初中数学一元二次方程复习课件解析

合集下载

中考总复习一元二次方程复习PPT课件

中考总复习一元二次方程复习PPT课件

知识回顾
二)、一元二次方程的解和解法 (1). 一元二次方程的解. 满足方程,有根就是两个
(2).一元二次方程的几种解法
①直接开平方法②因式分解法
③配方法
④公式法
.
4
知识回顾 (1)直接开平方法
(2)因式分解法
Ax2=B(A≠0)
因式分解 有哪些方法?
(3) 配方法 (4)公式法
当二次项系数为1的时候, 方程两边同加上一次项系 数一半的平方
• (1) 3x 2 5y 3 • 整式方程中都只
• (2) x2 4
含有一个未知数,
• (3) x2 1 x2
并且未知数的最 高次数是2,这样
x 1
的方程叫做一元
• (4) x24(x2)2 二次方程
2.若方程(k²+2k-3)x²+(k-1)x+4=0是关于x 的一元二次方程,则k.的取值范围是____3
2)方程x²-3x+6=0与方程x²-6x+3=0 的所有根的积与和分别是____,____
8.等腰三角形ABC中,BC=8,AB,AC
的长是关于x的方程x²-10x+m=0的两个根,
则m的值为_____.
9
基础闯关
9:用给定的方法解下列方程: (1) -x2+12x =9(配方法)
2 )x ( 1 )2 3 x 1 2 0 ;(因式分解法)
b b2 4ac
当b-4ac≥0时,x=
2a
.
5
基础闯关
3.若m是方程x2+5x+3=0的根,
则3m2+15m-2的值为 ——
.
4.已知x=-1是方程x²-ax+6=0的一个根,

《一元二次方程》复习课件

《一元二次方程》复习课件
1 D. 2
2
解一元二次方程的方法
一元二次方程的几种解法 (1)直接开平方法 (2)因式分解法 (3)配方法 (4)公式法
一元二次方程的解法:(配方法) 例:(2)
x 6x 7 0
2
配方时应注意 ①先将二次项系数 转化为1 ②两边都加上一次 项系数一半的平方
解: x2 6 x 7 2 x 6 x 9 7 9 — — 2 x 3 2
一元二次方程的根 能使方程左右两边相等的未知数的值叫做方程的解. 一元二次方程的解也叫做一元二次方程的根. -7 1.已知x=-1是方程x²ax+6=0的一个根.则a=___, 另一个根为__. 6
2 2 2.若关于X的一元二次方程 a 1x x a 1 0 的一 个根为0.则a的值为( B )
2
C. 2a b 2c 0
D. a 2b 2c 0
7. 若关于 x 的一元二次方程 x px 1 0 的一个 实数根的倒数恰是它本身, 则 p 的值为(C ) A. 2 B. 2 C. 2 D. 1
4 4. 已知 2 是方程 x c 0 的一个根, 则 c _____.
与5a 是同类项,则m 5或-1
9
3.已知方程:5x2+kx-6=0的一个根是2,则k=_____ -7
它的另一个根______. -3/5
4.方程2 x ² -mx-m² =0有一个根为 – 1,则m= 2或-1 ,另一个根
为 2或1/2

5. 已知关于 x 的一元二次方程ax2 bx c 0, 且 满足 b a c, 则至少可以确定方程的一个根为(B ). A.1 B. 1 C. 0 D. 不能确定 6.已知 1 是关于 x 的一元二次方程(2a b) x 2 (2b c ) x 2c a 0的根, 则a, b, c满足的关系是(A ). A. a b c 0 B. a b c 0

中考数学专题《一元二次方程》复习课件(共18张PPT)

中考数学专题《一元二次方程》复习课件(共18张PPT)

一元二次方程根的判别式 一元二次方程 ax 2
2
b 4ac
2
bx c 0a 0根的判别式是: ax bx c 0a 0
定理与逆定理
一元二次方程
判别式的情况
根的情况
b 2 4ac 0 两个不相等实根 b 2 4ac 0 两个相等实根 b 2 4ac 0 无实根(无解)
a, b, c能构成等腰三角形。
综上所述,m 4或3。
活动五 相信我 我是最棒的
若a为方程
的解,则 x x 5 0 2 3a 3a 5 的值为( 20 )
2
将4个数a、b、c、d排成2行2列,两边各加一条竖线记成
a b a b , 定义 ad bc,这个式子叫做2阶行列式。 c d c d 若 x+1 x-1 1-x x+1 =6则x=
m 3
且把m 3代入方程,
且把m 4代入方程, 得x 2 4 x 4 0
16 4m 0, m 4
得x 2 4x 3 0,x1 3, x2 1。
三边分别为3、3、1
x1 x2 2
即b cb, c能构成等腰三角形。
小结:选择方法的顺序是: 直接开平方法 →分解因式法 → 配方法 → 公式法
例2、已知m为非负整数,且关于x的一元二次方程
(m 2) x (2m 3) x m 2 0
2
有两个实数根,求m的值。
解:∵方程有两个实数根 2

