高职单招数学试卷及答案5

合集下载

单招数学试题及答案

单招数学试题及答案

单招数学试题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = 2x + 3,则f(1)的值为:A. 5B. 4C. 3D. 2答案:A2. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B3. 计算(3x - 2)(x + 1)的展开式中x²的系数为:A. 1B. 3C. -1D. -3答案:B4. 函数y = x² - 4x + 4的最小值是:A. 0B. 4C. -4D. 1答案:A5. 已知等差数列{an}的首项a1=1,公差d=2,那么a5的值为:A. 9B. 10C. 11D. 12答案:A6. 若sinθ = 3/5,且θ∈(0, π/2),则cosθ的值为:A. 4/5B. -4/5C. 3/5D. -3/5答案:A7. 已知圆心为C(0,0),半径为1的圆的方程是:A. x² + y² = 1B. x² + y² = 2C. x² + y² = 0D. x² + y² = -1答案:A8. 计算极限lim(x→0) (sin x / x)的值为:A. 0B. 1C. -1D. 2答案:B9. 已知函数f(x) = x³ - 3x,求f'(x)的值为:A. 3x² - 3B. x² - 3C. x³ - 3x²D. 3x - 3答案:A10. 计算定积分∫(0 to 1) x² dx的值为:A. 1/3B. 1/2C. 1D. 2答案:B二、填空题(每题4分,共20分)1. 函数f(x) = x³ + 2x² - 5x + 6的导数f'(x)为______。

答案:3x² + 4x - 52. 已知等比数列{bn}的首项b1=2,公比q=3,那么b3的值为______。

2022年浙江高职单招数学试卷附答案

2022年浙江高职单招数学试卷附答案

2022年浙江省单独考试招生文化考试数学试题卷(满分150分,考试时间120分钟)一、单项选择题(本大题共20小题,1―12小题每小题2分,13―20小题每小题3分)1、若集合A={x1-5<x<2},B={x1-3<x<3},则AI B=()A.{x1-3<x<2}B.{x1-5<x<2}C.{x1-3<x<3}D.{x-5<x<3}2、已知集A={l,2,3},B={1,3},则Al B=()A.{2}B.{1,2}C.{1,3}D.{1,2,3}3.若,,则的坐标是A. B. C. D.以上都不对4.在等差数列中,已知,且,则与的值分别为A.,B.,C.,D.,5.设,“”是“”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件6.函数的图象如图所示,则最大、最小值分别为A. B.C. D.7.设,,,其中为自然对数的底数,则,,的大小关系是A.B. C. D.8.设,,,都为正数,且不等于,函数,,,在同一坐标系中的图象如图所示,则,,,的大小顺序是A. B. C.D.9.命题p :a=1,命题q :2(1)0a -=.p 是q 的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件10.在△ABC 中,向量表达式正确的是()A.AB BC CA +=B.AB CA BC -=C.AB AC CB-= D.AB BC CA ++= 11.如图,在数轴上表示的区间是下列哪个不等式的解集()A.260x x --≤ B.260x x --≥ C.15||22x -≥D.302x x -+≥12.已知椭圆方程:224312x y +=,下列说法错误的是()A.焦点为(0,-1),(0,1)B.离心率12e =C.长轴在x 轴上D.短轴长为2313.下列函数中,满足“在其定义域上任取x1,x2,若x1<x2,则f (x1)>f (x2)”的函数为()A.3y x=B.32x y =-C.1()2xy -= D.ln y x=14.掷两枚骰子(六面分别标有1至6的点数)一次,掷出点数和小于5的概率为()A.16 B.18 C.19D.51815.已知圆锥底面半径为4,侧面面积为60,则母线长为()A.152B.15C.152pD.15p16.函数y =sin2x 的图像如何平移得到函数sin(23y x p=+的图像()A.向左平移6p个单位 B.向右平移6p个单位C.向左平移3p个单位D.向右平移3p个单位17.设动点M 到1( 0)F 的距离减去它到2F 的距离等于4,则动点M 的轨迹方程为()A.22 1 (2)49x y x -=-≤B.22 1 (2)49x y x -=≥C.221 (2)49y x y -=≥ D.22 1 (x 3)94x y -=≥18.已知函数()3sin f x x x =,则()12f p=()A.B. C. D.19.某商场准备了5份不同礼品全部放入4个不同彩蛋中,每个彩蛋至少有一份礼品的放法有()A.480种B.240种C.180种D.144种20.如图在正方体ABCD ‐A ′B ′C ′D ′中,下列结论错误的是()A.A ′C ⊥平面DBC ′B.平面AB ′D ′//平面BDC ′C.BC ′⊥AB ′D.平面AB ′D ′⊥平面A ′AC二、填空题(本大题共7小题,每小题4分,共28分)21.点A(2,-1)关于点B(1,3)为中心的对称点坐标是__________.22.设3 0 ()32 0x x f x x x ìï=í-ïî,≤,>,求f [f (-1)]=_____.23.已知A(1,1)、B(3,2)、C(5,3),若AB CA l =,则λ为_____.24.双曲线2212516y x -=的两条渐近线方程为_______________.25.已知1sin()3p a -=,则cos2α=_____.26.若x <-1,则函数1()21f x x x =--+的最小值为_____.27.设数列{an}的前n 项和为Sn ,若a1=1,an+1=2Sn (n ∈N*),则S4=_____.三、解答题(本大题共9小题,共74分)28.(本题满分6分)计算:133cos 3)27lg0.012p +-++29.(本题满分7分)等差数列{an}中,a2=13,a4=9.(1)求a1及公差d ;(4分)(2)当n 为多少时,前n 项和Sn 开始为负?(3分)30.(本题满分8分)如下是“杨辉三角”图,由于印刷不清在“▯”处的数字很难识别.(1)第6行两个“15”中间的方框内数字是多少?(2分)(2)若2)n x 展开式中最大的二项式系数是35,从图中可以看出n 等于多少?该展开式中的数项等于多少?(6分)31.(本题满分8分)如图平行四边形ABCD 中,AB =3,AD =2,AC =4.(1)求cos ∠ABC ;(4分)(2)求平行四边形ABCD 的面积.(4分)32.(本题满分9分)在△ABC 中,3sin 5A =,5cos 13B =.(1)求sinB ,并判断A 是锐角还是钝角;(5分)(2)求cosC.(4分)33.(本题满分9分)如图PC ⊥平面ABC ,AC =BC =2,PC =,∠BCA =120°.(1)求二面角P ‐AB ‐C 的大小;(5分)(2)求锥体P ‐ABC 的体积.(4分)34.(本题满分9分)当前,“共享单车”在某些城市发展较快.如果某公司要在某城市发展“共享单车”出租自行车业务,设一辆自行车(即单车)按每小时x 元(x ≥0.8)出租,所有自行车每天租出的时间合计为y (y >0)小时,经市场调查及试运营,得到如下数据(见表):(1)观察以上数据,在我们所学的一次函数、反比例函数、二次函数、指数函数中回答:y 是x 的什么函数?并求出此函数解析式;(5分)若不考虑其它因素,x 为多少时,公司每天收入最大?(4分)35.(本题满分9分)过点(-1,3)的直线l 被圆O :2242200x y x y +---=截得弦长8.(1)求该圆的圆心及半径;(3分)(2)求直线l 的方程.(6分)36.(本题满分9分)1992年巴塞罗那奥运会开幕式中,运动员安东尼奥·雷波洛以射箭方式点燃主会场的圣火成为历史经典.如图所示,如果发射点A 离主火炬塔水平距离AC =60m ,塔高BC =20m.已知箭的运动轨迹是抛物线,且离火炬塔水平距离EC =20m 处达到最高点O.(1)若以O 为原点,水平方向为x 轴,1m 为单位长度建立直角坐标系.求该抛物线的标准方程;(5分)(2)求射箭方向AD (即与抛物线相切于A 点的切线方向)与水平方向夹角θ的正切值.(4分)答案一、单项选择题1.A 2.C3.B4.A5.A6.D7.C8.C9.A10.C11.D12.C13.B14.A15.D 16.A17.B18.A19.B20.C二、填空题21.(0,7)22.-123.12-24.54y x=±25.7926.527.27三、解答题28.629.(1)115a =,2d =-;(2)当17n =时,前n 项和n S 开始为负。

