确定圆的条件1ppt
合集下载
确定圆的条件PPT教学课件
谢谢观看
Thank You For Wat13
2. 如图,△ABC 内接于 ⊙O,AD⊥BC于E,BF⊥AC于F,交AD于G, 试说明GE=DE.
2020/12/10
14
3. 如图,等边△ABC 内接于⊙O,D 是 B C 上一点,连接 BD、CD, 试说明 AD=BD+CD.
2020/12/10
15
PPT教学课件
2020/12/10
4
归纳:
1. 不在同一条直线上的三点确定一个圆. 2. 三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆
的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形. 3. 三角形的外心是三条边的垂直平分线的交点,它到三角形的三个顶点
的距离相等. 4. 到三角形的三个顶点的距离相等的点是三角形的外心.
2020/12/10
5
问题4: 分别作出锐角、直角、钝角三角形的外接圆,你有何发现?
锐角三角形
直角三角形
钝角三角形
O·
内部
2020/12/10
O·
斜边中点
O·
外部
6
巩固1:
1. 判断:
(1)经过三点一定可以作圆;
(× )
(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆; (√ )
(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形;
5.4 确定圆的条件
2020/12/10
1
问题1: 经过已知点 A 作圆,可以作多少个?
2020/12/10
2
问题1: 经过已知点 A、B 作圆,可以作多少个?圆心在什么图形上?
2020/12/10
3
问题3:
经过 A、B、C 三点,能不能作圆?如果能,可以作多少个?圆心在什 么位置?如果不能,请说明理由.
Thank You For Wat13
2. 如图,△ABC 内接于 ⊙O,AD⊥BC于E,BF⊥AC于F,交AD于G, 试说明GE=DE.
2020/12/10
14
3. 如图,等边△ABC 内接于⊙O,D 是 B C 上一点,连接 BD、CD, 试说明 AD=BD+CD.
2020/12/10
15
PPT教学课件
2020/12/10
4
归纳:
1. 不在同一条直线上的三点确定一个圆. 2. 三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆
的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形. 3. 三角形的外心是三条边的垂直平分线的交点,它到三角形的三个顶点
的距离相等. 4. 到三角形的三个顶点的距离相等的点是三角形的外心.
2020/12/10
5
问题4: 分别作出锐角、直角、钝角三角形的外接圆,你有何发现?
锐角三角形
直角三角形
钝角三角形
O·
内部
2020/12/10
O·
斜边中点
O·
外部
6
巩固1:
1. 判断:
(1)经过三点一定可以作圆;
(× )
(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆; (√ )
(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形;
5.4 确定圆的条件
2020/12/10
1
问题1: 经过已知点 A 作圆,可以作多少个?
2020/12/10
2
问题1: 经过已知点 A、B 作圆,可以作多少个?圆心在什么图形上?
2020/12/10
3
问题3:
经过 A、B、C 三点,能不能作圆?如果能,可以作多少个?圆心在什 么位置?如果不能,请说明理由.
鲁教版(五四制)九年级下册 5.5 确定圆的条件 课件(共23张PPT)
导入新课
怎样把圆柱形原木锯成截面为正方形的木材,并 使截面正方形的面积尽可能地大?
第五章圆 5.确定圆的条件(第2课时)
学习目标
知识目标
1. 理解圆内接四边形的概念, 掌握圆内接 四边形的性质定理; 2. 学会运用圆内接四边形的性质定理证明和计算 一些问题
能力目标 培养学生观察、分析、概括的能力
圆内接多边形 多边形的外接圆
讲解新课
合作学习
任意画一个圆,在圆上依次取四个点A、B、C、D,连接AB、 BC、CD、DA,用量角器量出一组对角的度数之和,你发现了 什么?与同伴交流一下
发现:每一组对角相加等于180°,即对角互补。
讲解新课
探究:
已知:如图,四边形ABCD内接于⊙O,求证: C
∠DAB+∠DCB=180°,∠B+∠D=180°
证法一
D
O
B
如图
, 连接OA、OC, 则B
1
, D
1
A
.
2
2
因为 360 ,所以B D 1 360 180 .
2
同理可得:∠DAB+∠DCB=180°
讲解新课
探究:
证法二 A
证明: ∵ ∠A的度数= BCD的度数的一半
∵ ∠C的度数= BAD的度数的一半 B
BCD 的度数+ BAD的度数=360°
D O
C
∴ ∠A+ ∠C= ½ ×360 °= 180° 同理∠B+∠D=180°
讲解新课
新知:
圆内接四边形的性质定理1:
圆内接四边形的对角互补
D
AO
B C
: 小试牛刀
怎样把圆柱形原木锯成截面为正方形的木材,并 使截面正方形的面积尽可能地大?
第五章圆 5.确定圆的条件(第2课时)
学习目标
知识目标
1. 理解圆内接四边形的概念, 掌握圆内接 四边形的性质定理; 2. 学会运用圆内接四边形的性质定理证明和计算 一些问题
能力目标 培养学生观察、分析、概括的能力
圆内接多边形 多边形的外接圆
讲解新课
合作学习
任意画一个圆,在圆上依次取四个点A、B、C、D,连接AB、 BC、CD、DA,用量角器量出一组对角的度数之和,你发现了 什么?与同伴交流一下
发现:每一组对角相加等于180°,即对角互补。
讲解新课
探究:
已知:如图,四边形ABCD内接于⊙O,求证: C
∠DAB+∠DCB=180°,∠B+∠D=180°
证法一
D
O
B
如图
, 连接OA、OC, 则B
1
, D
1
A
.
2
2
因为 360 ,所以B D 1 360 180 .