[ ( 2 m 3 )] 4 ( m 2 )( m 2 ) 0
√ ×
1 3、x2+ =1 x

好人教版九年级上数学《一元二次方程》复习课件

好人教版九年级上数学《一元二次方程》复习课件

解题思路与方法:总结一元 二次方程在几何问题中的解 题思路和方法,如代数法、 几何法等
注意事项:强调解一元二次方 程时需要注意的事项,如判别 式的使用、根的取舍等
05
一元二次方程的拓 展知识
一元二次方程的判别式
判别式的定义:Δ=b²-4ac 判别式的意义:判断一元二次方程的根的情况 判别式的应用:解决与一元二次方程相关的问题 判别式的拓展:了解其他类型的二次方程的判别式
03
一元二次方程的解 法
直接开平方法
定义:对于形如$x^2=a$(其中a为非负实数)的一元二次方程,可以通过直接开平方的方法 求解。
适用范围:适用于形如$x^2=a$的一元二次方程,其中a为非负实数。
解法步骤:首先确定方程的形式,然后根据平方根的定义,取方程两边的平方根,得到 $x=\pm\sqrt{a}$。
实际应用:一元二次方程在实际生活中有着广泛的应用,如求解利润最大化、最短路径等问题
解题步骤:首先将实际问题转化为数学模型,然后利用一元二次方程的解法求解,最后将答案 回归实际问题
注意事项:在解决实际问题时,需要注意问题的实际情况和约束条件,避免出现不符合实际情 况的解
代数问题中的一元二次方程
一元二次方程的根与对称轴和顶点之间的关系
添加标题
一元二次方程的对称轴:一元二次方程的一般形式为ax^2+bx+c=0,其对称轴为x=-b/2a。
添加标题
一元二次方程的顶点:对于一般形式的一元二次方程,其顶点坐标为(-b/2a, c-b^2/4a)。
添加标题
一元二次方程的根与对称轴和顶点之间的关系:一元二次方程的根与对称轴和顶点之间存在密 切关系。当方程有两个实数根时,这两个根关于对称轴对称;当方程有一个实数根时,顶点就 是该根;当方程没有实数根时,顶点在x轴上方或下方。

《一元二次方程》复习 ppt课件

《一元二次方程》复习 ppt课件

:(x+2)2=9
解:两边开平方,得: x+2= ±3
∴ x=-2±3
∴ x1=1, x2=-5
右边开平方 后,根号前 取“±”。
2021/3/26
《一元二次方程》复习 ppt课件
9
2、
:(y+2)2=3(y+2)
解:原方程化为 (y+2) 2﹣ 3(y+2)=0 (y+2)(y+2-3)=0 (y+2)(y-1)=0 y+2=0 或 y-1=0 ∴y1=-2 y2=1
(2).当△ = 0 ,方程有两个相等的实根, 8k+9 =0 , 即
k
8
9
(3).当△ <0 ,方程有没有实数根, 8k+9 <0 , 即
K<
9 8
8
说明:解此类题目时,也是先把方程化为一般形式,再算
2出021△/3/2,6 再由题目给出的《根一元的二次情方况程》确复习定pp△t课的件 情况。
18
审 1. 清题意,弄清题中的已知量和未知量找出
题中的等量关系。
设 2. 恰当地 出未知数,用未知数的代数式表
示未知量。
列 3. 根据题中的等量关系 出方程。
解 4. 方程得出方程的解。
检 5. 验看方程的解是否符合题意。
答 6. 作 《注一元意二次单方位程》。复习 ppt课件
17
练习三
类型一:判别式问题
2021/3/26
《一元二次方程》复习 ppt课件
10
步骤归纳
①右边化为0,左边化成两个因式的积; ②分别设两个因式为0,求解。
2021/3/26
《一元二次方程》复习 ppt课件

