图论 7-6 对偶图与着色
离散数学PPT课件10着色与对偶图(ppt文档)
不同颜色.
四. 图G的正常着色(简称着色):
1. 对G的每个结点指定一种颜色,使得相邻接的两个结点
着不同颜色. 如果G着色用了n种颜色,称G是 n-色的.
2.对G着色时,需要的最少颜色数,称为G的着色数,记作
x(G) .
3.对G着色方法:(下面介绍韦尔奇.鲍威尔法)
3.对G着色方法:(介绍韦尔奇.鲍威尔法 Welch.Powell) ⑴将G中的结点按照度数递减次序排序,(此排序可能不唯 一,因为可能有些结点的度数相同) ⑵用第一种颜色对第一个结点着色,并按照排序,对与前面 着色点不邻接的每一个点着上相同颜色. ⑶用另一种颜色对尚未着色的点, 重复执行⑵和⑶,直到
⑶当且仅当ek只是一个面Fi的边界时, vi*上有一个环ek* 与ek相交.
v3*
则称图G*是G的对偶图.
v5
F1 v1*
F3
可见G*中的结点数等于
F2 v2*
G中的面数.
二. 自对偶图:如果图G对偶图G*与G同构,则称G是自对偶
图. (如下图) 三.对偶图与平面图着色的关系:
对平面图面相邻面用不同颜 色的着色问题,可以归结到对 其对偶图的相邻接的结点着
有共同的学生在读, 就在两门课程之间连一直线.得到图:
结点度数递减排序:
A
B,C,D,G,A,E,F 对图正常着色后, 标有同一种颜色的 G
课,可以同时考试.安排考试日程: 周一: A 周二: B,F 周三:C,E 周四: D,G
F E
作业 P189 – 8.16 8.17
B C
D
所有结点都着上颜色为止.
B C
例如:结点排序:A,B,E,F,H,D,G,C A
二:平面图、对偶和作色、树和生成树
一个平面图,一定可以用四种颜色进行着色,
使得邻接的结点都有不同的颜色。
2、着色
图G的正常着色(简称着色)是指对它的每一个结点指定一 种颜色,使得没有两个邻接的结点有同一种颜色。如果图G在着 色时用了n种颜色,我们称G为n-色的。最小着色数用x(G)表示。 虽然目前还没有一个简单的方法,可以确定任一图G是n-色的。 但我们可以用韦尔奇鲍威尔(Welch Powell)对图G着色: a) 将图G中的结点按照度数的递减次序进行排列(这种排列可能 并不是唯一的,因为有些点有相同度数);
3×5-6=9<10
K5
K3,3 推论: 如果图G=<V,E>是连通的简单平面图,若v ≥ 3,
且每个区域至少由四条边围成,则有e≤2v-4。
作业P317 (1) (2) (4)
7-6
对偶与着色
这个问题最早起源于地图着色,一个地图中相邻两个国家
以不同的颜色,那么最少需用多少种?
一百多年前,英国格色里(Guthrie)提出用四种猜想即可对地 图进行着色的猜想,1879年肯普(Kempe)给出该猜想的第一个证 明,但到了1890年希伍德(Hewood)发现肯普的证明是错误的,指
1 4
3
5
2 带权树 2
6
三、最小生成树
定义:在图G的所有生成树中,树权最小的那棵生成树, 称作最小生成树。 最小生成树的生成算法: (1)避回路法 (2)破圈法 作业P327 (3) (6)
deg(v ) 2e
i 1 i
v
故2e ≥6v,所以e ≥3v>3v-6,与e≤3v-6矛盾。 定理3 任意平面图G最多是5-色的。
7-7
一、树
树与生成树
定义: 一个连通且无回路的无向图称为树。树中度数为1
图论 图的着色
X(G(V1,V2))=
X(G)=2 G为二部图
Th5.1:如果图G的顶点次数≤ρ,则G是ρ+1可着色的。
Th5.2:如果G是一个简单连通的非完全图,如果它的最大顶点次 数为ρ(ρ≥3),则称G为ρ可着色的。
下面的讨论的图为平面图:
Th5.3:每个平面图都是6可着色的。 Th5.4:每个平面图都是5可着色的。 Th5.5:每个平面图都是4可着色的。
ρ ≤ X’(G)≤ ρ+1
对任意图判断X’(G)= ρ 或X’(G)= ρ+1没有解决,但对于一些特殊图, 答案是清楚的。
对于n个点圈图: 2 or 3
.13:对于n(n>1)的完全图,
X’(kn)=n (n为奇数)X’(kn)=n-1(n为偶数) Th5.15:如G为具有最大顶点次数ρ的二部图,则X’(G)= ρ。
Corollary 5.9:地图4色定理 平面图的4色定理。 Th5.10:设G为一张每个顶点都是3次的地图,则 G为3可面着色G的每个面皆被偶数条边所围 Th5.11:如果每个3正规的地图是4可面着色的,则4色定理成立。
5.3 边的着色
G是k可边着色的:如果图G的所有的边皆可用k种颜色着色,使得 任何两条相邻的边均具有不同的颜色,则称G是k边着色的。 k为G的边色数:如果G为k可边着色的,但不是k-1可边着色的,则 称k为G的边色数,记为:X’(G)。 Th5.12:如果G为简单图且它的最大顶点次数为ρ
第五章 图的着色