2
同理可得:∠DAB+∠DCB=180°
讲解新课
探究:
证法二 A
证明: ∵ ∠A的度数= BCD的度数的一半
∵ ∠C的度数= BAD的度数的一半 B
BCD 的度数+ BAD的度数=360°
D O
C
∴ ∠A+ ∠C= ½ ×360 °= 180° 同理∠B+∠D=180°
讲解新课
新知:
圆内接四边形的性质定理1:
圆内接四边形的对角互补
D
AO
B C
: 小试牛刀
确定圆的条件PPT课件
确定圆的条件ppt课件
目录
• 引言 • 圆的定义和基本性质 • 确定圆的条件 • 圆的性质的应用 • 结论
01 引言
主题简介
01
圆是平面几何中一个基础且重要 的概念,它具有许多独特的性质 和定理。
02
确定圆的条件是研究圆的基础, 它涉及到圆心和半径的确定以及 与圆相关的一些定理。
目的和目标
目的
在实际问题中的应用
计算圆的面积和周长
通过给定的圆心和半径,可以计算出圆的面积和周长。
计算圆弧的长度
在某些实际问题中,需要计算圆弧的长度。通过给定的圆心和半径, 可以计算出圆弧的长度。
判断物体是否在圆内
在某些实际问题中,需要判断一个物体是否在一个给定的圆内。通 过比较物体到圆心的距离和半径的大小,可以得出结论。
未来应用前景
随着社会的发展,确定圆的条件 的应用前景也越来越广泛。未来 可以期待在更多领域中应用确定 圆的条件,例如在航空航天、智 能制造、医疗设备等领域中都有 可能应用到确定圆的条件。
THANKS FOR WATCHING
感谢您的观看
通过学习确定圆的条件,学生可 以更好地理解圆的性质和定理, 为进一步学习几何学打下基础。
目标
掌握确定圆的条件,能够根据给 定条件判断一个图形是否为圆, 并理解与圆相关的定理和性质。
02 圆的定义和基本性质
圆的定义
总结词
通过圆上三点确定一个圆
详细描述
在一个平面内,通过不在同一直线上的三个点可以确定一个唯一的圆,这个圆 上的三点分别与圆心构成三条相等的线段,即半径。
05 结论
总结确定圆的条件
1 2 3
确定圆的条件
在平面几何中,一个圆由其圆心和半径唯一确定。 要确定一个圆,我们需要知道圆心的位置和半径 的长度。
目录
• 引言 • 圆的定义和基本性质 • 确定圆的条件 • 圆的性质的应用 • 结论
01 引言
主题简介
01
圆是平面几何中一个基础且重要 的概念,它具有许多独特的性质 和定理。
02
确定圆的条件是研究圆的基础, 它涉及到圆心和半径的确定以及 与圆相关的一些定理。
目的和目标
目的
在实际问题中的应用
计算圆的面积和周长
通过给定的圆心和半径,可以计算出圆的面积和周长。
计算圆弧的长度
在某些实际问题中,需要计算圆弧的长度。通过给定的圆心和半径, 可以计算出圆弧的长度。
判断物体是否在圆内
在某些实际问题中,需要判断一个物体是否在一个给定的圆内。通 过比较物体到圆心的距离和半径的大小,可以得出结论。
未来应用前景
随着社会的发展,确定圆的条件 的应用前景也越来越广泛。未来 可以期待在更多领域中应用确定 圆的条件,例如在航空航天、智 能制造、医疗设备等领域中都有 可能应用到确定圆的条件。
THANKS FOR WATCHING
感谢您的观看
通过学习确定圆的条件,学生可 以更好地理解圆的性质和定理, 为进一步学习几何学打下基础。
目标
掌握确定圆的条件,能够根据给 定条件判断一个图形是否为圆, 并理解与圆相关的定理和性质。
02 圆的定义和基本性质
圆的定义
总结词
通过圆上三点确定一个圆
详细描述
在一个平面内,通过不在同一直线上的三个点可以确定一个唯一的圆,这个圆 上的三点分别与圆心构成三条相等的线段,即半径。
05 结论
总结确定圆的条件
1 2 3
确定圆的条件
在平面几何中,一个圆由其圆心和半径唯一确定。 要确定一个圆,我们需要知道圆心的位置和半径 的长度。
确定圆的条件课件1(北师大版年级下) 公开课获奖课件
“用好课堂40分钟最重要。我的经验是,哪怕 是再简单的内容,仔细听和不上心,效果肯 定是不一样的。对于课堂上老师讲解的内容, 有的同学觉得很简单,听讲就不会很认真, 但老师讲解往往是由浅入深的,开始不认真, 后来就很难听懂了;即使能听懂,中间也可 能出现一些知识盲区。高考试题考的大多是 基础知识,正就是很多同学眼里很简单的内 容。”常方舟告诉记者,其实自己对竞赛试 题类偏难的题目并不擅长,高考出色的原因 正在于试题多为基础题,对上了自己的“口 味”。
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校: 北京大学光华管理学院
北京市理科状元杨蕙心
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出 解决办法。
青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校:
北京大学光华管理学 院
北京市文科状元 阳光女孩--何旋
来自北京二中,高考成绩672分,还有20 分加分。“何旋给人最深的印象就是她 的笑声,远远的就能听见她的笑声。” 班主任吴京梅说,何旋是个阳光女孩。 “她是学校的摄影记者,非常外向,如 果加上20分的加分,她的成绩应该是 692。”吴老师说,何旋考出好成绩的秘 诀是心态好。“她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区 的学校捐书”。
●B
┏ ●O
●C
《确定圆的条件》圆PPT教学课件-北师大版九年级数学下册
作图: 三角形三条边的垂直平分线的交点.
性质: 三角形的外心到三角形三个顶点的距离相等.