一元二次方程 复习课件

一元二次方程   复习课件
第二十一章 一元二次方程
一元二次方程复习
定义和一般形式 ax2+bx+c=0 (a≠0)
直接开平方法 (x a)2 bb 0
一 元 二
解法
配方法 公式法
x2

bx


b 2
2



x

b 2
2


cc

0
x b b2 4ac 0
方程有两个不相等的实数根 方程有两个相等的实数根
b2 4ac 0,
方程没有实数根
二次三项式 ax2 bx c 是 完全平方式的条件是:b2 4ac 0.
k为何值时,二次三项式 x2 (k 1)x k是完全平方式 .
练习
• 1、方程2x2+3x-k=0根的判别式是

当k
解题步骤
(2)配方法
x2

bx


b 2
2


x

b 2
2

cc

0
(3)公式法
x b b2 4ac 0
2a
(4)因式分解法 (x a)(x b) 0
阅 读 一元二次方程的解法:(配方法)
例 解方程 x2 6x 7 0
阅 读 一元二次方程的解法:(因式分解法)
例 解方程 (y 2)2 3( y 2)
解:原方程化为 (y+2) 2﹣3(y+2)=0
把y+2看作一 个整体,分解
因式,化为 a×b=0形式。
(y+2)(y+2-3)=0
(y+2)(y-1)=0 y+2=0 或 y-1=0 ∴y1=-2 y2=1

一元二次方程复习课件

一元二次方程复习课件

02 一元二次方程解法
直接开平方法
01
对于形如 $x^2 = a$ ($a geq 0$) 的方程,可以直接开平方得到 $x = sqrt{a}$ 或 $x = -sqrt{a}$。
02
注意:当 $a < 0$ 时,方程无实 数解。
配方法
步骤
移项、配方、开方、求解。
示例
解方程 $x^2 + 4x + 3 = 0$,可以配方为 $(x + 2)^2 = 1$,然后开方得到 $x + 2 = pm 1$,最后求解得 $x_1 = -1, x_2 = -3$。
05 一元二次方程的特殊形式 及解法
完全平方形式及Leabharlann 法1 2 3完全平方形式
一元二次方程可以表示为 $(ax+b)^2=c$ 的形 式,其中 $a, b, c$ 为常数,且 $a neq 0$。
解法
对于完全平方形式的一元二次方程,可以直接开 平方求解。即 $x = pm sqrt{frac{c}{a^2}} frac{b}{a}$。
06 一元二次方程复习策略与 建议
系统梳理知识体系
回顾一元二次方程的定义、标 准形式及相关概念,明确方程 的基本性质。
梳理一元二次方程的解法体系, 包括直接开平方法、配方法、 公式法和因式分解法。
总结一元二次方程与一元一次 方程、二元一次方程组的联系 与区别,形成知识网络。
熟练掌握各种解法技巧
示例
方程 $(x+3)^2=16$ 可以直接开平方求解,得 到 $x = pm 4 - 3$,即 $x_1 = 1, x_2 = -7$。
平方差形式及解法
平方差形式
一元二次方程可以表示为 $(ax+b)(cx+d)=0$ 的形式,其 中 $a, b, c, d$ 为常数,且 $ac neq 0$。

一元二次方程的解法复习课件

一元二次方程的解法复习课件

技巧
根据题目特点选择合适 的解法,提高解题效率。
复习建议
01
系统复习一元二次方程的 基本概念和性质,理解判 别式的意义和作用。
02
掌握一元二次方程的三 种解法,并能根据题目 特点灵活选择解法。
03
04
多做练习题,加强对知 识点的理解和记忆,提 高解题能力。
注意总结归纳,形成自 己的知识体系和方法论。
因式分解法的示例
1. 示例一:解方程 $x^2 - 5x + 6 = 0$。
• 将方程左边分解为 $(x - 2)(x - 3) = 0$。
• 分别令 $x - 2 = 0$ 和 $x - 3 = 0$,解得 $x_1 = 2$, $x_2 = 3$。
因式分解法的示例
2. 示例二:解方程 $2x^2 + x 3 = 0$。
一元二次方程的解法复习课件
contents
目录
• 引言 • 一元二次方程的基本概念 • 一元二次方程的解法-配方法 • 一元二次方程的解法-公式法 • 一元二次方程的解法-因式分解法 • 一元二次方程的应用 • 总结与回顾
01 引言
复习目的
熟练掌握一元二次方程的解法,包括直接开平方法、配方法、公式法和因式分解法。 能够根据方程的特点,选择合适的解法进行求解。
一元二次方程在化学中的应用
化学反应速率问题
通过一元二次方程求解化 学反应速率与反应物浓度 之间的关系,以及反应速 率常数等问题。
化学平衡问题
在化学平衡中,一元二次 方程可用于求解平衡常数、 转化率和反应进度等问题。
放射性衰变问题
通过一元二次方程求解放 射性元素的衰变规律,以 及半衰期和衰变常数等问 题。
07 总结与回顾