5.1 色数 5.2 地图的着色 5.3 边的着色
5.1 色数
G为k可着色的:设G是一个无自环图,如果对它的每个顶点可以用 k种颜色之一着色,使得没有两个相邻的顶点有相同的颜色,则称G 是k可着色的。
第七章 图论
Graphs/图论
三、子图和补图
定义 无向简单图G=<V,E>中,若每一对结点间都有 边相连,则称该图为完全图。有n个结点的无向完全 图,记作Kn。 图10:
K 4图
Graphs/图论
定理 4 证明:
n个节点的无向完全图Kn的边数为:(1/2)*n*(n-1)。
在Kn中,任意两点间都有边相连,n个结点中任取两 点的组合数为:cn = (1/2)*n*(n-1) 故Kn的边数为: |E| =(1/2)*n*(n-1)。 (证毕)
推论:在一个具有n个结点图中,若从结点u到结点v存在 一条路,则必存在一条从u到v而边数小于n的通路。 删去所有结点s到结点s 的那些边,即得通路。
Graphs/图论
二、无向图的连通性
定义 在无向图G中,结点u和结点v之间若存在一条路, 则称结点u和结点v是连通的。
连通性是结点集合上的一种等价关系。
证明: 设:V1 :图G中度数为奇数的结点集。 V2:图G中度数为偶数的结点集。 由定理1可知
vv 1
deg( v ) deg( v ) deg( v ) 2 | E |
vv 2 vV
因为
vv 2
deg( v) 为偶数。 deg(v) 和2|E|均为偶数,所以 v v1
b
b
Graphs/图论
四、图的同构
定义 设图G=<V,E> 及G’=<V’,E’>,如果存在一一对 应的映射g:V → V’且e=(vi ,vj)(或<vi ,vj>)是G的一条 边,当且仅当e’=(g(vi ) ,g(vj))(或 <g(vi ) ,g(vj)>是G’的 一条边,则称G与G’同构,记作G ~ -G’ 。
第七章 图论
本讲稿第十三页,共九十一页
§7.1 图的基本概念
例:若图G有n个顶点,(n+1)条边,则G中至少 有一个结点的度数≥3。
证明:设G中有n个结点分别为v1,v2,…,vn,则由握手
定理:
n
degvi)(2e2(n1)
i1
而结点的平均度数=
2(n1)212
n
n
∴结点中至少有一个顶点的度数≥3
本讲稿第十四页,共九十一页
▪ 若G’ G,且G’ ≠G(即V’V或E’ E),则称G’是G的真子图;
▪ 若V’=V,E’E,则称G’是G的生成子图(支 撑子图)。
本讲稿第二十三页,共九十一页
§7.1 图的基本概念
2.子图和图的同构:
例:G图如下:G的真子图:
生成子图:
说明: (1)G也是G的生成子图; (2)G’=〈V,〉也是G的生成子图。
(3)路径长度:若两个结点之间有一条路经P,则路 径|P|=P中边的条数。 例:给出有向图G,求起始于1,终止于3的路径
本讲稿第三十二页,共九十一页
§7.2 路与回路
下面介绍一些专有名词:
(1)穿程全部结点的路径:经过图中所有结点的路径。 (2)简单路径:在有向图中经过边一次且仅一次的路径。
(3)基本路径:在)从一个结点到某一结点的路径,(若有的话)不 一定是唯一的; (2)路径的表示方法:
(a)边的序列表示法: 设G=<V,E>为一有向图, ,则路径可以表示
成:(<v1,v2>,<v2,v3>,….<vk-1,vk>)vi V
本讲稿第三十一页,共九十一页
§7.2 路与回路
(b)结点序列表示法: (v1,v2vk)
图论讲义第6章-图的着色问题
| c1 (ν ) | = 1 ,其中 ci (υ ) 表示 υ 阶第 i 类图的集合。这 v →∞ | c (ν ) ∪ c (ν ) | 1 2
vk
… v3 v2
i4 i3 i2
u
… H2
ik i0
…
im ik
i1
vm
v1
v
但是,因 vk 在 H 1 中的度为 2(恰与一条 i0 色边和一条 ik 色边相关联) ,故它在 H 2 中的 。这与 H 2 是奇圈矛盾。 (注意 vk 必在分支 H 2 中,因它与 度为 1(仅与一条 i0 色边相关联) 。由此可知反证法假设不能成立。证毕。 vk-1 有 i0、ik 交错路( H 1 的一段)相连) 对于有重边的图 G,设 μ (G ) 表示 G 中边的最大重数,Vizing 实际上证明了一个更一般 的结论: Δ (G ) ≤
(其中 v0 点的关联边有可能是同一种色) 。按这 样可得 G*的一个边 2-染色 c = ( E1 , E 2 ) , 种办法给 G*的边染色后,去掉 v0 及其关联的边,便得到 G 的一个边 2-染色。对于 G 中偶 度点,它关联的边及其颜色与 G*中相同;对 G 的任何奇度点 v,在 G 中比在 G*中少关联一 条边,但只要 d G ( v ) > 1 , 便有 d G ( v ) ≥ 3 , 故由染色的方法知,与 v 点关联的边中两种颜色 的都有。这说明 G 的边 2-染色 c = ( E1 ∩ E (G ), E 2 ∩ E (G )) 即为所求的边 2-染色。证毕。
