()(),4P AC P A AB AB P AB P A P B =+===()()()()()(()())P A P C P A P AB AB P A P AB P AB =+=+⋅=+⨯=41)4121(21 故A ,C 相互独立,同理B ,C 也相互独立.但是P (ABC )=P (∅)=0, 而 ,81212121)()()(=⨯⨯=C P B P A P 即 )()()()(C P B P A P ABC P ≠,因此A ,B ,C 两两独立.问题 (1)两个事件的“独立”与“互斥”之间有没有关系?在一般情况下,即P (A )>0,P (B )>0时,有关系吗?为什么?(2)设0<P (A )<1,0<P (B )<1,P (B |A )+P (B |A )=1.问A 与B 是否独立,为什么?由此可以得到什么结论?1.3.4 概率的定义与性质1.概率的公理化定义定义5 设E 是一个随机试验,Ω为它的样本空间,以E 中所有的随机事件组成的集合为定义域,定义一个函数P (A )(其中A 为任一随机事件),且P (A )满足以下三条公理,则称函数P (A )为事件A 的概率.公理1(非负性) 0≤P (A )≤1.公理2(规范性) P (Ω)=1.公理3(可列可加性) 若A 1,A 2,…,A n ,…两两互斥,则).()(11i i i i A P A P ∑∞=∞==由上面三条公理可以推导出概率的一些基本性质. 性质1(有限可加性) 设A 1,A 2,…,A n 两两互斥,则).()(11i ni i n i A P A P ∑===性质2(加法公式) 设A ,B 为任意两个随机事件,则P (A +B )=P (A )+P (B )-P (AB ).性质3 设A 为任意随机事件,则P (A )=1-P (A ).性质4 设A ,B 为两个任意的随机事件,若A ⊂B ,则P (B -A )=P (B )-P (A ).由于P (B -A )≥0,根据性质4可以推得,当A ⊂B 时,P (A )≤P (B ). 例12 设A ,B ,C 是三个随机事件,且=====)()(,41)()()(CB P AB P C P B P A p 0,81)(=AC P ,求A ,B ,C 中至少有一个发生的概率. 解 设D ={A ,B ,C 中至少有一个发生},则D =A +B +C ,于是 P (D )=P (A +B +C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ).又因为,41)()()(===C P B P A P ,0)()(==CB P AB P 81)(=AC P ,而由P (AB )=0,有P (ABC )=0,所以⋅=-=858143)(D P 问题 怎样由P (AB )=0推出P (ABC )=0? 提示 利用事件的关系与运算导出.例13 设事件A 与B 相互独立,P (A )=a ,P (B )=b .若事件C 发生,必然导致A 与B 同时发生,求A ,B ,C 都不发生的概率.解 由于事件A 与B 相互独立,因此P (AB )=P (A )·P (B )=a ·b .考虑到C ⊂AB ,故有,B A B A AB C ⊃+=⊃因此).1)(1()()()()(b a B P A P B A P C B A P --===2.概率的统计定义定义6 在一组不变的条件S 下,独立地重复做n 次试验.设μ是n 次试验中事件A 发生的次数,当试验次数n 很大时,如果A 的频率f n (A )稳定地在某一数值p 附近摆动;而且一般说来随着试验次数的增多,这种摆动的幅度会越来越小,则称数值p 为事件A 在条件组S 下发生的概率,记作.)(p A P =问题 (1)试判断下式p n n =∞→μlim成立吗?为什么?(2)野生资源调查问题 池塘中有鱼若干(不妨假设为x 条),先捞上200条作记号,放回后再捞上200条,发现其中有4条带记号.用A 表示事件{任捞一条带记号},问下面两个数2004,200x 哪个是A 的频率?哪个是A 的概率?为什么?3.古典概型古典型试验:(Ⅰ)结果为有限个;(Ⅱ)每个结果出现的可能性是相同的.等概完备事件组:(Ⅰ)完全性;(Ⅱ)互斥性;(Ⅲ)等概性.(满足(Ⅰ),(Ⅱ)两条的事件组称为完备事件组)定义7 设古典概型随机试验的基本事件空间由n 个基本事件组成,即Ω={ω1,ω2,…,ωn }.如果事件A 是由上述n 个事件中的m 个组成,则称事件A 发生的概率为⋅=nm A P )( (1-1) 所谓古典概型就是利用式(1-1)来讨论事件发生的概率的数学模型.根据概率的古典定义可以计算古典型随机试验中事件的概率.在古典概型中确定事件A 的概率时,只需求出基本事件的总数n 以及事件A 包含的基本事件的个数m .为此弄清随机试验的全部基本事件是什么以及所讨论的事件A 包含了哪些基本事件是非常重要的.例14 掷两枚匀称的硬币,求它们都是正面的概率.解 设A ={出现正正},其基本事件空间可以有下面三种情况:(Ⅰ)Ω1={同面、异面},n 1=2.(Ⅱ)Ω2={正正、反反、一正一反},n 2=3.(Ⅲ)Ω3={正正、反反、反正、正反},n 3=4.于是,根据古典概型,对于(Ⅰ)来说,由于两个都出现正面,即同面出现,因此,m 1=1,于是有21)(=A P . 而对于(Ⅱ)来说,m 2=1,于是有31)(=A P . 而对于(Ⅲ)来说,m 3=1,于是有41)(=A P . 问题 以上讨论的三个结果哪个正确,为什么?例15 求1.3.1预备知识的例5中(Ⅰ)至(Ⅴ)问的概率.答案是:①当M =2时,(Ⅰ)⋅31038/C C (Ⅱ)⋅31018/C C (Ⅲ)⋅31018/C C (Ⅳ)1. (Ⅴ)⋅31038/C C②当M =4时,(Ⅰ)⋅31038/C C (Ⅱ)⋅3101624/C C C (Ⅲ)310341624/)(C C C C +.(Ⅳ)31034310/)(C C C -. (Ⅴ) 3103634/)(C C C +. 分析(略)问题 (1)例15中各问可否使用排列做,为什么?(2)用排列或组合完成例15时哪种方法较为简便?例16 求1.3.1预备知识的例4中(Ⅰ)至(Ⅴ)问的概率.答案是:①当M =2时,(Ⅰ)3310/8. (Ⅱ)3210/823⨯⨯. (Ⅲ)33210/)2823(+⨯⨯.(Ⅳ)33310/)210(-. (Ⅴ)33310/)82(+.②当M =4时,将上面的2→4,8→6即可.分析(略)问题 (1)例16中各问可否使用组合做,为什么?(2)用元素可重复的排列或组合完成例16时,哪种方法较为简便?(3)小结一下“古典概型”中“有放回地抽取”与“无放回地抽取”时分别应采用的方法.例17 求1.3.1预备知识的例7中“取出的4只都不配对”的概率.答案是:410141618110/P C C C C 或 4111145222210/C C C C C C . 分析(略)例18 从一副扑克牌的13张梅花中,有放回地取3次,求三张都不同号的概率. 解 这是一个古典概型问题.设A ={三张都不同号}.由题意,有n =133,m =313P ,则 ⋅==169132)(n m A P问题 如果我们进一步问三张都同号,三张中恰有两张同号如何求出?另外,本题可否使用二项概型计算?例19 在20枚硬币的背面分别写上5或10,两者各半,从中任意翻转10枚硬币,这10枚硬币背面的数字之和为100,95,90,…,55,50,共有十一种不同情况.问出现“70,75,80”与出现“100,95,90,85,65,60,55,50”的可能性哪个大,为什么?