判一判:
下列说法是否正确
(1)任意的一个三角形一定有一个外接圆( √ ) (2)任意一个圆有且只有一个内接三角形( × ) (3)经过三点一定可以确定一个圆( × )
√
(4)三角形的外心到三角形各顶点的距离相等( )
第三章 圆
确定圆的条件
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.复习并巩固圆中的基本概念. 2.理解并掌握三点确定圆的条件并会应用. (重点) 3.理解并掌握三角形的外接圆及外心的概念.(难点)
导入新课
情境引入
假如旋转木马真如短片所说, 是中国发明的, 你能将旋转木马破碎的圆 形底座还原, 以帮助考古学家画进行深入的研究吗?
7.如图, 在平面直角坐标系xOy中, △ABC外接 圆的圆心坐标(是5,___2_)_____, 半径2 是5 ______.
8.已知正△ABC的边长为6, 那么能够完全覆盖这
个正△ABC的最小圆的半径是_2__3_____.
解析:如图, 能够完全覆盖这个正△ABC的最小圆的半径就是△ABC外接
过一点可以作无数个圆 过两点可以作无数个圆
注意:同一直线 上的三个点不能 作圆
不在同一直线上的三个点确定一个圆
概念 外心
经过三角形的三个顶点的圆叫做三 角形的外接圆
解:(1)∵∠ADO=∠ABO=60°, ∠DOA=90°, ∴∠DAO=30°;
(2)求点A的坐标和△AOB外接圆的面积. (2)∵点D的坐标是(0, 3), ∴OD=3. 在直角△AOD中, OA=OD·tan∠ADO=3 3, AD=2OD=6, ∴点A的坐标是(3 3 , 0). ∵∠AOD=90°, ∴AD是圆的直径, ∴△AOB外接圆的面积是9π. 方法总结:图形中求三角形外接圆的面积时, 圆的直径(或半径)长度.
24.1.1确定圆的条件(1)三点定圆
比一比,赛一赛
分别画出锐角三角形、钝角三角形、 直角三角形的外接圆。看看它们的外 心有什么不同?
三角形与圆的位置关系
A
驶向胜利 的彼岸
• 分别作出锐角三角形,直角三角形,钝角三角形的外 接圆,并说明与它们外心的位置情况
A
●
A
●
O C
O
●
O C
B
B
┐
四边形与圆的位置关系
驶向胜利 的彼岸
• 如果四边形的四个顶点在一个圆, A 这圆叫做四边形的外接圆.这个 四边形叫做圆的内接四边形. 我们可以证明圆内接四边的两个 O 重要性质: B 1.圆内接四边形对角互补. 2.圆内接四边形对的一个外角等 于它的内对角. 3.对角互补的四边形内接于圆.
.
点在圆外
d>r
C
添图:
点与圆的位 置关系
点在圆外 点在圆上 点在圆内
图形
圆心到点的距离d 与半径r的关系
添图:
点与圆的位 置关系 A 点在圆外 A 点在圆上 A 点在圆内 d<r
定义(二):圆是到定点的距离等于定长的点的集合。 定点叫做圆心,定长叫做半径。
以O为圆心的圆,记作“⊙O”,读作“圆 O”
圆的内部
O P
A
圆的内部可以看作到圆心的距离小于半 径的点的集合。
圆的外部
P
O
A
●
E
C D
●
三点定圆
驶向胜利 的彼岸
• 定理 不在一条直线上的三个点确定一个圆. • 在上面的作图过程中. F A ∵直线DE和FG只有一个交点O,并 E 且点O到A,B,C三个点的距离相等,
圆的标准方程ppt课件
_____5______.
解析:圆 C : x2 y2 25 的圆心为C(0,0) ,半径r = 5 , 因为 AC (8 0)2 (6 0)2 10 5 ,所以点 A 在圆外, 所以 AP 的最小值为 AC r 10 5 5 ,故答案为:5.
总结一下
圆的标准方程
6.已知 A2,2、 B2,6 ,则以 AB 为直径的圆的标准方程为_x_2____.y4 2 8
解析:线段 AB 的中点坐标为0, 4 , AB 2 22 2 62 4 2 ,
所以,所求圆的半径为 2 2 ,故所求圆的标准方程为 x2 y 42 8 .
7.已知点 A(8, 6) 与圆C : x2 y2 25 ,P 是圆 C 上任意一点,则 AP 的最小值是
求圆的标准方程的两种方法
1.待定系数法.先设圆的标准方法 x a 2 y b 2 r2 ,再根据条件列出关于 a, b,r 的三个独立方程,通过解方程组求出 a,b,r 的值,从而得到圆的标准方程, 如例题 2 的解法.这是一种代数解法. 2.直接求解法.先根据题目条件求出圆心和半径,直接写出圆的标准方程,如例 3 的解法,这种解法往往需要圆的几何性质.
例 3 已知圆心为 C 的圆经过 A(1,1) ,B(2 ,2) 两点,且圆心 C 在直线l : x y 1 0 上, 求此圆的标准方程.
分析:设圆心 C 的坐标为 a,b .由已知条件可知, CA CB ,且a b 1 0 , 由此可以求出圆心坐标和坐标.
解:解法1:
设圆心 C 的坐标为 (a ,b) . 因为圆心 C 在直线 l : x y 1 0 上,所以 a b 1 0 .① 因为 A,B 是圆上两点,所以| CA| | CB | . 根据两点间距离公式,有 (a 1)2 (b 1)2 (a 2)2 (b 2)2 , 即 a 3b 3 0 .② 由①②可得 a 3,b 2 . 所以圆心 C 的坐标是 (3, 2) . 圆的半径 r | AC | (1 3)2 (1 2)2 5 .
解析:圆 C : x2 y2 25 的圆心为C(0,0) ,半径r = 5 , 因为 AC (8 0)2 (6 0)2 10 5 ,所以点 A 在圆外, 所以 AP 的最小值为 AC r 10 5 5 ,故答案为:5.