… H1 vk-1
ikik i0
( Δ + 1) 边染色。由引理 6.1.2, G[ Ei′0 ∪ Ei′k ] 中含有 u 的那个分支 H 1 是个奇圈。
山东科技大学 离散数学7-6对偶图与着色7-7 树+复习
7-8 根树及其应用
一、根树
1、有向树 定义7-8.1 如果一个有向图在不考虑边的方向时
是一棵树,那么,该有向图称为 有向树。
2、根树
定义7-8.2 一棵有向树,如果恰有一个 结点的入度为0,其余所有结点的入度都为1, 则称为根树(rooted tree)。 入度为0的结点称为T的树根。 出度为0的结点称为树叶。 出度不为0的结点称为分支点或内点。
7. 设a和b是格<A, ≤>中的两个元素,证明 (1)a∧b=b 当且仅当a∨b=a (2) a∧b < b和a∧b <a 当且仅当a与b是不可比较的 证明: (1)在格中吸收律满足, 则 由a∧b=b, a∨b=a∨(a∧b)=a 反之, 若a∨b=a, 则a∧b= (a∨b)∧b=b (2)若a∧b < b和a∧b <a, 即表明a∧b ≠b和a∧b ≠a, 用反证法: 假设a与b是可比较的, 则 a≤b,a∧b=a,矛盾; b≤a,a∧b=b,矛盾 因此a与b是不可比较的。 反之, a与b是不可比较的, 则a≤b和b≤a均不成立, 即a∧b ≠b和a∧b ≠a 根据∧的定义:a∧b≤a 和 a∧b≤b, 故 a∧b < b和a∧b <a
点中的某一个称为根,其他所有结点被分成有限个
在有向树中,结点的出现次序是没有意义的。 但实际应用中,有时要给出同一级中结点的相对 次序,这便导出有序树的概念。 4、有序数:在根树中规定了每一层上结点的次 序,称为有序树。
为表示结点间的关系,有时借用家族中的术语。
定义 在以v0为根的树中, (1)v1,v2,…,vk称为v0的 儿子,v0称为它们的 父亲。vi,vj 同为一顶点v的儿子时,称它们为兄弟。 (2)顶点间的父子关系的传递闭包称为顶点间
离散数学第四篇7图 5-6平面图及图的着色
n i 1
因而m 3n,这与定理7-5-12矛盾。 所以,假设不成立,即G的最小度(G)5。
说 明
23 本定理在图着色理论中占重要地位。
定理7-6-4 设G为n(n3) )阶简单连通的平面图,G为极大平面 图当且仅当G的每个面的次数均为3。(仅证充分性)
无限面(外部面)——面积无限的面,记作R0。
有限面(内部面)——面积有限的面 ,记作R1, R2, …, Rk。
面Ri的边界——包围面Ri的所有边组成的回路组。
面Ri的次数——Ri边界的长度,记作deg(Ri)。
8
2、几点说明 若平面图G有k个面,可笼统地用R1, R2, …, Rk表示,不需 要指出外部面。 回路组是指:边界可能是初级回路(圈),可能是简单回 路,也可能是复杂回路。特别地,还可能是非连通的回路 之并。
10≤(3/(3-2))(5-2) = 9
这是个矛盾,所以K5不是平面图。 若K3,3是平面图,由于K3,3中最短圈的长度为l≥4,于是边数9 应满足 9≤ (4/(4-2))(6-2) = 8
20 这又是矛盾的,所以K3,3也不是平面图。
定理7-5-11 设G是有k(k≥2)个连通分支的平面图,各面的次数 至少为l(l≥3),则边数m与顶点数n应有如下关系:
小节结束
7-5-2 欧拉公式
一、欧拉公式相关定理 1、 欧拉公式 定理7.8 对于任意的连通的平面图G,有 n-m+r=2 其中,n、m、r分别为G的顶点数、边数和面数。
证明
对边数m作归纳法。 (1) m=0时,由于G为连通图,所以G只能是由一个孤立顶 点组成的平凡图,即n=1,m=0,r=1,结论显然成立。 (2) m=1时,由于G为连通图,所以n=2,m=1,r=1,结论 显然成立。 16
离散数学平面图
又因为任取K3,3中三个结点,至少有两个点不邻接, 所以不能组成一个面,即K3,3中任何 一个面至少由四条边围成,即:所有面 的次数之和deg(r) >=4r=20 又由定理1知:deg(r)=2|E|=18 即18>=20矛盾不。论怎所么以画,K总3,有3不交是叉点平面图。
❖ 平面图基本性质
设G是一个有v个结点e条边的连通简单平面图,若v3, 则:e<=3v-6。等价于: 若不满足e<=3v-6,则G不是连通平面图。
例题:证明k5图不是平面图。
K5图中,v=5,e=10,10 3*v-6=35-6=9
但定理的条件只是必要条件。
如K3,3中v= 6,e =9, e<3v-6=12 满足条件,但K3,3不是平面图。
离散数学
❖ 图论
1 图的基本概念 2 路与回路 3 图的矩阵表示 4 欧拉图与汉密尔顿图 5 平面图 6 对偶图与着色 7 树与生成树
❖ 平面图基本概念
定义1:设G=<V,E>是一个无向图,如果能把G的所有结点和
