高考数学模拟复习试卷试题模拟卷1566

合集下载

高考模拟复习试卷试题模拟卷高三数学数学试卷文科

高考模拟复习试卷试题模拟卷高三数学数学试卷文科

高考模拟复习试卷试题模拟卷高三数学数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=15.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1) C.(0,] D.(0,]∪[,]二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为.10.(5分)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料 A B C 甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.17.(13分)已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.18.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}【分析】根据题意,将集合B用列举法表示出来,可得B={1,3,5},由交集的定义计算可得答案.【解答】解:根据题意,集合A={1,2,3},而B={y|y=2x﹣1,x∈A},则B={1,3,5},则A∩B={1,3},故选:A.【点评】本题考查集合的运算,注意集合B的表示方法.2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.【分析】利用互斥事件的概率加法公式即可得出.【解答】解:∵甲不输与甲、乙两人下成和棋是互斥事件.∴根据互斥事件的概率计算公式可知:甲不输的概率P=+=.故选:A.【点评】本题考查互斥事件与对立事件的概率公式,关键是判断出事件的关系,然后选择合适的概率公式,属于基础题.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.【分析】根据主视图和俯视图作出几何体的直观图,找出所切棱锥的位置,得出答案.【解答】解:由主视图和俯视图可知切去的棱锥为D﹣AD1C,棱CD1在左侧面的投影为BA1,故选:B.【点评】本题考查了棱锥,棱柱的结构特征,三视图,考查空间想象能力,属于基础题.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=1【分析】利用双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,求出几何量a,b,c,即可求出双曲线的方程.【解答】解:∵双曲线﹣=1(a>0,b>0)的焦距为2,∴c=,∵双曲线的一条渐近线与直线2x+y=0垂直,∴=,∴a=2b,∵c2=a2+b2,∴a=2,b=1,∴双曲线的方程为=1.故选:A.【点评】本题考查双曲线的方程与性质,考查待定系数法的运用,确定双曲线的几何量是关键.5.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】直接根据必要性和充分判断即可.【解答】解:设x>0,y∈R,当x>0,y=﹣1时,满足x>y但不满足x>|y|,故由x>0,y∈R,则“x>y”推不出“x>|y|”,而“x>|y|”⇒“x>y”,故“x>y”是“x>|y|”的必要不充分条件,故选:C.【点评】本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)【分析】根据函数的对称性可知f(x)在(0,+∞)递减,故只需令2|a﹣1|<即可.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.故选:C.【点评】本题考查了函数的单调性,奇偶性的性质,属于中档题.7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.【点评】本题考查平面向量的数量积运算,考查向量加减法的三角形法则,是中档题.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1) C.(0,] D.(0,]∪[,]【分析】函数f(x)=,由f(x)=0,可得=0,解得x=∉(π,2π),因此ω∉∪∪∪…=∪,即可得出.【解答】解:函数f(x)=+sinωx﹣=+sinωx=,由f(x)=0,可得=0,解得x=∉(π,2π),∴ω∉∪∪∪…=∪,∵f(x)在区间(π,2π)内没有零点,∴ω∈∪.故选:D.【点评】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为 1 .【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+i)z=2,得,∴z的实部为1.故答案为:1.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.10.(5分)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为3 .【分析】先求导,再带值计算.【解答】解:∵f(x)=(2x+1)ex,∴f′(x)=2ex+(2x+1)ex,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.【点评】本题考查了导数的运算法则,属于基础题.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为 4 .【分析】根据循环结构,结合循环的条件,求出最后输出S的值.【解答】解:第一次循环:S=8,n=2;第二次循环:S=2,n=3;第三次循环:S=4,n=4,结束循环,输出S=4,故答案为:4.【点评】本题主要考查程序框图,循环结构,注意循环的条件,属于基础题.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为(x﹣2)2+y2=9 .【分析】由题意设出圆的方程,把点M的坐标代入圆的方程,结合圆心到直线的距离列式求解.【解答】解:由题意设圆的方程为(x﹣a)2+y2=r2(a>0),由点M(0,)在圆上,且圆心到直线2x﹣y=0的距离为,得,解得a=2,r=3.∴圆C的方程为:(x﹣2)2+y2=9.故答案为:(x﹣2)2+y2=9.【点评】本题考查圆的标准方程,训练了点到直线的距离公式的应用,是中档题.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.【分析】由BD=ED,可得△BDE为等腰三角形,过D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.【解答】解:如图,过D作DH⊥AB于H,∵BE=2AE=2,BD=ED,∴BH=HE=1,则AH=2,BH=1,∴DH2=AH•BH=2,则DH=,在Rt△DHE中,则,由相交弦定理可得:CE•DE=AE•EB,∴.故答案为:.【点评】本题考查与圆有关的比例线段,考查相交弦定理的应用,是中档题.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是[,).【分析】由减函数可知f(x)在两段上均为减函数,且在第一段的最小值大于或等于第二段上的最大值,作出|f(x)|和y=2﹣的图象,根据交点个数判断3a与2的大小关系,列出不等式组解出.【解答】解:∵f(x)是R上的单调递减函数,∴y=x2+(4a﹣3)x+3a在(﹣∞.,0)上单调递减,y=loga(x+1)+1在(0,+∞)上单调递减,且f(x)在(﹣∞,0)上的最小值大于或等于f(0).∴,解得≤a≤.作出y=|f(x)|和y=2﹣的函数草图如图所示:由图象可知|f(x)|=2﹣在[0,+∞)上有且只有一解,∵|f(x)|=2﹣恰有两个不相等的实数解,∴x2+(4a﹣3)x+3a=2﹣在(﹣∞,0)上只有1解,即x2+(4a﹣)x+3a﹣2=0在(﹣∞,0)上只有1解,∴或,解得a=或a<,又≤a≤,∴.故答案为[,).【点评】本题考查了分段函数的单调性,函数零点的个数判断,结合函数函数图象判断端点值的大小是关键,属于中档题.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.【分析】(1)利用正弦定理将边化角即可得出cosB;(2)求出sinA,利用两角和的正弦函数公式计算.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.【点评】本题考查了正弦定理解三角形,两角和的正弦函数,属于基础题.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料 A B C 甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.【分析】(Ⅰ)设出变量,建立不等式关系,即可作出可行域.(Ⅱ)设出目标函数,利用平移直线法进行求解即可.【解答】解:(Ⅰ)由已知x,y满足不等式,则不等式对应的平面区域为,(Ⅱ)设年利润为z万元,则目标函数为z=2x+3y,即y=﹣x+,平移直线y=﹣x+,由图象得当直线经过点M时,直线的截距最大,此时z最大,由得,即M(20,24),此时z=40+72=112,即分别生产甲肥料20车皮,乙肥料24车皮,能够产生最大的利润,最大利润为112万元.【点评】本题主要考查线性规划的应用,根据条件建立约束条件,作出可行域,利用平移法是解决本题的关键.17.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.【分析】(1)利用中位线定理,和平行公理得到四边形OGEF是平行四边形,再根据线面平行的判定定理即可证明;(2)根据余弦定理求出BD=,继而得到BD⊥AD,再根据面面垂直的判定定理即可证明;(3)先判断出直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,再根据余弦定理和解直角三角形即可求出答案.【解答】证明:(1)BD的中点为O,连接OE,OG,在△BCD中,∵G是BC的中点,∴OG∥DC,且OG=DC=1,又∵EF∥AB,AB∥DC,∴EF∥OG,且EF=OG,即四边形OGEF是平行四边形,∴FG∥OE,∵FG⊄平面BED,OE⊂平面BED,∴FG∥平面BED;(2)证明:在△ABD中,AD=1,AB=2,∠BAD=60°,由余弦定理可得BD=,仅而∠ADB=90°,即BD⊥AD,又∵平面AED⊥平面ABCD,BD⊂平面ABCD,平面AED∩平面ABCD=AD,∴BD⊥平面AED,∵BD⊂平面BED,∴平面BED⊥平面AED.(Ⅲ)∵EF∥AB,∴直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,过点A作AH⊥DE于点H,连接BH,又平面BED∩平面AED=ED,由(2)知AH⊥平面BED,∴直线AB与平面BED所成的角为∠ABH,在△ADE,AD=1,DE=3,AE=,由余弦定理得cos∠ADE=,∴sin∠ADE=,∴AH=AD•,在Rt△AHB中,sin∠ABH==,∴直线EF与平面BED所成角的正弦值【点评】本题考查了直线与平面的平行和垂直,平面与平面的垂直,直线与平面所成的角,考查了空间想象能力,运算能力和推理论证能力,属于中档题.18.(13分)已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.【分析】(1)根据等比数列的通项公式列方程解出公比q,利用求和公式解出a1,得出通项公式;(2)利用对数的运算性质求出bn,使用分项求和法和平方差公式计算.【解答】解:(1)设{an}的公比为q,则﹣=,即1﹣=,解得q=2或q=﹣1.若q=﹣1,则S6=0,与S6=63矛盾,不符合题意.∴q=2,∴S6==63,∴a1=1.∴an=2n﹣1.(2)∵bn是log2an和log2an+1的等差中项,∴bn=(log2an+log2an+1)=(log22n﹣1+log22n)=n﹣.∴bn+1﹣bn=1.∴{bn}是以为首项,以1为公差的等差数列.设{(﹣1)nbn2}的前2n项和为Tn,则Tn=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=b1+b2+b3+b4…+b2n﹣1+b2n===2n2.【点评】本题考查了等差数列,等比数列的性质,分项求和的应用,属于中档题.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.【分析】(1)由题意画出图形,把|OF|、|OA|、|FA|代入+=,转化为关于a的方程,解方程求得a值,则椭圆方程可求;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,得,整理得到M的坐标与k的关系,由∠MOA=∠MAO,得到x0=1,转化为关于k的等式求得k的值.【解答】解:(1)由+=,得+=,即=,∴a[a2﹣(a2﹣3)]=3a(a2﹣3),解得a=2.∴椭圆方程为;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),设B(x1,y1),M(x0,k(x0﹣2)),∵∠MOA=∠MAO,∴x0=1,再设H(0,yH),联立,得(3+4k2)x2﹣16k2x+16k2﹣12=0.△=(﹣16k2)2﹣4(3+4k2)(16k2﹣12)=144>0.由根与系数的关系得,∴,,MH所在直线方程为y﹣k(x0﹣2)=﹣(x﹣x0),令x=0,得yH=(k+)x0﹣2k,∵BF⊥HF,∴,即1﹣x1+y1yH=1﹣[(k+)x0﹣2k]=0,整理得:=1,即8k2=3.∴k=﹣或k=.【点评】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,体现了“整体运算”思想方法和“设而不求”的解题思想方法,考查运算能力,是难题.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.【分析】(1)求出f(x)的导数,讨论a≤0时f′(x)≥0,f(x)在R上递增;当a>0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)由条件判断出a>0,且x0≠0,由f′(x0)=0求出x0,分别代入解析式化简f (x0),f(﹣2x0),化简整理后可得证;(3)设g(x)在区间[﹣1,1]上的最大值M,根据极值点与区间的关系对a分三种情况讨论,运用f(x)单调性和前两问的结论,求出g(x)在区间上的取值范围,利用a的范围化简整理后求出M,再利用不等式的性质证明结论成立.【解答】解:(1)若f(x)=x3﹣ax﹣b,则f′(x)=3x2﹣a,分两种情况讨论:①、当a≤0时,有f′(x)=3x2﹣a≥0恒成立,此时f(x)的单调递增区间为(﹣∞,+∞),②、当a>0时,令f′(x)=3x2﹣a=0,解得x=或x=,当x>或x<﹣时,f′(x)=3x2﹣a>0,f(x)为增函数,当﹣<x<时,f′(x)=3x2﹣a<0,f(x)为减函数,故f(x)的增区间为(﹣∞,﹣),(,+∞),减区间为(﹣,);(2)若f(x)存在极值点x0,则必有a>0,且x0≠0,由题意可得,f′(x)=3x2﹣a,则x02=,进而f(x0)=x03﹣ax0﹣b=﹣x0﹣b,又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣x0+2ax0﹣b=f(x0),由题意及(Ⅰ)可得:存在唯一的实数x1,满足f(x1)=f(x0),其中x1≠x0,则有x1=﹣2x0,故有x1+2x0=0;(Ⅲ)设g(x)在区间[﹣1,1]上的最大值M,max{x,y}表示x、y两个数的最大值,下面分三种情况讨论:①当a≥3时,﹣≤﹣1<1≤,由(I)知f(x)在区间[﹣1,1]上单调递减,所以f(x)在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}=max{|a﹣1+b|,|a﹣1﹣b|}=,所以M=a﹣1+|b|≥2②当a<3时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)≥=f(),f(1)≤=,所以f(x)在区间[﹣1,1]上的取值范围是[f(),f(﹣)],因此M=max{|f()|,|f(﹣)|}=max{||,||}=max{||,||}=,③当0<a<时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)<=f(),f(1)>=,所以f(x)在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>,综上所述,当a>0时,g(x)在区间[﹣1,1]上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法在证明中的应用,以及化简整理、运算能力,属于难题.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

高三数学高考模拟试题及答案.doc-人教版[原创]

高三数学高考模拟试题及答案.doc-人教版[原创]

高三数学高考模拟试题一、选择题(每小题5分;共60分)1.非空集合A 、B 满足≠⊂B A ;U 是全集;则下列式子;①B B A = ;②A B A = ;③(A U) B=U ;④(A U) (B U)=U 中成立的是( ).A .①;②B .③;④C .①;②;③D .①;②;③;④2.已知OM =(3;-2);ON =(-5;-1);则21MN 等于( ). A .(8;1) B .(-8;1) C .(-8;-1) D .4(-;21)3.函数)3(log 1sinl x y -=的定义域是( ).A .(2;3)B .[2;)3C .(2;]3D .(2;+∞) 4.如果数列}{n a 的前n 项和))(49(41*N ∈-=n S n nnn ;那么这个数列( ). A .是等差数列而不是等比数列 B .是等比数列而不是等差数列 C .既是等差数列又是等比数列 D .既不是等差数列又不是等比数列5.锐二面角βα--l 的棱l 上一点A ;射线α⊂AB ;且与棱成45°角;又AB 与β成30°角;则二面角βα--l 的大小是( ).A .30°B .45°C .60°D .90°6.有6个人分别来自3个不同的国家;每一个国家2人。

他们排成一行;要求同一国家的人不能相邻;那么他们不同的排法有( ).A .720B .432C .360D .2407.直线经过点A (2;1);B (1;2m )两点)(R ∈m ;那么直线l 的倾斜角取值范围是( ).A .[0;)πB .[0;2π(]4π;)π C .0[;]4π D .4π[;2π()2π ;)π 8.下列函数中同时具有性质;(1)最小正周期是π;(2)图象关于3π=x 对称;(3)在6π[-;]3π上是增函数的是( ). A .)6π2sin(+=x y B .)3π2cos(+=x y C .)6π2sin(-=x y D .)6π2cos(-=x y 9.设双曲线12222=-by a x 的右准线与两条渐近线交于A 、B 两点;右焦点为F ;且F A ⊥FB ;则双曲线的离心率为( ).A .2B .3C .2D .332 10.设下表是某班学生在一次数学考试中数学成绩的分布表那么分数在[100;110]中和分数不满110分的频率和累积频率分别是( ).A .0.18;0.47B .0.47;0.18C .0.18;1D .0.38;1 11.已知)3π2sin(3)(+=x x f ;则以下选项正确的是( ). A .f (3)>f (1)>f (2) B .f (3)>f (1)>f (2) C .f (3)>f (2)>f (1) D .f (1)>f (3)>f (2) 12.下列各组复合命题中;满足“p 或q ”为真;“p 且q ”为假;“非p ”为真的是( ). A .p ;0=∅;q ;0∅∈B .p ;过空间一点有且仅有一条直线与两异面直线a ;b 都相交;q ;在△ABC 中若B A 2cos 2cos =;则A =BC .p ;不等式x x >||的解集为(-∞;0);q ;y =x sin 在第一象限是增函数D .p ;01cos 1sin >-;q ;椭圆13422=+y x 的一条准线方程是x =4二、填空题(每小题4分;共16分) 13.已知一个球的半径为1;若使其表面积增加到原来的2倍;则表面积增加后球的体积是______________. 14.函数59323+--=x x x y 的单调递减区间是______________.15.已知α、β是实数;给出下列四个论断;(1)||||||βαβα+=+;(2)||||βαβα+≤-;(3)22||>α;22||>β;(4)5||>+βα.以其中的两个论断为条件;其余两个论断作为结论;写出你认为正确的一个命题;________.16.一天内的不同的时刻;经理把文件交由秘书打字。

山东省高考数学仿真模拟试题及答案

山东省高考数学仿真模拟试题及答案

20正视图侧视图808080山东省高考数学仿真模拟试题及答案第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设全集I 是实数集R ,{|ln(2)}M x y x ==-与3{|0}1x N x x -=≤-差不多上I 的子集(如图所示), 则阴影部分所表示的集合为( ) (A ){2}x x < (B ){21}x x -≤< (C ){12}x x <≤(D ){22}x x -≤≤2.i 是虚数单位,已知(2)5i z i -=,则z =( )(A ) i 21+ (B )i 21-- (C )i 21- (D )i 21+- 3.△ABC 中,︒=∠==30,1,3B AC AB ,则△ABC 的面积等于( )A .23 B .43 C .323或 D .4323或 4.已知{}n a 是等差数列,154=a ,555=S ,则过点34(3,(4,),)P a Q a 的直线的斜率 ( ) A .4B .41C .-4D .-145.某师傅需用合板制作一个工作台,工作台由主体和附属两部分组成,主体部分全封闭,附属部分是为了防止工件滑出台面而设置的三面护墙,其大致形状的三视图如右图所示(单位长度: cm), 则按图中尺寸,做成的工作台用去的合板的面积为(制作过程合板的损耗和合板厚度忽略不计)( ) A. 240000cm B. 240800cmC. 21600(2217)cm +D. 241600cm6.已知10<<<<a y x ,y x m a a log log +=,则有( )A 0<mB 10<<mC 21<<mD 2>m7.若某程序框图如图所示,则该程序运行后输出的y 等于( )A .7B .15C .31D .638.已知7722107)21(x a x a x a a x +⋅⋅⋅+++=-,那么=+++++765432a a a a a a ( )A .-2B .2C .-12D .129.已知函数)0,0,0)(sin()(πϕωϕω<<>>+=A x A x f ,其导函数)(x f '的部分图象如图所示,则函数)(x f 的解析式为( )A .)421sin(2)(π+=x x fB .)421sin(4)(π+=x x fC .)4sin(2)(π+=x x fD .)4321sin(4)(π+=x x f10.从抛物线x y 42=上一点P 引抛物线准线的垂线,垂足为M ,且|PM|=5,设抛物线的焦点为F ,则△MPF 的面积为 ( )A .5B .10C .20D .1511.若实数x ,y 满足不等式11,02240+-=⎪⎩⎪⎨⎧≥--≤-≥x y y x y x y ω则的取值范畴是( )A .]31,1[-B .]31,21[-C .⎪⎭⎫⎢⎣⎡-2,21 D .⎪⎭⎫⎢⎣⎡+∞-,21 12.设函数()f x 的定义域为R ,且(2)(1)()f x f x f x +=+-,若(4)1f <-,3(2011)3a f a +=-,则a 的取值范畴是( ) A. (-∞, 3) B. (0, 3)C. (3, +∞)D. (-∞, 0)∪(3, +∞)第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4个小题,每小题4分,共16分.请直截了当在答题卡上相应位置填写答案. 13.两曲线x x y y x 2,02-==-所围成的图形的面积是________。

高考模拟复习试卷试题模拟卷高三数学高三第三次调研考试

高考模拟复习试卷试题模拟卷高三数学高三第三次调研考试

高考模拟复习试卷试题模拟卷高三数学高三第三次调研考试数 学(文科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。

2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷 一、选择题:本大题共12小题,每小题5分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数321iz i i =+-(i 为虚数单位)的共轭复数为() (A )12i +(B )1i -(C )1i -(D )12i -(2)已知集合{}1,0=A ,{}A y A x y x z zB ∈∈+==,,,则B 的子集个数为()(A )3 (B )4 (C )7 (D )8(3)已知2.12=a ,8.021-⎪⎭⎫ ⎝⎛=b ,2log 25=c ,则c b a ,,的大小关系为()(A )a b c <<(B )b a c <<(C )c a b <<(D )a c b <<(4)已知向量()1,3a =,()3,b m =,若向量b 在a 方向上的投影为3,则实数m =()(A )3 (B )3-(CD )-(5)设n S 为等差数列{}n a 的前n 项和,且65101=-+a a a ,则11S =()(A )55 (B )66 (C )110 (D )132 (6)已知34cos sin =+θθ)40(πθ<<,则θθcos sin -的值为() (A )32(B )32-(C )31(D )31-(7)已知圆O :224x y +=上到直线:l x y a +=的距离等于1的点恰有3个,则实数a 的值为()(A )B (C)(D )-或(8)某程序框图如图所示,该程序运行后输出的S 的值是()(A )1007(B ) (C )(D )3024(9)已知双曲线122=-my x 与抛物线x y 82=的一个交点为P ,F 为抛物线的焦点,若5=PF ,则双曲线的渐近线方程为()(A )03=±y x (B )03=±y x (C )02=±y x (D )02=±y x (10)记数列{}n a 的前n 项和为n S ,若2(1)4n n S a n++=,则n a =() (A )2n n (B )12n n -(C )2nn (D )12n n - (11)某几何体的三视图如图,其正视图中的曲线部分为半个圆弧,则该几何体的表面积为() (A )π42616++ (B )π32616++ (C )π42610++ (D )π32610++(12)如图,偶函数()x f 的图象如字母M ,奇函数()x g 的图象如字母N , 若方程()()0=x g f ,()()0=x f g 的实根个数分别为m 、n ,则m n +=()(A )18 (B )16 (C )14 (D )12第Ⅱ卷本卷包括必考题和选考题两部分。