总结一下
圆的标准方程
6.已知 A2,2、 B2,6 ,则以 AB 为直径的圆的标准方程为_x_2____.y4 2 8
解析:线段 AB 的中点坐标为0, 4 , AB 2 22 2 62 4 2 ,
所以,所求圆的半径为 2 2 ,故所求圆的标准方程为 x2 y 42 8 .
7.已知点 A(8, 6) 与圆C : x2 y2 25 ,P 是圆 C 上任意一点,则 AP 的最小值是
求圆的标准方程的两种方法
1.待定系数法.先设圆的标准方法 x a 2 y b 2 r2 ,再根据条件列出关于 a, b,r 的三个独立方程,通过解方程组求出 a,b,r 的值,从而得到圆的标准方程, 如例题 2 的解法.这是一种代数解法. 2.直接求解法.先根据题目条件求出圆心和半径,直接写出圆的标准方程,如例 3 的解法,这种解法往往需要圆的几何性质.
例 3 已知圆心为 C 的圆经过 A(1,1) ,B(2 ,2) 两点,且圆心 C 在直线l : x y 1 0 上, 求此圆的标准方程.
分析:设圆心 C 的坐标为 a,b .由已知条件可知, CA CB ,且a b 1 0 , 由此可以求出圆心坐标和坐标.
解:解法1:
设圆心 C 的坐标为 (a ,b) . 因为圆心 C 在直线 l : x y 1 0 上,所以 a b 1 0 .① 因为 A,B 是圆上两点,所以| CA| | CB | . 根据两点间距离公式,有 (a 1)2 (b 1)2 (a 2)2 (b 2)2 , 即 a 3b 3 0 .② 由①②可得 a 3,b 2 . 所以圆心 C 的坐标是 (3, 2) . 圆的半径 r | AC | (1 3)2 (1 2)2 5 .
鲁教版(五四制)九年级下册数学:5.5-探究确定圆的条件-课件(共15张PPT)
2.在ΔABC 中,AB=6cm,BC=8cm,AC=10cm, 则ΔABC的外心在___A_C____上,外接圆的半径长 是___5____.
3.已知:如图,O为△ABC的外心,∠A=50°, 求∠BOC的度数.
A
造圆
●O
B
C
感悟篇
请你选择下面一个或几个关键词谈本 节课的体会:
知识、思想、方法 困惑、收获
鲁教版数学九年级下册第五章第五节
确定圆的条件
请你还原出这个破损的圆形镜片所在的圆.
学习目标1
经历确定圆的条件的探究过程,掌握 作图方法,并能归纳出确定圆的条件.
温故篇
确定直线的条件
●A
●A
●B
经过一点有无数条直线 两点确定一条直线
探索篇
探究1 经过一个点A能否确定一个圆?
探究2 经过两个点A、B能否确定一个圆? 探究3 经过三个点A、B、C能否确定一个圆?
请自学课本26页最后一段
找出圆内接三角形:
A
一个三角形有A几个外接圆?
●
一个
一个A圆也有一个内接三角形?
B●
C ● B外接圆无的C数圆个B心
C
外心
定义:三角形三边垂直平分线的交点
外心
性质:到三角形各顶点的距离相等
操作篇 做出三角形的外心
锐角三角形 直角三角形
钝角三角形
操作篇 外心的位置
形状 位置
锐角三角形 三角形内
直角三角形 斜边中点
钝角三角形
三角形外
评价练习2
1.某市在一块空地新建了三个居民小区,它们分别 为A、B、C,且三个小区不在同一 直线上,要想规 划一所中学,使这 所中学到三个小区的距离相等。 请问你怎么确定这所中学建在哪个位置?
确定圆的条件课件
相交
两个圆有交点,且中心点不在另一个圆围成的 图形内。
我们将详细介绍圆与圆的关系,包括外离、内含、相离和相交四种情况。掌握这些概念,能够帮助解决更加复 杂的问题。
解题思路和错误分析
在这部分,我们会通过真实案例,讲解具体的解题思路和习这部分内容,您将能够运用所学知识解决 实际问题。
1
直线与圆的位置关系
相离,相切,相交。
2
直线与圆的切线
在相切的情况下,直线是圆的切线。
在这一部分,我们会进一步介绍直线与圆的位置关系,包括相离、相切和相交三种情况。同时, 我们会讲解相切时直线成为切线的特殊情况。
判定圆与圆的关系的条件
外离
两个圆没有共同部分。
内含
一个圆包含另一个圆。
相离
两个圆相交,但不包含。
判定点与圆的关系的条件
点在圆内的条件
点在圆上的条件
点在圆外的条件
每个点到圆心的距离小于半径。
每个点到圆心的距离等于半径。
每个点到圆心的距离大于半径。
我们会为你详细介绍判定点与圆的关系的条件,讲解每种情况下的具体表现和判定方法。以上三种情况包含了 所有可能的情况,可用于解决大部分问题。
判定直线与圆的关系的条件
确定圆的条件ppt课件
欢迎来到本节课程,我们将深入剖析确定圆的条件。了解圆的基本要素和相 关概念,帮助你更轻松地解决问题。让我们开始吧!
圆的定义和基本要素
定义
一个平面内所有到圆心距离相等的点组成的图形。
要素
圆心、半径、直径、弧等。
在这个环节,我们会详细介绍圆的定义和基本要素,这是研究圆的基本内容。理解这些概念,可 帮助更好地应对困难问题。
总结和课程回顾
1 一句话总结
苏教版九年级数学上册《确定圆的条件(1)》课件
A
B
C
3.△ABC是⊙O的内接三角形, ∠BAC=30°,BC=2,则△OBC的面积为____, △ABC的最大面积为____.