2023年高职单独招生考试数学试卷(答案) (5)

2023年高职单独招生考试数学试卷(答案) (5)

2023年对口单独招生统一考试数学试卷(满分120分,考试时间90分钟)一、选择题:(本题共20小题,每小题2.5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设A ∈0,则满足}1,0{=B A 的集合A,B 的组数是()A.1组B.2组C.4组D.6组2.若|log |)(,10x x f a a =<<且函数,则下列各式中成立的是()A.)41()31()2(f f f >>B.)31()2(41(f f f >>C.)2()31(41(f f f >>D.)41()2()31(f f f >>3.在ABC ∆中,如果1019cos ,23sin ==B A ,则角A 等于()A.3πB.32πC.3π或32πD.656ππ或4.已知数列)(lim ,131}{242n n n n n a a a a S a +++-=∞→ 那么满足的值为()A.21B.32C.1D.-25.直线0601210122=+--++=y x y x mx y 与圆有交点,但直线不过圆心,则∈m ()A.34,1()1,43( B.34,1()1,43[ C.]34,43[D.34,43(6.如图,在正三角形ABC ∆中,D、E、F 分别为各边的中点,G、H、I、J 分别为AF,AD,BE,DE 的中点,将ABC ∆沿DE,EF,DF 折成三棱锥以后,GH 与IJ 所成角的度数为()A.90°B.60°C.45°D.0°7.已知以y x ,为自变量的目标函数)0(>+=k y kx ω的可行域如图阴影部分(含边界),若使ω取最大值时的最优解有无穷多个,则k 的值为()A.1B.23C.2D.48.已知集合A={-1,0,1},集合B={x|x<3,x∈N},则A∩B=()A.{-1,1,2} B.{-1,1,2,3}C.{0,1,2}D.{0,1}9.已知数列:23456 34567--,,,,…按此规律第7项为()A.78B.89C.78- D.89-10.若x∈R,下列不等式一定成立的是()A.52x x B.52x x --> C.2x > D.22(1)1x x x +++>11、已知f(12x-1)=2x+3,f(m)=8,则m 等于()A、14B、-14C、32D、-3212、函数y=lg x+lg(5-2x)的定义域是()A、25,0[B、⎥⎦⎤⎢⎣⎡250,C、)251[,D、⎦⎤⎢⎣⎡251,13、函数y=log2x-2的定义域是()A、(3,+∞)B、[3,+∞)C、(4,+∞)D、[4,+∞)14、函数12--=x x y 的图像是()A.开口向上,顶点坐标为)(45,21-的一条抛物线;B.开口向下,顶点坐标为)(45,21-的一条抛物线;C.开口向上,顶点坐标为)(45,21-的一条抛物线;D.开口向下,顶点坐标为)(45,21-的一条抛物线;15、函数()35x x x f +=的图象关于()A、y 轴对称B、直线y=-x 对称C、坐标原点对称D、直线y=x 对称16、下列函数中,在区间(0,+∞)上为增函数的是()A、y=x+1B、y=(x-1)2C、y=2-xD、y=log0.5(x+1)17、已知函数x x f =)(,点),4(b P 在函数图像上,则=b ()A、-4B、3C、-2D、218、不等式532≤-x 的解集是()A、()4,1-B、()()∞+-∞-,,41 C、[]4,1-D、()()∞+--∞-,,14 19、不等式()()073>+x x -的解集是()A、()73,-B、()7,3-C、),3()7,(+∞--∞ D、),7()3,(+∞--∞ 20、不等式31<-x 的解集是()A、(-2,4)B、(-1,3)C、),4()2,(+∞--∞ D、),1()3,(+∞--∞ 一、填空题:(本题共2小题,每小题10分,共20分.)1、若实数y x .满足不等式组⎪⎩⎪⎨⎧≥-≤-≥+0422y x y x y x ,则y x +2的最小值是2、在等差数列{}n a 中,已知172,35a S ==,则等差数列{}n a 的公差d =_______.二、解答题:(本题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.)1.设)(x f 是定义在),0(+∞上的增函数,当),0(,+∞∈b a 时,均有)()()(b f a f b a f +=⋅,已知1)2(=f .求:(1))1(f 和)4(f 的值;(2)不等式2()2(4)f x f <的解集.2.设函数()ln (1)e x f x x a x =--,其中a ∈R .(Ⅰ)若a ≤0,讨论()f x 的单调性;(Ⅱ)若10ea <<,(i)证明()f x 恰有两个零点;(ii)设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->.3.设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;(2)求函数22[()][()]124y f x f x ππ=+++的值域.参考答案:一、选择题1-5:DCACB 6-10:BADBB 二、填空题1.参考答案.4【解析】试题分析:根据题意可知,实数y x .满足不等式组⎪⎩⎪⎨⎧≥-≤-≥+0422y x y x y x 对应的区域如下图,当目标函数z=2x+3y 在边界点(2,0)处取到最小值z=2×2+3×0=4.故答案为:4考点:简单线性规划的运用。

河北省高职单招考试数学模拟卷(答案解析)

河北省高职单招考试数学模拟卷(答案解析)