高考模拟考试数学真题试卷

高考模拟考试数学真题试卷

高考模拟考试数学真题试卷一、选择题(本大题共10小题,每小题5分,共50分)1. 下列哪个选项不是实数集R的子集?A. 整数集ZB. 有理数集QC. 无理数集D. 复数集C2. 已知函数f(x) = 2x - 1,求f(3)的值。

A. 5B. 4C. 3D. 23. 若a > 0,b < 0,且|a| < |b|,则a + b的值是:A. 正数B. 负数C. 零D. 不确定4. 已知等差数列{an}的首项a1=3,公差d=2,求第5项a5。

A. 9B. 11C. 13D. 155. 圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π6. 已知三角形ABC的三边长分别为a=3,b=4,c=5,求三角形的面积。

A. 6B. 9C. 12D. 157. 函数y = x^2 - 4x + 4的图像与x轴交点个数是:A. 0B. 1C. 2D. 38. 已知向量\( \vec{a} = (3, 2) \),\( \vec{b} = (-1, 2) \),求\( \vec{a} \)与\( \vec{b} \)的点积。

A. 4B. 5C. 6D. 79. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B。

A. {1}B. {2, 3}C. {4}D. {1, 2, 3}10. 函数y = log_2(x)的定义域是:A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞]二、填空题(本大题共5小题,每小题5分,共25分)11. 若f(x) = x^2 + 3x + 2,求f(x)的导数f'(x)。

答案:__________。

12. 已知数列{bn}满足bn = 2bn-1 + 3,b1 = 1,求b3。

答案:__________。

13. 已知直线l的方程为y = 2x + 3,求直线l的斜率。

答案:__________。

高考数学模拟试卷复习试题高三模拟卷文科数学

高考数学模拟试卷复习试题高三模拟卷文科数学

高考数学模拟试卷复习试题高三模拟卷文科数学本试题卷共8页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求。

1.已知集合A={x|x23x<0},B={y|y=},则A∩B()A.(0,3)B.[1,3)C.(3,0)D.(3,1]2.若复数z满足z2=4,则复数z的实部为()A.2B.1C.2D.03.已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:“∃x0∈R,x0>0”的否定是“∀x∈R,x2x≤0”,则下列命题是真命题的是()A.p∨(¬q)B.p∧qC.p∨qD.(¬p)∧(¬q)4. 已知圆C过点A(2,4),B(4,2),且圆心C在直线x+y=4上,若直线x+2yt=0与圆C相切,则t的值为()A.6±2B.6±2C.2±6D.6±45.已知函数y=sinωx在[,]上是减函数,则ω的取值范围是()A.[−,0)B.[3,0)C.(0,]D.(0,3]6. 设x1=18,x2=19,x3=20,x4=21,x5=22,将这五个数据依次输入下边程序框进行计算,则输出的S值及其统计意义分别是()A.S=2,即5个数据的方差为2B.S=2,即5个数据的标准差为2C.S=10,即5个数据的方差为10D.S=10,即5个数据的标准差为107.若三角形ABC中,sinCsin(AB)=sin2(A+B),则此三角形的形状是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.某四棱锥的三视图如图所示,则该四棱锥的体积为()A.2B.3C.4D.69.如图,点A(2,m),B(n,2),均在双曲线y=(x>0)上,过点A,B分别作AG⊥y轴,BH⊥x轴,垂足为G,H,下列说法错误的是()A.AO=BO B.∠AOB可能等于30°C.△AOG与△BOH的面积相等D.△AOG≌△BOH10.已知平面区域D={(x,y)|},Z=.若命题“∀(x,y)∈D,Z≥m”为真命题,则实数m的最大值为()A.B.C.D.11.设点M,N为圆x2+y2=9上两个动点,且|MN|=4,若点P为线段3x+4y+15=0(xy≥0)上一点,则|+|的最大值为()A.4B.6C.8D.1212.已知e是自然对数的底数,函数f(x)=(ax2+x)ex,若f(x)在[1,1]上是单调增函数,则a的取值范围是()A.[,0]B.(∞,0)∪[,+∞)C.[0,]D.(∞,]∪[0,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.若函数y=的定义域为R,则k∈。

高考模拟复习试卷试题模拟卷高三数学高三第二次联考 数学试题文科

高考模拟复习试卷试题模拟卷高三数学高三第二次联考 数学试题文科

高考模拟复习试卷试题模拟卷高三数学高三第二次联考 数学试题(文科)注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上.2.回答第I 卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效. 3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}{}=22,x A x B y y x <=,则A B =( )A.[)0,1B.()0,2C.()1+∞,D.[)0+∞, 2.已知复数z 满足()z 1i i +=-,则z =( ) A.122 C.123.在等比数列{}n a 中,2348a a a =,78a =,则1=a ( ) A.1 B. 1± C.2 D.2±4.如图所示的程序框图的运行结果为( ) A. 1- B.12C.1D.2 5.在区间[]0,4上随机取两个实数,x y ,使得28x y +≤的概率为( )A.14 B.316 C. 916D. 34 6.在平行四边形ABCD 中,4,3,3AB AD DAB π==∠=,点,E F 分别在,BC DC 边上,且2,BE EC DF FC ==,则AE BF ⋅=( )A.83-B.1-C. 2D. 1037.已知圆C 方程为()()22210x y r r -+=>,若p :13r ≤≤;q :圆C 上至多有3个点到直线3+30x -=的距离为1,则p 是q 的( ) A.充分不必要条件 B. 必要不充分条件 C.充要条件 D.既不充分也不必要条件开始结束2016i ?≥ 是否2,1a i ==1i i =+输出a11a a=-(第4题图)FEBDA(第6题图)第二次八校联考文科数学 第 1 页(共6页)8.已知函数()22,0lg ,0x x x f x x x ⎧+⎪=⎨>⎪⎩≤,则函数()()11g x f x =--的零点个数为( )A.1B.2C.3D.49.某空间几何体的三视图如图所示,则该几何体的外接球的表面积是( )A.36πB.52πC. 72πD.100π10.若()()()2cos 2+0f x x ϕϕ=>的图像关于直线3x π=对称,且当ϕ取最小值时,00,2x π⎛⎫∃∈ ⎪⎝⎭,使得()0f x a =,则a 的取值范围是( )A.(]1,2-B. [)2,1--C.()1,1-D.[)2,1-11.已知F 是抛物线24x y =的焦点,P 为抛物线上的动点,且A 的坐标为()0,1-,则PF PA的最小值是( )A.14 B. 122312.已知函数()2()e x f x x ax b =++,当1b <时,函数()f x 在(),2-∞-,()1,+∞上均为增函数,则2a ba +-的取值范围是( ) A .22,3⎛⎤- ⎥⎝⎦B .1,23⎡⎫-⎪⎢⎣⎭C .2,3⎛⎤-∞ ⎥⎝⎦D .2,23⎡⎤-⎢⎥⎣⎦第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分. 13.已知()f x 是定义在R 上的奇函数,当0x >时,()2=log 1f x x -,则2f ⎛ ⎝⎭=.14.若244xy+=,则2x y +的最大值是.15.已知12,l l 分别为双曲线()222210,0x y a b a b-=>>的两条渐近线,且右焦点关于1l 的对称点在2l 上,则双曲线的离心率为.16.数列{}n a 满足1=1a ,()()1=11n n na n a n n ++++,且2=cos 3n n n b a π,记n S 为数列{}n b 的前n 项和,则120S =.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.第二次八校联考文科数学 第 2 页(共6页) 俯视图正视图 侧视图224224第9题图)17.(本小题满分12分)如图,在平面四边形ABCD 中,AB AD ⊥,1AB =,7AC =,23ABC π∠=,3ACD π∠=. (Ⅰ)求sin BAC ∠; (Ⅱ)求DC 的长.18.(本小题满分12分)国内某知名大学有男生14000人,女生10000人.该校体育学院想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取120人,统计他们平均每天运动的时间,如下表:(平均每天运动的时间单位:小时,该校学生平均每天运动的时间范围是[]0,3.)平均每天运动的时间[)0,0.5 [)0.5,1 [)1,1.5 [)1.5,2 [)2,2.5 []2.5,3人数 2 12 231810x平均每天运动的时间[)0,0.5 [)0.5,1 [)1,1.5 [)1.5,2 [)2,2.5 []2.5,3人数5 12 18103y(Ⅰ)请根据样本估算该校男生平均每天运动的时间(结果精确到);(Ⅱ)若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生 为“非运动达人”.①请根据样本估算该校“运动达人”的数量;②请根据上述表格中的统计数据填写下面22⨯列联表,并通过计算判断能否在犯错 误的概率不超过0.05 运动达人 非运动达人 总 计男 生女 生总 计 参考公式:()()()()()22=n ad bc K a b c d a c b d -++++,其中.n a b c d =+++参考数据:19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,ABC △是等边三角形,14BC CC ==,D 是11A C 中点.(Ⅰ)求证:1A B ∥平面1B CD ;(Ⅱ)当三棱锥11C B C D -体积最大时,求点B 到平面1B CD 的距离.20. (本小题满分12分)定义:在平面内,点P 到曲线Γ上的点的距离的最小值称为点P 到曲线Γ的距离.在平面直角坐标系xOy 中,已知圆:()22212x y -+=及点()2,0A -,A C D B(第17题图)A B1A1C D 1B (第19题图) 第二次八校联考文科数学 第 3 页(共6页)第二次八校联考文科数学 第 4 页(共6页)动点P 到圆M 的距离与到A 点的距离相等,记P 点的轨迹为曲线W . (Ⅰ)求曲线W 的方程;(Ⅱ)过原点的直线l (l 不与坐标轴重合)与曲线W 交于不同的两点,C D ,点E 在曲线W 上,且CE CD ⊥,直线DE 与x 轴交于点F ,设直线,DE CF 的斜率分别为12,k k ,求12.k k 21.(本小题满分12分)已知函数()()ln 4f x ax x a =--∈R . (Ⅰ)讨论()f x 的单调性;(Ⅱ)当2a =时,若存在区间[]1,,2m n ⎡⎫⊆+∞⎪⎢⎣⎭,使()f x 在[],m n 上的值域是,11k k m n ⎡⎤⎢⎥++⎣⎦,求k 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答题时请用2B 铅笔在答题卡上把所选题目的题号涂黑. 22. (本小题满分10分)41 :几何证明选讲如图,在锐角三角形ABC 中,AB AC =,以AB 为直径的圆O 与边,BC AC 另外的交点分别为,D E ,且DF AC ⊥于.F (Ⅰ)求证:DF 是O ⊙的切线;(Ⅱ)若3CD =,7=5EA ,求AB 的长.23.(本小题满分10分)44 :坐标系与参数方程已知曲线1C 的参数方程为1cos 3sin x t y t αα=-+⎧⎨=+⎩(t 为参数,0απ<≤),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22sin 4πρθ⎛⎫=+ ⎪⎝⎭.(Ⅰ)若极坐标为2,4π⎛⎫ ⎪⎝⎭的点A 在曲线1C 上,求曲线1C 与曲线2C 的交点坐标;(Ⅱ)若点P 的坐标为()1,3-,且曲线1C 与曲线2C 交于,B D 两点,求.PB PD ⋅ 24.(本小题满分10分)选修45:不等式选讲 已知函数()+122f x x x =--. (Ⅰ)求不等式()1f x x -≥的解集;(Ⅱ)若()f x 的最大值是m ,且,,a b c 均为正数,a b c m ++=,求222b c a a b c++的最小值.八校高三第二次联考第二次八校联考文科数学 第 5 页(共6页)第二次八校联考文科数学 第 6 页(共6页)DFC B EO (第22题图) 华师一附中 黄冈中学 黄石二中 荆州中学 襄阳四中 襄阳五中 孝感高中 鄂南高中文科数学参考答案一、选择题答案: 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B AADCACBDCA二、填空题: 13.32; 14.2; 15.2; 16.7280 三、解答题:17.(Ⅰ)在ABC ∆中,由余弦定理得:2222cos AC BC BA BC BA B =+-⋅,即260BC BC +-=,解得:2BC =,或3BC =-(舍), ………………3分由正弦定理得:sin 21sin .sin sin 7BC AC BC B BAC BAC B AC =⇒∠==∠………………6分(Ⅱ)由(Ⅰ)有:21cos sin CAD BAC ∠=∠=,327sin 17CAD ∠=-=, 所以27121357sin sin 32D CAD π⎛⎫=∠+=⨯+⨯= ⎪⎝⎭, ………………9分 由正弦定理得:277sin 477.sin sin sin 57DC AC AC CAD DC CAD D D⨯∠=⇒===∠……………12分(其他方法相应给分)18.(Ⅰ)由分层抽样得:男生抽取的人数为14000120=7014000+10000⨯人,女生抽取人数为1207050-=人,故x =5,y =2, ……………2分则该校男生平均每天运动的时间为:0.2520.7512 1.2523 1.7518 2.2510 2.7551.570⨯+⨯+⨯+⨯+⨯+⨯≈, ……………5分故该校男生平均每天运动的时间约为1.5小时; (Ⅱ)①样本中“运动达人”所占比例是201=1206,故估计该校“运动达人”有 ()1140001000040006⨯+=人; ……………8分 ②由表格可知:运动达人 非运动达人总 计 男 生 15 55 70 女 生 5 45 50 总 计20100 120……………9分 故2K 的观测值()2120154555596=2.7433.841.20100507035k ⨯-⨯=≈<⨯⨯⨯……………11分 故在犯错误的概率不超过0.05的前提下不能认为“是否为‘运动达人’与性别有关”. ……………12分19.(Ⅰ)连结1BC ,交1B C 于O ,连DO .在三棱柱111ABC A B C -中,四边形11BB C C 为平行四边形,则1BO OC =,又D 是11A C 中点,∴1DO A B ∥,而DO ⊂平面1B CD ,1A B ⊄平面1B CD ,∴1A B ∥平面1B CD . ……………4分(Ⅱ)设点C 到平面111A B C 的距离是h ,则1111123==33C B CD B C D V S h h -△,而14h CC =≤,故当三棱锥11C B C D -体积最大时,1=4h CC =,即1CC ⊥平面111A B C . ……………6分 由(Ⅰ)知:1BO OC =,所以B 到平面1B CD 的距离与1C 到平面1B CD 的距离相等. ∵1CC ⊥平面111A B C ,1B D ⊂平面111A B C ,∴11CC B D ⊥, ∵ABC △是等边三角形,D 是11A C 中点,∴111AC B D ⊥,又1111=CC AC C ,1CC ⊂平面11AA C C ,11AC ⊂平面11AA C C ,∴1B D ⊥平面11AA C C ,∴1B D CD ⊥,由计算得:1=23,25B D CD =,所以1=215B CD S ∆, ……………9分设1C 到平面1B CD 的距离为h ',由1111=C B C D C B CD V V --得:1231454=3B CD S h h ''⨯⇒=△,所以B 到平面1B CD 的距离是45.……………12分 (其他方法相应给分)20.(Ⅰ)由分析知:点P 在圆内且不为圆心,故2322PA PM AM +=>=, 所以P 点的轨迹为以A 、M 为焦点的椭圆, ……………2分设椭圆方程为()222210x y a b a b +=>>,则22332222a a c c ⎧⎧==⎪⎪⎨⎨=⎪⎪⎩⎩, 所以21b =,故曲线W 的方程为22 1.3x y +=……………5分(Ⅱ)设111122(,)(0),(,)C x y x y E x y ≠,则11(,)D x y --,则直线CD 的斜率为11CD y k x =,又CE CD ⊥,所以直线CE 的斜率是11CE x k y =-,记11xk y -=,设直线CE 的方程为y kx m =+,由题意知0,0k m ≠≠,由2213y kx mx y =+⎧⎪⎨+=⎪⎩得:()222136330k xmkx m +++-=.∴122613mk x x k +=-+,∴121222()213my y k x x m k +=++=+,由题意知,12x x ≠,所以1211121133y y y k x x k x +==-=+,……………9分所以直线DE 的方程为1111()3y y y x x x +=+,令0y =,得12x x =,即1(2,0)F x . 可得121y k x =-.……………11分 所以1213k k =-,即121=.3k k -……………12分 (其他方法相应给分)21.(Ⅰ)函数()f x 的定义域是()0+∞,,()1ax f x x-'=, 当a ≤0时,()0f x '≤,所以()f x 在()0+∞,上为减函数, ……………2分 当a >0时,令()0f x '=,则1x a =,当10x a ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,()f x 为减函数, 当1+x a ⎛⎫∈∞ ⎪⎝⎭,时,()0f x '>,()f x 为增函数, ……………4分 ∴当a ≤0时,()f x 在()0+∞,上为减函数;当a >0时,()f x 在10a ⎛⎫⎪⎝⎭,上为减函数,在1+a ⎛⎫∞ ⎪⎝⎭,上为增函数.……………5分 (Ⅱ)当2a =时,()2ln 4f x x x =--,由(Ⅰ)知:()f x 在1+2⎛⎫∞ ⎪⎝⎭,上为增函数,而[]1,,2m n ⎡⎫⊆+∞⎪⎢⎣⎭,∴()f x 在[],m n 上为增函数,结合()f x 在[],m n 上的值域是,11kk m n ⎡⎤⎢⎥++⎣⎦知:()(),11k k f m f n m n ==++,其中12m n <≤, 则()1k f x x =+在1,2⎡⎫+∞⎪⎢⎣⎭上至少有两个不同的实数根, ……………7分 由()1kf x x =+得()2=221ln 4k x x x x --+-,记()()2=221ln 4x x x x x ϕ--+-,1,2x ⎡⎫∈+∞⎪⎢⎣⎭,则()1=4ln 3x x x x ϕ'---,记()()1=4ln 3F x x x x xϕ'=---,则()()2222213410x x x x F x x x -+-+'==>, ∴()F x 在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,即()x ϕ'在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,而()1=0ϕ',∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'<,当()1,x ∈+∞时,()0x ϕ'>,∴()x ϕ在1,12⎛⎫⎪⎝⎭上为减函数,在()1,+∞上为增函数, ……………10分而13ln 2922ϕ-⎛⎫= ⎪⎝⎭,()1=4ϕ-,当x →+∞时,()x ϕ→+∞,故结合图像得:()13ln 291422k k ϕϕ-⎛⎫<⇒-< ⎪⎝⎭≤≤,∴k 的取值范围是3ln 294,.2-⎛⎤- ⎥⎝⎦……………12分 (其他方法相应给分)22.(Ⅰ)连结,.AD OD 则AD BC ⊥,又AB AC =,∴D 为BC 的中点, ……………2分 而O 为AB 中点,∴OD AC ∥,又DF AC ⊥,∴OD DF ⊥, 而OD 是半径,∴DF 是O ⊙的切线.……………5分(Ⅱ)连DE ,则CED B C ∠=∠=∠,则DCF DEF △△≌,∴CF FE =,…………7分 设CF FE x ==,则229DF x =-,由切割线定理得:2DF FE FA =⋅,即279+5x x x ⎛⎫-= ⎪⎝⎭,解得:1295=52x x =-,(舍),∴ 5.AB AC ==……………10分(其他方法相应给分)23.(Ⅰ)点2,4π⎛⎫ ⎪⎝⎭对应的直角坐标为()1,1, ……………1分由曲线1C 的参数方程知:曲线1C 是过点()1,3-的直线,故曲线1C 的方程为20x y +-=,……………2分而曲线2C 的直角坐标方程为22220x y x y +--=,联立得2222020x y x y x y ⎧+--=⎨+-=⎩,解得:12122002x x y y ==⎧⎧⎨⎨==⎩⎩,,故交点坐标分别为()()2,0,0,2.……………5分 (Ⅱ)由判断知:P 在直线1C 上,将1+cos 3sin x t y t αα=-⎧⎨=+⎩代入方程22220x y x y +--=得:()24cos sin 60t t αα--+=,设点,B D 对应的参数分别为12,t t ,则12,PB t PD t ==,而126t t =,所以1212==6.PB PD t t t t ⋅=⋅……………10分(其他方法相应给分)24.(Ⅰ)131x x x <-⎧⎨--⎩≥,或11311x x x -⎧⎨--⎩≤≤≥,或131x x x >⎧⎨-+-⎩≥,解得:02x ≤≤故不等式的解集为[]02,; ……………5分 (Ⅱ)()3,131,113,1x x f x x x x x -<-⎧⎪=--⎨⎪-+>⎩ ≤≤,显然当1x =时,()f x 有大值,()1 2.m f ==∴2a b c ++=, ……………7分 而()(()2222222222=b c a a b c a b c a b c a bc a b c ⎡⎤⎛⎫⎡⎤++++++++++⎢⎥ ⎪⎢⎥⎣⎦⎢⎥⎝⎭⎣⎦≥ ∴2222b c a a b c a b c ++++=≥,当且仅当==2a b c b c a ab c a b c ⎧⎪⎪⎪++=⎩,即23a b c ===时取等号,故222b c a a b c++的最小值是2.……………10分 (其他方法相应给分)高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