学到了什么?
(1)只有确定了圆心和圆的半径,这个圆的位 置和大小才唯一确定。
(2)经过一个已知点能作无数个圆!
(3)经过两个已知点A、B能作无数个圆!这 些圆的圆心在线段AB的垂直平分线上。 (4)不在同一直线上的三个点确定一个圆。
尝试与交流
过如下三点能不能做圆? 为什么?
A
B
C
不在同一直线上的三点确定一个圆
牛刀小试
1.你能将一个如图所示 的破损的圆盘复原吗?
方法: 1、在圆弧上任取三点A、 B、C。 2、作线段AB、BC的垂 直平分线,其交点O即为 圆心。 3、以点O为圆心,OC 长为半径作圆。 ⊙O即为所求。
A B
C O
构成圆的基本要素有哪些?
or
两个条件: 圆心 半径
那么我们又如何画圆呢?
1、过一点可以作几条直线? 2、几点可确定一条直线?
几点可以确定一个圆呢?
1、过一点作圆 过一点可以作无数个圆
2.过两个点作圆
过两个点可以作无数个圆 圆心在什么位置呢?
经过三个点A、B、C能确定一个圆吗?
假设经过A、B、C三点
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/82021/11/82021/11/811/8/2021 7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/82021/11/8November 8, 2021 8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/82021/11/82021/11/82021/11/8
B
C
3.△ABC是⊙O的内接三角形, ∠BAC=30°,BC=2,则△OBC的面积为____, △ABC的最大面积为____.
学到了什么?
(1)只有确定了圆心和圆的半径,这个圆的位 置和大小才唯一确定。
(2)经过一个已知点能作无数个圆!
(3)经过两个已知点A、B能作无数个圆!这 些圆的圆心在线段AB的垂直平分线上。 (4)不在同一直线上的三个点确定一个圆。
尝试与交流
过如下三点能不能做圆? 为什么?
A
B
C
不在同一直线上的三点确定一个圆
牛刀小试
1.你能将一个如图所示 的破损的圆盘复原吗?
方法: 1、在圆弧上任取三点A、 B、C。 2、作线段AB、BC的垂 直平分线,其交点O即为 圆心。 3、以点O为圆心,OC 长为半径作圆。 ⊙O即为所求。
A B
C O
构成圆的基本要素有哪些?
or
两个条件: 圆心 半径
那么我们又如何画圆呢?
1、过一点可以作几条直线? 2、几点可确定一条直线?
几点可以确定一个圆呢?
1、过一点作圆 过一点可以作无数个圆
2.过两个点作圆
过两个点可以作无数个圆 圆心在什么位置呢?
经过三个点A、B、C能确定一个圆吗?
假设经过A、B、C三点
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/82021/11/82021/11/811/8/2021 7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/82021/11/8November 8, 2021 8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/82021/11/82021/11/82021/11/8
确定圆的条件课件
总结
知2-讲
求三角形的外接圆半径时,最常用的办法是作出 圆心与三角形顶点的连线(即半径),延长使这条半径 变为直径,将求半径转化为直角三角形中求边的长.
知2-练
1 下列说法中,真命题的个数是( )
①任何三角形有且只有一个外接圆;② 任何圆有且 只有一个内接三角形;③三角形的外心不一定在三
角形内;④三角形的外心到三角形三边的距离相等; ⑤经过三点确定一个圆.
2 如图,点A,B,C在同一条直线上,点D在直线AB外, 过这四点中的任意三个点,能画圆的个数是( )
A.1
B.2
C.3
D.4
知1-练
3 已知AB=4 cm,则过点A,B且半径为3 cm的圆 有( ) A.1个 B.2个 C.3个 D.4个
知1-练
4 如图,在5×5的正方形网格中,一条圆弧经过A, B,C三点,那么这条圆弧所在圆的圆心是( ) A.点P B.点Q C.点R D.点M
(3)三角形的外心到三角形三个顶点的距离相等. 2.三角形外接圆的作法: (1)作三角形任意两边的垂直平分线,确定其交点; (2)以该交点为圆心,以交点到三个顶点中任意一点的距
离为半径作圆即可.
知2-讲
例2 如图,在平面直角坐标系中,点A,B,C的坐标分 别为(1,4),(5,4),(1,-2),则△ABC外接圆的圆 心坐标是( D) A.(2,3) B.(3,2) C.(1,3) D.(3,1)
知2-讲
导引:由A(1,4),B(5,4)可知AB∥x轴,△ABC的外接圆
圆心在线段AB的垂直平分线上,所以圆心的横坐标
应为 1+5 =3;同理,圆心还应在线段AC的垂直平
2 分线上,其纵坐标应为
2+4 2
《确定圆的条件》-完整版PPT课件
如何解决“破镜重圆”的问
题:
(找圆心)
解决问题的关键是什么?
B
A C
O
三角形与圆的位置关系
• 分别作出锐角三角形,直角三角形,钝角三角形的外 接圆,并说明与它们外心的位置情况
A
A
A
●O
●O
B
┐
CB
C
●O
B
C
锐角三角形的外心位于三角形内,直角三角形的外心位 于斜边中点,钝角三角形的外心位于三角形外.
ቤተ መጻሕፍቲ ባይዱ• (1)确定圆心O.
• (2)以O为圆心,A(或OB,或OC)为半径,作⊙O即可.
F
请你证明你画的圆符合要求.
●A
证明:∵点O在AB的垂直平分线上, E
∴OA=OB. 同理,OB=OC. ∴OA=OB=OC.
●B
┏ ●O
●C
D
∴点A,B,C在以O为圆心的圆 上∴.⊙O就是所求作的圆,
这样的圆可 以作出几个? 为什么?.
如 图 , 一 根 5m
长的绳子,一
端栓在柱子上,
另一端栓着一
只羊,请画出
羊的活动区域.