边画在平面上,且使得任何两条边除了端点外没有其他的交点, 就称G是一个平面图。
(1)
G为k条边,再添加一条边,只有下述两种情况:
面数不变 点树加1 边数加1
点数不变 面数加1 边数加1
(Vk+1)-(ek+1)+rk=2成立
(Vk)-(ek+1)+(rk+1)=2成立
通过上述归纳法证明欧拉公式v-e+r=2成立。
❖ 平面图基本性质
例1:证明K3,3不是平面图
证:假设K3,3是平面图,
图论课件第七章图的着色
平面图的着色问题是一个经典的图论问题,其目标是在满足相邻顶点颜色不同 的条件下,使用最少的颜色对平面图的顶点进行着色。
详细描述
平面图的着色问题可以使用欧拉公式和Kuratowski定理进行判断和求解。此外 ,也可以使用贪心算法、分治策略等算法进行求解。
树图的着色问题
总结词
树图的着色问题是一个经典的图论问 题,其目标是使用最少的颜色对树图 的顶点进行着色,使得任意两个相邻 的顶点颜色不同。
分支限界算法
总结词
分支限界算法是一种在搜索树中通过剪枝和 优先搜索来找到最优解的算法。
详细描述
在图的着色问题中,分支限界算法会构建一 个搜索树,每个节点代表一种可能的着色方 案。算法通过优先搜索那些更有可能产生最 优解的节点来加速搜索过程,同时通过剪枝 来排除那些不可能产生最优解的节点。分支 限界算法可以在较短的时间内找到最优解,
尤其适用于大规模图的着色问题。
03
图的着色问题的复 杂度
计算复杂度
确定图着色问题的计算复杂度为NP-完全,意味着该问题在多项式时间 内无法得到确定解,只能通过近似算法或启发式算法来寻找近似最优解 。
图着色问题具有指数时间复杂度,因为对于n个顶点的图,其可能的颜色 组合数量为n^k,其中k为每个顶点可用的颜色数。
02
图的着色算法
贪心算法
总结词
贪心算法是一种在每一步选择中都采取当前状态下最好或最优(即最有利)的选 择,从而希望导致结果是最好或最优的算法。
详细描述
贪心算法在图的着色问题中的应用是通过逐个对顶点进行着色,每次选择当前未 被着色的顶点中颜色数最少的颜色进行着色,直到所有顶点都被着色为止。这种 算法可以保证最小化使用的颜色数量,但并不保证得到最优解。
7-6 对偶图与着色
一、对偶图 1、对偶图 定义7 定义7-6.1 对具有面F1 ,F2,..., Fn的连通平面图 对具有面 G=<V,E>实施下列步骤所得到的图 称为图 的对 实施下列步骤所得到的图G*称为图 实施下列步骤所得到的图 称为图G的 偶图( 偶图(dual of graph): ):
如果存在一个图G 满足下述条件: 如果存在一个图 *=<V*,E*>满足下述条件: 满足下述条件 的每一个面F 的顶点v (a)在G的每一个面 i的内部作一个 的顶点 i* 。 ) 的每一个面 的内部作一个G*的顶点 的任一个面F 即对图G的任一个面 i内部有且仅有一个结点 i*∈V*。 对图 的任一个面 内部有且仅有一个结点v
图的正常着色: 2、图的正常着色:图G的正常着色(或简称着色) 是指对它的每一个结点指定一种颜色, 是指对它的每一个结点指定一种颜色,使得没 有两个邻接的结点有同一种颜色。 有两个邻接的结点有同一种颜色。如果图在着 种颜色, 色的。 色时用了n种颜色,我们称G为n-色的。 色数: 着色时, 3、色数:对于图G着色时,需要的最少颜色数 的色数, 称为G的色数,记作x(G)。
v*=r,e*=e, r*=v
画出下图的对偶图。 例 画出下图的对偶图。
说明: 说明:v*=r,e*=e,r*=v。 平面图的对偶图仍满足欧拉定理, 平面图的对偶图仍满足欧拉定理,且仍是平 面图。 面图。
(a) v*=5,e*=8,r*=5
(b) v*=7,e*=13,r*=12
(c) v*=5,e*=6,r*=3
四色定理: 8、四色定理:平面图的色数不超过4。 相应地有下面的定理。 相应地有下面的定理。 定理: 是四着色的, 9、定理:对于任何地图M,M是四着色的, 即χ(M)≤4。
图论中的图的着色与染色问题
图论中的图的着色与染色问题图论是数学的一个分支,研究的是图的性质和图的应用。
在图论中,图的着色与染色问题是一个经典且重要的研究课题。
图的着色问题是指如何用有限的颜色对图的顶点或边进行染色,使得相邻的顶点或边具有不同的颜色。
本文将介绍图的着色与染色问题的基本概念和应用。
一、图的基本概念1. 无向图和有向图无向图由一些顶点和连接这些顶点的边组成,边没有方向性。
而有向图中,边是有方向性的,连接两个顶点的边有始点和终点之分。
2. 邻接矩阵和邻接表邻接矩阵是一种表示图的方法,用一个矩阵表示图中各个顶点之间的连接关系。
邻接表是另一种表示图的方法,用链表的形式表示图中各个顶点之间的连接关系。
二、图的着色问题图的着色问题是指如何用有限的颜色对图的顶点或边进行染色,使得相邻的顶点或边具有不同的颜色。