高考数学模拟题复习试卷普通高等学校招生全国统一考试(III卷)理科数学

高考数学模拟题复习试卷普通高等学校招生全国统一考试(III卷)理科数学

高考数学模拟题复习试卷普通高等学校招生全国统一考试(III 卷)理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合}0|{}0)3)(2(|{>=≥--=x x T x x x S ,,则S ∩T =A. [2,3]B. ),3[]2,(+∞-∞C. ),3[+∞D. ),3[]2,0(+∞2. =-+=1i 4i 21z z z ,则若 A. 1 B. 1 C. i D. i3. 已知向量)21,23()23,21(==BC BA ,,则∠ABC = A. 30°B. 45°C. 60°D. 120°4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约15℃,B 点表示四月的平均最低气温约为5℃。

下面叙述不正确的是A. 各月的平均最低气温都在0℃以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20℃的月份有5个5. =+=ααα2sin 2cos 43tan 2,则若 A. 2564 B. 2548 C. 1 D. 2516 6. 已知3152342542===c b a ,,,则A. b < a < cB. a < b < cC. b < c < aD. c < a < b7. 执行右面的程序框图,如果输入的a = 4,b = 6,那么输出的n =A. 3B. 4C. 5D. 68. 在△ABC 中,4π=B ,BC 边上的高等于31BC ,则sinA = A. 103B. 1010 C.55D. 10103 9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. 53618+B. 51854+C. 90D. 8110. 在封闭的直三棱柱ABCA1B1C1内有一个体积为V 的球,若AB ⊥BC ,AB = 6,BC = 8,AA1 = 3,则V 的最大值是A. π4B. 29π C. π6 D. 332π 11. 已知O 为坐标原点,F 是椭圆C :)1(12222>>=+b a by a x 的左焦点,A 、B 分别为C 的左、右顶点。

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)一、选择题(共30题,每题2分,共60分)1. 已知函数 $ f(x) = x^2 4x + 3 $,则下列哪个选项是正确的?A. $ f(x) $ 在 $ x = 2 $ 处取得最小值B. $ f(x) $ 在 $ x = 2 $ 处取得最大值C. $ f(x) $ 在 $ x = 2 $ 处取得极值D. $ f(x) $ 在 $ x = 2 $ 处无极值2. 若 $ \log_2 8 = x $,则 $ x $ 的值为多少?A. 3B. 4C. 5D. 63. 已知等差数列 $ \{a_n\} $,若 $ a_1 = 3 $,$ a_3 = 9 $,则 $ a_5 $ 的值为多少?A. 12B. 15C. 18D. 214. 若 $ \sin^2 x + \cos^2 x = 1 $,则下列哪个选项是正确的?A. $ \sin x $ 和 $ \cos x $ 必须同时为正B. $ \sin x $ 和 $ \cos x $ 必须同时为负C. $ \sin x $ 和 $ \cos x $ 一正一负D. $ \sin x $ 和 $ \cos x $ 可以同时为零5. 若 $ \frac{a}{b} = \frac{c}{d} $,则下列哪个选项是正确的?A. $ a + c = b + d $B. $ ad = bc $C. $ a c = b d $D. $ \frac{a}{c} = \frac{b}{d} $6. 已知 $ a $、$ b $、$ c $ 是等边三角形的三边长,则下列哪个选项是正确的?A. $ a^2 + b^2 = c^2 $B. $ a^2 + c^2 = b^2 $C. $ b^2 + c^2 = a^2 $D. $ a = b = c $7. 若 $ \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 $,则下列哪个选项是正确的?A. 该方程表示椭圆B. 该方程表示双曲线C. 该方程表示抛物线D. 该方程表示圆8. 已知 $ \sqrt{3} $ 是方程 $ x^2 2x + 1 = 0 $ 的根,则该方程的另一根为多少?A. $ 1 \sqrt{3} $B. $ 1 + \sqrt{3} $C. $ 2 \sqrt{3} $D. $ 2 + \sqrt{3} $9. 若 $ a $、$ b $、$ c $ 是三角形的三边长,且 $ a^2 +b^2 = c^2 $,则下列哪个选项是正确的?A. 该三角形是等腰三角形B. 该三角形是等边三角形C. 该三角形是直角三角形D. 该三角形是钝角三角形10. 若 $ \frac{1}{x} + \frac{1}{y} = \frac{1}{z} $,则下列哪个选项是正确的?A. $ x + y = z $B. $ xy = z $C. $ \frac{1}{x} + \frac{1}{y} = z $D. $ x + y + z = 0 $二、填空题(共10题,每题2分,共20分)11. 已知 $ f(x) = 2x + 1 $,若 $ f(3) = 7 $,则 $ f(1)$ 的值为______。

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)试卷一:基础能力测试一、选择题(每题5分,共50分)1. 若函数 $ f(x) = \sqrt{3x 1} $ 在区间 $[0, 2]$ 上有定义,则 $ x $ 的取值范围是:A. $[0, 1]$B. $[0, 2]$C. $[1, 2]$D. $[1, 3]$2. 已知集合 $ A = \{x | x^2 3x + 2 = 0\} $,则集合 $ A $ 的元素个数是:A. 1B. 2C. 3D. 43. 若 $ a, b $ 是方程 $ x^2 4x + 3 = 0 $ 的两个根,则$ a + b $ 的值是:A. 1B. 2C. 3D. 44. 已知函数 $ f(x) = 2x^3 3x^2 + x $,则 $ f'(1) $ 的值是:A. 2B. 3C. 4D. 55. 若 $ \log_2 8 = x $,则 $ x $ 的值是:A. 2B. 3C. 4D. 56. 已知等差数列 $ \{a_n\} $ 的首项 $ a_1 = 2 $,公差 $ d = 3 $,则第10项 $ a_{10} $ 的值是:A. 29B. 30C. 31D. 327. 若 $ \sin 45^\circ = x $,则 $ x $ 的值是:A. $ \frac{\sqrt{2}}{2} $B. $ \frac{\sqrt{3}}{2} $C. $ \frac{1}{2} $D. $ \frac{1}{\sqrt{2}} $8. 已知函数 $ f(x) = \frac{1}{x} $,则 $ f^{1}(x) $ 的表达式是:A. $ x $B. $ \frac{1}{x} $C. $ x $D. $ \frac{1}{x} $9. 若 $ a^2 = b^2 $,则 $ a $ 和 $ b $ 的关系是:A. $ a = b $B. $ a = b $C. $ a = b $ 或 $ a = b $D. $ a $ 和 $ b $ 无关10. 已知等比数列 $ \{a_n\} $ 的首项 $ a_1 = 1 $,公比 $ q = 2 $,则第5项 $ a_5 $ 的值是:A. 8B. 16C. 32D. 64二、填空题(每题5分,共20分)1. 若 $ x^2 5x + 6 = 0 $,则 $ x $ 的值是 ________。

高中高考数学模拟试卷试题含答案.docx

高中高考数学模拟试卷试题含答案.docx
若a1+a2+⋯+an-1=29-n,自然数n等于.
16.有以下几个命 :
①曲x2-(y+1)2=1按a=(-1,2)平移可得曲
(x+1)2-(y+3)2=1
②与直相交,所得弦2
③A、B两个定点,m常数,, 点P的 迹
④若 的左、右焦点分F1、F2,P是 上的任意一点, 点F2关于∠F1PF2的外角平分 的 称点M的 迹是
B.向右平移个单位
C.向左平移个单位
D.向右平移个单位
5.如图,是一程序框图,则输出结果中()
.
精品文档
A.B.
C.D.
6.平面的一个充分不必要条件是()
A.存在一条直B.存在一个平面
C.存在一个平面D.存在一条直
7.已知以F1(-2,0),F2(2,0) 焦点的 与直有且 有一个交点, 的
()
A.B.C.D.
在答题卡上把所选题目对应的题号涂黑.
22.(本小题满分10分)
[几何证明选讲]如图,E是圆内两弦AB和CD的交点, 直线EF//CB,交AD的延长线于F,FG切圆于G,求证:
(1)∽;
(2)EF=FG.
23.[选修4-4:坐标系与参数方程]
已知曲线C:(t为参数),C:(为参数).
(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;
8.O是平面上一定点,A、B、C是平面上不共 的三个点, 点P足
,p的 迹一定通 △ABC的 ( )
A.外心B.重心C.内心D.垂心
9. {an}是等差数列,从{a1,a2,a3,⋯,a20}中任取3个不同的数,使3个数仍成等差数列, 不同的等差数列最多有 ( )
A.90个B.120个C.180个D.200个

高考数学模拟题复习试卷习题资料高考数学试卷文科附详细答案156

高考数学模拟题复习试卷习题资料高考数学试卷文科附详细答案156

高考数学模拟题复习试卷习题资料高考数学试卷(文科)(附详细答案)(15)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)在等差数列{an}中,a1=2,a3+a5=10,则a7=()A.5B.8C.10D.142.(5分)实部为﹣2,虚部为1的复数所对应的点位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100B.150C.200D.2504.(5分)下列函数为偶函数的是()A.f(x)=x﹣1B.f(x)=x2+xC.f(x)=2x﹣2﹣xD.f(x)=2x+2﹣x5.(5分)执行如图所示的程序框图,则输出s的值为()A.10B.17C.19D.366.(5分)已知命题:p:对任意x∈R,总有|x|≥0,q:x=1是方程x+2=0的根;则下列命题为真命题的是()A.p∧¬qB.¬p∧qC.¬p∧¬qD.p∧q7.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.12B.18C.24D.308.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得(|PF1|﹣|PF2|)2=b2﹣3ab,则该双曲线的离心率为()A. B. C.4 D.9.(5分)若log4(3a+4b)=log2,则a+b的最小值是()A.6+2B.7+2C.6+4D.7+410.(5分)已知函数f(x)=,且g(x)=f(x)﹣mx﹣m 在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围是()A.(﹣,﹣2]∪(0,]B.(﹣,﹣2]∪(0,]C.(﹣,﹣2]∪(0,]D.(﹣,﹣2]∪(0,]二、填空题:本大题共5小题,每小题5分,把答案填写在答题卡相应的位置上.11.(5分)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=.12.(5分)已知向量与的夹角为60°,且=(﹣2,﹣6),||=,则•=.13.(5分)将函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sinx的图象,则f ()=.14.(5分)已知直线x﹣y+a=0与圆心为C的圆x2+y2+2x﹣4y﹣4=0相交于A、B两点,且AC⊥BC,则实数a的值为.15.(5分)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为(用数字作答).三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(13分)已知{an}是首项为1,公差为2的等差数列,Sn表示{an}的前n项和.(Ⅰ)求an及Sn;(Ⅱ)设{bn}是首项为2的等比数列,公比为q满足q2﹣(a4+1)q+S4=0.求{bn}的通项公式及其前n项和Tn.17.(13分)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:(Ⅰ)求频率分布直方图中a的值;(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.18.(13分)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.19.(12分)已知函数f(x)=+﹣lnx﹣,其中a∈R,且曲线y=f(x)在点(1,f (1))处的切线垂直于直线y=x.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间与极值.20.(12分)如图,四棱锥P﹣ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=.(Ⅰ)证明:BC⊥平面POM;(Ⅱ)若MP⊥AP,求四棱锥P﹣ABMO的体积.21.(12分)如图,设椭圆+=1(a>b>0)的左右焦点分别为F1,F2,点D在椭圆上,DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.高考模拟题复习试卷习题资料高考数学试卷(文科)(附详细答案)(15)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)在等差数列{an}中,a1=2,a3+a5=10,则a7=()A.5B.8C.10D.14【分析】由题意可得a4=5,进而可得公差d=1,可得a7=a1+6d,代值计算即可.【解答】解:∵在等差数列{an}中a1=2,a3+a5=10,∴2a4=a3+a5=10,解得a4=5,∴公差d==1,∴a7=a1+6d=2+6=8故选:B.【点评】本题考查等差数列的通项公式,属基础题.2.(5分)实部为﹣2,虚部为1的复数所对应的点位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数的几何意义,即可得到结论.【解答】解:实部为﹣2,虚部为1的复数所对应的点的坐标为(﹣2,1),位于第二象限,故选:B.【点评】本题主要考查复数的几何意义,比较基础.3.(5分)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100B.150C.200D.250【分析】计算分层抽样的抽取比例和总体个数,利用样本容量=总体个数×抽取比例计算n 值.【解答】解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,∴样本容量n=5000×=100.故选:A.【点评】本题考查了分层抽样方法,熟练掌握分层抽样方法的特征是关键.4.(5分)下列函数为偶函数的是()A.f(x)=x﹣1B.f(x)=x2+xC.f(x)=2x﹣2﹣xD.f(x)=2x+2﹣x【分析】根据偶函数的定义,依次分析选项,先分析函数的定义域,再分析f(﹣x)=f (x)是否成立,即可得答案.【解答】解:根据题意,依次分析选项:A、f(x)=x﹣1,其定义域为R,f(﹣x)=﹣x﹣1,f(﹣x)≠f(x),不是偶函数,不符合题意;B、f(x)=x2+x,其定义域为R,f(﹣x)=x2﹣x,f(﹣x)≠f(x),不是偶函数,不符合题意;C、f(x)=2x﹣2﹣x,其定义域为R,f(﹣x)=2﹣x﹣2x,f(﹣x)=﹣f(x),是奇函数不是偶函数,不符合题意;D、f(x)=2x+2﹣x,其定义域为R,f(﹣x)=2﹣x+2x,f(﹣x)=f(x),是偶函数,符合题意;故选:D.【点评】本题考查函数奇偶性的判断,注意要先分析函数的定义域.5.(5分)执行如图所示的程序框图,则输出s的值为()A.10B.17C.19D.36【分析】根据框图的流程模拟运行程序,直到不满足条件k<10,跳出循环体,计算输出S 的值.【解答】解:由程序框图知:第一次循环S=2,k=2×2﹣1=3;第二次循环S=2+3=5,k=2×3﹣1=5;第三次循环S=5+5=10,k=2×5﹣1=9;第四次循环S=10+9=19,k=2×9﹣1=17,不满足条件k<10,跳出循环体,输出S=19.故选:C.【点评】本题考查了当型循环结构程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.6.(5分)已知命题:p:对任意x∈R,总有|x|≥0,q:x=1是方程x+2=0的根;则下列命题为真命题的是()A.p∧¬qB.¬p∧qC.¬p∧¬qD.p∧q【分析】判定命题p,q的真假,利用复合命题的真假关系即可得到结论.【解答】解:根据绝对值的性质可知,对任意x∈R,总有|x|≥0成立,即p为真命题,当x=1时,x+2=3≠0,即x=1不是方程x+2=0的根,即q为假命题,则p∧¬q,为真命题,故选:A.【点评】本题主要考查复合命题的真假关系的应用,先判定p,q的真假是解决本题的关键,比较基础.7.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.12B.18C.24D.30【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断三棱柱的高及消去的三棱锥的高,判断三棱锥与三棱柱的底面三角形的形状及相关几何量的数据,把数据代入棱柱与棱锥的体积公式计算.【解答】解:由三视图知:几何体是三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∴几何体的体积V=×3×4×5﹣××3×4×3=30﹣6=24.故选:C.【点评】本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得(|PF1|﹣|PF2|)2=b2﹣3ab,则该双曲线的离心率为()A. B. C.4 D.【分析】根据(|PF1|﹣|PF2|)2=b2﹣3ab,由双曲线的定义可得(2a)2=b2﹣3ab,求得a=,c==b,即可求出双曲线的离心率.【解答】解:∵(|PF1|﹣|PF2|)2=b2﹣3ab,∴由双曲线的定义可得(2a)2=b2﹣3ab,∴4a2+3ab﹣b2=0,∴a=,∴c==b,∴e==.故选:D.【点评】本题主要考查了双曲线的简单性质,考查学生的计算能力,属于基础题.9.(5分)若log4(3a+4b)=log2,则a+b的最小值是()A.6+2B.7+2C.6+4D.7+4【分析】利用对数的运算法则可得>0,a>4,再利用基本不等式即可得出【解答】解:∵3a+4b>0,ab>0,∴a>0.b>0∵log4(3a+4b)=log2,∴log4(3a+4b)=log4(ab)∴3a+4b=ab,a≠4,a>0.b>0∴>0,∴a>4,则a+b=a+=a+=a+3+=(a﹣4)++7+7=4+7,当且仅当a=4+2取等号.故选:D.【点评】本题考查了对数的运算法则、基本不等式的性质,属于中档题.10.(5分)已知函数f(x)=,且g(x)=f(x)﹣mx﹣m 在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围是()A.(﹣,﹣2]∪(0,]B.(﹣,﹣2]∪(0,]C.(﹣,﹣2]∪(0,]D.(﹣,﹣2]∪(0,]【分析】由g(x)=f(x)﹣mx﹣m=0,即f(x)=m(x+1),作出两个函数的图象,利用数形结合即可得到结论.【解答】解:由g(x)=f(x)﹣mx﹣m=0,即f(x)=m(x+1),分别作出函数f(x)和y=h(x)=m(x+1)的图象如图:由图象可知f(1)=1,h(x)表示过定点A(﹣1,0)的直线,当h(x)过(1,1)时,m=此时两个函数有两个交点,此时满足条件的m的取值范围是0<m≤,当h(x)过(0,﹣2)时,h(0)=﹣2,解得m=﹣2,此时两个函数有两个交点,当h(x)与f(x)相切时,两个函数只有一个交点,此时,即m(x+1)2+3(x+1)﹣1=0,当m=0时,x=,只有1解,当m≠0,由△=9+4m=0得m=﹣,此时直线和f(x)相切,∴要使函数有两个零点,则﹣<m≤﹣2或0<m≤,故选:A.【点评】本题主要考查函数零点的应用,利用数形结合是解决此类问题的基本方法.二、填空题:本大题共5小题,每小题5分,把答案填写在答题卡相应的位置上.11.(5分)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B={3,5,13}. 【分析】根据题意,分析集合A、B的公共元素,由交集的意义即可得答案.【解答】解:根据题意,集合A={3,4,5,12,13},B={2,3,5,8,13},A、B公共元素为3、5、13,则A∩B={3,5,13},故答案为:{3,5,13}.【点评】本题考查集合交集的运算,注意写出集合的形式.12.(5分)已知向量与的夹角为60°,且=(﹣2,﹣6),||=,则•=10. 【分析】利用向量的模、夹角形式的数量积公式,求出即可【解答】解:∵=(﹣2,﹣6),∴,∴=2=10.故答案为:10.【点评】本题考查了向量的数量积公式,属于基础题.13.(5分)将函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sinx的图象,则f ()=.【分析】由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得sin(2ωx+φ﹣ω)=sinx,可得2ω=1,且φ﹣ω=2kπ,k∈z,由此求得ω、φ的值,可得f(x)的解析式,从而求得f()的值.【解答】解:函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,可得函数y=sin(2ωx+φ)的图象.再把所得图象再向右平移个单位长度得到函数y=sin[2ω(x﹣)+φ)]=sin(2ωx+φ﹣ω)=sinx的图象,∴2ω=1,且φ﹣ω=2kπ,k∈Z,∴ω=,φ=+2kπ,∴f(x)=sin(x+),∴f()=sin(+)=sin=.故答案为:.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于中档题.14.(5分)已知直线x﹣y+a=0与圆心为C的圆x2+y2+2x﹣4y﹣4=0相交于A、B两点,且AC⊥BC,则实数a的值为0或6.【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论. 【解答】解:圆的标准方程为(x+1)2+(y﹣2)2=9,圆心C(﹣1,2),半径r=3,∵AC⊥BC,∴圆心C到直线AB的距离d=,即d==,即|a﹣3|=3,解得a=0或a=6,故答案为:0或6.【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.15.(5分)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为(用数字作答).【分析】设小张到校的时间为x,小王到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|30≤x≤50,30≤y≤50}是一个矩形区域,则小张比小王至少早5分钟到校事件A={(x,y)|y﹣x≥5}作出符合题意的图象,由图根据几何概率模型的规则求解即可.【解答】解:设小张到校的时间为x,小王到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|30≤x≤50,30≤y≤50}是一个矩形区域,对应的面积S=20×20=400,则小张比小王至少早5分钟到校事件A={x|y﹣x≥5}作出符合题意的图象,则符合题意的区域为△ABC,联立得C(45,50),联立得B(30,35),则S△ABC=×15×15,由几何概率模型可知小张比小王至少早5分钟到校的概率为=,故答案为:.【点评】本题考查几何概率模型与模拟方法估计概率,求解的关键是掌握两种求概率的方法的定义及规则,求出对应区域的面积是解决本题的关键.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(13分)已知{an}是首项为1,公差为2的等差数列,Sn表示{an}的前n项和.(Ⅰ)求an及Sn;(Ⅱ)设{bn}是首项为2的等比数列,公比为q满足q2﹣(a4+1)q+S4=0.求{bn}的通项公式及其前n项和Tn.【分析】(Ⅰ)直接由等差数列的通项公式及前n项和公式得答案;(Ⅱ)求出a4和S4,代入q2﹣(a4+1)q+S4=0求出等比数列的公比,然后直接由等比数列的通项公式及前n项和公式得答案.【解答】解:(Ⅰ)∵{an}是首项为1,公差为2的等差数列,∴an=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.;(Ⅱ)由(Ⅰ)得,a4=7,S4=16.∵q2﹣(a4+1)q+S4=0,即q2﹣8q+16=0,∴(q﹣4)2=0,即q=4.又∵{bn}是首项为2的等比数列,∴..【点评】本题考查等差数列的性质,考查了等差数列和等比数列的通项公式、前n项和公式的求法,是基础题.17.(13分)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:(Ⅰ)求频率分布直方图中a的值;(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.【分析】(Ⅰ)根据频率分布直方图求出a的值;(Ⅱ)由图可知,成绩在[50,60)和[60,70)的频率分别为0.1和0.15,用样本容量20乘以对应的频率,即得对应区间内的人数,从而求出所求.(Ⅲ)分别列出满足[50,70)的基本事件,再找到在[60,70)的事件个数,根据古典概率公式计算即可.【解答】解:(Ⅰ)根据直方图知组距=10,由(2a+3a+6a+7a+2a)×10=1,解得a=0.005. (Ⅱ)成绩落在[50,60)中的学生人数为2×0.005×10×20=2,成绩落在[60,70)中的学生人数为3×0.005×10×20=3.(Ⅲ)记成绩落在[50,60)中的2人为A,B,成绩落在[60,70)中的3人为C,D,E,则成绩在[50,70)的学生任选2人的基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10个,其中2人的成绩都在[60,70)中的基本事件有CD,CE,DE共3个,故所求概率为P=.【点评】本题考查频率分布直方图的应用以及古典概型的概率的应用,属于中档题.18.(13分)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.【分析】(Ⅰ)由a+b+c=8,根据a=2,b=求出c的长,利用余弦定理表示出cosC,将三边长代入求出cosC的值即可;(Ⅱ)已知等式左边利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式及诱导公式变形,再利用正弦定理得到a+b=3c,与a+b+c=8联立求出a+b的值,利用三角形的面积公式列出关系式,代入S=sinC求出ab的值,联立即可求出a与b的值. 【解答】解:(Ⅰ)∵a=2,b=,且a+b+c=8,∴c=8﹣(a+b)=,∴由余弦定理得:cosC===﹣;(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA•+sinB•=2sinC,整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,∵sinAcosB+cosAsinB=sin(A+B)=sinC,∴sinA+sinB=3sinC,利用正弦定理化简得:a+b=3c,∵a+b+c=8,∴a+b=6①,∵S=absinC=sinC,∴ab=9②,联立①②解得:a=b=3.【点评】此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.19.(12分)已知函数f(x)=+﹣lnx﹣,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间与极值.【分析】(Ⅰ)由曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x可得f′(1)=﹣2,可求出a的值;(Ⅱ)根据(I)可得函数的解析式和导函数的解析式,分析导函数的符号,进而可得函数f(x)的单调区间与极值.【解答】解:(Ⅰ)∵f(x)=+﹣lnx﹣,∴f′(x)=﹣﹣,∵曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.∴f′(1)=﹣a﹣1=﹣2,解得:a=.(Ⅱ)由(Ⅰ)知:f(x)=+﹣lnx﹣,f′(x)=﹣﹣=(x>0),令f′(x)=0,解得x=5,或x=﹣1(舍),∵当x∈(0,5)时,f′(x)<0,当x∈(5,+∞)时,f′(x)>0,故函数f(x)的单调递增区间为(5,+∞);单调递减区间为(0,5);当x=5时,函数取极小值﹣ln5.【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,利用导数研究函数的极值,是导数的综合应用,难度中档.21.(12分)如图,设椭圆+=1(a>b>0)的左右焦点分别为F1,F2,点D在椭圆上,DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.【分析】(Ⅰ)设F1(﹣c,0),F2(c,0),依题意,可求得c=1,易求得|DF1|==,|DF2|=,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,得x1=﹣或x1=0,分类讨论即可求得圆心及半径,从而可得圆的方程.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0),其中c2=a2﹣b2,由=2,得|DF1|==c,从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2,得=+=,因此|DF2|=,所以2a=|DF1|+|DF2|=2,故a=,b2=a2﹣c2=1,因此,所求椭圆的标准方程为+y2=1;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,由圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由(Ⅰ)知F1(﹣1,0),F2(1,0),所以=(x1+1,y1),=(﹣x1﹣1,y1),再由F1P1⊥F2P2,得﹣+=0,由椭圆方程得1﹣=,即3+4x1=0,解得x1=﹣或x1=0.当x1=0时,P1,P2重合,此时题设要求的圆不存在;当x1=﹣时,过P1,P2,分别与F1P1,F2P2垂直的直线的交点即为圆心C,设C(0,y0)由F1P1,F2P2是圆C的切线,知CP1⊥F1P1,得•=﹣1,而|y1|=|x1+1|=,故y0=,故圆C的半径|CP1|==.综上,存在满足题设条件的圆,其方程为x2+=.【点评】本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于难题.20.(12分)如图,四棱锥P﹣ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=.(Ⅰ)证明:BC⊥平面POM;(Ⅱ)若MP⊥AP,求四棱锥P﹣ABMO的体积.【分析】(Ⅰ)连接OB,根据底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=,结合菱形的性质,余弦定理,勾股定理,可得OM⊥BC及PO⊥BC,进而由线面垂直的判定定理得到BC⊥平面POM;(Ⅱ)设PO=a,利用勾股定理和余弦定理解三角形求出PO的值,及四棱锥P﹣ABMO的底面积S,代入棱锥体积公式,可得答案.【解答】证明:(Ⅰ)∵底面是以O为中心的菱形,PO⊥底面ABCD,故O为底面ABCD的中心,连接OB,则AO⊥OB,∵AB=2,∠BAD=,∴OB=AB•sin∠BAO=2sin()=1,又∵BM=,∠OBM=,∴在△OBM中,OM2=OB2+BM2﹣2OB•BM•cos∠OBM=,即OB2=OM2+BM2,即OM⊥BM,∴OM⊥BC,又∵PO⊥底面ABCD,BC⊂底面ABCD,∴PO⊥BC,又∵OM∩PO=O,OM,PO⊂平面POM,∴BC⊥平面POM;(Ⅱ)由(Ⅰ)可得:OA=AB•cos∠BAO=2cos()=,设PO=a,由PO⊥底面ABCD可得:△POA为直角三角形,故PA2=PO2+OA2=a2+3,由△POM也为直角三角形得:PM2=PO2+OM2=a2+,连接AM,在△ABM中,AM2=AB2+BM2﹣2AB•BM•cos∠ABM==,由MP⊥AP可知:△APM为直角三角形,则AM2=PA2+PM2,即a2+3+a2+=,解得a=,即PO=,此时四棱锥P﹣ABMO的底面积S=S△AOB+S△BOM=•AO•OB+•BM•OM=,∴四棱锥P﹣ABMO的体积V=S•PO=【点评】本题考查的知识点是棱锥的体积,直线与平面垂直的判定,难度中档.高考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1} C.{x|0≤x≤1}D.{x|0<x<1}2.(5分)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A.2+3i B.2﹣3i C.3+2i D.3﹣2i3.(5分)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a4.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α5.(5分)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A.p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)6.(5分)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.247.(5分)某几何体三视图如图所示,则该几何体的体积为()A.8﹣2πB.8﹣πC.8﹣D.8﹣8.(5分)设等差数列{an}的公差为d,若数列{}为递减数列,则()A.d<0 B.d>0 C.a1d<0 D.a1d>09.(5分)将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,]上单调递减C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增10.(5分)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A.B.C.D.11.(5分)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A.[﹣5,﹣3] B.[﹣6,﹣] C.[﹣6,﹣2] D.[﹣4,﹣3]12.(5分)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为()A.B.C.D.二、填空题:本大题共4小题,每小题5分。