初三数学中考专题复习 一元二次方程 课件(共22张PPT)

初三数学中考专题复习    一元二次方程  课件(共22张PPT)
• 8、若9am2-4m+4与5a9是同类项,则m= ___
• 9、某商场将进货价为30元的台灯以40元售 出,平均每月能售出600个,调查表明:, 这种台灯的售价每上涨1元,其月销售量就 将减少10个,若销售利润率不得高于100% ,为了实现平均每月10000元的销售利润, 这种台灯的售价应定为多少?这时应进台 灯多少个?
• 5、 若x,y为矩形的边长,且(x+y+4)(x +y+5)=42, 则矩形的周长为___.
• 6、如果正整数a是一元二次方程x2-3x+ m=0的一 个根,-a是一元二次方程
• x2+3x-m=0的一个 根,则a=____.
• 7、一元二次方程ax2+bx+c=0,若x=1是它 的一个根,则 a+b+c= ___,若a-b+c=0, 则方程必有一根为___
运动与方程
如图,在Rt△ACB中,∠C=90°,
AC=6m,BC=8m,点P、Q同时由A、
B速两点出发分别沿AC,BC方向 A
向点C匀运动,它们的速度都是 P 1m/s,几秒后四边形APQB的面积
为Rt△ACB面积的1\3?
C
QB
几何与方程
1.将一块正方形的铁皮四角剪去一个边长为4cm的小正 方形,做成一个无盖的盒子.已知盒子的容积是400cm3, 求原铁皮的边长.
适应于左边能分解为两个一次因式的积右边是00的方程一一元二次方程的定义1判断下面方程是不是一元二次方程14xx2023x2y103ax?bxc04853xx13????122方程m2xm3mx40是关于x的一元二次方程则m3方程m21x2m1x2m10当m时是一元二次方程
第二章 一元二次方程 复习
把握住:一个未知数,最高次数是2,

一元二次方程的解法ppt课件

一元二次方程的解法ppt课件
的各项系数a、b、c确定的,当 2 -4ac≥0时,它的实数根

公式法推导过程
这叫做一元二次方程的求根公式,解一元二次方程时,
2
把各项系数的值直接代入这个公式,若 -4ac≥0就可以
求得方程的根,这种解一元二次方程的方法叫做公式法.
尝试与交流
2
2
在一元二次方程 +bx+c=0(a≠0)中,如果 -4ac<0那
解:原方程可变形为(2x-1+x)(2x-1-x)=0
即(3x-1)(x-1)=0
3x-1=0或x-1=0
所以x1=

,x
2=1

观察与思考
2=4(x+2)
(x+2)
解方程
小丽、小明的解法如下:
小丽、小明的解法,哪个正确?
因式分解法练习
1.用因式分解法解下列方程
①x2-3x=0
② 3x2= x
③2( x-1 ) + x ( x-1 ) =0
叫做因式分解法
例题8
解下列方程
① = −
② + − + =
原方程可变形为x2+4x=0
原方程可变形为
x(x+4)=0
(x+3)(1-x)=0
x=0或x+4=0
x+3=0或1-x=0.
所以x1=0,x2=-4
所以x1=-3,x2=1
例题9
解方程
(2x-1)2-x2=0
的矩形割补成一个正方形
数学实验室
一个矩形通过割、拼、补,成为一个正方形的过程配方
的过程
数学实验室
数学实验室
数学实验室
数学实验室