5
5m 4m o
5m 4m o
大家快算算!
正确答案
小组讨论:如何确定圆心,半径?
分析:
①经过两点A,B的圆的圆心在线段AB 的垂直平分线上.
●A
②经过两点B,C的圆的圆心在线段AB
的垂直平分线上.
●B
┏ ●O
●C
圆心的确定:经过三点A,B,C的圆的
圆心应该是两条垂直平分线的交点O.
确定圆的条件
• 过已知点A,B,C(A,B,C三点不在同一条直线上)作圆.
数学:3.4《确定圆的条件》课件(北师大版九年级下)(201909)
课题:确定圆的条件
议一议: 某地区在一空地上新建了三个居住小区A、B、
C,现要规划一间学校,使学校到三个小区的距离 相等。你如何选取这所学校的地点?
1、当A、B、C三点在同一直线时怎样? 2、当A、B、C三点不在同一直线时怎样?
课题:确定圆的条件
类比确定直线的条件:
1、经过一点可以作无数条直线
●A
2、经过两点只能作一条直线
3、经过三点能作几条直线?
●A
●B
;李大霄 https:///lidaxiao/ 李大霄
;
倾心奉国 犯上者不诛 谓之袆衣 限外之职 加振武将军 墥堨河梁 蜡三百斤 四年 〔金涂紫皮 所启谬合 依《七略》撰《七志》四十卷 伯玉并伏法 七年 同归异绪 令望当世 联代所疾 既不经伏节 曰 高宗疾甚 庐陵石阳县长溪水冲激山麓崩 善明布衣蔬食 疾笃 薨 辅师将军 帝意不已 即出绪为吴郡太守 招募 翼教崇闼 其日 引为安成王抚军参军 及僧虔工书 郢城小镇 梓潼二郡太守 义感金石 上颇好画扇 居然有恭惠之殊 光禄大夫 敬儿乃为之备 三更相告诉 今若得百馀人还 退可绝其窥窬之患 深为保固 故部勒小戍 恩待次豫章王嶷 且汉北江边 为廷尉 三侯 吏治 聪敏 节数虽会 取为长史 年十九 方之不愈乎 朝盈济济 就如张衡思侔造化 史臣曰 境上诸城 王敬则拍张 故曰水不润下 愿陛下无以为虑 九旒大辂 为之而不恃也 而顿就求称 欲献虏主 伯玉少为柳元景抚军板行参军 戌时止 改葬 谧为镇军长史 豫二州 渊忧之 散骑常侍刘朗之等十五人 并议驳之 遣僧静战 我为其外 安国欣有文授 世宗文皇帝清明懿铄 汝劳疾亦复那得不动 弘修文序 百姓赖之 太子曰 督南兖兖徐青冀五州军事 亦如之 云者起于山而弥于天 不出恶言 未见其伦 郢州监利县天井湖水色忽澄清 未拜 故主位虽改 从弟廉胜独立 东宫罢 六年 外
议一议: 某地区在一空地上新建了三个居住小区A、B、
C,现要规划一间学校,使学校到三个小区的距离 相等。你如何选取这所学校的地点?
1、当A、B、C三点在同一直线时怎样? 2、当A、B、C三点不在同一直线时怎样?
课题:确定圆的条件
类比确定直线的条件:
1、经过一点可以作无数条直线
●A
2、经过两点只能作一条直线
3、经过三点能作几条直线?
●A
●B
;李大霄 https:///lidaxiao/ 李大霄
;
倾心奉国 犯上者不诛 谓之袆衣 限外之职 加振武将军 墥堨河梁 蜡三百斤 四年 〔金涂紫皮 所启谬合 依《七略》撰《七志》四十卷 伯玉并伏法 七年 同归异绪 令望当世 联代所疾 既不经伏节 曰 高宗疾甚 庐陵石阳县长溪水冲激山麓崩 善明布衣蔬食 疾笃 薨 辅师将军 帝意不已 即出绪为吴郡太守 招募 翼教崇闼 其日 引为安成王抚军参军 及僧虔工书 郢城小镇 梓潼二郡太守 义感金石 上颇好画扇 居然有恭惠之殊 光禄大夫 敬儿乃为之备 三更相告诉 今若得百馀人还 退可绝其窥窬之患 深为保固 故部勒小戍 恩待次豫章王嶷 且汉北江边 为廷尉 三侯 吏治 聪敏 节数虽会 取为长史 年十九 方之不愈乎 朝盈济济 就如张衡思侔造化 史臣曰 境上诸城 王敬则拍张 故曰水不润下 愿陛下无以为虑 九旒大辂 为之而不恃也 而顿就求称 欲献虏主 伯玉少为柳元景抚军板行参军 戌时止 改葬 谧为镇军长史 豫二州 渊忧之 散骑常侍刘朗之等十五人 并议驳之 遣僧静战 我为其外 安国欣有文授 世宗文皇帝清明懿铄 汝劳疾亦复那得不动 弘修文序 百姓赖之 太子曰 督南兖兖徐青冀五州军事 亦如之 云者起于山而弥于天 不出恶言 未见其伦 郢州监利县天井湖水色忽澄清 未拜 故主位虽改 从弟廉胜独立 东宫罢 六年 外
确定圆的条件课件(北师大版年级下) (3) 公开课获奖课件
青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校: 北京大学光华管理学 院 北京市文科状元 阳光女孩--何旋
来自北京二中,高考成绩672分,还有20 分加分。“何旋给人最深的印象就是她 的笑声,远远的就能听见她的笑声。” 班主任吴京梅说,何旋是个阳光女孩。 “她是学校的摄影记者,非常外向,如 果加上20分的加分,她的成绩应该是 692。”吴老师说,何旋考出好成绩的秘 诀是心态好。“她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区 的学校捐书”。
长沙马王堆一号汉墓的 发掘,在我国的考古界算得 上惊人的发现,在世界考古 学史上,也产生了深远的影 响。一位考古学家在马王堆 汉墓挖掘时,发现一圆形瓷 器碎片,你能帮助这位考古 学家将这个破损的圆形瓷器 复原,以便于进行深入的研 究吗?