高三数学高考模拟试题及答案

高三数学高考模拟试题及答案

高三数学高考模拟试题及答案第一部分选择题1. 已知函数 $f(x) = \dfrac{x^2 - 4}{x - 2}$,则 $f(x)$ 的极限为()A. $\dfrac{1}{2}$B. $-2$C. $+\infty$D. $-\infty$2. 如图,对数函数 $y=\log_{\frac{1}{2}}(x-1)$ 的图像经过两点 $P(4,3)$,$Q(8,y)$。

则 $y=$()A. 3B. 5C. 6D. 73. 在 $\triangle ABC$ 中,$AB=3$,$BC=\dfrac{5}{2}$,$\angle C=90^\circ$,$D$ 为 $BC$ 的中点,$E$ 为 $AC$ 上一点,$BE$ 延长线交 $AD$ 于点 $F$。

则 $EF=$()A. $\dfrac{5}{3}$B. $\dfrac{25}{24}$C. $\dfrac{7}{4}$D. $\dfrac{17}{8}$4. 已知函数 $f(x)=\dfrac{2\sin x+\cos x}{\sin x-2\cos x}$,则$f\left(\dfrac{\pi}{2}+x\right)=$()A. $1+f(x)$B. $1-f(x)$C. $f(x)-1$D. $-1-f(x)$5. 已知 $x>2$,$\log_2{(2x-3)}+\log_2{(x+1)}=4$,则 $x=$()A. 3B. 5C. 7D. 9答案:1. D2. B3. B4. A5. C第二部分简答题1. 证明 $x+y\geqslant 2\sqrt{xy}$ 为二次函数 $y=\left(x-\dfrac{y}{2}\right)^2-\dfrac{y^2}{4}$ 的非负性。

2. 已知 $a^2+b^2=1$,求 $\dfrac{5a+12b}{13}$ 的最大值。

3. 在动态规划中,解决问题的一般步骤是什么?4. 概率统计中,什么是贝叶斯公式?其应用场景有哪些?5. 对于某个事件的先验概率为 $p(A)$,我们观测到了该事件发生,且得到了一个新的条件概率,那么它的后验概率为什么?答案:1. 将二次函数化为顶点式 $y=\left(x-\dfrac{y}{2}\right)^2-\dfrac{y^2}{4}$,则$y\geqslant 0$。

高考模拟复习试卷试题模拟卷高三数学高三第二次段考数学理试卷

高考模拟复习试卷试题模拟卷高三数学高三第二次段考数学理试卷

高考模拟复习试卷试题模拟卷高三数学高三第二次段考数学(理)试卷一、选择题:1.已知集合{}{}|1,|21x M x x N x =<=>,则M N = DA .∅B .{}|0x x <C .{}|1x x <D .{}|01x x <<2. “2a =” 是“函数()f x x a =-在区间[2,)+∞上为增函数”的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3. 若b a b a ,,0,0>>的等差中项是21,且bb a a 1,1+=+=βα,则βα+的最小值为( D )A .2B .3C .4D .54. ABC ∆的三个内角C B A ,,的对边分别为c b a ,,,已知sin 1B =,向量p ()a b =,,q (12)=,. 若q p //,则C ∠角的大小为 B A.6πB.3π C.2π D.32π 5. 若函数)(2sin sin 22sin )(2R x x x x x f ∈⋅-=,则)(x f 是 D A.最小正周期为π的偶函数 B. 最小正周期为π的奇函数C. 最小正周期为π2的偶函数D. 最小正周期为2π的奇函数 6.已知数列{}n a 为等差数列,且π=++1581a a a ,则)cos(124a a +的值为A A .21-B23 C .21 D .23±7.设函数)0(1)6sin()(>-+=ωπωx x f 的导函数)(x f '的最大值为3,则)(x f 的图象的一条对称轴的方程是( A ) A .9π=xB .6π=xC .3π=xD .2π=x8.已知等比数列{}n a 的公比0q <,其前n 项的和为n S ,则98a S 与89a S 的大小关系是( A)A .9889a S a S >B .9889a S a S <C .9889a S a S ≥D .9889a S a S ≤9. 若定义在R 上的偶函数()x f 满足()()x f x f =+2,且当[]1,0∈x 时,(),x x f =,则函数()xx f y 3log -=的零点个数是BA .6个B .4个C .2个D .8个 10. 已知P N M ,,是单位圆上互不相同的三个点,PN PM =,则PM ⋅的最小值是( B )A .41-B .21-C .43-D .1-【答案】B11. 定义在0,2π⎛⎫⎪⎝⎭上的函数()f x ,其导函数)(x f '在0,2π⎛⎫⎪⎝⎭上总使得()'()tan f x f x x <⋅成立,则下列 各式中一定成立的是A .363f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ B .363f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ C .363f fππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ D .363f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】D.12.已知等差数列{}n a 的前n 项和为n S ,向量),(n S n n =,),(1m S m m =,),(2kS k OP k= ,且 21OP OP OP μλ+=,已知*∈N k n m ,,且互不相等,则用k n m ,,表示=μ( C ).A. m k n k --=μB. k n m n --=μC. m k m n --=μD. nk mk --=μ【答案】C二、填空题:13. 如果复数)2)(1(i ai ++的实部和虚部相等,则实数a 等于.31 14.设,0,()ln ,0,x e x f x x x ⎧≤=⎨>⎩则1(())3f f =31.15.将函数)0)(3sin(2)(>+=ωπωx x f 的图象向右平移3πω个单位,得到函数()y g x =的图象,若()y g x =在[0,]4π上为增函数,则ω的最大值为.【答案】216. 设ABC ∆的内角,,A B C 所对的边,,a b c 成等比数列,则sin sin BA的取值范围是. 【答案】5151(,)-+ 【解析】试题分析:由条件得2b ac =,不妨设a b c ≤≤,则2b c a b a =<+,即2210b b a a --<,511b a +≤<;同理得当a b c ≥≥时,2b b c b a a +=+>,2210b b a a +->511ba-<≤.而sin sin B b A a =,∴sin sin B A 的取值范围是5151(-+.三、解答题:17.(本小题满分12分)已知函数2()21(),()()f x x ax a f x f x '=++∈R 是的导函数. (I )解关于x 的不等式()()f x f x '>;(II )若[2,1]x ∈--,不等式()()f x f x '≤恒成立,求a 的取值范围. 【解析】(I )①当0a =时,原不等式的解集是(,1)(1,)-∞⋃+∞; ②当0a >时,原不等式的解集是(,12)(1,)a -∞-⋃+∞;③当0a <时,原不等式的解集是(,1)(12,)a -∞⋃-+∞; 6分(II )因为()()f x f x '≤,所以2212(1)x x a x -+-≤,又因为21x --≤≤,所以2212(1)x x a x -+-≥在[2,1]x ∈--时恒成立,因为221132(1)22x x x x -+-=-≤,所以32a ≥. 12分18.(本小题满分12分)已知角C B A ,,为ABC ∆的三个内角,其对边分别为c b a ,,,若)2sin ,2cos(A A -=m , )2sin ,2(cos A A =n ,32=a ,且21=⋅n m .(I )若ABC ∆的面积3=S ,求c b +的值; (II )求c b +的取值范围.【解析】(I ))2sin ,2cos (A A m -=,)2sin ,2(cos A A n =,且21=⋅n m .212sin 2cos 22=+-∴A A ,即21cos =-A ,又),0(π∈A ,32π=∴A 又由3sin 21=⋅=∆A bc S ABC ,4=∴bc由余弦定理得:bc c b bc c b a ++=⋅-+=2222232cos 2π2)(16c b +=∴,故4=+c b 6分(II )由正弦定理得:432sin 32sin sin sin ====πA a C c B b ,又3ππ=-=+A C B ,)3sin(4)3sin(4sin 4sin 4sin 4ππ+=-+=+=+∴B B B C B c b30π<<B ,则3233πππ<+<B .则1)3sin(23≤+<πB , 即c b +的取值范围是].4,32( 12分19. (本小题满分10分)已知数列{an}的前n 项和为Sn ,且满足Sn +n =2an(n ∈N*). (I)求数列{an}的通项公式;(II)若bn =(2n +1)an +2n +1,数列{bn}的前n 项和为Tn ,求满足不等式Tn -22n -1>2 016的n 的最小值.【解析】(I )21nn a =-; 6分(II )10. 12分20. (本小题满分12分)已知函数)(ln 2)(),()(R b x xbx g R a ax x f ∈+=∈=,)()()(x g x f x G -=,且(1)0G =,()G x 在 1x =的切线斜率为0。