答案是:出现“70,75,80”可能性大,约为82%.分析 这是一个古典概型问题.设A ={出现“70,75,80”},由题意,有,2,6104105105101020C C C C m C n +==则 ⋅==184756151704)(n m A P 4.几何概型几何型试验:(Ⅰ)结果为无限不可数;(Ⅱ)每个结果出现的可能性是均匀的.定义4 设E 为几何型的随机试验,其基本事件空间中的所有基本事件可以用一个有界区域来描述,而其中一部分区域可以表示事件A 所包含的基本事件,则称事件A 发生的概率为,)()()(Ω=L A L A P (1-2) 其中L (Ω)与L (A )分别为Ω与A 的几何度量.所谓几何概型就是利用式(1-2)来讨论事件发生的概率的数学模型.注意,上述事件A 的概率P (A )只与L (A )有关,而与L (A )对应区域的位置及形状无关. 例20 候车问题 某地铁每隔5 min 有一列车通过,在乘客对列车通过该站时间完全不知道的情况下,求每一个乘客到站等车时间不多于2 min 的概率.解 设A ={每一个乘客等车时间不多于2 min}.由于乘客可以在接连两列车之间的任何一个时刻到达车站,因此每一乘客到达站台时刻t 可以看成是均匀地出现在长为5 min 的时间区间上的一个随机点,即Ω=[0,5).又设前一列车在时刻T 1开出,后一列车在时刻T 2到达,线段T 1T 2长为5(见图1-1),即L (Ω)=5;T 0是T 1T 2上一点,且T 0T 2长为2.显然,乘客只有在T 0之后到达(即只有t 落在线段T 0T 2上),等车时间才不会多于2min ,即L (A )=2.因此图1-1⋅=Ω=52)()()(L A L A P 问题 (1)例20可否使用一维均匀分布来计算?(2)举例说明:(Ⅰ)概率为0的事件不一定是不可能事件.(Ⅱ)概率为1的事件不一定是必然事件.例21 会面问题 甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的,如果甲船和乙船停泊的时间都是两小时,它们同日到达时会面的概率是多少?解 这是一个几何概型问题.设A ={它们会面}.又设甲乙两船到达的时刻分别是x ,y ,则0≤x ≤24,0≤y ≤24.由题意可知,若要甲乙会面,必须满足|x -y |≤2,即图中阴影部分.由图1-2可知:L (Ω)是由x =0,x =24,y =0,y =24图1-2所围图形面积S =242,而L (A )=242-222,因此.)2422(1242224)()()(2222-=-=Ω=L A L A P 问题 例21可否使用二维均匀分布来计算?1.3.5 条件概率与概率的乘法公式1.条件概率前面我们所讨论的事件B 的概率P S (B ),都是指在一组不变条件S 下事件B 发生的概率(但是为了叙述简练,一般不再提及条件组S ,而把P S (B )简记为P (B )).在实际问题中,除了考虑概率P S (B )外,有时还需要考虑“在事件A 已发生”这一附加条件下,事件B 发生的概率.与前者相区别,称后者为条件概率,记作P (B |A ),读作在A 发生的条件下事件B 的概率.在一般情况下,如果A ,B 是条件S 下的两个随机事件,且P (A )≠0,则在A 发生的前提下B 发生的概率(即条件概率)为)()()|(A P AB P A B P =, (1-3) 并且满足下面三个性质:(1)(非负性)P (B |A )≥0;(2)(规范性)P (Ω|A )=1;(3)(可列可加性)如果事件B 1,B 2,…互不相容,那么).|()|(11A B P A B P i i i i ∑∞=∞==问题 (1)条件概率在原样本空间Ω中是某一个事件的概率吗?(2)如何判断一个问题中所求的是条件概率还是无条件概率?(3)在一个具体问题中条件概率如何获得?例22 设随机事件B 是A 的子事件,已知P (A )=1/4,P (B )=1/6,求P (B |A ).分析 这是一个条件概率问题.解 因为B ⊂A ,所以P (B )=P (AB ),因此⋅===32)()()()()|(A P B P A P AB P A B P 2.概率的乘法公式在条件概率公式(1-3)的两边同乘P (A ),即得P (AB )=P (A )P (B |A ). (1-4)例23 在100件产品中有5件是不合格的,无放回地抽取两件,问第一次取到正品而第二次取到次品的概率是多少?解 设事件A ={第一次取到正品},B ={第二次取到次品}.用古典概型方法求出.010095)(=/=A P 由于第一次取到正品后不放回,那么第二次是在99件中(不合格品仍是5件)任取一件,所以⋅=995)|(A B P 由公式(1-4), ⋅=⨯==3961999510095)|()()(A B P A P AB P问题 (1)例23中,问两件产品为一件正品,一件次品的概率是多少?(2)例23中,将“无放回地抽取”改为“有放回地抽取”,答案与上题一样吗?为什么?例24 抓阄问题 五个人抓一个有物之阄,求第二个人抓到的概率.分析 (1)什么是“抓阄”问题,如何判断它?(2)例24中“求第二个人抓到的概率”是指“在第一人没有抓到的条件下,第二个人抓到的概率”吗?解 这是一个乘法公式的问题.设A i ={第i 个人抓到有物之阄}(i =1,2,3,4,5),有⋅=+∅=+=+=Ω=2121212111222)(A A A A A A A A A A A A A根据事件相同,对应概率相等有).|()()()(121212A A P A P A A P A P ==又因为,41)|(,54)(,51)(1211===A A P A P A P所以⋅=⨯=514154)(2A P 问题 (1)本题还有其他方法解决吗?(2)若改成n 个人抓m 个有物之阄(m <n ),下面的结论),,2,1()(n k nm A P k == 还成立吗?例25 设袋中有4个乒乓球,其中1个涂有白色,1个涂有红色,1个涂有蓝色,1个涂有白、红、蓝三种颜色.今从袋中随机地取一个球,设事件A ={取出的球涂有白色},B ={取出的球涂有红色},C ={取出的球涂有蓝色}.试验证事件A ,B ,C 两两相互独立,但不相互独立.证 根据古典概型,我们有n =4,而事件A ,B 同时发生,只能是取到的球是涂有白、红、蓝三种颜色的球,即m =1,因而⋅=41)(AB P 同理,事件A 发生,只能是取到的球是涂红色的球或涂三种颜色的球,因而⋅==⋅==2142)(2142)(B P A P 因此,有 ,412121)()(=⨯=B P A P 所以 P (AB )=P (A )P (B ),即事件A ,B 相互独立.类似可证,事件A ,C 相互独立,事件B ,C 相互独立,即A ,B ,C 两两相互独立,但是由于,41)(=ABC P 而 ,4181212121)()()(=/=⨯⨯=C P B P A P 所以A ,B ,C 并不相互独立.例26 加工某一零件共需经过四道工序,设第一、二、三、四道工序的次品率分别是2%、3%、5%、3%,假定各道工序是互不影响的,求加工出来的零件的次品率.答案是:0.124(或1-0.98×0.97×0.95×0.97).问题 本题使用加法公式还是乘法公式较为简便?例27 一批零件共100个,其中有次品10个.每次从中任取一个零件,取出的零件不再放回去,求第一、二次取到的是次品,第三次才取到正品的概率. 答案是:)989099910010(0084.0⨯⨯或.。