21.1一元二次方程概念复习 初中九年级数学教学课件PPT 人教版

21.1一元二次方程概念复习 初中九年级数学教学课件PPT 人教版
2017的值.
解:由题意得 a2 2a 2 0 即a2 2a 2 2a2 4a 2017 2(a2 2a) 2017 2 2 2017 2021
方法总结:已知解求代数式的值,先把已知解代入,再注意观察,
有时需运用到整体思想,求解时,将所求代数式的一部分看作一个整 体,再用整体思想代入求值.
3.已知关于x的一元二次方程x2+ax+a=0的一个根是3,求a 的值.
解:由题意得 把x=3代入方程x2+ax+a=0,得
32+3a+a=0
9+4a=0
4a=-9 a 9
4
4.若关于x的一元二次方程(m+2)x2+5x+m2-4=0
有一个根为0,求m的值. 解:将x=0代入方程m2-4=0,
解:由题意得 a b c 0 即a 12 b 1 c 0
∴方程ax2+bx+c=0 (a≠0)的一个根是1.
2. 若 a-b +c=0,你能通过观察,求出方程ax2+bx+c=0 (a≠0)的一个根吗? x=-1
3.若4a+2b +c=0 呢? x=2
9a-3b +c=0 呢? x=3
1 a 1 b c 0呢? 42
4x2 5 0
4
0
-5
(2 x)(3x 4) 3 3x2 2x 5 0 3
-2
-5
典例精析
含两个未知数
例1 下列选项中,关于x的一元二次方程的是( C)
A.x2
1 x2
0
不是整式方程 B. 3x2 5xy y2 0
C. (x 1)(x 2) 0
D. ax2 bx c 0

一元二次方程的综合复习PPT

一元二次方程的综合复习PPT
次项、一次项和常数项,a, b分别称为二次项系数 和一次项系数.
明辨是非
判断下列方程是不是一元二次方程,若不是一元二 次方程,请说明理由?
1、(x-1)2=4
√ 2、x2-2x=8

1
3、x2+ =1
× 4、x2=y+1
×
x
5、x3-2x2=1 × 6、ax2 + bx + c=1 ×
填一填
1、若 m 2 x 2 m 2 x 2 0 是关于x的一元二次
解:(1)设养鸡场的靠墙的一边长为xm,
是关于x的一元二次方程,则m的值为 -x=1或 7x=7
一元二次方程的解法 列方程解应用题的一般步骤是:
2

一元二次方程
根的判式是:
解得:x1=8,x2=-10(不合题意舍去)
所以,3原.方若程有x两个=不2相是等的方实根。程x2+ax-8=0的解,则a= 2 ;
开启 智慧
w2.一次会议上,每两个参加会议的人都互相握了一次 手,有人统计一共握了66次手.这次会议到会的人数是 多少?
1x2 3x0 2(2x1)290
3x2 4x1 4x23x10
1x2 3x0
因式分解法:
1.用因式分解法的条件是:方程左边能 够分解为两个因式的积,而右边等于0的 方程;
2.形如:ax2+bx=o(即常数C=0).
因式分解法的一 般步骤:
一移-----方程的右边=0; 二分-----方程的左边因式分解; 三化-----方程化为两个一元一次方程; 四解-----写出方程两个解;
二.一元二次方程的解法
1.直接开平方法
2. 配方法 3. 公式法
x= -b b2 4ac(b2 4ac 0) 2a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课前展示(独立完成):
12..一一元元二二次次方方程程的a一x2般形bx式 是c _a0_x的_2_求_b_根x__公_c_式__0是_(_a__x____0._)_b___2_ba_2__4_a_c_ .
3.方程4x2 9 0的根是__x_1 __32__, _x2_____32_.
(b2 4ac 0)
0
两不相等实根 两相等实根 无实根
共同记一记
1.一元二次方程ax2+bx+c=0(a≠0)根的情况: (1)当Δ>0时,方程有两个不相等的实数根; (2)当Δ=0时,方程有两个相等的实数根; (3)当Δ<0时,方程无实数根.
2.根据根的情况,也可以逆推出Δ的情况,这方面 的知识主要用来求取值范围等问题.
(x 3)(x 4) 0 x 3 0或x 4 0
x1 3, x2 4 答 : m值为 7,另一根为4.
四.实际问题
1.能够利用一元二次方程解决有关的实际 问题,并根据具体问题的实际意义检验 结果的合理性;
△≥0或者m-1=0 △<0且m-1≠0
(5)只有一个实数根; m-1=0
(6)有两个实数根。 △≥0且m-1≠0
已知:3是方程x2 mx 12 0的一根,求另一根及m的值.
解 : 把x=3代入方程中得 32 3m 12 0
3m 21
m 7
当m 7时,方程为: x2 7x 12 0
1、当m为何值时,关于x 的一元二次方程
x2 4x m 1 0 2
有两个相等的实根,此时
这两个实数根是多少?
2、当m为何值时,方程 m 1 x2 2mx m 3 0
(1)有两个相等实根; m-1≠0且Δ=0
(2)有两个不等实根; m-1≠0且Δ>0
(3)有实根; (4)无实数根;
一、1、一元二次方程的概念:
1.下列方程中是一元二次方程的是( C )
A、2x+1=0
B、y2+x=1
C、x2+1=0
D、 1 x 2 1
x
一元二次方程三要素:
1.一个未知数. 2.含未知项的最高次数是2次. 3.方程两边都是整式.
2. 关
是一元二次方程,求m的值。 m=-2
三、 一元二次方程根的判别式
一元二次方程 ax2 bx c 0a 0 根的判式是:
b2 4ac
一元二次方程 ax2 bx c 0a 0
判别式的情况 根的情况
定理与逆定理
b2 4ac 0 两个不相等实根 0
b2 4ac 0 两个相等实根 0
b2 4ac 0 无实根(无解)
二.一元二次方程的解法 1.直接开平方法
2. 配方法 3. 公式法
4. 因式分解法
1. 移项,使方程的右边为0。 2. 利用提取公因式法,平方差公式,完全平方公式,
十字相乘法对左边进行因式分解 3. 令每个因式分别为零,得到两个一元一次方程。 4. 解这两个一元一次方程,它们的解就是原方程的解。
用不同的方法解方程
二.一元二次方程的解法 1.直接开平方法
2. 配方法 3. 公式法
x= -b b2 4ac(b2 4ac 0) 2a
1. 把方程化成一元二次方程的一般形式
2. 写出方程各项的系数
3. 计算出b2-4ac的值,看b2-4ac的值与0的关系,若 b2-4ac﹤0,则此方程没有实数根 。
4. 当b2-4ac≥0时, 代入求根公式 计算出方程的值
判别式的应用: 1、不解方程,判别方程的根的情况
例1:不解方程,判别下列方程的根的情况
(1) 2x2 3x 4 0
(2) 16 y2 9 24 y
(3) 5 x2 1 7x 0
解:(1) = b2 4ac 32 4 2 4 41 0
所以,原方程有两个不相等的实根。
说明:解这类题目时,一般要先把方程化为一般形式,求出△, 然后对△进行计算,使△的符号明朗化,进而说明△的符号情 况,得出结论。
x²-6=5x
1.公式法
2.配方法
3.因式分解法
用适当的方法解下列方程
(1) x2=0