高考模拟复习试卷试题模拟卷高三数学高考数学试卷理科

高考模拟复习试卷试题模拟卷高三数学高考数学试卷理科

高考模拟复习试卷试题模拟卷高三数学高考数学试卷(理科)一、填空题(本大题共有14题,满分48分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.(4分)若复数z满足3z+=1+i,其中i是虚数单位,则z=.2.(4分)设全集U=R.若集合Α={1,2,3,4},Β={x|2≤x≤3},则Α∩∁UΒ=.3.(4分)若线性方程组的增广矩阵为解为,则c1﹣c2=.4.(4分)若正三棱柱的所有棱长均为a,且其体积为16,则a=.5.(4分)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=.6.(4分)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.7.(4分)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为.8.(4分)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).9.已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q的轨迹分别为双曲线C1和C2.若C1的渐近线方程为y=±x,则C2的渐近线方程为.10.(4分)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,则y=f(x)+f﹣1(x)的最大值为.11.(4分)在(1+x+)10的展开式中,x2项的系数为(结果用数值表示).12.(4分)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则Eξ1﹣Eξ2=(元).13.(4分)已知函数f(x)=sinx.若存在x1,x2,…,xm满足0≤x1<x2<…<xm≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xm﹣1)﹣f(xm)|=12(m≥2,m∈N*),则m的最小值为.14.在锐角三角形 A BC中,tanA=,D为边 BC上的点,△A BD与△ACD的面积分别为2和4.过D作D E⊥A B于 E,DF⊥AC于F,则•=.二、选择题(本大题共有4题,满分15分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)设z1,z2∈C,则“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.(5分)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为()A.B.C.D.17.记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根18.(5分)设Pn(xn,yn)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()A.﹣1 B.﹣C.1 D.2三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分别是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE所成的角的大小.20.(14分)如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是AB,速度为5千米/小时,乙的路线是ACB,速度为8千米/小时.乙到达B地后原地等待.设t=t1时乙到达C地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t1≤t≤1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?说明理由.21.(14分)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到的平行四边形ACBD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣,求面积S的值.22.(16分)已知数列{an}与{bn}满足an+1﹣an=2(bn+1﹣bn),n∈N*.(1)若bn=3n+5,且a1=1,求数列{an}的通项公式;(2)设{an}的第n0项是最大项,即a≥an(n∈N*),求证:数列{bn}的第n0项是最大项;(3)设a1=λ<0,bn=λn(n∈N*),求λ的取值范围,使得{an}有最大值M与最小值m,且∈(﹣2,2).23.(18分)对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f(x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.(1)验证g(x)=x+sin是以6π为周期的余弦周期函数;(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充要条件是“u0+T为方程cosf (x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).上海市高考数学试卷(理科)参考答案与试题解析一、填空题(本大题共有14题,满分48分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.(4分)若复数z满足3z+=1+i,其中i是虚数单位,则z=.【分析】设z=a+bi,则=a﹣bi(a,b∈R),利用复数的运算法则、复数相等即可得出.【解答】解:设z=a+bi,则=a﹣bi(a,b∈R),又3z+=1+i,∴3(a+bi)+(a﹣bi)=1+i,化为4a+2bi=1+i,∴4a=1,2b=1,解得a=,b=.∴z=.故答案为:.【点评】本题考查了复数的运算法则、复数相等,属于基础题.2.(4分)设全集U=R.若集合Α={1,2,3,4},Β={x|2≤x≤3},则Α∩∁UΒ={1,4}.【分析】本题考查集合的运算,由于两个集合已经化简,故直接运算得出答案即可.【解答】解:∵全集U=R,集合Α={1,2,3,4},Β={x|2≤x≤3},∴(∁UB)={x|x>3或x<2},∴A∩(∁UB)={1,4},故答案为:{1,4}.【点评】本题考查集合的交、并、补的混合运算,熟练掌握集合的交并补的运算规则是解本题的关键.本题考查了推理判断的能力.3.(4分)若线性方程组的增广矩阵为解为,则c1﹣c2=16.【分析】根据增广矩阵的定义得到,是方程组的解,解方程组即可.【解答】解:由题意知,是方程组的解,即,则c1﹣c2=21﹣5=16,故答案为:16.【点评】本题主要考查增广矩阵的求解,根据条件建立方程组关系是解决本题的关键.4.(4分)若正三棱柱的所有棱长均为a,且其体积为16,则a=4.【分析】由题意可得(•a•a•sin60°)•a=16,由此求得a的值.【解答】解:由题意可得,正棱柱的底面是变长等于a的等边三角形,面积为•a•a•sin60°,正棱柱的高为a,∴(•a•a•sin60°)•a=16,∴a=4,故答案为:4.【点评】本题主要考查正棱柱的定义以及体积公式,属于基础题.5.(4分)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=2.【分析】利用抛物线的顶点到焦点的距离最小,即可得出结论.【解答】解:因为抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,所以=1,所以p=2.故答案为:2.【点评】本题考查抛物线的方程与性质,考查学生的计算能力,比较基础.6.(4分)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.【分析】设圆锥的底面半径为r,高为h,母线长为l,由已知中圆锥的侧面积与过轴的截面面积之比为2π,可得l=2h,进而可得其母线与轴的夹角的余弦值,进而得到答案.【解答】解:设圆锥的底面半径为r,高为h,母线长为l,则圆锥的侧面积为:πrl,过轴的截面面积为:rh,∵圆锥的侧面积与过轴的截面面积之比为2π,∴l=2h,设母线与轴的夹角为θ,则cosθ==,故θ=,故答案为:.【点评】本题考查的知识点是旋转体,其中根据已知求出圆锥的母线与轴的夹角的余弦值,是解答的关键.7.(4分)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为2.【分析】利用对数的运算性质化为指数类型方程,解出并验证即可.【解答】解:∵log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2,∴log2(9x﹣1﹣5)=log2[4×(3x ﹣1﹣2)],∴9x﹣1﹣5=4(3x﹣1﹣2),化为(3x)2﹣12•3x+27=0,因式分解为:(3x﹣3)(3x﹣9)=0,∴3x=3,3x=9,解得x=1或2.经过验证:x=1不满足条件,舍去.∴x=2.故答案为:2.【点评】本题考查了对数的运算性质及指数运算性质及其方程的解法,考查了计算能力,属于基础题.8.(4分)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为120(结果用数值表示).【分析】根据题意,运用排除法分析,先在9名老师中选取5人,参加义务献血,由组合数公式可得其选法数目,再排除其中只有女教师的情况;即可得答案.【解答】解:根据题意,报名的有3名男老师和6名女教师,共9名老师,在9名老师中选取5人,参加义务献血,有C95=126种;其中只有女教师的有C65=6种情况;则男、女教师都有的选取方式的种数为126﹣6=120种;故答案为:120.【点评】本题考查排列、组合的运用,本题适宜用排除法(间接法),可以避免分类讨论,简化计算.9.已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q的轨迹分别为双曲线C1和C2.若C1的渐近线方程为y=±x,则C2的渐近线方程为.【分析】设C1的方程为y2﹣3x2=λ,利用坐标间的关系,求出Q的轨迹方程,即可求出C2的渐近线方程.【解答】解:设C1的方程为y2﹣3x2=λ,设Q(x,y),则P(x,2y),代入y2﹣3x2=λ,可得4y2﹣3x2=λ,∴C2的渐近线方程为4y2﹣3x2=0,即.故答案为:.【点评】本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.10.(4分)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,则y=f(x)+f﹣1(x)的最大值为4.【分析】由f(x)=2x﹣2+在x∈[0,2]上为增函数可得其值域,得到y=f﹣1(x)在[]上为增函数,由函数的单调性求得y=f(x)+f﹣1(x)的最大值.【解答】解:由f(x)=2x﹣2+在x∈[0,2]上为增函数,得其值域为[],可得y=f﹣1(x)在[]上为增函数,因此y=f(x)+f﹣1(x)在[]上为增函数,∴y=f(x)+f﹣1(x)的最大值为f(2)+f﹣1(2)=1+1+2=4.故答案为:4.【点评】本题考查了互为反函数的两个函数图象间的关系,考查了函数的单调性,属中档题.11.(4分)在(1+x+)10的展开式中,x2项的系数为45(结果用数值表示).【分析】先把原式前两项结合展开,分析可知仅有展开后的第一项含有x2项,然后写出第一项二项展开式的通项,由x的指数为2求得r值,则答案可求.【解答】解:∵(1+x+)10 =,∴仅在第一部分中出现x2项的系数.再由,令r=2,可得,x2项的系数为.故答案为:45.【点评】本题考查了二项式系数的性质,关键是对二项展开式通项的记忆与运用,是基础题.12.(4分)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则Eξ1﹣Eξ2=0.2(元).【分析】分别求出赌金的分布列和奖金的分布列,计算出对应的均值,即可得到结论.【解答】解:赌金的分布列为ξ1 1 2 3 4 5P所以Eξ1=(1+2+3+4+5)=3,奖金的分布列为:若两张卡片上数字之差的绝对值为1,则有(1,2),(2,3),(3,4),(4,5),4种,若两张卡片上数字之差的绝对值为2,则有(1,3),(2,4),(3,5),3种,若两张卡片上数字之差的绝对值为3,则有(1,4),(2,5),2种,若两张卡片上数字之差的绝对值为4,则有(1,5),1种,则P(ξ2=1.4)==,P(ξ2=2.8)==,P(ξ2=4.2)==,P(ξ2=5.6)==ξ2 1.4 2.8 4.2 5.6P所以Eξ2=1.4×(×1+×2+×3+×4)=2.8,则Eξ1﹣Eξ2=3﹣2.8=0.2元.故答案为:0.2【点评】本题主要考查离散型随机变量的分布列和期望的计算,根据概率的公式分别进行计算是解决本题的关键.13.(4分)已知函数f(x)=sinx.若存在x1,x2,…,xm满足0≤x1<x2<…<xm≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xm﹣1)﹣f(xm)|=12(m≥2,m∈N*),则m的最小值为8.【分析】由正弦函数的有界性可得,对任意xi,xj(i,j=1,2,3,…,m),都有|f(xi)﹣f(xj)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让xi(i=1,2,3,…,m)取得最高点,然后作图可得满足条件的最小m值.【解答】解:∵y=sinx对任意xi,xj(i,j=1,2,3,…,m),都有|f(xi)﹣f(xj)|≤f (x)max﹣f(x)min=2,要使m取得最小值,尽可能多让xi(i=1,2,3,…,m)取得最高点,考虑0≤x1<x2<…<xm≤6π,|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xm﹣1)﹣f (xm)|=12,按下图取值即可满足条件,∴m的最小值为8.故答案为:8.【点评】本题考查正弦函数的图象和性质,考查分析问题和解决问题的能力,考查数学转化思想方法,正确理解对任意xi,xj(i,j=1,2,3,…,m),都有|f(xi)﹣f(xj)|≤f (x)max﹣f(x)min=2是解答该题的关键,是难题.14.在锐角三角形 A BC中,tanA=,D为边 BC上的点,△A BD与△ACD的面积分别为2和4.过D作D E⊥A B于 E,DF⊥AC于F,则•=﹣.【分析】由题意画出图形,结合面积求出cosA=,,然后代入数量积公式得答案.【解答】解:如图,∵△ABD与△ACD的面积分别为2和4,∴,,可得,,∴.又tanA=,∴,联立sin2A+cos2A=1,得,cosA=.由,得.则.∴•==.故答案为:.【点评】本题考查平面向量的数量积运算,考查了数形结合的解题思想方法,考查了三角函数的化简与求值,是中档题.二、选择题(本大题共有4题,满分15分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)设z1,z2∈C,则“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】根据充分条件和必要条件的定义结合复数的有关概念进行判断即可.【解答】解:设z1=1+i,z2=i,满足z1、z2中至少有一个数是虚数,则z1﹣z2=1是实数,则z1﹣z2是虚数不成立,若z1、z2都是实数,则z1﹣z2一定不是虚数,因此当z1﹣z2是虚数时,则z1、z2中至少有一个数是虚数,即必要性成立,故“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据复数的有关概念进行判断是解决本题的关键.16.(5分)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为()A.B.C.D.【分析】根据三角函数的定义,求出∠xOA的三角函数值,利用两角和差的正弦公式进行求解即可.【解答】解:∵点 A的坐标为(4,1),∴设∠xOA=θ,则sinθ==,cosθ==,将OA绕坐标原点O逆时针旋转至OB,则OB的倾斜角为θ+,则|OB|=|OA|=,则点B的纵坐标为y=|OB|sin(θ+)=7(sinθcos+cosθsin)=7(×+)=+6=,故选:D.【点评】本题主要考查三角函数值的计算,根据三角函数的定义以及两角和差的正弦公式是解决本题的关键.17.记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根【分析】根据方程根与判别式△之间的关系求出a12≥4,a22<8,结合a1,a2,a3成等比数列求出方程③的判别式△的取值即可得到结论.【解答】解:当方程①有实根,且②无实根时,△1=a12﹣4≥0,△2=a22﹣8<0,即a12≥4,a22<8,∵a1,a2,a3成等比数列,∴a22=a1a3,即a3=,则a32=()2=,即方程③的判别式△3=a32﹣16<0,此时方程③无实根,故选:B.【点评】本题主要考查方程根存在性与判别式△之间的关系,结合等比数列的定义和性质判断判别式△的取值关系是解决本题的关键.18.(5分)设Pn(xn,yn)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()A.﹣1 B.﹣C.1 D.2【分析】当n→+∞时,直线2x﹣y=趋近于2x﹣y=1,与圆x2+y2=2在第一象限的交点无限靠近(1,1),利用圆的切线的斜率、斜率计算公式即可得出.【解答】解:当n→+∞时,直线2x﹣y=趋近于2x﹣y=1,与圆x2+y2=2在第一象限的交点无限靠近(1,1),而可看作点Pn(xn,yn)与(1,1)连线的斜率,其值会无限接近圆x2+y2=2在点(1,1)处的切线的斜率,其斜率为﹣1.∴=﹣1.故选:A.【点评】本题考查了极限思想、圆的切线的斜率、斜率计算公式,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分别是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE所成的角的大小.【分析】利用长方体的几何关系建立直角坐标系.利用向量方法求空间角.【解答】解:连接AC,因为E,F分别是AB,BC的中点,所以EF是△ABC的中位线,所以EF∥AC.由长方体的性质知AC∥A1C1,所以EF∥A1C1,所以A1、C1、F、E四点共面.以D为坐标原点,DA、DC、DD1分别为x、y、z轴,建立空间直角坐标系,易求得,设平面A1C1EF的法向量为则,所以,即,z=1,得x=1,y=1,所以,所以=,所以直线CD1与平面A1C1FE所成的角的大小arcsin.【点评】本题主要考查利用空间直角坐标系求出空间角的方法,属高考常考题型.20.(14分)如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是AB,速度为5千米/小时,乙的路线是ACB,速度为8千米/小时.乙到达B地后原地等待.设t=t1时乙到达C地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t1≤t≤1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?说明理由.【分析】(1)由题意可得t1==h,由余弦定理可得f(t1)=PC=,代值计算可得;(2)当t1≤t≤时,由已知数据和余弦定理可得f(t)=PQ=,当<t≤1时,f(t)=PB=5﹣5t,综合可得当<t≤1时,f(t)∈[0,],可得结论.【解答】解:(1)由题意可得t1==h,设此时甲运动到点P,则AP=v甲t1=5×=千米,∴f(t1)=PC===千米;(2)当t1≤t≤时,乙在CB上的Q点,设甲在P点,∴QB=AC+CB﹣8t=7﹣8t,PB=AB﹣AP=5﹣5t,∴f(t)=PQ===,当<t≤1时,乙在B点不动,设此时甲在点P,∴f(t)=PB=AB﹣AP=5﹣5t∴f(t)=∴当<t≤1时,f(t)∈[0,],故f(t)的最大值没有超过3千米.【点评】本题考查解三角形的实际应用,涉及余弦定理和分段函数,属中档题.21.(14分)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到的平行四边形ACBD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣,求面积S的值.【分析】(1)依题意,直线l1的方程为y=x,利用点到直线间的距离公式可求得点C 到直线l1的距离d=,再利用|AB|=2|AO|=2,可证得S=|AB|d=2|x1y2﹣x2y1|;当l1与l2时的斜率之一不存在时,同理可知结论成立;(2)方法一:设直线l1的斜率为k,则直线l2的斜率为﹣,可得直线l1与l2的方程,联立方程组,可求得x1、x2、y1、y2,继而可求得答案.方法二:设直线l1、l2的斜率分别为、,则=﹣,利用A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,可求得面积S的值.【解答】解:(1)依题意,直线l1的方程为y=x,由点到直线间的距离公式得:点C 到直线l1的距离d==,因为|AB|=2|AO|=2,所以S=|AB|d=2|x1y2﹣x2y1|;当l1与l2时的斜率之一不存在时,同理可知结论成立;(2)方法一:设直线l1的斜率为k,则直线l2的斜率为﹣,设直线l1的方程为y=kx,联立方程组,消去y解得x=±,根据对称性,设x1=,则y1=,同理可得x2=,y2=,所以S=2|x1y2﹣x2y1|=.方法二:设直线l1、l2的斜率分别为、,则=﹣,所以x1x2=﹣2y1y2,∴=4=﹣2x1x2y1y2,∵A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,∴()()=+4+2(+)=1,即﹣4x1x2y1y2+2(+)=1,所以(x1y2﹣x2y1)2=,即|x1y2﹣x2y1|=,所以S=2|x1y2﹣x2y1|=.【点评】本题考查直线与圆锥曲线的综合应用,考查方程思想、等价转化思想与综合运算能力,属于难题.22.(16分)已知数列{an}与{bn}满足an+1﹣an=2(bn+1﹣bn),n∈N*.(1)若bn=3n+5,且a1=1,求数列{an}的通项公式;(2)设{an}的第n0项是最大项,即a≥an(n∈N*),求证:数列{bn}的第n0项是最大项;(3)设a1=λ<0,bn=λn(n∈N*),求λ的取值范围,使得{an}有最大值M与最小值m,且∈(﹣2,2).【分析】(1)把bn=3n+5代入已知递推式可得an+1﹣an=6,由此得到{an}是等差数列,则an可求;(2)由an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1,结合递推式累加得到an=2bn+a1﹣2b1,求得,进一步得到得答案;(3)由(2)可得,然后分﹣1<λ<0,λ=﹣1,λ<﹣1三种情况求得an的最大值M和最小值m,再由∈(﹣2,2)列式求得λ的范围.【解答】(1)解:∵an+1﹣an=2(bn+1﹣bn),bn=3n+5,∴an+1﹣an=2(bn+1﹣bn)=2(3n+8﹣3n﹣5)=6,∴{an}是等差数列,首项为a1=1,公差为6,则an=1+(n﹣1)×6=6n﹣5;(2)∵an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2(bn﹣bn﹣1)+2(bn﹣1﹣bn﹣2)+…+2(b2﹣b1)+a1=2bn+a1﹣2b1,∴,∴.∴数列{bn}的第n0项是最大项;(3)由(2)可得,①当﹣1<λ<0时,单调递减,有最大值;单调递增,有最小值m=a1=λ,∴∈(﹣2,2),∴λ∈,∴.②当λ=﹣1时,a2n=3,a2n﹣1=﹣1,∴M=3,m=﹣1,(﹣2,2),不满足条件.③当λ<﹣1时,当n→+∞时,a2n→+∞,无最大值;当n→+∞时,a2n﹣1→﹣∞,无最小值.综上所述,λ∈(﹣,0)时满足条件.【点评】本题考查了数列递推式,考查了等差关系的确定,考查了数列的函数特性,训练了累加法求数列的通项公式,对(3)的求解运用了极限思想方法,是中档题.23.(18分)对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f(x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.(1)验证g(x)=x+sin是以6π为周期的余弦周期函数;(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充要条件是“u0+T为方程cosf (x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).【分析】(1)根据余弦函数的周期定义,判断cosg(x+6π)是否等于cosg(x)即可;(2)根据f(x)的值域为R,便可得到存在x0,使得f(x0)=c,而根据f(x)在R上单调递增即可说明x0∈[a,b],从而完成证明;(3)只需证明u0+T为方程cosf(x)=1在区间[T,2T]上的解得出u0为方程cosf(x)=1在[0,T]上的解,是否为方程的解,带入方程,使方程成立便是方程的解.证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T),可讨论x=0,x=T,x∈(0,T)三种情况:x=0时是显然成立的;x=T时,可得出cosf(2T)=1,从而得到f(2T)=2k1π,k1∈Z,根据f (x)单调递增便能得到k1>2,然后根据f(x)的单调性及方程cosf(x)=1在[T,2T]和它在[0,T]上解的个数的情况说明k1=3,和k1≥5是不存在的,而k1=4时结论成立,这便说明x=T时结论成立;而对于x∈(0,T)时,通过考查cosf(x)=c的解得到f(x+T)=f (x)+f(T),综合以上的三种情况,最后得出结论即可.【解答】解:(1)g(x)=x+sin;∴==cosg(x)∴g(x)是以6π为周期的余弦周期函数;(2)∵f(x)的值域为R;∴存在x0,使f(x0)=c;又c∈[f(a),f(b)];∴f(a)≤f(x0)≤f(b),而f(x)为增函数;∴a≤x0≤b;即存在x0∈[a,b],使f(x0)=c;(3)证明:若u0+T为方程cosf(x)=1在区间[T,2T]上的解;则:cosf(u0+T)=1,T≤u0+T≤2T;∴cosf(u0)=1,且0≤u0≤T;∴u0为方程cosf(x)=1在[0,T]上的解;∴“u0为方程cosf(x)=1在[0,T]上得解”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”;下面证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T):①当x=0时,f(0)=0,∴显然成立;②当x=T时,cosf(2T)=cosf(T)=1;∴f(2T)=2k1π,(k1∈Z),f(T)=4π,且2k1π>4π,∴k1>2;1)若k1=3,f(2T)=6π,由(2)知存在x0∈(0,T),使f(x0)=2π;cosf(x0+T)=cosf(x0)=1⇒f(x0+T)=2k2π,k2∈Z;∴f(T)<f(x0+T)<f(2T);∴4π<2k2π<6π;∴2<k2<3,无解;2)若k1≥5,f(2T)≥10π,则存在T<x1<x2<2T,使得f(x1)=6π,f(x2)=8π;则T,x1,x2,2T为cosf(x)=1在[T,2T]上的4个解;但方程cosf(x)=1在[0,2T]上只有f(x)=0,2π,4π,3个解,矛盾;3)当k1=4时,f(2T)=8π=f(T)+f(T),结论成立;③当x∈(0,T)时,f(x)∈(0,4π),考查方程cosf(x)=c在(0,T)上的解;设其解为f(x1),f(x2),…,f(xn),(x1<x2<…<xn);则f(x1+T),f(x2+T),…,f(xn+T)为方程cosf(x)=c在(T,2T)上的解;又f(x+T)∈(4π,8π);而f(x1)+4π,f(x2)+4π,…,f(xn)+4π∈(4π,8π)为方程cosf(x)=c在(T,2T)上的解;∴f(xi+T)=f(xi)+4π=f(xi)+f(T);∴综上对任意x∈[0,T],都有f(x+T)=f(x)+f(T).【点评】考查对余弦周期函数定义的理解,充分条件的概念,方程的解的概念,知道由cosf(x)=1能得出f(x)=2kx,k∈Z,以及构造方程解题的方法,在证明最后一问时能运用第二问的结论.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.102.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.36.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.28.(5分)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]9.(5分)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)复数=.12.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=.13.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.17.(12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.18.(12分)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.19.(12分)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.20.(13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.21.(14分)已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.10【分析】利用二项展开式的通项公式求出(1+x)6的第r+1项,令x的指数为2求出展开式中x2的系数.然后求解即可.【解答】解:(1+x)6展开式中通项Tr+1=C6rxr,令r=2可得,T3=C62x2=15x2,∴(1+x)6展开式中x2项的系数为15,在x(1+x)6的展开式中,含x3项的系数为:15.故选:C.【点评】本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.2.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}【分析】计算集合A中x的取值范围,再由交集的概念,计算可得.【解答】解:A={x|﹣1≤x≤2},B=Z,∴A∩B={﹣1,0,1,2}.故选:A.【点评】本题属于容易题,集合知识是高中部分的基础知识,也是基础工具,高考中涉及到对集合的基本考查题,一般都比较容易,且会在选择题的前几题,考生只要够细心,一般都能拿到分.3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度【分析】根据 y=sin(2x+1)=sin2(x+),利用函数y=Asin(ωx+φ)的图象变换规律,得。