考研数学概率论辅导讲义

考研数学概率论辅导讲义

考研数学概率论辅导讲义主讲:马超第二章 随机变量及其分布第一节 基本概念1、概念网络图⎭⎬⎫⎩⎨⎧-→⎭⎬⎫⎩⎨⎧≤<→⎭⎬⎫⎩⎨⎧)()()()(a F b F A P b X a A X 随机事件随机变量基本事件ωω→≤=)()(x X P x F 分布函数: 函数分布正态分布指数分布均匀分布连续型几何分布超几何分布泊松分布二项分布分布离散型八大分布→⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧-102、重要公式和结论例2.1:4黑球,2白球,每次取一个,不放回,直到取到黑为止,令X(ω)为“取白球的数”,求X 的分布律。

例2.2:给出随机变量X 的取值及其对应的概率如下:,31,,31,31,,,2,1|2k k PX , 判断它是否为随机变量X 的分布律。

例2.3:设离散随机变量X 的分布列为214181812,1,0,1,,,-P X ,求X 的分布函数,并求)21(≤X P ,)231(≤<X P ,)231(≤≤X P 。

例2.4: )()(21x f x f +是概率密度函数的充分条件是: (1))(),(21x f x f 均为概率密度函数 (2)1)()(021≤+≤x f x f例2.5:袋中装有α个白球及β个黑球,从袋中先后取a+b 个球(放回),试求其中含a 个白球,b 个黑球的概率(a ≤α,b ≤β)。

例2.6:某人进行射击,设每次射击的命中率为0.001,若独立地射击5000次,试求射中的次数不少于两次的概率,用泊松分布来近似计算。

例2.7:设某时间段内通过一路口的汽车流量服从泊松分布,已知该时段内没有汽车通过的概率为0.05,则这段时间内至少有两辆汽车通过的概率约为多少?例2.8:袋中装有α个白球及β个黑球,从袋中任取a+b 个球,试求其中含a 个白球,b 个黑球的概率(a ≤α,b ≤β)。

2015方浩概率强化讲义3

2015方浩概率强化讲义3

【P347,例 3】二维随机变量( X ,Y )概率密度
1,0 x 1,0 y 2 x f ( x, y) 0, 其他
(1)求 X ,Y 的边缘概率密度 f X (x), fY (y) (2)求 Z 2 X Y 的概率密度 f Z ( z )
【 P352 ,例 1 】设随机变量 X ,Y 独立同分布, 且 X 分布函数为 F x ,则 Z max X ,Y 的分 布函数为( )
F ( , y ) F ( x , ) F ( , ) 0
3 单调不减: F ( x , y )分别关于 x , y 单调不减 ○
4 右连续性: F ( x , y )分别关于 x , y 右连续 ○
4.边缘分布函数:
FX ( x ) P X x P X x ,Y F ( x, )
F x, y 1
x , y .分别求随机变量 X ,Y

2
A arctan x B arctan 2 y ,
的边缘分布函数.
[题型二 二维离散型随机变量] 【P351,2】袋子中有 1 只红球,2 只黑球, 3 只白球,现有放回的从中取两次,每次取 一球,以 X ,Y 分别表示两次取球中取到红球 与黑球的个数.
B fY y
D f X x /
fY y
1 1 【例】已知( X ,Y ) ~ N (0,0; , ;0) 2 2
(1) Z X 2 Y 2,求随机变量 Z 的概率密度
fZ z
3Y (2)求概率 P X 2
【例】设二维随机变量( X ,Y )的概率密度为 2 x 2 xy y f ( x , y ) Ae , x .