图的着色问题有以下两种情况:1. 顶点着色对于无向图或有向图的顶点,通过对每个顶点进行染色,使得图中任何相邻的顶点具有不同的颜色。
这里的相邻顶点指的是通过一条边相连的顶点。
2. 边着色对于无向图或有向图的边,通过对每条边进行染色,使得图中任何相邻的边具有不同的颜色。
这里的相邻边指的是有共同始点或终点的边。
三、图的染色算法对于图的着色问题,有不同的染色算法可以解决。
在这里我们介绍两种常用的染色算法:贪心算法和回溯算法。
1. 贪心算法贪心算法是一种基于局部最优策略的算法。
对于图的顶点着色问题,贪心算法的策略是从一个未染色的顶点开始,将其染上一个可用的颜色,并将该颜色标记为已占用,然后继续处理下一个未染色的顶点。
如果当前顶点没有可用的颜色可染,则需要增加一个新的颜色。
2. 回溯算法回溯算法是一种穷举所有可能性的算法。
对于图的着色问题,回溯算法的策略是从一个未染色的顶点开始,尝试不同的颜色进行染色,如果发现染色后与相邻顶点冲突,就回溯到上一个顶点重新尝试其他颜色,直到所有顶点都被染色。
四、图的着色问题的应用图的着色问题在实际中有广泛的应用。
图论图着色
v4
v5
(b)去掉v0后结点v1与v3处在 同一个连通分支中,v1 与v3有一通路,其中点的颜色红黄交替出现,它与 v0构成一回路C(同一个连通分支),也就是约当曲线, 这时结点v2处在曲线的内部而结点v5则处在线的外 部,v2与v5的任何连线必与曲线C相交,与平面图的 条件矛盾。因此约当曲线C必然将黑白集中的结点分 成两个连通分支,使v2与v5分别处于两个连通分支中 (也就是v2与v5不连通), v 于是问题回到(a),可将v2 v v (或v5)所在的分支中的黑 v 白色对换,于是与v0邻接 v v 的5个结点也只着了4种颜 色, v0就可着第5种颜色。
独立集特点 (1)图G的每一个结点构成一个独立集。 (2)极大独立集不是唯一的,它的基数不一定 是最大的,但它的元素数目已达到极限, 即不可能再加入其他结点而不破坏它的独 立性。 (3)最大独立集必然也是极大独立集而且元素 数目是最多的。 (4)任一完全图Kn的独立数I(Kn)=1 (5)偶图G只有两个极大独立集,即是它的两 个互补结点子集V1和V2
v1 e1 c1 e3 c3 v3 v0 e2 c2 v2
定理6.4 若G是偶图,则 ψ e (G ) = Δ (最大结点次数) 证:设G的两个互补结点子集为Vl和V2,若|V1|<|V2|,则 在V1中增加一些结点成为V1’使|V1’|=|V2|, 对xi∈V1’及yj∈V2,若G中无边(xi,yj),则增加一条 边(xi,yj),通过以上的增添,图G=(V,E)成为图GΔ= (V’,E1’), GΔ 是 Δ次正则偶图,( 由定理5.4的推论可知)它 有一完美匹配M1,令E2’=E1’一M1,得到图 G Δ-1= (V’,E2’),则 G Δ-1是(Δ一1)次正则偶图,它也有一 完美匹配M2, 如此继续下去可以得到M1,M2,..., MΔ 个完美匹 配,每一个完美匹配可着一种颜色,使得到G的边 着 色,即 ψ e (G ) = Δ
图论中的图的着色与染色问题
图论中的图的着色与染色问题在图论中,图的着色与染色问题是一类经典的问题。
图的着色是指给图的每个顶点赋予一个颜色,要求相邻的顶点不能有相同的颜色;而图的染色是指给图的边赋予一个颜色,要求相邻的边不能有相同的颜色。
一、图的顶点着色图的顶点着色问题是图论中的经典问题之一。
给定一个无向图,要求为每个顶点分配一个颜色,使得任意两个相邻的顶点颜色不同。
这个问题的本质是将相邻的顶点划分到不同的颜色集合中。
解决图的顶点着色问题有多种算法,其中较为简单和常用的是贪心算法。
贪心算法按照某种规则为图的顶点逐个着色,每次着色时选择当前可用颜色的最小编号。
贪心算法的时间复杂度为O(n^2),其中n 为图的顶点数。
二、图的边染色图的边染色问题是另一个经典的图论问题。
给定一个无向图,要求给每条边分配一个颜色,使得任意两条相邻的边颜色不同。
这个问题的目标是将相邻的边划分到不同的颜色集合中。
解决图的边染色问题的算法有多种,其中常用的是基于回溯法和深度优先搜索的算法。
回溯法通过递归地尝试为每条边分配颜色,并根据约束条件进行回溯,直到找到可行的解或者穷尽所有可能。
深度优先搜索则通过遍历图的边,逐个给边染色,当发现某条边与相邻边颜色相同时,回溯到前一条边重新选择颜色。
三、特殊图的着色与染色问题除了一般的图的着色与染色问题,还存在一些特殊类型的图,对应着特殊的着色与染色问题。
1. 树的着色与染色:在树中,任意两个顶点之间都只有一条路径,因此树的着色与染色问题可以简化为树的边染色问题。
树的边染色问题可以使用贪心算法解决,每次为某条边选择一个未使用的颜色,直到所有边都被染色。
2. 平面图的着色与染色:平面图是指可以画在平面上,且任意两条边最多只有一个公共顶点的图。