高考数学模拟复习试卷试题模拟卷1566

高考数学模拟复习试卷试题模拟卷1566

高考模拟复习试卷试题模拟卷【考情解读】1.理解空间直线、平面位置关系的定义,并了解有关的可以作为推理依据的公理和定理;2.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.【重点知识梳理】1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.空间中两直线的位置关系(1)位置关系的分类⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a′∥a ,b′∥b ,把a′与b′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2. (3)平行公理和等角定理①平行公理:平行于同一条直线的两条直线互相平行.②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.(2)平面与平面的位置关系有平行、相交两种情况.【高频考点突破】考点一 平面基本性质的应用【例1】 (1)以下四个命题中,正确命题的个数是()①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面;③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面;④依次首尾相接的四条线段必共面.A.0 B.1C.2 D.3(2)在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么正方体的过P,Q,R 的截面图形是()A.三角形 B.四边形C.五边形 D.六边形【变式探究】如图所示是正方体和正四面体,P,Q,R,S分别是所在棱的中点,则四个点共面的图形的序号是________.考点二空间两条直线的位置关系【例2】如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.【变式探究】 (1)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行(2)在图中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).考点三求异面直线所成的角【例3】如图,在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成角为60°.(1)求四棱锥的体积;(2)若E 是PB 的中点,求异面直线DE 与PA 所成角的余弦值.【变式探究】已知在三棱锥A -BCD 中,AB =CD ,且点M ,N 分别是BC ,AD 的中点.(1)若直线AB 与CD 所成的角为60°,则直线AB 和MN 所成的角为________.(2)若直线AB ⊥CD ,则直线AB 与MN 所成的角为________.【真题感悟】1.【高考广东,文18】(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.(1)证明:C//B 平面D P A ;(2)证明:C D B ⊥P ;(3)求点C 到平面D P A 的距离.C D B ⊥P2.【高考山东,文18】 如图,三棱台DEF ABC -中,2AB DE G H =,,分别为AC BC ,的中点.(I )求证://BD 平面FGH ;(II )若CF BC AB BC ⊥⊥,,求证:平面BCD ⊥平面EGH .1.(·辽宁卷)已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是()A .若m ∥α,n ∥α,则m ∥nB .若m ⊥α,n ⊂α,则m ⊥nC .若m ⊥α,m ⊥n ,则n ∥αD .若m ∥α,m ⊥n ,则n ⊥α2.(·福建卷)在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD.将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.图1-53.(·新课标全国卷Ⅱ)直三棱柱ABC-A1B1C1中,∠BCA =90°,M ,N 分别是A1B1,A1C1的中点,BC =CA =CC1,则BM 与AN 所成角的余弦值为()A.110B.25C.3010D.224.(·四川卷)三棱锥A - BCD 及其侧视图、俯视图如图1-4所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P 是线段BC 的中点;(2)求二面角A - NP - M 的余弦值.图1-4【押题专练】1.若空间三条直线a,b,c满足a⊥b,b⊥c,则直线a与c()A.一定平行B.一定相交C.一定是异面直线D.平行、相交、是异面直线都有可能2.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b 和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面3.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1⊥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面4.在空间四边形ABCD中,AB=CD,AD=BC,AB≠AD,M,N分别是对角线AC与BD的中点,则MN与()A.AC,BD之一垂直B.AC,BD都垂直C.AC,BD都不垂直D.AC,BD不一定垂直5.两条异面直线在同一个平面上的正投影不可能是()A.两条相交直线B.两条平行直线C.两个点D.一条直线和直线外一点6.一个正方体的展开图如图所示,A,B,C,D为原正方体的顶点,则在原来的正方体中()A.AB∥CDB.AB与CD相交C.AB⊥CDD.AB与CD所成的角为60°7.如图所示,在空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD上的点,且CFCB=CGCD=23,则()A.EF与GH平行B.EF与GH异面C.EF与GH的交点M可能在直线AC上,也可能不在直线AC上D.EF与GH的交点M一定在直线AC上8.平面α,β相交,在α,β内各取两点,这四点都不在交线上,这四点能确定________个平面.9.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.10.如图,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________.11.四棱锥P -ABCD 的所有侧棱长都为5,底面ABCD 是边长为2的正方形,则CD 与PA 所成角的余弦值为________.12.如图,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC 綉12AD ,BE 綉12FA ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?13.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为2的正方形,OA ⊥底面ABCD ,OA =2,M 为OA 的中点.(1)求四棱锥O -ABCD 的体积;(2)求异面直线OC 与MD 所成角的正切值的大小.14.如图所示,正方体ABCD -A1B1C1D1中,E ,F 分别是AB 和AA1的中点.求证:(1)E ,C ,D1,F 四点共面;(2)CE ,D1F ,DA 三线共点.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.2.根据具体函数的图象,能够用二分法求相应方程的近似解.【热点题型】题型一函数零点的判断与求解【例1】 (1)设f(x)=ex+x-4,则函数f(x)的零点位于区间()A.(-1,0) B.(0,1) C.(1,2) D.(2,3)(2)已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-3x.则函数g(x)=f(x)-x+3的零点的集合为()A.{1,3} B.{-3,-1,1,3}C.{2-7,1,3} D.{-2-7,1,3}解析(1)∵f(x)=ex+x-4,∴f′(x)=ex+1>0,∴函数f(x)在R上单调递增,对于A项,f(-1)=e-1+(-1)-4=-5+e-1<0,f(0)=-3<0,f(-1)f(0)>0,A不正确;同理可验证B,D不正确,对于C项,∵f(1)=e+1-4=e-3<0,f(2)=e2+2-4=e2-2>0,f(1)f(2)<0.故f(x)的零点位于区间(1,2).(2)当x≥0时,f(x)=x2-3x,令g(x)=x2-3x-x+3=0,得x1=3,x2=1.当x<0时,-x>0,∴f(-x)=(-x)2-3(-x),∴-f(x)=x2+3x,∴f(x)=-x2-3x.令g(x)=-x2-3x-x+3=0,得x3=-2-7,x4=-2+7>0(舍),∴函数g(x)=f(x)-x+3的零点的集合是{-2-7,1,3},故选D.答案(1)C(2)D【提分秘籍】(1)确定函数的零点所在的区间时,通常利用零点存在性定理,转化为确定区间两端点对应的函数值的符号是否相反.(2)根据函数的零点与相应方程根的关系可知,求函数的零点与求相应方程的根是等价的.对于求方程f(x)=g(x)的根,可以构造函数F(x)=f(x)-g(x),函数F(x)的零点即方程f(x)=g(x)的根.【举一反三】已知函数f(x)=⎩⎪⎨⎪⎧2x -1,x≤1,1+log2x ,x >1,则函数f(x)的零点为() A.12,0 B .-2,0 C.12 D .0解析 当x≤1时,由f(x)=2x -1=0,解得x =0;当x >1时,由f(x)=1+log2x =0,解得x =12,又因为x >1,所以此时方程无解.综上,函数f(x)的零点只有0.答案 D题型二根据函数零点的存在情况,求参数的值【例2】已知函数f(x)=-x2+2ex +m -1,g(x)=x +e2x (x >0).(1)若y =g(x)-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g(x)-f(x)=0有两个相异实根.解 (1)法一 ∵g(x)=x +e2x ≥2e2=2e ,图1等号成立的条件是x =e ,故g(x)的值域是[2e ,+∞),因而只需m≥2e ,则y =g(x)-m 就有零点.法二 作出g(x)=x +e2x (x >0)的大致图象如图1.可知若使y =g(x)-m 有零点,则只需m≥2e.(2)若g(x)-f(x)=0有两个相异实根,即y =g(x)与y =f(x)的图象有两个不同的交点,图2在同一坐标系中,作出g(x)=x +e2x (x >0)与f(x)=-x2+2ex +m -1的大致图象如图2.∵f(x)=-x2+2ex +m -1=-(x -e)2+m -1+e2.∴其图象的对称轴为x =e ,开口向下,最大值为m -1+e2.故当m -1+e2>2e ,即m >-e2+2e +1时,y =g(x)与y =f(x)有两个交点,即g(x)-f(x)=0有两个相异实根.∴m 的取值范围是(-e2+2e +1,+∞).【提分秘籍】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.【举一反三】(1)函数f(x)=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是()A .(1,3)B .(1,2)C .(0,3)D .(0,2)(2)已知函数f(x)=⎩⎪⎨⎪⎧|2x -1|,x <2,3x -1,x≥2,若方程f(x)-a =0有三个不同的实数根,则实数a 的取值范围是() A .(1,3) B .(0,3)C .(0,2)D .(0,1)答案 (1)C(2)D题型三与二次函数有关的零点问题【例3】是否存在这样的实数a ,使函数f(x)=x2+(3a -2)x +a -1在区间[-1,3]上恒有一个零点,且只有一个零点?若存在,求出a 的取值范围;若不存在,说明理由.(2)当f(3)=0时,a =-15, 此时f(x)=x2-135x -65. 令f(x)=0,即x2-135x -65=0, 解得x =-25或x =3.方程在[-1,3]上有两个实数根, 不合题意,故a≠-15.综上所述,a 的取值范围是⎝⎛⎭⎫-∞,-15∪(1,+∞).【提分秘籍】解决与二次函数有关的零点问题:(1)可利用一元二次方程的求根公式;(2)可用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图象列不等式组.【举一反三】已知f(x)=x2+(a2-1)x +(a -2)的一个零点比1大,一个零点比1小,求实数a 的取值范围. 解 法一 设方程x2+(a2-1)x +(a -2)=0的两根分别为x1,x2(x1<x2),则(x1-1)(x2-1)<0, ∴x1x2-(x1+x2)+1<0, 由根与系数的关系, 得(a -2)+(a2-1)+1<0, 即a2+a -2<0,∴-2<a <1.法二 函数图象大致如图,则有f(1)<0,即1+(a2-1)+a -2<0,∴-2<a <1. 故实数a 的取值范围是(-2,1). 【高考风向标】【高考安徽,文14】在平面直角坐标系xOy 中,若直线a y 2=与函数1||--=a x y 的图像只有一个交点,则a 的值为.【答案】12-【解析】在同一直角坐标系内,作出12--==a x y a y 与的大致图像,如下图:由题意,可知2112-=⇒-=a a 【高考湖北,文13】函数2π()2sin sin()2f x x x x =+-的零点个数为_________.【答案】2.【解析】函数2π()2sin sin()2f x x x x =+-的零点个数等价于方程2π2sin sin()02x x x +-=的根的个数,即函数π()2sin sin()2sinxcosx sin 2x 2g x x x =+==与2h(x)x =的图像交点个数.于是,分别画出其函数图像如下图所示,由图可知,函数()g x 与h(x)的图像有2个交点.【高考湖南,文14】若函数()|22|xf x b =--有两个零点,则实数b 的取值范围是_____. 【答案】02b <<【解析】由函数()|22|xf x b =--有两个零点,可得|22|xb -=有两个不等的根,从而可得函数|22|x y =-函数y b =的图象有两个交点,结合函数的图象可得,02b <<,故答案为:02b <<.【高考山东,文10】设函数3,1()2,1xx b x f x x -<⎧=⎨≥⎩,若5(())46f f =,则b = ( ) (A )1 (B )78 (C )34 (D)12【答案】D【解析】由题意,555()3,662f b b =⨯-=-由5(())46f f =得,51253()42b b b ⎧-<⎪⎪⎨⎪--=⎪⎩或5251224bb -⎧-≥⎪⎨⎪=⎩,解得12b =,故选D. (·北京卷)已知函数f(x)=6x -log2x ,在下列区间中,包含f(x)的零点的区间是()A .(0,1)B .(1,2)C .(2,4)D .(4,+∞) 【答案】C【解析】方法一:对于函数f(x)=6x -log2x ,因为f(2)=2>0,f(4)=-0.5<0,根据零点的存在性定理知选C.方法二:在同一坐标系中作出函数h(x)=6x 与g(x)=log2x 的大致图像,如图所示,可得f(x)的零点所在的区间为(2,4).(·浙江卷)已知函数f(x)=x3+ax2+bx +c ,且0<f(-1)=f(-2)=f(-3)≤3,则() A .c≤3 B .3<c≤6 C .6<c≤9 D .c >9 【答案】C【解析】由f(-1)=f(-2)=f(-3)得⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-8+4a -2b +c =-27+9a -3b +c ⇒⎩⎪⎨⎪⎧-7+3a -b =0,19-5a +b =0⇒⎩⎪⎨⎪⎧a =6,b =11, 则f(x)=x3+6x2+11x +c ,而0<f(-1)≤3,故0<-6+c≤3,∴6<c≤9,故选C.(·重庆卷)已知函数f(x)=⎩⎪⎨⎪⎧1x +1-3,x ∈(-1,0],x ,x ∈(0,1],且g(x)=f(x)-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是()A.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12 B.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,12C.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,23D.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,23【答案】A(·福建卷)函数f(x)=⎩⎪⎨⎪⎧x2-2,x≤0,2x -6+ln x ,x >0的零点个数是________.【答案】2【解析】当x≤0时,f(x)=x2-2, 令x2-2=0,得x =2(舍)或x =-2, 即在区间(-∞,0)上,函数只有一个零点. 当x>0时,f(x)=2x -6+ln x , 令2x -6+ln x =0,得ln x =6-2x.作出函数y =ln x 与y =6-2x 在区间(0,+∞)上的图像,则两函数图像只有一个交点,即函数f(x)=2x -6+ln x(x>0)只有一个零点. 综上可知,函数f(x)的零点的个数是2.(·湖北卷)已知f(x)是定义在R 上的奇函数,当x≥0时,f(x)=x2-3x ,则函数g(x)=f(x)-x +3的零点的集合为()A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3} 【答案】D【解析】设x<0,则-x>0,所以f(x)=-f(-x)=-[(-x)2-3(-x)]=-x2-3x . 求函数g(x)=f(x)-x +3的零点等价于求方程f(x)=-3+x 的解.当x≥0时,x2-3x =-3+x ,解得x1=3,x2=1; 当x<0时,-x2-3x =-3+x ,解得x3=-2-7.故选D.(·江苏卷)已知f(x)是定义在R 上且周期为3的函数,当x ∈[0,3)时,f(x)=⎪⎪⎪⎪x2-2x +12.若函数y =f(x)-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.【答案】.⎝⎛⎭⎫0,12(·江西卷)已知函数f(x)=⎩⎪⎨⎪⎧a·2x ,x≥0,2-x ,x<0(a ∈R).若f[f(-1)]=1,则a =() A.14 B.12 C .1 D .2 【答案】A【解析】因为f(-1)=21=2,f(2)=a·22=4a =1,所以a =14.(·浙江卷)设函数f(x)=⎩⎪⎨⎪⎧x2+2x +2,x≤0,-x2,x >0.若f(f(a))=2,则a =________.【答案】2【解析】令t =f(a),若f(t)=2,则t2+2t +2=2 满足条件,此时t =0或t =-2,所以f(a)=0或f(a)=-2,只有-a2=-2满足条件,故a = 2.(·全国卷)函数f(x)=ax3+3x 2+3x(a≠0). (1)讨论f(x)的单调性;(2)若f(x)在区间(1,2)是增函数,求a 的取值范围.【解析】解:(1)f′(x)=3ax2+6x +3,f′(x)=0的判别式Δ=36(1-a).(i)若a≥1,则f′(x)≥0,且f′(x)=0当且仅当a =1,x =-1时成立.故此时f(x)在R 上是增函数. (ii)由于a≠0,故当a <1时,f′(x)=0有两个根; x1=-1+1-a a ,x2=-1-1-a a. 若0<a <1,则当x ∈(-∞,x2)或x ∈(x1,+∞)时,f′(x)>0,故f(x)分别在(-∞,x2),(x1,+∞)是增函数;当x ∈(x2,x1)时,f′(x)<0,故f(x)在(x2,x1)是减函数.若a <0,则当x ∈(-∞,x1)或(x2,+∞)时,f′(x)<0,故f(x)分别在(-∞,x1),(x2,+∞)是减函数;当x ∈(x1,x2)时f′(x)>0,故f(x)在(x1,x2)是增函数.(2)当a >0,x >0时,f′(x)=3ax2+6x +3>0,故当a >0时,f(x)在区间(1,2)是增函数. 当a <0时,f(x)在区间(1,2)是增函数当且仅当f′(1)≥0且f′(2)≥0,解得-54≤a <0.综上,a 的取值范围是⎣⎡⎭⎫-54,0∪(0,+∞). (·天津卷)已知函数f(x)=⎩⎪⎨⎪⎧|x2+5x +4|,x≤0,2|x -2|,x >0.若函数y =f(x)-a|x|恰有4个零点,则实数a 的取值范围为________.【答案】(1,2)【解析】在同一坐标系内分别作出y =f(x)与y =a|x|的图像,如图所示,当y =a|x|与y =f(x)的图像相切时,联立⎩⎪⎨⎪⎧-ax =-x2-5x -4,a>0,整理得x2+(5-a)x +4=0,则Δ=(5-a)2-4×1×4=0,解得a=1或a =9(舍去),∴当y =a|x|与y =f(x)的图像有四个交点时,有1<a<2.【高考押题】1.函数f(x)=2x +x3-2在区间(0,2)内的零点个数是 () A .0B .1C .2D .3解析 因为函数y =2x ,y =x3在R 上均为增函数,故函数f(x)=2x +x3-2在R 上为增函数,又f(0)<0,f(2)>0,故函数f(x)=2x +x 3-2在区间(0,2)内只有一个零点,故选B.答案 B2.函数y =ln(x +1)与y =1x 的图象交点的横坐标所在区间为() A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析 函数y =ln(x +1)与y =1x 的图象交点的横坐标,即为函数f(x)=ln(x +1)-1x 的零点,∵f(x)在(0,+∞)上为增函数,且f(1)=ln 2-1<0,f(2)=ln 3-12>0,∴f(x)的零点所在区间为(1,2).答案 B3.若a <b <c ,则函数f(x)=(x -a)(x -b)+(x -b)(x -c)+(x -c)(x -a)的两个零点分别位于区间 () A .(a ,b)和(b ,c)内B .(-∞,a)和(a ,b)内C .(b ,c)和(c ,+∞)内D .(-∞,a)和(c ,+∞)内解析 依题意,注意到f(a)=(a -b)(a -c)>0,f(b)=(b -c)·(b -a)<0,f(c)=(c -b)(c -a)>0,因此由零点的存在性定理知函数f(x)的零点位于区间(a ,b)和(b ,c)内,故选A.答案 A4.若函数f(x)=3ax +1-2a 在区间(-1,1)内存在一个零点,则a 的取值范围是 ()A.⎝⎛⎭⎫15,+∞ B .(-∞,-1)∪⎝⎛⎭⎫15,+∞C.⎝⎛⎭⎫-1,15D .(-∞,-1)解析 当a =0时,f(x)=1与x 轴无交点,不合题意,所以a≠0;函数f(x)=3ax +1-2a 在区间(-1,1)内是单调函数,所以f(-1)·f(1)<0,即(5a -1)(a +1)>0,解得a <-1或a >15.答案 B5.已知函数f(x)=x +2x ,g(x)=x +ln x ,h(x)=x -x -1的零点分别为x1,x2,x3,则x1,x2,x3的大小关系是()A .x2<x1<x3B .x1<x2<x3C .x1<x3<x2D .x3<x2<x1解析 依据零点的意义,转化为函数y =x 分别和y =-2x ,y =-ln x ,y =x +1的交点的横坐标大小问题,作出草图,易得x1<0<x2<1<x3.答案 B6.函数f (x)=x -ln(x +1)-1的零点个数是________.解析 函数f(x)=x -ln(x +1)-1的零点个数,即为函数y =ln(x +1)与y =x -1图象的交点个数. 在同一坐标系内分别作出函数y =ln(x +1)与y =x -1的图象,如图,由图可知函数f(x)=x -ln(x +1)-1的零点个数是2. 答案 27.函数f(x)=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N)内,则n =________.8.已知函数f(x)=⎩⎪⎨⎪⎧2x -1,x >0,-x2-2x ,x≤0,若函数g(x)=f(x)-m 有3个零点,则实数m 的取值范围是________.解析 画出f(x)=⎩⎪⎨⎪⎧2x -1,x >0,-x2-2x ,x≤0的图象,如图.由函数g(x)=f(x)-m 有3个零点,结合图象得:0<m <1,即m ∈(0,1). 答案 (0,1)9.若关于x 的方程22x +2xa +a +1=0有实根,求实数a 的取值范围.解 法一 (换元法)设t =2x(t>0),则原方程可变为t2+at +a +1=0,(*) 原方程有实根,即方程(*)有正根. 令f(t)=t2+at +a +1.法二 (分离变量法)由方程,解得a =-22x +12x +1,设t =2x(t>0),则a =-t2+1t +1=-⎝⎛⎭⎫t +2t +1-1=2-⎣⎡⎦⎤(t +1)+2t +1,其中t +1>1,由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号,故a≤2-2 2.综上,a 的取值范围是(-∞,2-22].10.已知关于x 的二次方程x2+2mx +2m +1=0有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.解 由条件,抛物线f(x)=x2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,如图所示,得⎩⎪⎨⎪⎧ f (0)=2m +1<0,f (-1)=2>0,f (1)=4m +2<0,f (2)=6m +5>0⇒⎩⎪⎨⎪⎧m<-12,m ∈R ,m<-12,m>-56.即-56<m<-12.故m 的取值范围是⎝⎛⎭⎫-56,-12.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