王式安考研概率强化讲义啊

王式安考研概率强化讲义啊

第一讲随机事件和概率考试要求:数学一、三、四要求一致。

理解:样本空间的概念理解:随机事件,概率,条件概率,事件独立性,独立重复试验掌握:事件的关系与运算,概率的根本性质,五大公式〔加法、减法、乘法、全概率、贝叶斯〕,独立性计算,独立重复试验就算会计算:古典概率和几何型概率。

§1 随机事件与样本空间一、随机试验:E〔1〕可重复〔2〕知道所有可能结果〔3〕无法预知二、样本空间试验的每一可能结果——样本点ω所有样本点全体——样本空间Ω三、随机事件样本空间的子集——随机事件A B C样本点——根本领件,随机事件由根本领件组成。

假如一次试验结果,某一根本领件ω出现——ω发生,ω出现假如组成事件A的根本领件出现——A发生,A出现Ω——必然事件Φ——不可能事件§2 事件间的关系与运算一.事件间关系包含,相等,互斥,对立,完全事件组,独立 二.事件间的运算: 并,交,差运算规律:交换律,结合律,分配律,对偶律 概率定义,集合定义,记号,称法,图 三.事件的文字表达与符号表示例2 从一批产品中每次一件抽取三次,用(1,2,3)i A i =表示事件:“第二次抽取到的是正品〞试用文字表达以下事件: 〔1〕122313A A A A A A ; 〔2〕123A A A ;〔3〕123A A A ; 〔4〕123123123A A A A A A A A A ;再用123,,A A A 表示以下事件:(5)都取到正品; (6)至少有一件次品; (7)只有一件次品; (8)取到次品不多于一件。

§3 概率、条件概率、事件独立性、五大公式一.公理化定义 ,,A P Ω (1)()0P A ≥ (2)()1P Ω= (3)1212()()()()n n P A A A P A P A P A =++++ ,i j A A i j =∅≠二.性质 (1)()0P ∅= 〔2〕1212()()()()nn P A A A P A P A P A =++++,i j A A i j =∅≠(3)()1()P A P A =- (4),()()A B P A P B ⊂≤ (5)0()1P A ≤≤三.条件概率与事件独立性(1)()()0,(),()P AB P A P B A P A >=事件A 发生条件下事件B 发生的条件概率;(2)()()(),P AB P A P B =事件,A B 独立,,A B 独立,A B 独立,A B 独立,A B 独立;()0P A >时,,A B 独立()()P B A P B =;(3)121212(,,,)()()()1kk i i i i i i k P A A A P A P A P A i i i n =≤<<<≤称12,,n A A A 互相独立,(2321nn n n n C C C n +++=--个等式)互相独立⨯两两独立。

2015方浩概率强化讲义4

2015方浩概率强化讲义4
5
[方差的性质]
1 Da 0 ○ 2 D(aX ) a 2 D X ○ 3 D( X a ) D X ○ 4 D X Y D X D Y 2cov X ,Y ○ 5 若 X ,Y 相互独立, D X Y D X D Y ○ 6 E X 2 E2 X D X ○
2 2 2 2 2 2
2 2
(D) EX EX EY EY
33
【 例 】 随 机 变 量 X ,Y 都 服 从 N 0,1 , U X Y ,V X Y ,则随机变量U ,V 必( )
A 不独立 C 不相关不一定独立
B 独立 D 相关
31
【例4.31】
32
[题型三 不相关与独立性] 【P162,5】设随机变量 X ,Y 服从二维正态
分布,则随机变量 X Y , X Y 不相关的 充分必要条件为( ) (A) EX EY (C) EX EY
2 2
(B) EX EX EY EY
15
(六)随机变量的矩 1. k 阶原点矩: E X k 2. k 阶中心矩: E X E X

k

16
[题型一 期望与方差的计算]
【 例 4.22 】 设 随 机 变 量 X 的 分 布 函 数 为 x 1 F ( x ) 0.3( x ) 0.7( ) , 其 中 ( x ) 为 2 标准正态的分布函数,则 EX ( ) (A)0 (C) 0.7 (B) 0.3 (D)1
第四章
随机变量的数字特征
1
(一)期望与方差 1.[期望定义] 离散型(求和) 一维: E X xi pi

考研数学《概率统计》讲义第四讲

考研数学《概率统计》讲义第四讲

多维随机变量之间存在一定的关 联程度,通过相关系数进行度量。
描述多维随机变量之间相关性的 矩阵,其中元素为各分量之间的 协方差。
04
数字特征与特征函数
数学期望定义及性质
数学期望的定义
对于离散型随机变量,数学期望是所有可能 取值与其对应概率的乘积之和;对于连续型 随机变量,数学期望是概率密度函数与自变 量的乘积在全体实数范围内的积分。
通过多维随机变量的联合分布,计算函数的期望和方 差。
变换后的多维随机变量分布
通过变换得到新的多维随机变量,并求其分布情况。
卷积公式
求解两个独立随机变量之和的分布情况。
独立性、相关性和协方差矩阵
01
独立性
多维随机变量中各个分量相互独 立,即一个分量的取值不影响其 他分量的取值。
相关性
02
03
协方差矩阵
考研数学《概率统计》讲义第 四讲

CONTENCT

• 概率空间与事件概率 • 一维随机变量及其分布 • 多维随机变量及其分布 • 数字特征与特征函数 • 大数定律与中心极限定理 • 参数估计与假设检验
01
概率空间与事件概率
概率空间定义及性质
概率空间定义
由样本空间、事件域和概率测度三部分构成,用于描述随机试验 所有可能结果及其概率的数学模型。
依概率收敛和依分布收敛
依概率收敛
设随机变量序列 {Xn} 和随机变量 X 分布在同一概率空间 上,如果对于任意正数 ε,都有 lim(n→∞) P(|Xn - X| ≥ ε) = 0 成立,则称 {Xn} 依概率收敛于 X。
依分布收敛
设随机变量序列 {Xn} 和随机变量 X 的分布函数分别为 Fn(x) 和 F(x),如果对于 F(x) 的每一个连续点 x,都有 lim(n→∞) Fn(x) = F(x) 成立,则称 {Xn} 依分布收敛于 X。依分布收敛是描述随机变量序列分布函数收敛到某个 特定分布的一种弱收敛形式。

2008考研网校概率讲义(1-2章)

2008考研网校概率讲义(1-2章)

第一章随机事件和概率一、概率的定义与性质定义1:设Ω为一个样本空间,如果对于Ω的每一个事件A都有一个实数P(A)与之对应,并且这些实数满足:1.非负性:2.归一性:3.可加性:若A1,A2,…,A n互不相交,那么那么我们就称P(A)为事件A的概率。