河北省高职单招考试数学模拟卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()22i z i i -=+,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合{}|21A x y x ==-,集合{}2|B y y x ==,则集合A B = ()A.()1,1 B.[)0,+∞ C.(){}1,1 D.()0,+¥3.已知(),0,x y ∈+∞,4124yx -⎛⎫= ⎪⎝⎭,则xy 的最大值为()A.2B.98C.32D.944.若不等式20ax bx c ++>的解集为{}|12x x -<<,则不等式()()2112a x b x c ax ++-+<的解集为()A.{}|21x x -<<B.{}|21x x x <->或C.{}0|3x x x <>或 D.{}|03x x <<5.设()1sin f x x =,()()'21f x f x =,()()'32f x f x =,…,()()'1n n f x f x +=,n N ∈,则()2020f x =()A.sin xB.sin x- C.cos xD.cos x-6.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种B.36种C.24种D.18种7.若幂函数()f x 的图象过点1,22⎛⎫ ⎪ ⎪⎝⎭,则函数()()xf xg x e =的递增区间为()A.()0,2B.()(),02,-∞+∞C.()2,0-D.()(),20,-∞-+∞ 8.设函数()21f x mx mx =--,若对于[]1,3x ∈,()2f x m >-+恒成立,则实数m 的取值范围()A.()3,+∞ B.3,7⎛⎫-∞ ⎪⎝⎭ C.(),3-∞ D.3,7⎛⎫+∞ ⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分;部分选对的得3分;有选错的得0分.9.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是()A.z 的虚部为1-B.||z =C.2z 为纯虚数D.z 的共轭复数为1i--10.下列命题正确的是()A.“1a >”是“11a<”的必要不充分条件B.命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()0,x ∀∈+∞,ln 1x x ≠-”C.若,a b ∈R ,则2b a a b +≥=D.设a R ∈,“1a =”,是“函数()1xxa e f x ae -=+在定义域上是奇函数”的充分不必要条件11.关于11()a b -的说法,正确的是()A.展开式中的二项式系数之和为2048B.展开式中只有第6项的二项式系数最大C.展开式中第6项和第7项的二项式系数最大D.展开式中第6项的系数最小12.如图直角梯形ABCD ,//AB CD ,AB BC ⊥,122BC CD AB ===,E 为AB 中点,以DE 为折痕把ADE 折起,使点A 到达点P 的位置,且PC =.则()A.平面PED ⊥平面EBCDB.PC ED⊥C.二面角P DC B --的大小为4π D.PC 与平面PED 三、填空题:本题共4小题,每小题5分,共20分.13.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望()E ξ=______.14.如图,在正方体''''ABCD A B C D -中,'BB 的中点为M ,CD 的中点为N ,异面直线AM 与'D N 所成的角是______.15.在()()5122x x -+展开式中,4x 的系数为______.16.关于x 的方程ln 10xkx x--=在(]0,e 上有两个不相等的实根,则实数k 的取值范围______.河北省高职单招考试数学模拟卷答案解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()22i z i i -=+,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C 【解析】利用复数除法运算求得z ,从而求得z ,由此得到z 对应的坐标,进而求得z 在复平面内对应的点所在象限.【详解】因为()()()2(1)2221322255i i i i i i iz i i i -+++--+--+====--⨯+,所以3155z i =--,z 对应点为31,55⎛⎫-- ⎪⎝⎭,所以z 在复平面内对应的点位于第三象限.故选:C.【点睛】本小题主要考查复数的除法运算,共轭复数,考查复数对应点所在象限的判断,属于基础题目.2.已知集合{}|21A x y x ==-,集合{}2|B y y x ==,则集合A B = ()A.()1,1B.[)0,+∞C.(){}1,1 D.()0,+¥【答案】B 【解析】【分析】先求出集合,A B ,即可求出交集.【详解】{}|21A x y x R ==-= ,{}[)2|0,B y y x ===+∞,[)0,A B ∴=+∞ .故选:B.【点睛】本题考查函数定义域和值域的求法,考查集合交集运算,属于基础题.3.已知(),0,x y ∈+∞,4124yx -⎛⎫= ⎪⎝⎭,则xy 的最大值为()A.2B.98C.32D.94【答案】A【分析】根据4124yx -⎛⎫= ⎪⎝⎭可得24x y +=,之后利用基本不等式得到2112(2)(2222x y xy x y +=⋅≤=,从而求得结果.【详解】因为(),0,x y ∈+∞,且421224yx y --⎛⎫== ⎪⎝⎭,所以42x y -=-,即24x y+=,所以有2112(2)(2222x y xy x y +=⋅≤=,当且仅当22x y ==时取得最大值2,故选:A.【点睛】该题考查的是有关应用基本不等式求最值的问题,涉及到的知识点有利用基本不等式求积的最大值,属于简单题目.4.若不等式20ax bx c ++>的解集为{}|12x x -<<,则不等式()()2112a x b x c ax ++-+<的解集为()A.{}|21x x -<<B.{}|21x x x <->或C.{}0|3x x x <>或D.{}|03x x <<【答案】C 【解析】【分析】由题意得0a <,利用韦达定理找到,,a b c 之间的关系,代入所求不等式即可求得.【详解】不等式20ax bx c ++>的解集为{}|12x x -<<,则1x =与2x =是方程20ax bx c ++=的两根,且0a <,由韦达定理知121b a -=-+=,122ca=-⨯=-,即=-b a ,2c a =-,则不等式()()2112a x b x c ax ++-+<可化简为()()21122a x a x a ax +---<,整理得:230ax ax -<,即(3)0ax x -<,由0a <得0x <或3x >,故选:C.【点睛】本题主要考一元二次不等式,属于较易题.5.设()1sin f x x =,()()'21f x f x =,()()'32f x f x =,…,()()'1n n f x f x +=,n N ∈,则()2020f x =()A.sin xB.sin x- C.cos xD.cos x-【答案】D 【解析】【分析】根据三角函数的导函数和已知定义,依次对其求导,观察得出4()(),n n f x f x n N +=∈,可得解.【详解】1()sin f x x = ,()''1()sin cos f x x x ∴==,'12()()cos f x f x x ==,()23'()(cos )sin f x f x x x '===-,()34'()(sin )cos f x f x x x '==-=-,()45'()(cos )sin f x f x x x '==-=,由此可知:4()(),n n f x f x n N +=∈,24201()()cos f x f x x ∴==-.故选:D.【点晴】本题考查三角函数的导数,依次求三角函数的导数找到所具有的周期性是解决此问题的关键,属于中档题.6.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种 B.36种 C.24种 D.18种【答案】B 【解析】【分析】根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有1233339C C =⨯=,其余的分到乙村,若甲村有2外科,1名护士,则有2133339C C =⨯=,其余的分到乙村,则总共的分配方案为2×(9+9)=2×18=36种,故选B.【点睛】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.7.若幂函数()f x 的图象过点1,22⎛⎫ ⎪ ⎪⎝⎭,则函数()()x f x g x e =的递增区间为()A.()0,2B.()(),02,-∞+∞C.()2,0-D.()(),20,-∞-+∞ 【答案】A 【解析】【分析】设()f x x α=,代入点求出α,再求出()g x 的导数()g x ',令()0g x '>,即可求出()g x 的递增区间.【详解】设()f x x α=,代入点122⎛⎫ ⎪ ⎪⎝⎭,则122α⎛⎫= ⎪ ⎪⎝⎭,解得2α=,()2x x g x e∴=,则()2222()x x xxx x xe x e g x e e --'==,令()0g x '>,解得02x <<,∴函数()g x 的递增区间为()0,2.故选:A.【点睛】本题考查待定系数法求幂函数解析式,考查利用导数求函数的单调区间,属于基础题.8.设函数()21f x mx mx =--,若对于[]1,3x ∈,()2f x m >-+恒成立,则实数m 的取值范围()A.()3,+∞B.3,7⎛⎫-∞ ⎪⎝⎭ C.(),3-∞ D.3,7⎛⎫+∞ ⎪⎝⎭【答案】A 【解析】【分析】由题意变量分离转为231m x x >-+在[]1,3x ∈上恒成立,只需2max31m x x ⎛⎫ ⎪+⎝⎭->,求出最大值即可得到实数m 的取值范围.【详解】由题意,()2f x m >-+可得212mx mx m ->-+-,即()213m x x +>-,当[]1,3x ∈时,[]211,7x x -+∈,所以231m x x >-+在[]1,3x ∈上恒成立,只需2max31m x x ⎛⎫ ⎪+⎝⎭->,当1x =时21x x -+有最小值为1,则231x x -+有最大值为3,则3m >,实数m 的取值范围是()3,+∞,故选:A【点睛】本题考查不等式恒成立问题的解决方法,常用变量分离转为求函数的最值问题,属于基础题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分;部分选对的得3分;有选错的得0分.9.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是()A.z 的虚部为1-B.||z =C.2z 为纯虚数D.z 的共轭复数为1i--【答案】ABC 【解析】【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为()()()2122211i 1i 12i i z i i --====-++-,对于A:z 的虚部为1-,正确;对于B:模长z =,正确;对于C:因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D:z 的共轭复数为1i +,错误.故选:ABC.【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.10.下列命题正确的是()A.“1a >”是“11a<”的必要不充分条件B.命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()0,x ∀∈+∞,ln 1x x ≠-”C.若,a b ∈R ,则2b a a b +≥=D.设a R ∈,“1a =”,是“函数()1xxa e f x ae-=+在定义域上是奇函数”的充分不必要条件【答案】BD 【解析】【分析】根据不等式的性质可判断A;根据含有量词的否定可判断B;根据基本不等式的适用条件可判断C;根据奇函数的性质可判断D.【详解】对于A,当1a >时,可得11a<,故“1a >”是“11a<”的充分条件,故A 错误;对于B,由特称命题的否定是存在改任意,否定结论可知B 选项正确;对于C,若0ab <时,2b a a b +≤-=-,故C 错误;对于D,当1a =时,1()1xx e f x e -=+,此时()()f x f x -=-,充分性成立,当()1xxa e f x ae -=+为奇函数时,由1()1x x xx a e ae f x ae e a-----==++,()()f x f x -=-可得1a =±,必要性不成立,故D 正确.故选:BD.【点睛】本题考查充分条件与必要条件,考查命题及其关系以及不等关系和不等式,属于基础题.11.关于11()a b -的说法,正确的是()A.展开式中的二项式系数之和为2048B.展开式中只有第6项的二项式系数最大C.展开式中第6项和第7项的二项式系数最大D.展开式中第6项的系数最小【答案】ACD【分析】根据二项式系数的性质即可判断选项A;由n 为奇数可知,展开式中二项式系数最大项为中间两项,据此即可判断选项BC;由展开式中第6项的系数为负数,且其绝对值最大即可判断选项D.【详解】对于选项A:由二项式系数的性质知,11()a b -的二项式系数之和为1122048=,故选项A 正确;因为11()a b -的展开式共有12项,中间两项的二项式系数最大,即第6项和第7项的二项式系数最大,故选项C 正确,选项B 错误;因为展开式中第6项的系数是负数,且绝对值最大,所以展开式中第6项的系数最小,故选项D 正确;故选:ACD【点睛】本题考查利用二项式定理求二项展开式的系数之和、系数最大项、系数最小项及二项式系数最大项;考查运算求解能力;区别二项式系数与系数是求解本题的关键;属于中档题、常考题型.12.如图直角梯形ABCD ,//AB CD ,AB BC ⊥,122BC CD AB ===,E 为AB 中点,以DE 为折痕把ADE 折起,使点A 到达点P 的位置,且PC =.则()A.平面PED ⊥平面EBCDB.PC ED ⊥C.二面角P DC B --的大小为4π D.PC 与平面PED 【答案】AC【解析】A 中利用折前折后不变可知PD AD =,根据222PD CD PC +=可证CD PD ⊥,可得线面垂直,进而证明面面垂直;B 选项中AED ∠不是直角可知,PD ED 不垂直,故PC ED ⊥错误;C 中二面角P DC B --的平面角为PDE ADE ∠=∠,故正确;D 中PC 与平面PED 所成角为CPD ∠,计算其正切值即可.【详解】A 中,PD AD ===,在三角形PDC 中,222PD CD PC +=,所以PD CD ⊥,又CD DE ⊥,可得CD ⊥平面PED ,CD ⊂平面EBCD ,所以平面PED ⊥平面EBCD ,A 选项正确;B 中,若PC ED ⊥,又ED CD ⊥,可得ED ⊥平面PDC ,则ED PD ⊥,而EDP EDA ∠=∠,显然矛盾,故B 选项错误;C 中,二面角P DC B --的平面角为PDE ∠,根据折前着后不变知=45PDE ADE ∠=∠︒,故C 选项正确;D 中,由上面分析可知,CPD ∠为直线PC 与平面PED 所成角,在t R PCD V 中,2tan 2CD CPD PD ∠==,故D 选项错误.故选:AC【点睛】本题主要考查了线面垂直的判定,二面角,线面角的求法,属于中档题.三、填空题:本题共4小题,每小题5分,共20分.13.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望()E ξ=______.【答案】2【解析】【分析】ξ的可能值为1,2,3,计算概率得到分布列,再计算数学期望得到答案.【详解】ξ的可能值为1,2,3,则()124236115C C p C ξ===;()214236325C C p C ξ⋅===;()3436135C p C ξ===.故分布列为:ξ123p 153515故()1311232555E ξ=⨯+⨯+⨯=.故答案为:2.【点睛】本题考查了概率的计算,分布列,数学期望,意在考查学生的计算能力和应用能力.14.如图,在正方体''''ABCDA B C D -中,'BB 的中点为M ,CD 的中点为N ,异面直线AM 与'D N 所成的角是______.【答案】90︒【解析】【分析】取CC '中点E ,连接ME ,连接ED 交D N '于F ,可知即DFN ∠为异面直线AM 与'D N 所成的角,求出即可.【详解】取CC '中点E ,连接ME ,连接ED 交D N '于F ,在正方体中,可知ME BC AD ∥∥,∴四边形AMED 是平行四边形,AM ED ∴ ,即DFN ∠为异面直线AM 与'D N 所成的角,可知在Rt ECD △和Rt NDD ' 中,,,90EC ND CD DD ECD NDD ''==∠=∠= ,ECD NDD '∴≅ ,CED FND ∴∠=∠,90CED EDC ∠+∠= ,90FND FDN ∴∠+∠= ,90DFN ∴∠= ,即异面直线AM 与'D N 所成的角为90 .故答案为:90 .【点睛】本题考查异面直线所成角的求法,属于基础题.15.在()()5122x x -+展开式中,4x 的系数为______.【答案】80【解析】【分析】将原式化为()()5521212x x x -+-,根据二项式定理,求出()512x -展开式中3x ,4x 的系数,即可得出结果.【详解】()()()()55512221212x x x x x -+=-+-,二项式()512x -的展开式的第1r +项为()152rr r r T C x +=-,令3r =,则()333345280T C x x =-=-,令4r =,则()444455280T C x x =-=,则()()5122x x -+展开式中,4x 的系数为2808080⨯-=.故答案为:80.【点睛】本题主要考查求指定项的系数,熟记二项式定理即可,属于基础题型.16.关于x 的方程ln 10x kx x --=在(]0,e 上有两个不相等的实根,则实数k 的取值范围______.【答案】21,1e e +⎡⎫⎪⎢⎣⎭【解析】【分析】分离参数,构造函数2ln 1(),(0,]x f x x e x x =+∈,利用导数讨论()f x 的单调性,再结合关于x 的方程ln 10x kx x--=在(]0,e 上有两个不相等的实根等价于()y f x =与y k =有两个交点,即可求出k 的取值范围.【详解】ln 10x kx x --= ,2ln 1x k x x ∴=+,设2ln 1(),(0,]x f x x e x x =+∈,312ln ()x x f x x --∴=',设()12ln ,(0,]g x x x x e =--∈,2()10g x x∴=--<',即()g x 在(]0,e 是减函数,又(1)0g =,∴当01x <<时,()0>g x ,即()0f x '>,当1x e <<时,()0<g x ,即()0f x '<,()f x ∴在()0,1为增函数,在()1,e 为减函数,当0x →时,()f x →-∞,21()(1)1,e e f f e =+=,关于x 的方程ln 10x kx x--=在(]0,e 上有两个不相等的实根等价于()y f x =与y k =有两个交点,由上可知211e k e +< ,∴实数k 的取值范围为21,1e e +⎡⎫⎪⎢⎣⎭.故答案为:21,1e e +⎡⎫⎪⎢⎣⎭.【点睛】本题考查利用导数解决方程根的问题,属于较难题.。