平面图的着色与染色问题是在满足平面图约束条件下对图进行着色或染色。
对于平面图的着色与染色问题,使用四色定理可以得到解,即任何平面图最多只需要四种颜色来着色或染色。
四、应用领域图的着色与染色问题在实际应用中具有广泛的应用。
图论第四章(2)
(Ⅶ)
论
4.5 对偶图 1. 定义: 对于给定的平面图G,作相应 的一个图G’:在G的每个域内设置G’的一 个结点;对G中每条边e作G’相应的一条 边e’,联结以e为边界的G的两域中G’的两 个结点。这样得到的G’,称为G的对偶图。
• 对偶图的意义在于,关于域的问题可以 转换成关于结点的问题。 •注意:简单平面图的对偶图是平面图, 但不一定是简单图(可能含重边或环)。
3. 对偶图的应用 定理 每一个平面图G都是5 -可着色的。
证明的思路是作G的对偶图,使问题转化为一 个平面图的点着色问题(相邻点不同色)。因为环 和重边不影响点的着色,故可去掉环和重边,这 样只需要证明一个简单平面图的点5 -可着色即可。 可用数学归纳法证之,具体证明过程略。
经验表明,一张实际的彩色地图使用四种不同颜色即 可区别相邻国家的疆域。“四色猜想”断言,对于任何 一个平面图 (地图)这个结论成立。 四色猜想已由美国数学家阿佩尔与黑肯(1976年)用计 算机程序证明,但尚未找到数学方法给予简练证明。
3)色数多项式
给定图G,如果最多使用t 种颜色对它的结点进行着色, 满足相邻结点着以不同颜色,其着色的不同方案数用f(G,t) 表示。称f(G,t)为G的色数多项式。
• 显然,当t < (G) 时f(G,t)=0;满足f(G,t)>0的最少颜色
数t= (G). • 对平面图G: 五色定理断言 f(G,5)>0, 四色定理断言 f(G,4)>0。
作原图的对偶图(红图)。问题相当于问,其对 偶图中是否存在Euler回路。由于图中有结点度数 为奇,故不存在Euler回路。
例 对平面连通图G的无限域边界上的任意 两结点i和j,求G中分离i和j的所有割集。
图论中的图着色问题算法
图论中的图着色问题算法图着色问题是图论中的一个重要研究课题,它的目标是给定一个无向图,为每个顶点分配一个颜色,使得相邻的顶点拥有不同的颜色。
这个问题有着广泛的应用,例如地图着色、课程时间表安排以及调度等领域。
本文将介绍几种常见的图着色算法。
一、贪心算法贪心算法是解决图着色问题最直接且简便的方法之一。
其基本思想是从图的某个顶点开始,依次为每个顶点选择一个未被使用的最小颜色号。
该算法的具体步骤如下:1. 选择一个起始顶点v,并为其分配一个颜色c。
2. 对于v的所有相邻顶点u,如果u未着色,则为u选择一个未被使用的最小颜色号,并标记u为已着色。
3. 重复步骤2,直到所有顶点都被着色。
贪心算法的时间复杂度为O(n^2),其中n为顶点数。
该算法的缺点是可能得到的着色方案不是最优解。
二、回溯算法回溯算法是另一种常见的用于解决图着色问题的算法。
其基本思想是通过不断尝试不同的着色方案,直到找到一个满足条件的解。
该算法的具体步骤如下:1. 选择一个起始顶点v,并为其分配一个颜色c。
2. 对于v的所有相邻顶点u,如果u未着色,则为u选择一个未被使用的颜色号,并标记u为已着色。
3. 选择下一个未着色的顶点作为新的起始顶点,重复步骤2。
4. 如果无法为任何顶点着色,则回溯到上一步,修改之前的着色方案,为当前顶点选择一个新的颜色。
5. 重复步骤3和步骤4,直到所有顶点都被着色。
回溯算法的时间复杂度取决于图的结构和颜色数目,一般情况下是指数级的。
该算法可以得到最优解,但在处理大规模问题时效率较低。
三、基于现有算法的改进除了贪心算法和回溯算法外,还存在一些基于这两种算法的改进方法,以提高图着色问题的求解效率。
例如,使用启发式算法、剪枝技术以及约束求解等方法。
启发式算法是一种非确定性的搜索算法,通过引入启发函数来指导搜索过程,以期望更快地找到一个不错的解。
典型的启发式算法包括Tabu搜索、模拟退火算法等。
剪枝技术是在搜索过程中通过判断某些分支的无效性,从而减少搜索空间,提高算法效率。
图论中的图的着色与染色问题
图论中的图的着色与染色问题图是图论中的基本概念之一,是由顶点和边构成的数学结构。
在图的理论中,图的着色与染色问题是一个非常重要且有趣的研究领域。
本文将介绍图的着色与染色问题的基本概念、定理和算法,希望能够为读者深入了解图论领域提供一些帮助。
一、基本概念在图的理论中,图的着色与染色问题是指将图的顶点或边用不同颜色标记的过程。
着色是指给图的顶点或边分配颜色,使得相邻的顶点或边颜色不相同;而染色是指给图的顶点或边分配颜色,使得相邻的顶点或边颜色可以相同。
定理1:图的顶点着色问题对于一个简单图,顶点着色问题是指如何用最少的颜色将图的所有顶点着色,使得相邻的顶点颜色不同。
根据四色定理,任何一个平面图都可以只用四种颜色进行顶点着色。