高考数学模拟试卷复习试题高三教学测试一文科数学 试题卷

高考数学模拟试卷复习试题高三教学测试一文科数学 试题卷

高考数学模拟试卷复习试题高三教学测试(一)文科数学 试题卷注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答.答题前,请在答题卷的密封线内填写学校、班级、学号、姓名;2.本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,全卷满分150分,考试时间120分钟.参考公式:棱柱的体积公式Sh V =,其中S 表示棱柱的底面积,h 表示棱柱的高. 棱锥的体积公式Sh V 31=, 其中S 表示棱锥的底面积,h 表示棱锥的高. 棱台的体积公式)(312211S S S S h V ++=, 其中21,S S 分别表示棱台的上、下底面积,h 表示棱台的高. 球的表面积公式 24R S π=,其中R 表示球的半径. 球的体积公式334R V π=, 其中R 表示球的半径.第Ⅰ卷一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集=U R ,集合{}0lg ≥=x x A ,{}22≥=x x B ,则B A ⋂为 A .{}1≥x x B .⎭⎬⎫⎩⎨⎧≥21x x C .{}10≤<x x D .⎭⎬⎫⎩⎨⎧≤<210x x 2.已知命题p :若1<a ,则12<a ,下列说法正确的是 A .命题p 是真命题 B .命题p 的逆命题是真命题C .命题p 的否命题是:若1<a ,则 12≥a D .命题p 的逆否命题是:若 12≥a ,则1<a 3.函数)2sin(sin 3)(x x x f ++=π的一条对称轴是A . 6π=x B . 3π=x C . 32π=x D . 65π=x 4.设βα,是两个不同的平面,m ,n 是两条不同的直线,且α⊂m ,β⊂nA . n m ,若是异面直线,则α与β相交B . 若αβ//,//n m 则βα//C . 若n m ⊥,则βα⊥D . 若 β⊥m ,则βα⊥5.已知等差数列{}n a 公差为d ,前n 项和{}n s ,则下列描述不一定正确的是A . 若1a >0,d>0,则n 唯一确定时n s 也唯一确定B .若1a >0,d<0,则n 唯一确定时n s 也唯一确定C .若1a >0,d>0,则n s 唯一确定时n 也唯一确定D .若1a >0,d<0,则n s 唯一确定时n 也唯一确定 6.已知函数[]0,,sin )1()(≠-∈⋅-=x x x xx x f 且ππ,下列描述正确的是 A .函数)(x f 为奇函数B .函数)(x f 既无最大值也无最小值C .函数)(x f 有4个零点D .函数)(x f 在()π,0单调递增7.如图,B 、D 是以AC 为直径的圆上的两点,其中1+=t AB ,2+=t AD ,则⋅= A .1 B .2C .tD .t 28.已知双曲线)0,0(12222>>=-b a b y a x ,若焦点)0,(c F 关于渐近线x aby =的对称点在另一条渐近线x aby -=上,则双曲线的离心率为 A . 2 B . 2 C .3 D .3第Ⅱ卷二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.已知数列{}n a 满足22=a ,且数列{}n a n 23-为公比为2的等比数列,则=1a ▲ ,数列{}n a 通项公式n a = ▲ .AC(第710.函数⎪⎩⎪⎨⎧<-≥-=0,20,)1()(2x e x x x f x 则)1(-f = ▲ , 若方程m x f =)(有两个不同的实数根,则m 的取值范围为 ▲ .11.已知实数y x ,满足,32,0,0=+>>y x y x 则xyyx +3的最小值为 ▲ , xy y x ++224 的最小值为 ▲ .12.已知实数y x ,满足⎪⎩⎪⎨⎧-≥≥-+≥+-)3(0402x a y y x y x ,(1)当2=a 时,则y x +2的最小值为 ▲ ,(2)若满足上述条件的实数y x ,围成的平面区域是三角形,则实数a 的取值范围是 ▲ .13. ,,,,21n a a a 是按先后顺序排列的一列向量,若)13,2015(1-=a ,且)1,1(1=--n n a a ,则其中模最小的一个向量的序号为 ▲ .14.如图,平面ABC ⊥平面α,D 为线段AB的中点,22=AB ,︒=∠45CDB ,点P 为面α内的动点,且P 到直线CD 的距离为2,则APB ∠的最大值为 ▲ .15.边长为1的正方体1111D C B A ABCD -若将其对角线1AC 与平面α垂直,则正方体1111D C B A ABCD -在平面α上的投影面积为 ▲ .三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分14分)(第14题)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,A=2C, 且31cos =A (Ⅰ)求C cos 的值;(Ⅱ)若ABC ∆的面积为25,求B sin 及边b .17.(本小题满分15分)已知数列{}n a 的前n 项和n s ,满足)6(-=n n s n ,数列{}n b 满足)(3,312*+∈==N n b b b n n(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)记数列{}n c 满足⎩⎨⎧=为偶数,为奇数n b n a c n n n ,,求数列{}n c 的前n 项和n T .18.(本小题满分15分)已知几何体PABCD 如右图,面ABCD 为矩形,面ABCD ⊥面PAB ,且面PAB 为正三角形,若AB=2,AD=1,E 、F 分别为AC 、BP 中点, (Ⅰ)求证EF //面PCD ;(Ⅱ)求直线BP 与面PAC 所成角的正弦.ABPCDEF(第18题)19.(本小题满分15分)已知抛物线C:)0(22>=p py x ,圆E:1)1(22=++y x , 若直线L 与抛物线C 和圆E 分别相切于点A ,B (A,B 不重合) (Ⅰ)当1=p 时,求直线L 的方程;(Ⅱ)点F 是抛物线C 的焦点,若对于任意的0>p ,记△ABF 面积为S ,求1+p S 的最小值.20.(本小题满分15分)已知函数1)(2++=ax x x f ,其中0,≠∈a R a 且(Ⅰ)设)()32()(x f x x h -=,若函数)(x h y =图像与x 轴恰有两个不同的交点,试求a 的取值集合;(Ⅱ)求函数)(x f y =在[]1,0上最大值.(第19高考数学高三模拟试卷试题压轴押题重庆市高考数学试卷(文科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一个选项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0 B.对任意x∈R,使得x2<0C.存在x0∈R,都有D.不存在x∈R,使得x2<03.(5分)函数y=的定义域为()A.(﹣∞,2)B.(2,+∞)C.(2,3)∪(3,+∞)D.(2,4)∪(4,+∞)4.(5分)设P是圆(x﹣3)2+(y+1)2=4上的动点,Q是直线x=﹣3上的动点,则|PQ|的最小值为()A.6 B.4 C.3 D.25.(5分)执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.66.(5分)如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为()A.0.2 B.0.4 C.0.5 D.0.67.(5分)关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),且:x2﹣x1=15,则a=()A.B.C.D.8.(5分)某几何体的三视图如图所示,则该几何体的表面积为()A.180 B.200 C.220 D.2409.(5分)已知函数f(x)=ax3+bsinx+4(a,b∈R),f(lg(log210))=5,则f(lg (lg2))=()A.﹣5 B.﹣1 C.3 D.410.(5分)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是()A.B.C.D.二.填空题:本大题共5小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(5分)已知复数z=1+2i(i是虚数单位),则|z|=.12.(5分)若2、a、b、c、9成等差数列,则c﹣a=.13.(5分)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为.14.(5分)OA为边,OB为对角线的矩形中,,,则实数k=.15.(5分)设0≤α≤π,不等式8x2﹣(8sinα)x+cos2α≥0对x∈R恒成立,则α的取值范围为.三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(13分)设数列{an}满足:a1=1,an+1=3an,n∈N+.(Ⅰ)求{an}的通项公式及前n项和Sn;(Ⅱ)已知{bn}是等差数列,Tn为前n项和,且b1=a2,b3=a1+a2+a3,求T20.17.(13分)从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得,,,.(Ⅰ)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;(Ⅱ)判断变量x与y之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y=bx+a中,,,其中,为样本平均值,线性回归方程也可写为.18.(13分)在△ABC中,内角A、B、C的对边分别是a、b、c,且a2=b2+c2+bc.(Ⅰ)求A;(Ⅱ)设a=,S为△ABC的面积,求S+3cosBcosC的最大值,并指出此时B的值.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=2,BC=CD=2,∠ACB=∠ACD=.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.20.(12分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(Ⅰ)将V表示成r的函数V(r),并求该函数的定义域;(Ⅱ)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.21.(12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP'Q的面积S的最大值,并写出对应的圆Q的标准方程.重庆市高考数学试卷(文科)参考答案与试题解析一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一个选项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}【分析】根据A与B求出两集合的并集,由全集U,找出不属于并集的元素,即可求出所求的集合.【解答】解:∵A={1,2},B={2,3},∴A∪B={1,2,3},∵全集U={1,2,3,4},∴∁U(A∪B)={4}.故选:D.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0 B.对任意x∈R,使得x2<0C.存在x0∈R,都有D.不存在x∈R,使得x2<0【分析】根据全称命题“∀x∈M,p(x)”的否定为特称命题:“∃x0∈M,¬p(x)”即可得出.【解答】解:根据全称命题的否定是特称命题可得:命题“对任意x∈R,都有x2≥0”的否定为“∃x0∈R,使得”.故选:A.【点评】熟练掌握全称命题“∀x∈M,p(x)”的否定为特称命题“∃x0∈M,¬p(x)”是解题的关键.3.(5分)函数y=的定义域为()A.(﹣∞,2)B.(2,+∞)C.(2,3)∪(3,+∞)D.(2,4)∪(4,+∞)【分析】根据“让解析式有意义”的原则,对数的真数大于0,分母不等于0,建立不等式,解之即可.【解答】解:要使原函数有意义,则,解得:2<x<3,或x>3所以原函数的定义域为(2,3)∪(3,+∞).故选:C.【点评】本题主要考查了函数的定义域及其求法,求定义域常用的方法就是根据“让解析式有意义”的原则,属于基础题.4.(5分)设P是圆(x﹣3)2+(y+1)2=4上的动点,Q是直线x=﹣3上的动点,则|PQ|的最小值为()A.6 B.4 C.3 D.2【分析】过圆心A作AQ⊥直线x=﹣3,与圆交于点P,此时|PQ|最小,由此能求出|PQ|的最小值.【解答】解:过圆心A作AQ⊥直线x=﹣3,与圆交于点P,此时|PQ|最小,由圆的方程得到A(3,﹣1),半径r=2,则|PQ|=|AQ|﹣r=6﹣2=4.故选:B.【点评】本题考查线段的最小值的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.5.(5分)执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.6【分析】模拟执行程序框图,依次写出每次循环得到的a,k的值,当a=时满足条件a <,退出循环,输出k的值为4.【解答】解:模拟执行程序框图,可得k=0,a=3,q=a=,k=1不满足条件a<,a=,k=2不满足条件a<,a=,k=3不满足条件a<,a=,k=4满足条件a<,退出循环,输出k的值为4.故选:B.【点评】本题主要考查了循环结构的程序框图,属于基础题.6.(5分)如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为()A.0.2 B.0.4 C.0.5 D.0.6【分析】由茎叶图10个原始数据数据,数出落在区间[22,30)内的个数,由古典概型的概率公式可得答案.【解答】解:由茎叶图10个原始数据,数据落在区间[22,30)内的共有4个,包括2个22,1个27,1个29,则数据落在区间[22,30)内的概率为=0.4.故选:B.【点评】本题考查古典概型及其概率公式,涉及茎叶图的应用,属基础题.7.(5分)关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),且:x2﹣x1=15,则a=()A.B.C.D.【分析】利用不等式的解集以及韦达定理得到两根关系式,然后与已知条件化简求解a的值即可.【解答】解:因为关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),所以x1+x2=2a…①,x1•x2=﹣8a2…②,又x2﹣x1=15…③,①2﹣4×②可得(x2﹣x1)2=36a2,代入③可得,152=36a2,解得a==,因为a>0,所以a=.故选:A.【点评】本题考查二次不等式的解法,韦达定理的应用,考查计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的表面积为()A.180 B.200 C.220 D.240【分析】由三视图可知:该几何体是一个横放的直四棱柱,高为10;其底面是一个等腰梯形,上下边分别为2,8,高为4;据此可求出该几何体的表面积.【解答】解:由三视图可知:该几何体是一个横放的直四棱柱,高为10;其底面是一个等腰梯形,上下边分别为2,8,高为4.∴S表面积=2××(2+8)×4+2×5×10+2×10+8×10=240.故选:D.【点评】本题考查由三视图还原直观图,由三视图求面积、体积,由三视图正确恢复原几何体是解决问题的关键.9.(5分)已知函数f(x)=ax3+bsinx+4(a,b∈R),f(lg(log210))=5,则f(lg (lg2))=()A.﹣5 B.﹣1 C.3 D.4【分析】由题设条件可得出lg(log210)与lg(lg2)互为相反数,再引入g(x)=ax3+bsinx,使得f(x)=g(x)+4,利用奇函数的性质即可得到关于f(lg(lg2))的方程,解方程即可得出它的值【解答】解:∵lg(log210)+lg(lg2)=lg1=0,∴lg(log210)与lg(lg2)互为相反数则设lg(log210)=m,那么lg(lg2)=﹣m令f(x)=g(x)+4,即g(x)=ax3+bsinx,此函数是一个奇函数,故g(﹣m)=﹣g (m),∴f(m)=g(m)+4=5,g(m)=1∴f(﹣m)=g(﹣m)+4=﹣g(m)+4=3.故选:C.【点评】本题考查函数奇偶性的运用及求函数的值,解题的关键是观察验证出lg (log210)与lg(lg2)互为相反数,审题时找准处理条件的方向对准确快速做题很重要10.(5分)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是()A.B.C.D.【分析】不妨令双曲线的方程为,由|A1B1|=|A2B2|及双曲线的对称性知A1,A2,B1,B2关于x轴对称,由满足条件的直线只有一对,得,由此能求出双曲线的离心率的范围.【解答】解:不妨令双曲线的方程为,由|A1B1|=|A2B2|及双曲线的对称性知A1,A2,B1,B2关于x轴对称,如图,又∵满足条件的直线只有一对,当直线与x轴夹角为30°时,双曲线的渐近线与x轴夹角大于30°,双曲线与直线才能有交点A1,A2,B1,B2,若双曲线的渐近线与x轴夹角等于30°,则无交点,则不可能存在|A1B1|=|A2B2|,当直线与x轴夹角为60°时,双曲线渐近线与x轴夹角大于60°,双曲线与直线有一对交点A1,A2,B1,B2,若双曲线的渐近线与x轴夹角等于60°,也满足题中有一对直线,但是如果大于60°,则有两对直线.不符合题意,∴tan30°,即,∴,∵b2=c2﹣a2,∴,∴,∴,∴双曲线的离心率的范围是.故选:A.【点评】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.二.填空题:本大题共5小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(5分)已知复数z=1+2i(i是虚数单位),则|z|=.【分析】直接利用复数的模的求法公式,求解即可.【解答】解:复数z=1+2i(i是虚数单位),则|z|==.故答案为:.【点评】本题考查复数的模的求法,考查计算能力.12.(5分)若2、a、b、c、9成等差数列,则c﹣a=.【分析】由等差数列的性质可得2b=2+9,解之可得b值,再由等差中项可得a,c的值,作差即可得答案.【解答】解:由等差数列的性质可得2b=2+9,解得b=,又可得2a=2+b=2+=,解之可得a=,同理可得2c=9+=,解得c=,故c﹣a=﹣==故答案为:【点评】本题考查等差数列的性质和通项公式,属基础题.13.(5分)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为.【分析】甲、乙两人相邻,可以把两个元素看做一个元素同其他元素进行排列,然后代入古典概率的求解公式即可求解【解答】解:记甲、乙两人相邻而站为事件A甲、乙、丙三人随机地站成一排的所有排法有=6,则甲、乙两人相邻而站,把甲和乙当做一个整体,甲和乙的排列有种,然后把甲乙整体和丙进行排列,有种,因此共有=4种站法∴=故答案为:【点评】本题考查排列组合及简单的计数问题及古典概率的求解,本题解题的关键是把相邻的问题作为一个元素同其他的元素进行排列,本题是一个基础题.14.(5分)OA为边,OB为对角线的矩形中,,,则实数k= 4.【分析】由题意可得OA⊥AB,故有=0,即==0,解方程求得k的值.【解答】解:由于OA为边,OB为对角线的矩形中,OA⊥AB,∴=0,即==(﹣3,1)•(﹣2,k)﹣10=6+k﹣10=0,解得k=4,故答案为 4.【点评】本题主要考查两个向量的数量积的运算,两个向量垂直的性质,两个向量的加减法及其几何意义,属于基础题.15.(5分)设0≤α≤π,不等式8x2﹣(8sinα)x+cos2α≥0对x∈R恒成立,则α的取值范围为[0,]∪[,π].【分析】由题意可得,△=64sin2α﹣32cos2α≤0即2sin2α﹣(1﹣2sin2α)≤0,解不等式结合0≤α≤π可求α的取值范围.【解答】解:由题意可得,△=64sin2α﹣32cos2α≤0,得2sin2α﹣(1﹣2sin2α)≤0∴sin2α≤,﹣≤sinα≤,∵0≤α≤π∴α∈[0,]∪[,π].故答案为:[0,]∪[,π].【点评】本题主要考查了一元二次不等式的解法、二次函数的恒成立问题,属于中档题.三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(13分)设数列{an}满足:a1=1,an+1=3an,n∈N+.(Ⅰ)求{an}的通项公式及前n项和Sn;(Ⅱ)已知{bn}是等差数列,Tn为前n项和,且b1=a2,b3=a1+a2+a3,求T20.【分析】(Ⅰ)由题意可得数列{an}是以1为首项,以3为公比的等比数列,则其通项公式与前n项和可求;(Ⅱ)由b1=a2=3,b3=a1+a2+a3=1+3+9=13,可得等差数列{bn}的公差,再由等差数列的前n项和求得T20.【解答】解:(Ⅰ)由an+1=3an,得,又a1=1,∴数列{an}是以1为首项,以3为公比的等比数列,则,;(Ⅱ)∵b1=a2=3,b3=a1+a2+a3=1+3+9=13,∴b3﹣b1=10=2d,则d=5.故.【点评】本题考查数列递推式,考查等比关系的确定,训练了等差数列和等比数列前n项和的求法,是中档题.17.(13分)从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得,,,.(Ⅰ)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;(Ⅱ)判断变量x与y之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y=bx+a中,,,其中,为样本平均值,线性回归方程也可写为.【分析】(Ⅰ)由题意可知n,,,进而可得,,代入可得b值,进而可得a值,可得方程;(Ⅱ)由回归方程x的系数b的正负可判;(Ⅲ)把x=7代入回归方程求其函数值即可.【解答】解:(Ⅰ)由题意可知n=10,===8,===2,故lxx==720﹣10×82=80,lxy==184﹣10×8×2=24,故可得b=═=0.3,a==2﹣0.3×8=﹣0.4,故所求的回归方程为:y=0.3x﹣0.4;(Ⅱ)由(Ⅰ)可知b=0.3>0,即变量y随x的增加而增加,故x与y之间是正相关;(Ⅲ)把x=7代入回归方程可预测该家庭的月储蓄为y=0.3×7﹣0.4=1.7(千元).【点评】本题考查线性回归方程的求解及应用,属基础题.18.(13分)在△ABC中,内角A、B、C的对边分别是a、b、c,且a2=b2+c2+bc.(Ⅰ)求A;(Ⅱ)设a=,S为△ABC的面积,求S+3cosBcosC的最大值,并指出此时B的值.【分析】(Ⅰ)由余弦定理表示出cosA,将依照等式变形后代入求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;(Ⅱ)由(Ⅰ)求出sinA的值,由三角形的面积公式及正弦定理列出关系式,表示出S,代入已知等式中提取3变形后,利用两角和与差的余弦函数公式化为一个角的余弦函数,由余弦函数的图象与性质即可求出S+3cosBcosC的最大值,以及此时B的值.【解答】解:(Ⅰ)由余弦定理得:cosA===﹣,∵A为三角形的内角,∴A=;(Ⅱ)由(Ⅰ)得sinA=,由正弦定理得:b=,csinA=asinC及a=得:S=bcsinA=••asinC=3sinBsinC,则S+3cosBcosC=3(sinBsinC+cosBcosC)=3cos(B﹣C),则当B﹣C=0,即B=C==时,S+3cosBcosC取最大值3.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及余弦函数的图象与性质,熟练掌握定理及公式是解本题的关键.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=2,BC=CD=2,∠ACB=∠ACD=.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.【分析】(Ⅰ)由等腰三角形的性质可得BD⊥AC,再由PA⊥底面ABCD,可得PA⊥BD.再利用直线和平面垂直的判定定理证明BD⊥平面PAC.(Ⅱ)由侧棱PC上的点F满足PF=7FC,可得三棱锥F﹣BCD的高是三棱锥P﹣BCD的高的.求出△BCD的面积S△BCD,再根据三棱锥P﹣BDF的体积V=VP﹣BCD﹣VF﹣BCD=﹣,运算求得结果.【解答】解:(Ⅰ)∵BC=CD=2,∴△BCD为等腰三角形,再由,∴BD⊥AC.再由PA⊥底面ABCD,可得PA⊥BD.而PA∩AC=A,故BD⊥平面PAC.(Ⅱ)∵侧棱PC上的点F满足PF=7FC,∴三棱锥F﹣BCD的高是三棱锥P﹣BCD的高的.△BCD的面积S△BCD=BC•CD•sin∠BCD==.∴三棱锥P﹣BDF的体积V=VP﹣BCD﹣VF﹣BCD=﹣=×==.【点评】本题主要考查直线和平面垂直的判定定理的应用,用间接解法求棱锥的体积,属于中档题.20.(12分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(Ⅰ)将V表示成r的函数V(r),并求该函数的定义域;(Ⅱ)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.【分析】(I)由已知中侧面积和底面积的单位建造成本,结合圆柱体的侧面积及底面积公式,根据该蓄水池的总建造成本为12000π元,构造方程整理后,可将V表示成r的函数,进而根据实际中半径与高为正数,得到函数的定义域;(Ⅱ)根据(I)中函数的定义值及解析式,利用导数法,可确定函数的单调性,根据单调性,可得函数的最大值点.【解答】解:(Ⅰ)∵蓄水池的侧面积的建造成本为200•πrh元,底面积成本为160πr2元,∴蓄水池的总建造成本为200•πrh+160πr2元即200•πrh+160πr2=12000π∴h=(300﹣4r2)∴V(r)=πr2h=πr2•(300﹣4r2)=(300r﹣4r3)又由r>0,h>0可得0<r<5故函数V(r)的定义域为(0,5)(Ⅱ)由(Ⅰ)中V(r)=(300r﹣4r3),(0<r<5)可得V′(r)=(300﹣12r2),(0<r<5)∵令V′(r)=(300﹣12r2)=0,则r=5∴当r∈(0,5)时,V′(r)>0,函数V(r)为增函数当r∈(5,5)时,V′(r)<0,函数V(r)为减函数且当r=5,h=8时该蓄水池的体积最大【点评】本题考查的知识点是函数模型的应用,其中(Ⅰ)的关键是根据已知,求出函数的解析式及定义域,(Ⅱ)的关键是利用导数分析出函数的单调性及最值点.21.(12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP'Q的面积S的最大值,并写出对应的圆Q的标准方程.【分析】(Ⅰ)设椭圆方程为,将左焦点横坐标代入椭圆方程可得y=,则,又②,a2=b2+c2③,联立①②③可求得a,b;(Ⅱ)设Q(t,0)(t>0),圆的半径为r,直线PP′方程为:x=m(m>t),则圆Q的方程为:(x﹣t)2+y2=r2,联立圆与椭圆方程消掉y得x的二次方程,则△=0①,易求P 点坐标,代入圆的方程得等式②,由①②消掉r得m=2t,则,变为关于t的函数,利用基本不等式可求其最大值及此时t 值,由对称性可得圆心Q在y轴左侧的情况;【解答】解:(Ⅰ)设椭圆方程为,左焦点F1(﹣c,0),将横坐标﹣c代入椭圆方程,得y=,所以①,②,a2=b2+c2③,联立①②③解得a=4,,所以椭圆方程为:;(Ⅱ)设Q(t,0)(t>0),圆的半径为r,直线PP′方程为:x=m(m>t),则圆Q的方程为:(x﹣t)2+y2=r2,由得x2﹣4tx+2t2+16﹣2r2=0,由△=0,即16t2﹣4(2t2+16﹣2r2)=0,得t2+r2=8,①把x=m代入,得,所以点P坐标为(m,),代入(x﹣t)2+y2=r2,得,②由①②消掉r2得4t2﹣4mt+m2=0,即m=2t,=×(m﹣t)=×t=≤×=2,当且仅当4﹣t2=t2即t=时取等号,此时t+r=+<4,椭圆上除P、P′外的点在圆Q外,所以△PP'Q的面积S的最大值为,圆Q的标准方程为:.当圆心Q、直线PP′在y轴左侧时,由对称性可得圆Q的方程为,△PP'Q 的面积S的最大值仍为为.【点评】本题考查圆、椭圆的标准方程,考查椭圆的几何性质,考查方程组的解法,考查学生的计算能力,难度较大.高考数学高三模拟试卷试题压轴押题重庆市高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0D.存在x0∈R,使得x02<03.(5分)(﹣6≤a≤3)的最大值为()A.9 B.C.3 D.4.(5分)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,85.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.200 D.2406.(5分)若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x ﹣a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(﹣∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(﹣∞,a)和(c,+∞)内7.(5分)已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,M,N 分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.﹣1 B.5﹣4 C.6﹣2D.8.(5分)执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()A.k≤6B.k≤7C.k≤8D.k≤99.(5分)4cos50°﹣tan40°=()A.B.C.D.2﹣110.(5分)在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()A.(0,] B.(,] C.(,] D.