(2) x x 6 2 x 6
(3) x2 3x 1 0
(4) x 12 3
标 检
(5) x2 3x 2 0

(6) x2 2x 4
(7) (x 5)(x 6) 24
(8) x2 5x 6 0
4.方程x2 x的根是__x_1 ___0_, _x2__.1
5.当m __≠_-1____时,方程(m+1)x2 3x 2 0是一元二次方程.
6.已知一元二次方程3x2 kx 4 0的一根是2,则k的值为___4____.
7.解下列方程:
(1)2x2 1 x
1、理解一元二次方程的概念。 2、会用配方法、分解因式法、公式法 解一元二次方程。 3、会用一元二次方程解实际问题并会 验根。
注意: 二次项的系数不等于0.
2、一元二次方程的一般形式
一元二次方程(关于x)一般形式
3x²-1=0 3x(x-2)=2(x-2)
二次项 系数
一次项 常数项 系数
3、一元二次方程的解法
1.因式分解法。 (若A• B 0,则A 0或B 0)
2.开平方法。 化成x2 a或(x a)2 b的形式
6、若a是方程x2 3x 3 0的一个根,则 3a2 9a 2 11
7、n是方程x2 mx n 0一个根( n 0), n m -1
8、x2 4x 3请用配方法转化成(x m)2 n的 形式,则m ___,n ____.
9、请写出一个一元二次方程,
它的根为-1和2 (x+1)(x-2)=0
3.配方法。 1.把二次项,一次项移到等号左边,常数项移到等号右边。
2.两边同加上一次项系数一半的平方。
4.公式法
若b2 4ac 0, x b b2 4ac 2a
若b2 4ac 0,则方程无实数根
二.一元二次方程的解法 1.直接开平方法
2. 配方法
1. 把方程化成一元二次方程的一般形式 2. 把二次项系数化为1 3. 把含有未知数的项放在方程的左边,不含未知数的项放 在方程的右边。 4. 方程的两边同加上一次项系数一半的平方 5. 方程的左边化成完全平方的形式,方程的右边化成非负数 6. 利用直接开平方的方法去解
相关文档
最新文档