定理2:图的边着色问题对于一个简单图,边着色问题是指如何用最少的颜色将图的所有边着色,使得任意两条依附于同一顶点的边颜色不同。
根据维茨定理,任何简单无向图都可以用最大度数加一种颜色进行边着色。
二、算法与实践在解决图的着色与染色问题时,常用的算法包括贪心算法、回溯算法、图染色算法等。
其中,Welsh-Powell算法是用来解决无向图的顶点着色问题的一种有效算法,其基本思想是优先考虑度数最大的顶点进行着色。
而在解决边着色问题时,常用的算法包括Vizing定理、边染色算法等。
三、应用与拓展图的着色与染色问题在实际生活中有着广泛的应用,如地图着色、时间表着色、调度问题等。
同时,在拓展领域中,图的着色与染色问题也与其他数学领域有着密切的联系,如组合数学、离散数学等,在各个领域都有着深入的研究与应用。
总结:图的着色与染色问题是图论领域中的一个重要研究方向,具有丰富的理论内涵和实际应用。
通过本文对图的着色与染色问题的介绍,希望读者能够对该领域有一个初步的了解,进一步深入研究与探讨。
愿本文能够为读者在图论领域的学习与研究提供一些帮助与启发。
7-1图的基本概念
简单图
多重图
孤立结点 零图 平凡图
结点的度数
完全图
7-1 图的基本概念
e1 a
若φG(e)=(a,b),或φG(e) =<a,b>, 则称边e与两个结点a,b关联。 例如,e1关联于结点a,b,e2 v2 关联于结点v1,v2。 e2 邻接点--由一条有向(或无向) 边关联的结点称为邻接点。如 v1 图,a,b互为邻接点,v1与v2邻 接。 孤立结点--在一个图中不与任何结点相邻接的结点。 b
零图—仅由孤立结点组成的图称为零图。
平凡图—仅由一个孤立结点构成的图称为平凡图。 几个基本概念 环或自回路---关联于同一结点的一条边。
a
e1 b
a
e6 e2 c b d
邻接边--关联于同一结点的多条边。 例如,e1,e2,e6互为邻接边。
平行边--连接于同一对结点间的多 条边称为平行边。如果是有向边要 求方向一致。
定理7-1.1 (握手定理) 每个图中,所有结点度数 的总和等于边数的两倍,即
∑deg (v) = 2|E|
v∈V
证明: 因为每条边必关联两个结点,而一条边给于 关联的每个结点的度数为1。因此在一个图中,结 点度数的度数的总和等于边数的两倍。
返回几个定理
定理7-1.2 在任何图中,度数为奇数的结点必定为偶数个。 证明: 设V1和V2分别是G中奇数和偶数度数的结点集,则由定 理7-1.1,有
∑deg(v) +∑deg(v) = ∑deg(v) = 2|E|
v∈V1 v∈V2 v∈V
由于∑deg(v) 是偶数之和,必为偶数,而2|E| 是偶数,
v∈V2
故得∑deg(v)是偶数,即| V1 | 是偶数。
v∈V1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(c) v*=5,e*=6,r*=3
(d) v*=7,e*=12,r*=7
2、自对偶图 定义7-6.2 如果图G的对偶图G*同构于G,则称G
是自对偶图。
练习 321页 (4)
证明:若图G是自对偶的,则e=2v-2。
若图G是自对偶的,则v=v*,e=e*,即
r*=v=v*=r,e=e*则由欧拉定理v-e+r=2
证明一个图的色数为n,首 先必须证明用n种颜色可以着色 该图,其次证明用少于n种颜色 不能着色该图。
4、对点着色的鲍威尔方法: 第一步:对每个结点按度数递减次序进行排列(相 同度数的结点次序可随意) 第二步:用第一种颜色对第一个结点着色,并按次
序对与前面着色点不相邻的每一点着同样的颜色。
第三步:用第二种颜色对未着色的点重复第二步,
一、对偶图
1、对偶图 定义7-6.1 对具有面F1 ,F2,..., Fn的连通平面图 G=<V,E>实施下列步骤所得到的图G*称为图G的对 偶图(dual of graph):
如果存在一个图G*=<V*,E*>满足下述条件: (a)在G的每一个面Fi的内部作一个G*的顶点vi* 。 即对图G的任一个面Fi内部有且仅有一个结点vi*∈V*。
边界时,作vi*的一条环与ek相交(且仅交于一处)。
所作的环不与 G*的边相交。 则称图G*为G的对偶图。
v*=r,e*=e, r*=v
例 画出下图的对偶图。
说明:v*=r,e*=e,r*=v。
平面图的对偶图仍满足欧拉定理,且仍是平
面图。
练习 321页(1)
(a) v*=5,e*=8,r*=5
(b) v*=7,e*=13,r*=12
指出肯普的方法 虽不能证明地图着色用四种颜色就
够了,但可证明用五种颜色就够了,即五色定理成 立。
此后四色猜想一直成为数学家感兴趣而未能
解决的难题。直到1976年美国数学家阿佩尔和黑
肯宣布:他们用电子计算机证明了四色猜想是成
立的。所以从1976年以后就把四色猜想这个名词
改成“四色定理”了。为了叙述图形着色的有关 定理,下面先介绍对偶图的概念。