职高单招数学试题及答案

职高单招数学试题及答案

职高单招数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式2x - 5 > 3的解集?A. x > 4B. x < 4C. x > 1D. x < 12. 函数f(x) = 3x^2 - 2x + 5的顶点坐标是:A. (1, 4)B. (-1, 4)C. (1, 6)D. (-1, 6)3. 已知等差数列的前三项分别为2, 5, 8,求第5项的值:A. 11B. 13C. 15D. 174. 圆的半径为5,求圆的面积:A. 25πB. 50πC. 75πD. 100π5. 已知sinθ = 1/3,求cosθ的值(假设θ为锐角):A. 2√2/3B. √3/3C. √6/3D. -√3/36. 一个长方体的长、宽、高分别是2米、3米、4米,求其体积:A. 24立方米B. 26立方米C. 28立方米D. 30立方米7. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B:A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}8. 一个直角三角形的两条直角边分别为3和4,求斜边的长度:A. 5B. 6C. 7D. 89. 已知等比数列的首项为2,公比为3,求第5项的值:A. 486B. 243C. 81D. 5410. 函数y = log2(x)的定义域是:A. x > 0B. x < 0C. x ≥ 0D. x ≤ 0二、填空题(每题4分,共20分)11. 将分数3/4化简为最简分数是_________。

12. 已知函数f(x) = x^3 - 2x^2 + x - 2,求f(1)的值是_________。

13. 一个正六边形的内角是_________度。

14. 将弧度制下的角α=π/4转换为角度制,其值为_________度。

15. 已知方程x^2 - 5x + 6 = 0的根是x1和x2,那么x1 * x2的值为_________。

江苏单招数学试题及答案

江苏单招数学试题及答案

江苏单招数学试题及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2-2x+1的最小值是()。

A. 0B. -1C. 1D. 22. 已知集合A={1,2,3},B={2,3,4},则A∩B=()。

A. {1,2}B. {2,3}C. {1,3}D. {3,4}3. 直线y=2x+1与x轴的交点坐标是()。

A. (0,1)B. (1,0)C. (-1,0)D. (0,-1)4. 已知等差数列{an}的首项a1=1,公差d=2,则a5的值为()。

A. 5B. 9C. 11D. 135. 若cosθ=3/5,且θ为锐角,则sinθ的值为()。

A. 4/5C. √(1-(3/5)^2)D. -√(1-(3/5)^2)二、填空题(每题4分,共20分)6. 函数f(x)=x^3-3x+2的导数为_________。

7. 已知向量a=(1,2),b=(3,-1),则向量a与b的数量积为_________。

8. 一个等比数列的首项为2,公比为3,其第4项的值为_________。

9. 一个圆的半径为5,圆心在坐标原点,则该圆的方程为_________。

10. 已知函数f(x)=x^2-4x+3,若f(a)=0,则a的值为_________。

三、解答题(每题15分,共30分)11. 解不等式:x^2-5x+6≤0。

12. 已知函数f(x)=x^2-6x+8,求证:对于任意实数x,都有f(x)≥2。

四、综合题(每题30分,共30分)13. 已知函数f(x)=x^3-3x^2+2x-1,求:(1)函数f(x)的单调区间;(2)函数f(x)的极值点;(3)函数f(x)的极值。