二、概率的主要性质遵循的原则:由概率关系不能得到事件关系例1.假设A,B是两个随机事件,且,则[答疑编号:21301101针对该题提问]解析:把展开:P(A)+ P(B)- P(AB)= P(A)P(B-A)=0答案:D例2.设事件A,B满足P(B|A)=1,则[答疑编号:21301102针对该题提问]解析:P(A)-P(AB)=0P(A-B)=0答案:A例3.假设A,B是两个随机事件,则一定有[答疑编号:21301103针对该题提问]答案:D解析:如果A和B都是空集,则选项B和C都不成立。

例 4.设对于随机变量X和Y,有,;,则。

[答疑编号:21301104针对该题提问]解:三、古典概型例5.(抽签问题)设袋中装有7个白球,8个红球,现将球一只只摸出。

求第k次摸出的为白球的概率。

[答疑编号:21301105针对该题提问]设A={第k次摸出的为白球}样本点总数:15!A中样本点数:7×14!P(A)=例6.设袋中装有6个白球,9个红球,从中任取5个,(a)有放回,(b)不放回。

求这5个球中恰有3个白球的概率。

[答疑编号:21301106针对该题提问]有放回与排列组合无关。

取出、排出A={这5个球中恰有3个白球}不放回:样本点总数:A中样本点数:有放回:样本点总数:A中样本点数:定取取位白红例7.(分房问题)将n个人等可能地分配到N个房间中。

求(1)某指定的1个房间中恰有m个人的概率。

[答疑编号:21301107针对该题提问](2)每两个人都不在同一个房间的概率。

[答疑编号:21301108针对该题提问]A={某指定的1个房间中恰有m个人}B={每两个人都不在同一个房间}样本点总数:A中样本点数:B中样本点数:例8.求m个人中至少有两个人生日相同的概率。

考研数学李林概率讲义

考研数学李林概率讲义

出现的情况,则样本和反面次,观察正面)将一枚硬币抛掷:(例,)对偶律:)()()()()()()()()分配律:)()()()()结合律:,)交换律:合的运算律相似)、事件的运算律(与集的一个划分。

或为样本空间事件组(完全事件组)则称这个事件组为完备或(发生,即仅有一个事件且在每次试验中必有一个时,两个互不相容(即当,,,或可列无限多个事件,,限个事件、完备事件组:如果有。

,,即有的对立事件记作,为对立事件(或互逆)与发生,称事件一个必有一个发生,且仅有和事件,如果事件、对立:在每次试验中为互不相容事件。

、,称不能同时发生,即与若事件、互不相容(互斥):不发生。

发生而表示的差:与、事件同时发生,,表示一般:同时发生与表示事件或之交:与、事件至少有一个发生,,表示一般:至少有一个发生。

与表示事件之和(并):与、事件相等,记做与,称且、相等:若。

或的样本点,则有中至少有一个不属于且。

若或,记作包含发生,称发生必然导致事件、包含:若事件、、,随机事件为的样本空间为设随机试验算:二、事件的关系及其运的事件。

每次试验中一定不发生事件事件,不可能每次试验中一定发生的:必然事件事件。

两种特殊的事件单子集,称基本;由一个样本点组成的,,,记作事件,简称为事件,称为随机中满足某些条件的子集的样本空间、随机事件:随机试验记作素点样本空间的元素称为元作记的集合称为样本空间,的所有可能结果所组成、样本空间:随机试验。

有的结果是明确可知的一个结果会发生,但所)试验之前不能确定哪一个;)每次试验的结果不止复进行;)可在相同的条件下重机试验,记作三个条件的试验称为随、随机试验:满足以下件:一、随机试验与随机事内容提要及有关公式随机事件及其概率第一章概率论与数理统计T H A A A A BA B A B A B A A A A A C A B A C B A C A B A C B A C B A C B A C B A C B A C B A C B A AB B A A B B A A A j i A A A A A j i A A A A A A A B B A A A B A B A B A B A B A B A B A B A A A A A A A A B A AB B A B A A A A A A A A B A B A B A B A B A A B B A B A A B A B A B B A A B A B B A i A B A EC B A E E ii i i i i i i i i i i i i i ni j i i j i n n i i i i i i i i i 311,43219),),8765.)(4.3.21),2,1(.3.,,2321.11111111121211212112121∞=∞=∞=∞=∞=∞=∞==∞=∞==============ΩΩ=Ω=≠==≠===-===⊆⊆⊂⊃⊇⊆⊇=Ω--ΩΩΩφφφφω,则有是两两互不相容的事件,,,设特别地:有限可加性,(有,一般地:对任意事件)()()()()()()()()()()()(有、、件)加法公式:对任意事()()()且()()(时,特别:当)()()(,有和个事件)减法公式,对任意两()()()(、概率的性质:(,则为两两互不相容的事件,,、)可列可加性设()(,对于必然事件)规范性()(,对于任意事件)非负性()为概率:(事件集合上的函数,则称满足下列条件的的样本空间为试验、概率的定义:设随机质三、事件的概率及其性示事件。