从对偶图的概念,我们可以看到,对于地图 的着色问题,可以归纳为对于平面图的结点的着 色问题,因此四色问题可以归结为要证明对于任 何一个平面图,一定可以用四种颜色,对它的结 点进行着色,使得邻接的结点都有不同的颜色。
2、图的正常着色:图G的正常着色(或简称着色)
是指对它的每一个结点指定一种颜色,使得没 有两个邻接的结点有同一种颜色。如果图在着 色时用了n种颜色,我们称G为n-色的。 3、色数:对于图G着色时,需要的最少颜色数 称为G的色数,记作x(G)。
(b)若G的面Fi,Fj有公共边ek,则作ek*=(vi*,vj*), 且ek*与ek相交。 即若G中面Fi与Fj有公共边界ek ,那么过边界 的每一边ek作关联vi*与vj*的一条边ek* =(vi*, vj*) 。 ek*与G*的其它边不相交。
(c)当且仅当ek只是一个面Fi的边界时(割边),vi*存 在一个环e*k与ek相交。 即当ek为单一面Fi的边界而不是与其它面的公共
4个时间e+v=2,即e=2v-2。
若图G是自对偶的,则e=2v-2。
由此,K4是自对偶图,K3不是自对偶。
4个结点, 6条边 3个结点, 3条边
二、图的着色 1、问题的提出
该问题起源于地图的着色问题。
对点的着色就是对图G的每个结点指定一种颜色,
使得相邻结点的颜色不同,对边着色就是,给每条
边指定一种颜色使得相邻的边的颜色不同,给面着 色就是给每个面指定一种颜色使得有公共边的两个 面有不同的颜色。对边着色和对面着色均可以转化 为对结点着色问题。
v
deg(u)≥6,
i=1
deg(vi )= 2|E|= 2e
则有2e≥6v,即e≥3v>3v-6,与定理矛盾。
7、定理7-6.3:(五色定理)任意平面图最多是5-色的。 证明思路:对结点个数v采用归纳法 (1)归纳基础:图G的结点数为v=1,2,3,4,5时,结论成立。
(2)归纳假设:设G有k个结点时结论成立。即G是最多可5-着 色的。 (3)归纳推理:需要证明G有k+1个结点时结论仍成立。 先在G中删去度数小于5的结点u,根据归纳假设,所得的图G{u}有k个结点,结论成立。然后考虑在G-{u}中加上一个结点的 情况。若加入的结点满足deg (u)<5,则可以对u正常着色。若加 入的结点满足deg (u)=5,则与它邻接的5个结点可以用4种颜色 着色。分两中情况证明: . 对调v1,v3两个结点的颜色后,给着v1的颜色。 .对调v2,v4两个结点的颜色后,给着v2的颜色。
7-6 对偶图与着色
掌握对偶图的定义,会画图G的对偶图 G* 掌握自对偶图的定义及必要条件。
与平面图有密切关系的一个图论的应用是图形 的着色问题,这个问题最早起源于地图的着色,一
个地图中相邻国家着以不同颜色,那么最少需用多
少种颜色?一百多年前,英国格色里(Guthrie)提出 了用四种颜色即可对地图着色的猜想,1879年肯普 (Kempe)给出了这个猜想的第一个证明,但到1890 年希伍德(Hewood)发现肯普证明是错误的,但他
就对应于图的着色。
练习 321页 (2)(3)
图<G,V>有7个 面,用三种颜色对 其进行了着色。 图<G,V>的对偶图<G*,V*>有12个面,用 三种颜色对其进行了着色。
<G*,V*> 的每个面中有且仅有<G,V>的一 个结点,所以只要考虑对结点着色。
deg(v1)=5
deg(v2)=4 deg(v3)=5 deg(v4)=5 deg(v5)=5 deg(v6)=4 deg(v7)=4 如上图所示,因为这个图的色数为4,所以需要
自从四色猜想提出后,一百多年来,一直成为
数学上的著名难题,它吸引许许多多的人,为之而
作出大量辛劳,也得到很多重要结果,但长久未能
得到解决。直到1976年6月,由美国伊利诺斯大学两 名数学家爱普尔(K.I.Apple)、黑肯(W.Haken)在考 西(J.Koch)帮助下借助于电子计算机,用了一百多 亿次逻辑判断,花了1200多机时才证明四色猜想是 成立的,从此宣告,四色猜想成为四色定理。现将 它叙述如下:
8、四色定理:平面图的色数不超过4。 相应地有下面的定理。 9、定理:对于任何地图M,M是四着色的, 即χ(M)≤4。
应用:
例:如何安排一次7门课程考试,使得没有学生
在同一时有两门考试?
解:用结点表示课程,若在两个结点所表示的课 程里有公共学生,则在这两个结点之间有边。用
不同颜色来表示考试的各个时间段。考试的安排
用第三种颜色继续这种做法,直到全部点均着了色
为止。
5、定理7-6.1:对于完全图Kn有χ(Kn)=n。
证明:因为完全图的每一个结点与其他各个结点
都邻接,故n个结点的着色数不能少于n,又n个
结点的着色数至多为n,故χ(Kn)=n。
6、定理7-6.2:连通平面图G=<V,E>至少有三 个结点,则必有一点u∈V使得deg(u)≤5。 证明:设|V|=v,|E|=e,若G的每个结点均有