答案:一、选择题1. C2. B3. C4. B5. C二、填空题6. 3x^2-6x+28. 489. x^2+y^2=2510. 1或3三、解答题11. 解:x^2-5x+6=(x-2)(x-3)≤0,解得2≤x≤3。

12. 证明:f(x)=(x-3)^2-1,因为(x-3)^2≥0,所以f(x)≥-1,即对于任意实数x,都有f(x)≥2。

高职数学单招试题及答案

高职数学单招试题及答案

高职数学单招试题及答案一、选择题(每题3分,共30分)1. 下列函数中,不是一次函数的是()A. y = 2x + 3B. y = 3x^2 + 1C. y = 5xD. y = x2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B等于()A. {1}B. {2, 3}C. {1, 2, 3}D. {2, 3, 4}3. 若sinα=0.6,则cosα的值等于()A. 0.8B. -0.8C. -0.6D. 0.64. 函数f(x)=x^2-4x+3在区间()上单调递增。

A. (-∞, 2)B. (2, +∞)C. (-∞, 1)D. (1, 2)5. 不等式|x-2|+|x-3|<4的解集为()A. (-1, 5)B. (-∞, 5)C. (-∞, 3)D. (1, 5)6. 已知数列{an}是等差数列,且a3=5,a5=11,则该数列的公差d等于()A. 2B. 3C. 4D. 67. 圆的一般方程为x^2+y^2+2gx+2fy+c=0,其中心坐标为()A. (-g, -f)B. (g, f)C. (-f, -g)D. (f, -g)8. 极限lim(x→0) [x^2 sin(1/x)] 的值是()A. 0B. 1C. 2D. -19. 曲线y=x^3在点(1, 1)处的切线斜率为()A. 2B. 3C. 1D. 010. 微分方程dy/dx = y/x的通解是()A. y^2 = 2cxB. y^2 = cxC. x^2 = 2cyD. x^2 = cy二、填空题(每题4分,共20分)11. 函数f(x)=√x的值域是_________。

12. 设等比数列的首项为2,公比为3,其第五项为_________。

13. 已知某二项式展开式中,中间项(第5项)为40,则该二项式的二项式系数为_________。

14. 若曲线y=x^2上点P(x0, y0)处的法线方程为y=-x+2,则点P的坐标为_________。

2022年福建省福州市普通高校高职单招数学测试题(含答案)

2022年福建省福州市普通高校高职单招数学测试题(含答案)

2022年福建省福州市普通高校高职单招数学测试题(含答案)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(20题)1.若集合M={3,1,a-1},N = {-2,a2},N为M的真子集,则a的值是( )A.-1B.1C.0D.2.袋中有大小相同的三个白球和两个黑球,从中任取两个球,两球同色的概率为()A.1/5B.2/5C.3/5D.4/53.函数A.1B.2C.3D.44.下列句子不是命题的是A.B.C.D.5.正方形ABCD的边长为12,PA丄平面ABCD,PA=12,则点P到对角线BD的距离为()A.12B.12C.6D.66.A.11B.99C.120D.1217.A.B.{-1}C.{0}D.{1}8.若将函数:y=2sin(2x+π/6)的图象向右平移1/4个周期后,所得图象对应的函数为()A.y=2sin(2x+π/4)B.y=2sin(2x+π/3)C.3;=2sin(2x-π/4)D.3;=2sin(2x-π/3)9.A.(5, 10)B.(-5, -10)C.(10, 5)D.(-10, -5)10.若x2-ax+b<0的解集为(1,2),则a+b=( )A.5B.-5C.1D.-111.函数y=log2x的图象大致是()A.B.C.D.12.A.B.C.D.13.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数14.已知函数f(x)=x2-x+1,则f(1)的值等于()A.-3B.-1C.1D.215.袋中装有4个大小形状相同的球,其中黑球2个,白球2个,从袋中随机抽取2个球,至少有一个白球的概率为()A.B.C.D.16.若102x=25,则10-x等于()A.B.C.D.17.一条线段AB是它在平面a上的射景的倍,则B与平面a所成角为()A.30°B.45°C.60°D.不能确定18.A ≠ф是A∩B=ф的( )A.充分条件B.必要条件C.充要条件D.无法确定19.椭圆x2/16+y2/9的焦点坐标为()A.(,0)(-,0)B.(4,0)(-4,0)C.(3,0)(-3,0)D.(7,0)(-7,0)20.贿圆x2/7+y2/3=1的焦距为()A.4B.2C.2D.2二、填空题(20题)21.从含有质地均匀且大小相同的2个红球、N个白球的口袋中取出一球,若取到红球的概率为2/5,则取得白球的概率等于______.22.23.24.25.长方体中,具有公共顶点A的三个面的对角线长分别是2,4,6,那么这个长方体的对角线的长是_____.26.已知_____.27.数列{a n}满足a n+1=1/1-a n,a2=2,则a1=_____.28.设AB是异面直线a,b的公垂线段,已知AB=2,a与b所成角为30°,在a上取线段AP=4,则点P到直线b的距离为_____.29.不等式(x-4)(x + 5)>0的解集是。

中职单招数学试题及答案

中职单招数学试题及答案

中职单招数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个选项不是正整数?A. 1B. 2C. 3D. 4答案:D2. 如果一个数的平方等于16,那么这个数是:A. 4B. -4C. 4或-4D. 0答案:C3. 函数f(x) = 2x + 3在x=1时的值是:A. 5B. 6C. 7D. 8答案:A4. 圆的半径为5,其面积是:A. 25πB. 50πC. 100πD. 200π答案:B5. 以下哪个是二次方程的根?A. x = 2B. x = -2C. x = 3D. x = 1/2答案:B二、填空题(每题2分,共10分)6. 一个直角三角形的两条直角边分别为3和4,其斜边的长度是________。

答案:57. 一个数的立方根是2,那么这个数是________。

答案:88. 一个圆的直径是10,其周长是________。

答案:π0(或31.4)9. 函数y = x^2 - 4x + 4的顶点坐标是________。

答案:(2, 0)10. 一个数的相反数是-5,那么这个数是________。

答案:5三、计算题(每题5分,共20分)11. 计算下列表达式的值:(3x - 2)^2,其中x = 1。

答案:(3*1 - 2)^2 = 1^2 = 112. 解方程:2x + 5 = 11。

答案:2x = 11 - 5 => 2x = 6 => x = 313. 化简并求值:(2a + 3b)(2a - 3b),其中a = 2,b = 1。

答案:(2*2 + 3*1)(2*2 - 3*1) = (4 + 3)(4 - 3) = 7*1 = 714. 计算下列三角函数值:sin(30°)。

答案:sin(30°) = 1/2四、解答题(每题10分,共20分)15. 一个长方体的长、宽、高分别是5cm、4cm和3cm,求其体积。

答案:长方体的体积 = 长 * 宽 * 高 = 5cm * 4cm * 3cm =60cm³16. 一个等腰三角形的底边长为6cm,两腰相等,求其周长。

今年单招数学试题及答案

今年单招数学试题及答案

今年单招数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 1+1=3B. 2+2=5C. 3+3=6D. 4+4=8答案:C2. 圆的面积公式是?A. πr²B. 2πrC. πrD. πr³答案:A3. 已知函数f(x)=2x+3,求f(1)的值。

A. 5B. 6C. 7D. 8答案:A4. 以下哪个数是无理数?A. 2B. √4C. πD. 1/2答案:C5. 一个数的平方根是它本身,这个数是?A. 0B. 1C. -1D. 2答案:A6. 等差数列的前n项和公式是?A. S_n = n/2 * (a_1 + a_n)B. S_n = n * (a_1 + a_n) / 2C. S_n = n * a_1 + n * (n-1) * d / 2D. S_n = n * a_n + n * (n-1) * d / 2答案:B7. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:B8. 一个直角三角形的两直角边长分别为3和4,斜边长为?A. 5B. 6C. 7D. 8答案:A9. 函数y=x^2在x=0处的导数是?A. 0B. 1C. 2D. 3答案:A10. 以下哪个选项是正确的?A. sin(π/2) = 1B. cos(π/2) = 0C. tan(π/2) = 1D. sin(π) = 0答案:D二、填空题(每题2分,共20分)11. 已知等比数列的首项为2,公比为3,其第五项为________。