方浩概率强化讲义

方浩概率强化讲义

2015考研数学综合强化课概率论与数理统计主讲老师:方浩1第一章随机事件与概率2(一)随机试验和样本空间1.[随机试验]2.[样本空间]: 随机试验所有可能发生的结果组成的集合[样本点]: 随机试验的每个可能结果3.[基本事件]:样本空间中的一个样本点组成的单点集4.[随机事件]:样本空间 的子集35.[必然事件]:随机试验中必然发生的事件,记作Ω.6.[不可能事件]:每次试验中一定不发生,记为φ.45 (二) 事件的关系和运算 1.[事件间的关系] (1) 包含: A B ⊃ (2) 相等: A B = (3) 和: A B (4) 积: A B(5) 差: =A B AB -(6)互斥(互不相容):AB φ=.(7)对立: A B =Ω,A B φ=.记为B A =.6 2.[运算律](1)交换律:;A B B A A B B A == (2)结合律:()()A B C AB C =()()A B C AB C = (3)分配律:()()()A B C A B A C =(4)对偶律(摩根律):,A B A B A B A B ==7 (三)概率的定义与性质 1.[概率的定义](1)非负性: ()0P A ≥.(2)规范性: ()1P Ω=.(反之不成立) (3)可列可加性:12,,A A 两两互不相容 1212()()()P A A P A P A =++8 2.[概率的性质](1)非负性: 0()1P A ≤≤.(2)规范性: ()0,()1P P ∅=Ω=.(3)有限可加性:12,,,n A A A 两两互不相容1212()()()()n n P A A A P A P A P A =+++.(4) ()1()P A P A =-.9 3.[基本公式][加法公式]()()()()P A B P A P B P AB =+-()()()31231231,j()i i j i i P A A A P A P A A P A A A ==-+∑∑[减法公式]()()()()P A B P A P AB P AB -=-=[逆事件] ()1()P A P A =-10 (四)三大概型 1.古典概型()AA n P A n=Ω中基本事件的中基本事件 2.几何概型()A P A =Ω的度(或面积、体积)的度(或面积、体积)11 3.伯努利概型[定义]:随机试验只有两个可能结果:A 和A ;每次试验A 发生概率相等()P A p =[结论]:n 重伯努利试验,事件A 发生k 次的概率:(,)(1)(0,1,2,,)k k n kk n B n p C p p k n -=-= .(五)条件概率,乘法公式,独立性1.条件概率:()0P A>,A发生条件下B发生的概率() ()()P AB P B AP A=1213 2.条件概率的性质(1) 非负性:0(|)1P B A ≤≤ (2) 规范性:(|)1P A Ω=(3) 逆事件:(|)1(|)P A B P A B =- (4) 加法公式:121212(|)(|)(|)(|)P A A B P A B P A B P A A B =+- 减法公式:12112(|)()(|)P A A B P A B P A A B -=-14 3.[乘法公式]()()()P AB P B A P A =12121211()()()()n n n P A A A P A A A A P A A P A -=4.两个事件的独立性定义:()()()=,称事件,A B相互独立.P AB P A P B推论:设0()1<<,P A,A B独立()(|)(|)⇔==P B P B A P B A性质:,A B独立,则A与B,A与B,A与B也相互独立155.三个事件的独立性1)()()()=;P AB P A P B2)()()()P AC P A P C=;3)()()()=;P BC P B P C4)()()()()=;P ABC P A P B P CA B C两两独立. 满足1-3:称三个事件,,A B C相互独立. 满足1-4:称三个事件,,1617 (六)全概率公式与贝叶斯公式 1.完备事件组:若事件1,n A A =Ω,1i j A A i j n φ=≤≠≤,称事件1,,n A A 是一个完备事件组.18 2.全概率公式:1()()()ni i i P B P A P B A ==∑.3.贝叶斯公式:()1()()()()j jj niii P B A P A P A B P A P B A ==∑[题型一概率的基本计算]A B C=【例】()___()()A AB C()()B A B C()()()C A B A C()()()D A B A C19【例】事件,A B满足1 ()()2P A P B==和()1P A B =则有( ) (A)A B=Ω(B)ABφ=(C)()1P A B=(D)()0P A B-=20【例1.2】设事件,A B互不相容,则()()()0A P AB=()()()()=B P AB P A P B()()()1=-C P A P B()()1D P A B=2122 【例】设,Y X 为2个随机变量,且{}30,Y 07P X ≥≥=,{}{}4007P X P Y ≥=≥=则(){}max ,0=___P X Y ≥23 【例 1.15】设,,A B C 是随机事件,且()()()14P A P B P C ===,()()16P AC P BC ==,()0P AB =,求,,A B C 都不发生的概率24 【例】()()()0.3,0.4,0.5P A P B P AB ===,则()___P B A B =【例1.28,Z】设相互独立的事件A,B都不发生的概率是1,且A发生B不发生的概率与B发生A9不发生的概率相等,求A发生的概率2526 【例】()()111(),,432P A P B A P A B ===,则()___P A B =27 [题型二 三大概型]【例1.19】在区间()-1,1之间任取两个数,X Y ,则二次方程20t Xt Y ++=有两个正根的概率为____【例】设一厂家生产的每台仪器以概率0.7可直接出厂,以概率0.3需进一步调试,经调试后,以概率0.8出厂,以概率0.2定为不合格,不能出厂,现该厂生产了(2)台仪器(设各台生产n n≥过程相互独立).求(I)所有机器都能出厂的概率α.(II)其中恰好有两件能出厂的概率β.(III)至少有两件不能出厂的概率θ.2829 [题型三 条件概率与独立性]【P17,2】已知()01P B <<,()()()1212P A A B P A B P A B ⎡⎤+=+⎣⎦,则下列选项中正确的是( )(A )()()()1212P A A B P A B P A B ⎡⎤+=+⎣⎦(B ) ()()()1212P A B A B P A B P A B +=+30 (C) ()()()1212P A A P A B P A B +=+(D) ()()()()()1122P B P A P B A P A P B A =+31【例】设,A B 是两个随机事件,()()01,0P A P B <<> ()()P B A P B A =则下列选项中正确的是___ ()()() A A B A B =P P()()()B A B A B ≠P P()()()()C AB A P B =P P()()()()D AB P A P B ≠P32【P22,2】设(|)(|)1P A B P A B += 则( )(A ) A,B 互不相容(B )A,B 互逆 (C )A,B 相互独立 (D )A,B 不独立33【例1.11】将一枚硬币连续投掷两次,定义事件1A :第一次出现正面,2A :第二次出现正面,3A :正反面各出现一次,4A :两次都是出现正面,则下列说法正确的是( )(A )123,,A A A 相互独立(B )234,,A A A 相互独立(C )123,,A A A 两两独立(D )234,,A A A 两两独立【例】设,,A B C是三个相互独立的随机事件,且<<,则下列给定的四对事件中不一定相互0()1P C独立的是 ( )()A A B与C()B A C与C-与CC A B()D AB与C()34【题型四全概率公式与贝叶斯公式】【例1.8】在1,2,3,4中任取1个数为X,再从1,X中任取一个数为Y,则{}2___P Y==35【例】设工厂A,B的产品的次品率分别为1%和2%,现在从由产品A和B的产品分别占60%和40%的一批产品中随机抽取1件(1)求该产品是次品的概率(2)已知取出为次品,求该次品属于A生产的概率36【例】设有甲、乙两个箱子,甲箱中有m只白球,n个红球,乙箱中有a个白球,b个红球,现从甲箱中任意取出一只放入乙箱,再从乙箱中任取出一球,求(1)从乙中取出的是白球的概率(2)已知从乙中取出的是白球,从甲放入乙中的是白球的概率(3)已知从乙中取出的是白球,从甲放入乙中的是红球的概率37【例】甲乙两名运动员进行打靶训练,每次打靶甲中靶的概率为0.5,乙中靶的概率为0.3,甲乙两人都中靶的概率为0.2,每次打靶中只要有一人中靶就称为此次打靶合格,第n次()3n>打靶α=合格恰好是第3次合格的概率___383963。