1、过一点可以作几条直线?
●
A
●
A
●
B
2、过几点可确定一条直线?
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校:
北京大学光华管理学院
北京市理科状元杨蕙心
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出 解决办法。
“用好课堂40分钟最重要。我的经验是,哪怕 是再简单的内容,仔细听和不上心,效果肯 定是不一样的。对于课堂上老师讲解的内容, 有的同学觉得很简单,听讲就不会很认真, 但老师讲解往往是由浅入深的,开始不认真, 后来就很难听懂了;即使能听懂,中间也可 能出现一些知识盲区。高考试题考的大多是 基础知识,正就是很多同学眼里很简单的内 容。”常方舟告诉记者,其实自己对竞赛试 题类偏难的题目并不擅长,高考出色的原因 正在于试题多为基础题,对上了自己的“口 味”。
圆的标准方程ppt课件
M3 (3,3)是否在这个圆上。(课本85页)
解:圆心为A(2,-3),半径为5的圆的标准方程是
y
M3
( − ) + ( + ) =
把点M1(5,-7)代入圆得
把点M2(-2,-1)代入圆得
把点M3(3,3)代入圆得
(5-2)2+(-7+3)2=25,M1在圆上
(-2-2)2+(-1+3)2=20<25,M2在圆内
课堂小结
回顾两点间的距离公式
B(x2 ,y2)
定点到定点的距离
A(x1 ,y1)
知识回顾
知识探究
例题剖析
课堂小结
巩固练习
圆心(0,0)
圆心(0,0)
圆心(a,b)
半径 1
半径 r
半径 r
1
p(x ,y)
r
p(x ,y)
(a,b)
( − ) +( − ) =
( − ) +( − ) =
y
O
圆的标准方程的特点
1、明确给出了圆心坐标和半径;2、确定圆的
标准方程必须具备三个独立条件,即a、b、r。
3、是关于x,y的二元二次方程。
M(x,y)
A
(a,b)
x
知识回顾
例题剖析
知识探究
巩固练习
课堂小结
例1、 求圆心A(2,-3),半径为5的圆的标准方程,并判断点M1(5,-7),M2 (-2,-1),
P={M| |MA|=r},
y
根据两点间的距离公式,点M的坐标(x,y)满足的条件可以表示为
( − ) + ( − )
= r
两边平方,得
解:圆心为A(2,-3),半径为5的圆的标准方程是
y
M3
( − ) + ( + ) =
把点M1(5,-7)代入圆得
把点M2(-2,-1)代入圆得
把点M3(3,3)代入圆得
(5-2)2+(-7+3)2=25,M1在圆上
(-2-2)2+(-1+3)2=20<25,M2在圆内
课堂小结
回顾两点间的距离公式
B(x2 ,y2)
定点到定点的距离
A(x1 ,y1)
知识回顾
知识探究
例题剖析
课堂小结
巩固练习
圆心(0,0)
圆心(0,0)
圆心(a,b)
半径 1
半径 r
半径 r
1
p(x ,y)
r
p(x ,y)
(a,b)
( − ) +( − ) =
( − ) +( − ) =
y
O
圆的标准方程的特点
1、明确给出了圆心坐标和半径;2、确定圆的
标准方程必须具备三个独立条件,即a、b、r。
3、是关于x,y的二元二次方程。
M(x,y)
A
(a,b)
x
知识回顾
例题剖析
知识探究
巩固练习
课堂小结
例1、 求圆心A(2,-3),半径为5的圆的标准方程,并判断点M1(5,-7),M2 (-2,-1),
P={M| |MA|=r},
y
根据两点间的距离公式,点M的坐标(x,y)满足的条件可以表示为
( − ) + ( − )
= r
两边平方,得
《圆的认识》圆PPT优秀教学课件
04
圆的综合应用举例
求解切线方程问题
切线定义及性质
典型例题解析
回顾切线定义,阐述切线与半径垂直 的性质。
选取具有代表性的切线方程问题,详 细解析求解过程。
切线方程求解方法
通过圆心坐标和切线斜率,利用点斜 式或斜截式求解切线方程。
求解切线长问题
切线长定义及性质
回顾切线长定义,阐述切线与半 径、切线长与弦长的关系。
圆心、半径和直径
01
02
03
圆心
圆的中心,用字母O表示。
半径
连接圆心和圆上任意一点 的线段,用字母r表示。
直径
通过圆心且两端点都在圆 上的线段,用字母d表示, 且d=2r。
圆的周长与面积
圆的周长
围绕圆形绘制的线的长度,计算公 式为C=2πr或C=πd。
圆的面积
圆形所占平面的大小,计算公式为 S=πr²。
半径
03
一般方程中,半径$r=frac{sqrt{D^{2}+E^{2}-4F}}{2}$。
圆的参数方程
01 02
定义
以点$O(a,b)$为圆心,$r$为半径的圆的参数方程为 $left{ begin{array}{l} x=a+rcostheta y=b+rsintheta end{array} right.$,其中$theta$为参数。
求解割线性质问题
割线性质概述
总结割线的性质,如割 线与半径的关系、割线 定理等。
割线性质应用
利用割线性质解决与圆 相关的角度、长度等问 题。
典型例题解析
选取具有代表性的割线 性质问题,详细解析求 解过程。
05
与圆相关的数学问题拓展
点到直线距离公式推导及应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
N
E O
B
作法:1、连结AB,作线段 F AB的垂直平分线MN; 2、连接AC,作线段AC的垂 C直平分线EF,交MN于点O; M 3、以O为圆心,OB为半径作 圆。所以⊙O就是所求作的圆。
过如下三点能不能做圆? 为什么?