答案:48612. 函数y=2x-3的反函数为________。

答案:y=(1/2)x+3/213. 一个圆的半径为5,其周长为________。

答案:10π14. 一个等差数列的首项为1,公差为2,其第十项为________。

答案:1915. 函数y=x^3-3x+2的极值点为________。

四川省中职类2024单招数学试题以及参考答案

四川省中职类2024单招数学试题以及参考答案

四川省2024年普通高等学校高职教育单独招生文化考试(中职类)·数学试题第Ⅰ卷(选择题共50分)一、单项选择题(本大题共10小题,每小题5分,共50分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出。

错选、多选或未选择均无分。

1.已知集合{}4224M ,,,=--,N 为自然数集,则M N Ç=().A Æ.B {}2,4.C {}4,2--.D {}4,2,2,4--2.已知平面向量()3,2a =-,()2,4b =-,则a b +=().A ()1,0-.B ()1,2-.C ()1,0.D ()1,23.函数12y x =+的定义域是().A ()2,-+∞.B ()(),22,-∞-⋃-+∞.C ()2,+∞.D ()(),22,-∞⋃+∞4.不等式()()530x x -+£的解集为().A []3,5-.B (][),35,-∞-⋃+∞.C ()3,5-.D ()(),35,-∞-⋃+∞5.在等差数列{}n a 中,12=a ,2414+=a a ,则6=a ().A 13.B 14.C 15.D 166.已知453=a ,2527=b ,159=c ,则a b c 、、之间的大小关系是().A a b c <<.B b a c <<.C a c b<<.D c a b<<7.已知角α的顶点为坐标原点,始边与x 轴非负半轴重合,终边经过点),则sin α=().A 73-.B 34-.C 34.D 738.已知椭圆方程为2213620+=x y ,则该椭圆的离心率为().A 16.B 12.C 23.D 539.已知,R a b Î,则“0a >且0b >”是“0a b +>”的().A 充分且不必要条件.B 必要且不充分条件.C 充要条件.D 既不充分又不必要条件10.函数()sin 2y x p =+在[],p p -上的图象大致为().A .B .C .D 第Ⅱ卷(共50分)二、填空题(本大题共3小题,每小题4分,共12分)请在每小题的空格中填上正确答案。

高职单招数学试卷

高职单招数学试卷

高职单招数学试卷一. 单项选择题(每小题3分,共30分)1.设全集{}{}{},,,,,,,I a b c d A b c B a c ===,则()I C A B =( ) A .{},,,a b c d ; B .{},,a c d ; C .{},c d ; D .{},,b c d 2.不等式(1)(32)0x x -+<解集为( )A .213x x ⎧⎫<->⎨⎬⎩⎭或; B .213x ⎧⎫-<<⎨⎬⎩⎭;C .213x ⎧⎫-≤≤⎨⎬⎩⎭;D .213x ⎧⎫-<<⎨⎬⎩⎭ 3.(2)(3)0x x -+=是2x =的( )条件。

A .充分且不必要;B .必要且不充分;C .充要;D .既不充分也不必要4.二次函数221y x x =-+的单调递减区间是( ) A .[0,)+∞; B .(,)-∞+∞; C .(,1]-∞; D .[1,)+∞ 5.设自变量x R ∈,下列是偶函数的是( )A .34y x =+;B .223y x x =++;C .cos y α=;D .sin y α=6.函数y = )A .{}2x ≥;B .{}2x >;C .{}2x ≤;D .{}2x < 7.已知等差数列1,1,3,5,,---则89-是它的第( )项 A .92; B .46; C .47; D .45 8.已知11(,4),(,)32a b x =-=,且//a b ,则x 的值是( )A .6;B .—6;C .23-; D .16- 9.圆方程为222440x y x y ++--=的圆心坐标与半径分别为( ) A .(1,2),3r -=; B .(1,2),2r -=; C .(1,2),3r --=; D .(1,2),3r -= 10.两个正方体的体积之比是1:8,则这两个正方体的表面积之比是( )A .1:2;B .1:4;C .1:6;D .1:8 二、填空题(每小题2分,共24分)1.集合{}1,2,3,4的真子集共有_____________个;2.322x ->的解集为_______________________________; 3.已知()y f x =是奇函数,且(5)6f -=,则(5)f =_________________; 4.若6log 2x =-,则x =________________;5.计算=︒+︒-︒-405tan )450cos(4)330sin(3____________; 6.BC AB MA CN +++=_________;7.点(3,1)-到直线3420x y -+=的距离为_________________; 8.在正方体''''ABCD A B C D -中,二面角'D BC D --的大小是___________;9.抛掷两枚质地均匀的普通骰子,点数和为4的概率是____________; 10.35sin y x =-的最大值是______________;11.在等比数列{}n a 中,若1420a a ⋅=,则23a a ⋅=___________;12.某射手在一次射击中,击中10环,9环,8环的概率分别是0.24,0.28,0.29,则这个射手在一次射击中击中9环或者10环的概率________________.三、 解答题(1,2,3,4每小题5分, ,5,6每题8分,7题10分) 1.设{}{}13,02,,A x x B x x x A B A B =≤≤=<≥或求2.证明:22221tan sin cos cos αααα--= 3.解不等式: 13log (1)0x ->4.求过点(2,3)-,且平行于直线3570x y +-=的直线方程.5.一个屋顶的某斜面成等腰梯形,最上面一层铺了一层40块瓦片,往下每一层多铺2片瓦片,,斜面上铺了20层瓦片,问共铺了多少块瓦片? 6. 已知二次函数满足(1)(3)8f f -==,且(0)5f =,求此函数的解析式及单调递增区间.参考答案:一.单项选择题(每小题3分,共30分)二.填空题(每小题2分,共20分)1.__15_个_;2. 403x x x ⎧⎫><⎨⎬⎩⎭或; 3. 6-; 4.136; 5. 25;6. MN ;7. 3;8. 45︒; 9 0.06.; 10. 8; 11.20 ; 12.0.52二. 解答题(1,2,3,4每小题5分, ,5,6每题8分,7题10分) 1.答案:{}{}23,01A B x x A B x x x =≤≤=<≥或 2. 3.(1,2)4.所求的直线方程为:3590x y +-=5.{}1201,40,2,(1)220(201)2040221180n a a d n n na d ==-∴=+⨯-=⨯+⨯=解:因为每一层的瓦片数构成一个等差数列其中依题意得:S 答:总共需要1180块瓦片.6.222,(1)(3)8,(0)5,89385125:2525bx c f f f a b c a b c c a b c y x x y x x ++-===-+=⎧⎪∴++=⎨⎪=⎩=⎧⎪=-⎨⎪=⎩∴=-+=-+∞解:设二次函数的解析式为y=ax 因为函数满足解得:所求的二次函数解析式为的单调递增区间为[1,+).。

职校单招数学试题及答案

职校单招数学试题及答案

职校单招数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333...D. 1/3答案:B2. 函数f(x) = 2x + 3的反函数是?A. f^(-1)(x) = (x - 3)/2B. f^(-1)(x) = (x + 3)/2C. f^(-1)(x) = (x - 2)/3D. f^(-1)(x) = (x + 2)/3答案:A3. 已知集合A={1,2,3},集合B={2,3,4},则A∩B等于?A. {1,2}B. {2,3}C. {1,3}D. {4}答案:B4. 直线方程y = mx + b中,斜率m的值是?A. 0B. 1C. -1D. 不能确定答案:D5. 以下哪个图形是正弦函数的图像?A. 直线B. 抛物线C. 正弦曲线D. 余弦曲线答案:C6. 复数z = 3 + 4i的模长是?A. 5B. √7C. 7D. √(3^2 + 4^2)答案:D7. 等差数列{an}中,若a1 = 2,d = 3,则a5等于?A. 11B. 14C. 17D. 20答案:B8. 以下哪个选项是二项式定理的应用?A. (x + y)^2 = x^2 + 2xy + y^2B. x^2 - y^2 = (x + y)(x - y)C. sin^2(x) + cos^2(x) = 1D. e^x = 1 + x + x^2/2! + x^3/3! + ...答案:D9. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = sin(x)D. f(x) = cos(x)答案:B10. 已知向量a = (1, 2),向量b = (2, 1),则a·b等于?A. 0B. 1C. 3D. 5答案:C二、填空题(每题4分,共20分)11. 函数f(x) = x^2 - 4x + 4的最小值是________。