2015考研数学强化班概率统计重要题型讲解_汤家凤 _

2015考研数学强化班概率统计重要题型讲解_汤家凤 _

x ⎧1 π ⎪ cos ,0 < x < π 【例 3】设 X 的密度函数为 f ( x) = ⎨ 2 ,对 X 独立观察 4 次,用 Y 表示 X > 的次数, 2 3 ⎪ ⎩0, 其他
5
2015 考研数学强化班概率统计重要题型讲解
求 EY 。 【例 4】设 X ~ E (1) ,求 E ( X + e
2
2015 考研数学强化班概率统计重要题型讲解
第二章
题型一
一维随机变量及分布
分布律与分布密度、分布函数
【例 1】设 X , Y 为两个随机变量,其密度为 f 1 ( x), f 2 ( x ) ,分布函数为 F1 ( x ), F2 ( x ) ,下列函数是密度函 数的是 ( )
( A) f1 ( x) + f 2 ( x) (C ) f1 ( x) F2 ( x)
题型二
2
常见的随机变量的分布
【例 1】设随机变量 X ~ N (2, σ ) ,且 P{2 < X < 4} = 0.4 ,求 P{ X < 0} 。 【例 2】设 X ~ N ( μ1 , σ 1 ), Y ~ N ( μ 2 , σ 2 ) ,已知 P{| X − μ1 |< 1} > P{| Y − μ 2 |< 1} ,则
X
【例 4】设 X ~ E ( 2) ,求 Y = 1 − e
−2 X
的密度函数。
3
2015 考研数学强化班概率统计重要题型讲解
⎧ 1 ,1 < x < 8 ⎪ 【例 5 】设随机变量的密度为 X 的密度为 f ( x ) = ⎨ 33 x 2 ,且 X 的分布函数为 F ( x) ,求 ⎪0, 其他 ⎩
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研概率与数理统计第一章 随机事件和概率第一节 基本概念例题例1.1:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,没有平局,试问总共输的场次是多少?例1.2:到美利坚去,既可以乘飞机,也可以坐轮船,其中飞机有战斗机和民航,轮船有小鹰号和Titanic 号,问有多少种走法?例1.3:到美利坚去,先乘飞机,后坐轮船,其中飞机有战斗机和民航,轮船有小鹰号和Titanic 号,问有多少种走法?例1.4:10人中有6人是男性,问组成4人组,三男一女的组合数。

例1.5:两线段MN 和PQ 不相交,线段MN 上有6个点A 1,A 2…,A 6,线段PQ 上有7 个点B 1,B 2,…,B 7。

若将每一个A i 和每一个B j 连成不作延长的线段A i B j (i=1,2,…6;j=1,2,…,7),则由这些线段 A i B j 相交而得到的交点最多有A . 315个B . 316个C . 317个D . 318个例1.6:3封不同的信,有4个信箱可供投递,共有多少种投信的方法?例1.7:某市共有10000辆自行车,其牌照号码从00001到10000,求有数字8的牌照号码的个数。

例1.8:3白球,2黑球,先后取2球,放回,至少一白的种数?(有序)151513=∙C C 2112121515=∙-∙C C C C例1.9:3白球,2黑球,先后取2球,不放回,至少一白的种数?(有序)121413=∙C C 1811121415=∙-∙C C C C例1.10:3白球,2黑球,任取2球,至少一白的种数?(无序)121413=∙C C 92225=-C C 例1.11:化简 (A+B)(A+B )(A +B)例1.12:)()()(C B C A C B A = 成立的充分条件为: (1)C A ⊂ (2) C B ⊂例1.13:3白球,2黑球,先后取2球,放回,至少一白的概率?例1.14:3白球,2黑球,先后取2球,不放回,至少一白的概率?例1.15:3白球,2黑球,任取2球,至少一白的概率?例1.16:袋中装有α个白球及β个黑球。

①从袋中任取a+b 个球,试求其中含a 个白球,b 个黑球的概率(a ≤α,b ≤β)。

②从袋中任意地接连取出k+1(k+1≤α+β)个球,如果取出后不放回,试求最后取出的是白球的概率。

③上两题改成“放回”。

例1.17:从6双不同的手套中任取4只,求其中恰有一双配对的概率。

例1.18:有5个白色珠子和4个黑色珠子,从中任取3个,问其中至少有1个是黑色的概率? 例1.19:设O 为正方形ABCD[坐标为(1,1),(1,-1),(-1,1),(-1,-1)]中的一点,求其落在x 2+y 2≤1的概率。

例1.20:某市共有10000辆自行车,其牌照号码从00001到10000,求偶然遇到的一辆自行车,其牌照号码中有数字8的概率。

例1.21:一只袋中装有五只乒乓球,其中三只白色,两只红色。

现从袋中取球两次,每次一只,取出后不再放回。

试求:①两只球都是白色的概率;②两只球颜色不同的概率;③至少有一只白球的概率。

例1.22:5把钥匙,只有一把能打开,如果某次打不开就扔掉,问以下事件的概率? ①第一次打开;②第二次打开;③第三次打开。

例1.23:某工厂生产的产品以100件为一批,假定每一批产品中的次品最多不超过4件,并现在进行抽样检验,从每批中抽取10件来检验,如果发现其中有次品,则认为该批产品是不合格的,求一批产品通过检验的概率。

例1.24:某工厂生产的产品以100件为一批,假定每一批产品中的次品最多不超过4件,并具有如下的概率:格的,求通过检验的一批产品中,恰有)4,3,2,1,0(=i i 件次品的概率。

例1.25:A ,B ,C 相互独立的充分条件:(1)A ,B ,C 两两独立(2)A 与BC 独立例1.26:甲,乙两个射手彼此独立地射击同一目标各一次,甲射中的概率为0.9,乙射中的概率为0.8,求目标被射中的概率。