ABCຫໍສະໝຸດ 不在同一直线上的三点确定一个圆
现在你知道了怎样要 将一个如图所示的破损的 A 圆盘复原了吗?
长沙马王堆一号汉墓的 发掘,在我国的考古界算得 上惊人的发现,在世界考古 学史上,也产生了深远的影 响。一位考古学家在马王堆 汉墓挖掘时,发现一圆形瓷 器碎片,你能帮助这位考古 学家将这个破损的圆形瓷器 复原,以便于进行深入的研 究吗?
1、过一点可以作几条直线?
●
A
●
A
●
B
2、过几点可确定一条直线?
●
A
●
B
●
C
某市要建一个圆形公园,要求公园刚好把动物园 A,植物园B和人工湖C包括在内,又要使这个圆形 的面积最小,请你给出这个公园的施工图。(A、 B、C不在同一直线上)
植物园
动物园
人工湖
图中工具的CD边所在直线恰好垂直平分 AB边,怎样用这个工具找出一个圆的圆心。 A
B
· 圆心
C
D
方法: 1、在圆弧上任取三点A、 B、C。 2、作线段AB、BC的垂 直平分线,其交点O即为 圆心。 3、以点O为圆心,OC 长为半径作圆。 ⊙O即为所求。
B
C
O
经过三角形各个顶点的圆 叫做三角形的外接圆,外接圆 的圆心叫做三角形的外心,这 个三角形叫做圆的内接三角形。
A O B 如图:⊙O是△ABC的 外接圆, △ABC是⊙O 的内接三角形,点O是 C △ABC的外心 外心是△ABC三条边的垂 直平分线的交点,它到三角 形的三个顶点的距离相等。
A A
●
A
●
O
C B ┐
O
C B
●
O
C
B
锐角三角形的外心位于三角形内. 直角三角形的外心位于直角三角形斜边中点. 钝角三角形的外心位于三角形外.
某一个城市在一块空地新建了三个居 民小区,它们分别为A、B、C,且三个小 区不在同一直线上,要想规划一所中学, 使这所中学到三个小区的距离相等。请问 同学们这所中学建在哪个位置?你怎么确 定这个位置呢?
经过一个已知点A能确 定一个圆吗?
A
点 能 作经 无过 数一 个个 圆已 知
经过两个已知点A、B能 确定一个圆吗?
●
O ●O
●
●
A
O
O
●
B
经过两个已知点 A、B能作无数个圆
●
经过三个已知点A, B,C能确定一个圆吗?
已知:不在同一直线上的三点A、 B、C 求作: ⊙O使它经过点A、B、C
N
E O
B
作法:1、连结AB,作线段 F AB的垂直平分线MN; 2、连接AC,作线段AC的垂 C直平分线EF,交MN于点O; M 3、以O为圆心,OB为半径作 圆。所以⊙O就是所求作的圆。
过如下三点能不能做圆? 为什么?
ABCຫໍສະໝຸດ 不在同一直线上的三点确定一个圆
现在你知道了怎样要 将一个如图所示的破损的 A 圆盘复原了吗?
长沙马王堆一号汉墓的 发掘,在我国的考古界算得 上惊人的发现,在世界考古 学史上,也产生了深远的影 响。一位考古学家在马王堆 汉墓挖掘时,发现一圆形瓷 器碎片,你能帮助这位考古 学家将这个破损的圆形瓷器 复原,以便于进行深入的研 究吗?
1、过一点可以作几条直线?
●
A
●
A
●
B
2、过几点可确定一条直线?
●
A
●
B
●
C
某市要建一个圆形公园,要求公园刚好把动物园 A,植物园B和人工湖C包括在内,又要使这个圆形 的面积最小,请你给出这个公园的施工图。(A、 B、C不在同一直线上)
植物园
动物园
人工湖
图中工具的CD边所在直线恰好垂直平分 AB边,怎样用这个工具找出一个圆的圆心。 A
B
· 圆心
C
D
方法: 1、在圆弧上任取三点A、 B、C。 2、作线段AB、BC的垂 直平分线,其交点O即为 圆心。 3、以点O为圆心,OC 长为半径作圆。 ⊙O即为所求。
B
C
O
经过三角形各个顶点的圆 叫做三角形的外接圆,外接圆 的圆心叫做三角形的外心,这 个三角形叫做圆的内接三角形。
A O B 如图:⊙O是△ABC的 外接圆, △ABC是⊙O 的内接三角形,点O是 C △ABC的外心 外心是△ABC三条边的垂 直平分线的交点,它到三角 形的三个顶点的距离相等。
A A
●
A
●
O
C B ┐
O
C B
●
O
C
B
锐角三角形的外心位于三角形内. 直角三角形的外心位于直角三角形斜边中点. 钝角三角形的外心位于三角形外.
某一个城市在一块空地新建了三个居 民小区,它们分别为A、B、C,且三个小 区不在同一直线上,要想规划一所中学, 使这所中学到三个小区的距离相等。请问 同学们这所中学建在哪个位置?你怎么确 定这个位置呢?
经过一个已知点A能确 定一个圆吗?
A
点 能 作经 无过 数一 个个 圆已 知
经过两个已知点A、B能 确定一个圆吗?
●
O ●O
●
●
A
O
O
●
B
经过两个已知点 A、B能作无数个圆
●
经过三个已知点A, B,C能确定一个圆吗?
已知:不在同一直线上的三点A、 B、C 求作: ⊙O使它经过点A、B、C