高职数学试题试卷及答案

高职数学试题试卷及答案

高职数学试题试卷及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = |x| \)D. \( f(x) = \sin(x) \)答案:B2. 计算极限 \(\lim_{x \to 0} \frac{\sin(x)}{x}\) 的值是多少?A. 0B. 1C. 2D. 3答案:B3. 以下哪个选项是微分方程 \( y' = 2y \) 的解?A. \( y = e^{2x} \)B. \( y = e^{-2x} \)C. \( y = e^{x} \)D. \( y = e^{-x} \)答案:A4. 求定积分 \(\int_{0}^{1} x^2 dx\) 的值。

A. \(\frac{1}{3}\)B. \(\frac{1}{2}\)C. \(\frac{1}{4}\)D. \(\frac{1}{6}\)答案:A5. 矩阵 \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\) 的行列式是多少?A. 5B. -5C. 7D. -7答案:B6. 以下哪个选项是函数 \( f(x) = x^2 - 4x + 4 \) 的极值点?A. \( x = 0 \)B. \( x = 2 \)C. \( x = 4 \)D. \( x = -2 \)答案:B7. 计算二重积分 \(\iint_{D} x^2 + y^2 dA\),其中 \(D\) 是由\(x^2 + y^2 \leq 1\) 定义的圆盘区域。

A. \(\frac{\pi}{2}\)B. \(\frac{\pi}{4}\)C. \(\pi\)D. \(2\pi\)答案:C8. 以下哪个选项是曲线 \( y = x^3 \) 在点 \( (1,1) \) 处的切线方程?A. \( y = 3x - 2 \)B. \( y = 3x - 1 \)C. \( y = 3x + 1 \)D. \( y = 3x \)答案:B9. 以下哪个选项是函数 \( f(x) = \ln(x) \) 的反函数?A. \( f^{-1}(x) = e^x \)B. \( f^{-1}(x) = \ln(x) \)C. \( f^{-1}(x) = e^{-x} \)D. \( f^{-1}(x) = \frac{1}{x} \)答案:A10. 以下哪个选项是函数 \( f(x) = \cos(x) \) 的周期?A. \( 2\pi \)B. \( \pi \)C. \( \frac{\pi}{2} \)D. \( \frac{1}{2} \)答案:A二、填空题(每题2分,共20分)11. 函数 \( f(x) = \sin(x) \) 的导数是 ________。

单招数学试题及答案详解

单招数学试题及答案详解

单招数学试题及答案详解一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-4x+m在区间[2,+∞)上单调递增,则实数m的取值范围是()。

A. m≥0B. m<0C. m>0D. m≤4答案:A解析:函数f(x)=x^2-4x+m的对称轴为x=2,因此当x≥2时,函数单调递增。

要使得函数在区间[2,+∞)上单调递增,m的取值范围应满足m≥0。

2. 已知等差数列{an}的前n项和为Sn,若a1=1,a4=7,则S5的值为()。

A. 25B. 26C. 30D. 35答案:C解析:由等差数列的性质可知,a4=a1+3d,即7=1+3d,解得公差d=2。

因此,S5=5a1+10d=5×1+10×2=30。

3. 若直线l的倾斜角为45°,则直线l的斜率k的值为()。

A. 1B. -1C. 0D. ∞答案:A解析:直线的倾斜角为45°,根据斜率与倾斜角的关系,斜率k=tan(45°)=1。

4. 已知函数f(x)=x^3-3x^2+2,求f'(x)的值为()。

A. 3x^2-6xB. 3x^2-6x+2C. 3x^2-6x+1D. x^3-3x^2+2答案:A解析:对函数f(x)=x^3-3x^2+2求导,得到f'(x)=3x^2-6x。

5. 已知双曲线C的方程为x^2/a^2-y^2/b^2=1,若双曲线C的离心率为√2,则a与b的关系为()。

A. a=bB. a=2bC. b=2aD. b=√2a答案:D解析:双曲线的离心率e=c/a,其中c^2=a^2+b^2。

由题意知e=√2,代入得c^2=2a^2,即a^2+b^2=2a^2,化简得b^2=a^2,所以b=√2a。

二、填空题(每题4分,共20分)6. 已知圆的方程为(x-2)^2+(y-3)^2=25,圆心坐标为()。

答案:(2, 3)解析:圆的标准方程为(x-a)^2+(y-b)^2=r^2,其中(a, b)为圆心坐标,r为半径。

单招数学考试题和答案

单招数学考试题和答案

单招数学考试题和答案一、选择题(每题5分,共50分)1. 若函数f(x) = 2x + 3,则f(-1)的值为()。

A. -1B. 1C. -5D. 52. 已知集合A = {1, 2, 3},B = {2, 3, 4},则A∩B等于()。

A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}3. 以下哪个函数是奇函数()。

A. f(x) = x^2B. f(x) = x^3C. f(x) = x + 1D. f(x) = 1/x4. 计算极限lim(x→0) (1 - cosx) / x的值为()。

A. 0B. 1C. 2D. -15. 已知等差数列{an}的首项a1 = 2,公差d = 3,则a5的值为()。

A. 14B. 17C. 20D. 236. 以下哪个选项是正确的不等式()。

A. 2x + 3 > 5x + 1B. 3x - 2 ≤ 4x + 3C. x^2 - 4x + 4 ≥ 0D. x^3 - 3x^2 + 3x - 1 < 07. 计算定积分∫(0 to 1) x^2 dx的值为()。

A. 1/3B. 1/2C. 1D. 28. 以下哪个矩阵是可逆矩阵()。

A. [1 2; 3 4]B. [2 0; 0 2]C. [1 1; 1 1]D. [0 1; 1 0]9. 已知双曲线x^2 / 4 - y^2 / 9 = 1的焦点坐标为()。

A. (±2, 0)B. (±3, 0)C. (0, ±2)D. (0, ±3)10. 计算二项式(1 + x)^5的展开式中x^3的系数为()。

A. 10B. 20C. 30D. 40答案:1. C2. B3. B4. C5. A6. C7. A8. B9. B10. B二、填空题(每题5分,共30分)11. 函数y = sinx的导数为_________。

12. 计算定积分∫(0 to π/2) sinx dx的值为_________。

单独招生考试数学卷及答案 (5)

单独招生考试数学卷及答案  (5)

单独考试招生考试数学(满分120分,考试时间90分钟)一、选择题:(本题共10小题,每小题5分,共50分)1.已知命题:p “[]0,1,x x a e ∀∈≥”,命题:q “2,40x R x x a ∃∈-+=”,若命题,p q 均是真命题,则实数的取值范围是()A.[4,)+∞B.[1,4]C.[,4]e D.(,1]-∞2.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是()A.25-B.25C.5-D.53.在ABC ∆中,1AB =,2BC =,为AC 的中点,则()BE BA BC ∙-=()A.3B.32C.-3D.32-4.用一个平面去截正方体,所得的截面不可能是()(A)六边形(B)菱形(C)梯形(D)直角三角形5、化简3a a 的结果是()A.a B.12a C.41aD.83a 6.“032>x ”是“0<x ”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件7.下列不等式(组)解集为{}0x x <的是()A.2x -3<3x-3B.20231x x ⎧⎨⎩-<->C.2x -2x>0D.12x -<8.下列函数在区间(0,+∞)上为减函数的是()A.y=3x-1B.f(x)=2log xC.1()()2xg x = D.()sin h x x=9.若α是第二象限角,则α-7π是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角10.已知向量(2,1)=-a ,(0,3)=b ,则2-=a b ()A.(2,7)- C.7二、填空题:(共20分.)1.不等式06||2<--x x (R x ∈)的解集是___________________;2.已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式2)(≤+x x xf 的解集是_________________;3.若不等式2229x x a x x +≤≤+在]2,0(∈x 上恒成立,则a 的取值范围是___________;4、计算:a·a²=_____.三、解答题:(共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.)1、已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,求公差d 。

全国单招考试数学卷及答案 (5)

全国单招考试数学卷及答案 (5)