例1.27:有三个臭皮匠独立地解决一个问题,成功解决的概率分别为0.45,0.55,0.60,问解决该问题的能力是否赶上诸葛亮(成功概率为0.9)?例1.28:假设实验室器皿中产生A 类细菌与B 类细菌的机会相等,且每个细菌的产生是相互独立的,若某次发现产生了n 个细菌,则其中至少有一个A 类细菌的概率是 。

例1.29:袋中装有α个白球及β个黑球,从袋中任取a+b 次球,每次放回,试求其中含a个白球,b 个黑球的概率(a ≤α,b ≤β)。

例1.30:有4组人,每组一男一女,从每组各取一人,问取出两男两女的概率?例1.31:进行一系列独立的试验,每次试验成功的概率为p ,则在成功2次之前已经失败3次的概率为:A .32)1(4p p -B .3)1(4p p -C .32)1(10p p -D .32)1(p p -E .3)1(p - 第二节 重点考核点事件的运算、概率的定义(古典概型和几何概型)、条件概率和乘法公式、全概和贝叶斯公式、独立性和伯努利概型第三节 常见题型1、事件的运算和概率的性质例1.32:(A B)-C=(A-C) B 成立的充分条件为:(1)A B=Ø (2) A C=Ø例1.33:A,B,C 为随机事件,“A 发生必导致B 、C 同时发生”成立的充分条件为:(1) A∩B∩C=A (2)A∪B∪C=A例1.34:设A ,B 是任意两个随机事件,则)})()()({(B A B A B A B A P ++++= 。

例1.35:假设事件A 和B 满足P (B | A )=1,则(A ) A 是必然事件。

(B )B A ⊃。

(C )B A ⊂。

(D )0)(=B A P 。

[ ]2、古典概型和几何概型例1.36:有两组数,都是{1,2,3,4,5,6},分别任意取出一个,其中一个比另一个大2的概率?例1.37:52张扑克牌,任取5张牌,求出现一对、两对、同花顺的概率。

例1.38:设有n 个质点,每个以相同的概率落入N 个盒子中。

设A=“指定的n 个盒子中各有1个质点”,对以下两种情况,试求事件A 的概率。

(1)(麦克斯威尔-波尔茨曼统计)假定n 个质点是可以分辨的,还假定每个盒子能容纳的质点数不限。

(2)(费米-狄拉克统计)假定n 个质点是不可分辨的,还假定每个盒子至多只能容纳一个质点。

例1.39:袋中有10个球,其中有4个白球、6个红球。

从中任取3个,求这三个球中至少有1个是白球的概率。

例1.40:侯车问题:某地铁每隔五分钟有一列车通过,在乘客对列车通过该站时间完全不知道的情况下,求每个乘客到站等车时间不多于2分钟的概率。

例1.41:会面问题:甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的,如果甲船和乙船停泊的时间都是两小时,求它们会面的概率是多少?3、条件概率和乘法公式例1.42:从0到9这10个数中任取一个数并且记下它的值,放回,再取一个数也记下它的值。

当两个值的和为8时,出现5的概率是多少?例1.43:一个家庭有两个孩子,已知至少一个是男孩,问另一个也是男孩的概率?4、全概和贝叶斯公式例1.44:在盛有10只螺母的盒子中有0只,1只,2只,…,10只铜螺母是等可能的,今向盒中放入一个铜螺母,然后随机从盒中取出一个螺母,则这个螺母为铜螺母的概率是A . 6/11B .5/10C .5/11D .4/11例1.45:有5件产品,次品的比例为20%,从中抽查2件产品,没有次品则认为合格,问合格的概率?例1.46:有5件产品,每件产品的次品率为20%,从中抽查2件产品,没有次品则认为合格,问合格的概率?例1.47:发报台以概率0.6和0.4发出信号“· ”和“-”,由于通信系统存在随机干扰,当发出信号为“· ”和“-”时,收报台分别以概率0.2和0.1收到信号“-”和“· ”。

求收报台收到信号“· ”时,发报台确实发出信号“· ”的概率。

例1.48:100个球,40个白球,60个红球,先后不放回取2次,问第2次取到白球的概率? 例1.49:袋中有4个白球、6个红球,先从中任取出4个,然后再从剩下的6个球中任取一个,则它恰为白球的概率是 。

例1.50:设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份。

随机地取一个地区的报名表,从中先后抽出两份,(1) 求先抽到的一份是女生表的概率p ;(2) 已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q 。

5、独立性和伯努利概型例1.51:设两两相互独立的三事件A ,B ,C ,满足:21)()()(,<==Φ=C P B P A P ABC ,并且169)(=++C B A P ,求事件A 的概率。

例1.52:设P(A)>0,P(B)>0,证明(1) 若A 与B 相互独立,则A 与B 不互斥;(2) 若A 与B 互斥,则A 与B 不独立。

例1.53:对行任意二事件A 和B ,(A ) 若AB ≠Φ,则A ,B 一定独立。

(B ) 若AB ≠Φ,则A ,B 有可能独立。

(C ) 若AB=Φ,则A ,B 一定独立。

(D ) 若AB =Φ,则A ,B 一定不独立。

例1.54:“A,B,C 为随机事件,A -B 与C 独立”的充分条件:(1) A,B,C 两两独立 (2)P (ABC )=P (A )P (B )P (C )例1.55:设A ,B ,C 是三个相互独立的随机事件,且0<P (C )<1。

则在下列给定的四对事件中不.相互独立的是 (A )B A +与C 。

(B )AC 与C 。

(C )B A -与C 。

(D )AB 与C 。

[ ] 例1.56:将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A )321,,A A A 独立(B )432,,A A A 独立(C )321,,A A A 两两独立(D )432,,A A A 两两独立 例1.57:某班车起点站上车人数是随机的,每位乘客在中途下车的概率为0.3,并且它们下车与否相互独立。

求在发车时有10个乘客的条件下,中途有3个人下车的概率。

例1.58:某种硬币每抛一次正面朝上的几率为0.6,问连续抛5次,至少有4次朝上的概率。

例1.59:A 发生的概率是0.6,B 发生的概率是0.5,问A,B 都不发生的最大概率?例1.60:两只一模一样的铁罐里都装有大量的红球和黑球,其中一罐(取名“甲罐”)内的红球数与黑球数之比为2:1,另一罐(取名“乙罐”)内的黑球数与红球数之比为2:1 。

相关文档
最新文档