普通高等学校单独招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1、在长方体ABCD—A′B′C′D′的12条棱中,与棱AA′成异面直线的棱有()A.3条B.4条C.6条D.8条2、如图1在正方体ABCD—A′B′C′D′中,直线AC 与直线BC′所成的角为()A.30°B.60°C.90°D.45°3、若a ∥α,⊂b α,则a 和b 的关系是()A.平行B.相交C.平行或异面D.以上都不对4、已知PD⊥矩形ABCD 所在的平面(图2),图中相互垂直的平面有()A .1对B .2对C .3对D .5对5、棱长为2的正方体内切球的表面积为()A.π4B.π16C.π8D.π26、若正方体ABCD—A′B′C′D′的棱长为4,点M 是棱AB 的中点,则在该正方体表面上,点M 到顶点C′的最短距离是()A.6B.10C.132D.1727、设M 是圆9)3()5(22=-+-y x 上的点,则M 到直线0243=-+y x 的最长距离是()PABCD 图2A.2B.5C.8D.98.①某高校为了解学生家庭经济收入情况,从来自城镇的150名学生和来自农村的150名学生中抽取100名学生的样本;②某车间主任从100件产品中抽取10件样本进行产品质量检验.I.随机抽样法;Ⅱ.分层抽样法.上述两问题和两方法配对正确的是()A.①配I,②配ⅡB.①配Ⅱ,②配ⅠC.①配I,②配I D.①配Ⅱ,②配Ⅱ9.已知函数xxf)21()(,其反函数为)(xg,则2)(xg是()A.奇函数且在(0,+∞)上单调递减B.偶函数且在(0,+∞)上单调递增C.奇函数且在(-∞,0)上单调递减D.偶函数且在(-∞,0)上单调递增10.以下四个命题:①过一点有且仅有一个平面与已知直线垂直;②若平面外两点到平面的距离相等,则过这两点的直线必平行于该平面;③两条相交直线在同一平面内的射影必为相交直线;④两个互相垂直的平面,一个平面内的任一直线必垂直于另一平面的无数条直线.其中正确的命题是()A.①和②B.②和③C.③和④D.①和④11.从单词“education”中选取5个不同的字母排成一排,则含“at”(“at”相连且顺序不变)的概率为()A.181B.3781C.4321D.756112.已知正二十面体的各面都是正三角形,那么它的顶点数为()A.30B.12C.32D.10二、填空题(共4小题,每小题5分;共计20分)1.在等差数列{an}中,a1=251,第10项开始比1大,则公差d 的取值范围是___________.2.已知正三棱柱ABC—A1B1C1,底面边长与侧棱长的比为2∶1,则直线AB1与CA1所成的角为______。

高职数学试题综合答案及解析

高职数学试题综合答案及解析

高职数学试题综合答案及解析一、单项选择题(每题3分,共30分)1. 函数f(x)=x^2+2x+1的导数是()。

A. 2x+2B. 2x+1C. 2xD. 1答案:A解析:根据导数的定义,f'(x) = 2x + 2。

2. 极限lim(x→0) (sin(x)/x)的值是()。

A. 0B. 1C. πD. 2答案:B解析:根据极限的性质,lim(x→0) (sin(x)/x) = 1。

3. 函数y=x^3-3x+2的极值点是()。

A. x=1B. x=-1C. x=0D. x=2答案:A解析:求导得到y'=3x^2-3,令y'=0,解得x=±1。

当x<-1或x>1时,y'>0,函数单调递增;当-1<x<1时,y'<0,函数单调递减。

因此,x=1是极小值点。

4. 微分方程y'+2y=e^(-2x)的通解是()。

A. y=e^(-2x)/5B. y=e^(-2x)/3C. y=e^(-2x)/2D. y=e^(-2x)/4答案:C解析:这是一个一阶线性微分方程,通解为y=e^(-2x)/2 + C*e^(-2x),其中C为常数。

5. 函数y=ln(x)的反函数是()。

A. y=e^xB. y=ln(x)C. y=x^2D. y=√x答案:A解析:根据反函数的定义,y=ln(x)的反函数是y=e^x。

6. 函数y=x^2-4x+3的零点是()。

A. x=1B. x=3C. x=1或x=3D. x=0答案:C解析:令y=0,解得x^2-4x+3=0,即(x-1)(x-3)=0,因此x=1或x=3。

7. 函数y=x^3-3x的单调递增区间是()。

A. (-∞, +∞)B. (-∞, 1)∪(1, +∞)C. (-∞, -1)∪(1, +∞)D. (-1, 1)答案:C解析:求导得到y'=3x^2-3,令y'>0,解得x<-1或x>1,因此函数在(-∞, -1)和(1, +∞)上单调递增。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高职单招数学(003)liao
姓名: 班级: (中秋)
一、单项选择题(本大题10小题,每小题3分,共30分.)
1、已知全集I={不大于5的正整数 },A={1,2,5},B={2,4,5}则C I A
∩C I B= ( )
A 、 {1,2,4,5}
B 、{3}
C 、 {3,4}
D 、{1,3}
2、函数()22x x x f -=的定义域是 ( )
A 、()0,∞-
B 、(]2,0
C 、(]0,2-
D 、[]2,0
3、x >5
是x >3的( )条件 ( )
A 、充分且不必要
B 、必要且不充分
C 、充要
D 、既不充分也不必要
4、二次函数2285y x x =-+在( )内是单调递减函数。

( )
A 、[)2,+∞
B 、(],2-∞
C 、(],2-∞-
D 、[)2,-+∞
5、设自变量R x ∈,下列是偶函数的是( )
A 、y=sinx
B 、y=133-x
C 、y=|2x|
D 、y=-4x
6、不等式|x-2|<1的解集是 ( )
A 、{x|x <3}
B 、{x|1<x <3}
C 、{x|x <1}
D 、{x|x <1,
或x >3}
7、在等比数列{}n a 中,已知345a a =,则1256a a a a =
( )
A 、25
B 、10
C 、—25
D 、—10
8、已知向量(5,3),(1,),a b m a b =-=-⊥且,则m = ( )
A 、 35
B 、-35
C 、 -53
D 、5
3
9、圆方程为222620x y x y ++-+=的圆心坐标与半径分别是 ( )
A 、(1,3),r -=、(1,3),r -=、(1,3),r -=、(1,3),4r -=
10、下面命题正确的是
( )
A 、如果两条直线同垂直于一条直线,则这两条直线互相平行
B 、如果两条直线同平行于一个平面,则这两条直线互相平行
C 、如果两个平面同垂直于一个平面,则这两个平面互相平行
D 、如果两条直线同垂直于一个平面,则这两条直线互相平行
二、填空题(把答案写在横线上;本大题12小题,每小题2分,共24分)
1、集合{1,2,3}的真子集共有____________个。

2、(21)(3)0x x -+>解集为_____________________。

3、若 23,(0)()23,(0)
x x f x x x ⎧-≤=⎨+>⎩,则(1)f -= 。

4、求值2
1)25.0(-+8log 2=
5、已知sin α=,且000360α≤≤,那么α= (两个答案)
6、AB CD BC +++DA = 。

7、已知)1,5(),3,1(-B -A ,则AB 为端点的线段垂直平分线的方程是 。

8、如图,正方体1111D C B A ABCD -中,AC 与C B 1所成的角的大小为_________
9、把一枚均匀硬币连掷 3次,得到3次正面都向上的概率是 __ __ 。

10、23sin y x =-的最小值是 。

11、在等差数列{n a }中,已知65a a +=9,那么它的前10项
10S = 。

12、一组数据1,2,4,5,则这组数据的均值为 ,方差为 。

三、解答题(本大题7个小题,共46分;解答应写出文字说明、证明过程或演
1、(本小题满分6分)设集合{}0A x x a =-<,不等式2222<+x x
的解集
为B ,若A B ⊆,求实数a 的取值范围。

2、(本小题满分6分)求证: αααcos 22sin )1(cos 22-=+-
3、(本小题满分7分)求过两直线10,30x y x y +-=--=的交点,且平行于直线320x y +-=的直线方程.
4、(本小题满分7分)已知二次函数c bx ax x f ++=2)(满足条件0)3()1(==-f f ,且最小值为8-,求函数的解析式。

5.(本小题满分7分)某商品自投放市场以来,经过2次降价,单价由原来的12000元,降到7680元,如果每次降价的百分率都相同, 求每次降价的百分率。

相关文档
最新文档