(,]二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分,把答案填写在答题卡相应位置上.11.(5分)已知复数z=(i是虚数单位),则|z|=.12.(5分)已知{an}是等差数列,a1=1,公差d≠0,Sn为其前n项和,若a1,a2,a5成等比数列,则S8=.13.(5分)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是(用数字作答).14,15,16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分:14.(5分)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为.15.(5分)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A,B两点,则|AB|=.16.若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(13分)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.18.(13分)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).19.(13分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.(1)求PA的长;(2)求二面角B﹣AF﹣D的正弦值.20.(12分)在△ABC中,内角A,B,C的对边分别是a,b,c,且a2+b2+ab=c2.(1)求C;(2)设cosAcosB=,=,求tanα的值.21.(12分)如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|A A′|=4.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.22.(12分)对正整数n,记In={1,2,3…,n},Pn={|m∈In,k∈In}.(1)求集合P7中元素的个数;(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使Pn能分成两个不相交的稀疏集的并集.重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}【分析】根据A与B求出两集合的并集,由全集U,找出不属于并集的元素,即可求出所求的集合.【解答】解:∵A={1,2},B={2,3},∴A∪B={1,2,3},∵全集U={1,2,3,4},∴∁U(A∪B)={4}.故选:D.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0D.存在x0∈R,使得x02<0【分析】直接利用全称命题的否定是特称命题,写出命题的否定命题即可.【解答】解:因为全称命题的否定是特称命题,所以命题“对任意x∈R,都有x2≥0”的否定为.存在x0∈R,使得x02<0.故选:D.【点评】本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考模拟复习试卷试题模拟卷【考情解读】1.理解空间直线、平面位置关系的定义,并了解有关的可以作为推理依据的公理和定理;2.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.【重点知识梳理】1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.空间中两直线的位置关系(1)位置关系的分类⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a′∥a ,b′∥b ,把a′与b′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2. (3)平行公理和等角定理①平行公理:平行于同一条直线的两条直线互相平行.②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.(2)平面与平面的位置关系有平行、相交两种情况.【高频考点突破】考点一 平面基本性质的应用【例1】 (1)以下四个命题中,正确命题的个数是()①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面;③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面;④依次首尾相接的四条线段必共面.A.0 B.1C.2 D.3(2)在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么正方体的过P,Q,R 的截面图形是()A.三角形 B.四边形C.五边形 D.六边形【变式探究】如图所示是正方体和正四面体,P,Q,R,S分别是所在棱的中点,则四个点共面的图形的序号是________.考点二空间两条直线的位置关系【例2】如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.【变式探究】 (1)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行(2)在图中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).考点三求异面直线所成的角【例3】如图,在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成角为60°.(1)求四棱锥的体积;(2)若E 是PB 的中点,求异面直线DE 与PA 所成角的余弦值.【变式探究】已知在三棱锥A -BCD 中,AB =CD ,且点M ,N 分别是BC ,AD 的中点.(1)若直线AB 与CD 所成的角为60°,则直线AB 和MN 所成的角为________.(2)若直线AB ⊥CD ,则直线AB 与MN 所成的角为________.【真题感悟】1.【高考广东,文18】(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.(1)证明:C//B 平面D P A ;(2)证明:C D B ⊥P ;(3)求点C 到平面D P A 的距离.C D B ⊥P2.【高考山东,文18】 如图,三棱台DEF ABC -中,2AB DE G H =,,分别为AC BC ,的中点.(I )求证://BD 平面FGH ;(II )若CF BC AB BC ⊥⊥,,求证:平面BCD ⊥平面EGH .1.(·辽宁卷)已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是()A .若m ∥α,n ∥α,则m ∥nB .若m ⊥α,n ⊂α,则m ⊥nC .若m ⊥α,m ⊥n ,则n ∥αD .若m ∥α,m ⊥n ,则n ⊥α2.(·福建卷)在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD.将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.图1-53.(·新课标全国卷Ⅱ)直三棱柱ABC-A1B1C1中,∠BCA =90°,M ,N 分别是A1B1,A1C1的中点,BC =CA =CC1,则BM 与AN 所成角的余弦值为()A.110B.25C.3010D.224.(·四川卷)三棱锥A - BCD 及其侧视图、俯视图如图1-4所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P 是线段BC 的中点;(2)求二面角A - NP - M 的余弦值.图1-4【押题专练】1.若空间三条直线a,b,c满足a⊥b,b⊥c,则直线a与c()A.一定平行B.一定相交C.一定是异面直线D.平行、相交、是异面直线都有可能2.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b 和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面3.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1⊥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面4.在空间四边形ABCD中,AB=CD,AD=BC,AB≠AD,M,N分别是对角线AC与BD的中点,则MN与()A.AC,BD之一垂直B.AC,BD都垂直C.AC,BD都不垂直D.AC,BD不一定垂直5.两条异面直线在同一个平面上的正投影不可能是()A.两条相交直线B.两条平行直线C.两个点D.一条直线和直线外一点6.一个正方体的展开图如图所示,A,B,C,D为原正方体的顶点,则在原来的正方体中()A.AB∥CDB.AB与CD相交C.AB⊥CDD.AB与CD所成的角为60°7.如图所示,在空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD上的点,且CFCB=CGCD=23,则()A.EF与GH平行B.EF与GH异面C.EF与GH的交点M可能在直线AC上,也可能不在直线AC上D.EF与GH的交点M一定在直线AC上8.平面α,β相交,在α,β内各取两点,这四点都不在交线上,这四点能确定________个平面.9.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.10.如图,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________.11.四棱锥P -ABCD 的所有侧棱长都为5,底面ABCD 是边长为2的正方形,则CD 与PA 所成角的余弦值为________.12.如图,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC 綉12AD ,BE 綉12FA ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?13.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为2的正方形,OA ⊥底面ABCD ,OA =2,M 为OA 的中点.(1)求四棱锥O -ABCD 的体积;(2)求异面直线OC 与MD 所成角的正切值的大小.14.如图所示,正方体ABCD -A1B1C1D1中,E ,F 分别是AB 和AA1的中点.求证:(1)E ,C ,D1,F 四点共面;(2)CE ,D1F ,DA 三线共点.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【热点题型】题型一 三角函数式的化简与给角求值【例1】 (1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=________. (2)[2sin 50°+sin 10°(1+3tan 10°)]·2sin280°=______.解析 (1)原式=⎝⎛⎭⎫2cos2α2+2sin α2cos α2·⎝⎛⎭⎫cos α2-sin α24cos2α2=cos α2⎝⎛⎭⎫cos2α2-sin2α2⎪⎪⎪⎪cos α2=cos α2cos α⎪⎪⎪⎪cos α2. 因为0<α<π,所以0<α2<π2,所以cos α2>0,所以原式=cos α.(2)原式=⎝ ⎛⎭⎪⎫2sin 50°+sin 10°·cos 10°+3sin 10°cos 10°· 2sin 80°=(2sin 50°+2sin 10°·12cos 10°+32sin 10°cos 10°)· 2cos 10°=22[sin 50°·cos 10°+sin 10°·cos(60°-10°)]=22sin(50°+10°)=22×32= 6.答案 (1)cos α (2)6【提分秘籍】(1)三角函数式的化简要遵循“三看”原则:①一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;②二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;③三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等.(2)对于给角求值问题,一般给定的角是非特殊角,这时要善于将非特殊角转化为特殊角.另外此类问题也常通过代数变形(比如:正负项相消、分子分母相约等)的方式来求值.【举一反三】(1)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .22-1(2)(·临沂模拟)化简:sin2αsin2β+cos2αcos2β-12cos 2αcos 2β=________.(2)法一 (从“角”入手,复角化单角)原式=sin2αsin2β+cos2αcos2β-12(2cos2α-1)(2cos2β-1)=sin2αsin2β+cos2αcos2β-12(4cos2αcos2β-2cos2α-2cos2β+1)=sin2αsin2β-cos2αcos2β+cos2α+cos2β-12=sin2αsin2β+cos2αsin2β+cos2β-12=sin2β+cos2β-12=1-12=12.法二 (从“名”入手,异名化同名)原式=sin2αsin2β+(1-sin2α)cos2β-12cos 2αcos 2β =cos2β-sin2α(cos2β-sin2β)-12cos 2αcos 2β=cos2β-cos 2β(sin2α+12cos 2α)=1+cos 2β2-12cos 2β=12.法三 (从“幂”入手,利用降幂公式先降次)原式=1-cos 2α2·1-cos 2β2+1+cos 2α2·1+cos 2β2-12cos 2α·cos 2β =14(1+cos 2α·cos 2β-cos 2α-cos 2β)+14(1+cos 2α·cos 2β+cos 2α+cos 2β)-12cos 2α·cos 2β =14+14=12.题型二三角函数的给值求值、给值求角【例2】 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23, 求cos(α+β)的值;(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.解 (1)∵0<β<π2<α<π,∴π4<α-β2<π,-π4<α2-β<π2,∴sin ⎝⎛⎭⎫α-β2=1-cos2⎝⎛⎭⎫α-β2=459,cos ⎝⎛⎭⎫α2-β= 1-sin2⎝⎛⎭⎫α2-β=53,∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β=cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2s in ⎝⎛⎭⎫α2-β=⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos2α+β2-1=2×49×5729-1=-239729.【提分秘籍】(1)解题中注意变角,如本题中α+β2=⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β;(2)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝⎛⎭⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝⎛⎭⎫-π2,π2,选正弦较好. 【举一反三】已知cos α=17,cos(α-β)=1314,且0<β<α<π2, (1)求tan 2α的值; (2)求β.解 (1)∵cos α=17,0<α<π2, ∴sin α=437,∴tan α=43, ∴tan 2α=2tan α1-tan2α=2×431-48=-8347.(2)∵0<β<α<π2,∴0<α-β<π2, ∴sin(α-β)=3314, ∴cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12. ∴β=π3.题型三三角变换的简单应用【例3】已知函数f(x)=Asin ⎝⎛⎭⎫x +π4,x ∈R ,且f ⎝⎛⎭⎫5π12=32.(1)求A 的值;(2)若f(θ)-f(-θ)=32,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫3π4-θ.解 (1)由f ⎝⎛⎭⎫5π12=32,得Asin 2π3=32,又sin 2π3=32,∴A = 3.(2)由(1)得f(x)=3sin ⎝⎛⎭⎫x +π4,由f(θ)+f(-θ)=32,得3sin ⎝⎛⎭⎫θ+π4+3sin ⎝⎛⎭⎫-θ+π4=32, 化简得cos θ=64,∵θ∈⎝⎛⎭⎫0,π2,∴sin θ=1-cos 2θ=1-⎝ ⎛⎭⎪⎫642=104,故f ⎝⎛⎭⎫3π4-θ=3sin ⎝⎛⎭⎫3π4-θ+π4=3sin θ=3×104=304.【提分秘籍】解三角函数问题的基本思想是“变换”,通过适当的变换达到由此及彼的目的,变换的基本方向有两个,一个是变换函数的名称,一个是变换角的形式.变换函数名称可以使用诱导公式、同角三角函数关系、二倍角的余弦公式等;变换角的形式,可以使用两角和与差的三角函数公式、倍角公式等.【举一反三】已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.(2)由已知,有sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos2α-sin2α),所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos2α-sin2α),即sin α+cos α=45(cos α-sin α)2(sin α+cos α). 当sin α+cos α=0时,由α是第二象限角, 知α=3π4+2kπ,k ∈Z. 此时cos α-sin α=- 2.当sin α+cos α≠0时,有(cos α-sin α)2=54. 由α是第二象限角,知cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52. 【高考风向标】【高考重庆,文6】若11tan ,tan()32,则tan =() (A) 17 (B) 16 (C) 57 (D) 56【答案】A【解析】11tan()tan 123tan tan[()]111tan()tan 7123αβαβαβααβα-+-=+-===+++⨯,故选A.【高考上海,文1】函数x x f 2sin 31)(-=的最小正周期为.【答案】π【解析】因为x x 2cos 1sin 22-=,所以x x x f 2cos 2321)2cos 1(231)(+-=--=,所以函数)(x f 的最小正周期为ππ=22. 【高考广东,文16】(本小题满分12分)已知tan 2α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值; (2)求2sin 2sin sin cos cos 21ααααα+--的值. 【答案】(1)3-;(2)1. 【解析】(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭- (2)2sin 2sin sin cos cos 21ααααα+--()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+-22tan tan tan 2ααα=+- 222222⨯=+- 1=1.(·广东卷) 若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A .l1⊥l4B .l1∥l4C .l1与l4既不垂直也不平行D .l1与l4的位置关系不确定 【答案】D【解析】本题考查空间中直线的位置关系,构造正方体进行判断即可.如图所示,在正方体ABCD-A1B1C1D1中,设BB1是直线l1,BC 是直线l2,AD 是直线l3,则DD1是直线l4,此时l1∥l4;设BB1是直线l1,BC 是直线l2,A1D1是直线l3,则C1D1是直线l4,此时l1⊥l4.故l1与l4的位置关系不确定.2. (·湖北卷) 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.【解析】(1)f(8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10.故实验室上午8时的温度为10 ℃.3.(·湖南卷) 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-4【解析】设∠CED =α.(1)在△CDE 中,由余弦定理,得 EC2=CD2+DE2-2CD·DE·cos ∠EDC ,于是由题设知,7=CD2+1+CD ,即CD2+CD - 6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC =CD sin α. 于是,sin α=CD·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin2α=1-2149=277.而∠AEB=2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12cos α+32sin α =-12×277+32×217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE ,故 BE =2cos ∠AEB =2714=47.4.(·江西卷) 已知函数f(x)=(a +2cos2x)cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π). (1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值.5.(·全国卷) △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知3acos C =2ccos A ,tan A =13,求B. 【解析】由题设和正弦定理得3sin Acos C =2sin Ccos A , 故3tan Acos C =2sin C.因为tan A =13, 所以cos C =2sin C , 所以tan C =12,所以tan B =tan[180°-(A +C)] =-tan(A +C) =tan A +tan Ctan Atan C -1=-1, 所以B =135°.6.(·新课标全国卷Ⅱ] 函数f(x)=sin(x +φ)-2sin φcos x 的最大值为________. 【答案】1【解析】 f(x)=sin(x +φ)-2sin φcos x =sin xcos φ+cos xsin φ-2sin φcos x =sin xcos φ-cos xsin φ=sin(x -φ),其最大值为1.7.(·山东卷) △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知a =3,cos A =63,B =A +π2. (1)求b 的值; (2)求△ABC 的面积. 【解析】(1)在△ABC 中,由题意知,sin A =1-cos2A =33. 又因为B =A +π2,所以sin B =sin ⎝⎛⎭⎫A +π2=cos A =63.由正弦定理可得,b =asin Bsin A =3×6333=3 2.(2)由B =A +π2得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B), 所以sin C =sin[π-(A +B)] =sin(A +B)=sin Acos B +cos Asin B=33×⎝ ⎛⎭⎪⎫-33+63×63=13.因此△ABC 的面积S =12absin C =12×3×32×13=322.8.(·四川卷) 如图1-3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高度是60 m ,则河流的宽度BC 等于( )图1-3A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m 【答案】C9.(·四川卷) 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.【解析】(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2kπ,π2+2kπ,k ∈Z ,由-π2+2kπ≤3x +π4≤π2+2kπ,k ∈Z ,得-π4+2kπ3≤x≤π12+2kπ3,k ∈Z ,所以函数f(x)的单调递增区间为⎣⎡⎦⎤-π4+2kπ3,π12+2kπ3,k ∈Z. (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos2α-sin2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αco s π4-sin αsi n π4(cos2α-sin2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2kπ,k ∈Z. 此时,cos α-sin α=- 2.当sin α+cos α≠0时,(co s α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52.10.(·重庆卷) 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8. (1)若a =2,b =52,求cos C 的值;(2)若sin Acos2B 2+sin Bcos2A 2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值. 【解析】(1)由题意可知c =8-(a +b)=72. 由余弦定理得cos C =a2+b2-c22ab= 22+⎝⎛⎭⎫522-⎝⎛⎭⎫7222×2×52=-15.(2)由sin Acos2B 2+sin Bcos2A2=2sin C 可得 sin A·1+cos B 2+sin B·1+cos A 2=2sin C ,化简得sin A +sin Acos B +sin B +sin Bcos A =4sin C.因为sin Acos B +cos Asin B =sin(A +B)=sin C ,所以sin A +sin B =3sin C. 由正弦定理可知a +b =3c.又a +b +c =8,所以a +b =6.由于S =12absin C =92sin C ,所以ab =9,从而a2-6a +9=0,解得a =3,所以b =3.【高考押题】1.若tan θ=3,则sin 2θ1+cos 2θ=( ) A. 3B .-3 C.33D .-33 解析 sin 2θ1+cos 2θ=2sin θcos θ1+2cos2θ-1=tan θ= 3. 答案 A2.已知sin α+cos α=13,则sin2⎝⎛⎭⎫π4-α=( ) A.118B.1718C.89D.29解析 由sin α+cos α=13两边平方得1+sin 2α=19,解得sin 2α=-89,所以sin2⎝⎛⎭⎫π4-α=1-cos ⎝⎛⎭⎫π2-2α2=1-sin 2α2=1+892=1718,故选B. 答案 B3.已知α∈⎝⎛⎭⎫π,32π,且cos α=-45,则tan ⎝⎛⎭⎫π4-α等于( ) A .7B.17 C .-17 D .-7解析 因α∈⎝⎛⎭⎫π,32π,且cos α=-45,所以sin α<0,即sin α=-35,所以tan α=34.所以tan ⎝⎛⎭⎫π4-α=1-tan α1+tan α=1-341+34=17. 答案 B4.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12 B.π3 C.π4 D.π65.设α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且tan α=1+sin βcos β,则 ( ) A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2解析 由条件得sin αcos α=1+sin βcos β,即sin α cos β=cos α(1+sin β),sin(α-β)=cos α=sin ⎝⎛⎭⎫π2-α,因为-π2<α-β<π2,0<π2-α<π2,所以α-β=π2-α,所以2α-β=π2,故选B.答案 B6.若sin ⎝⎛⎭⎫π2+θ=35,则cos 2θ=________. 解析 ∵sin ⎝⎛⎭⎫π2+θ=cos θ=35, ∴cos 2θ=2cos2θ-1=2×⎝⎛⎭⎫352-1=-725. 答案 -7257.函数f(x)=sin ⎝⎛⎭⎫2x -π4-22sin2x 的最小正周期是________. 解析 ∵f(x)=22sin 2x -22cos 2x -2(1-cos 2x) =22sin 2x +22cos 2x -2=sin(2x +π4)-2,∴最小正周期T =2π2=π.答案 π8.已知cos4α-sin4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3=________. 解析 ∵cos4α-sin4α=(sin2α+cos2α)(cos2α-sin2α)=cos 2α=23,又α∈⎝⎛⎭⎫0,π2, ∴2α∈(0,π),∴sin 2α=1-cos22α=53, ∴cos ⎝⎛⎭⎫2α+π3=12cos 2α-32sin 2α =12×23-32×53=2-156.答案 2-1569.已知α∈⎝⎛⎭⎫π2,π,sin α=55. (1)求sin ⎝⎛⎭⎫π4+α的值; (2)求cos ⎝⎛⎭⎫5π6-2α的值.10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62,两边同时平方,得sinα=12. 又π2<α<π,所以cos α=-1-sin2α=-32.(2)因为π2<α<π,π2<β<π,所以-π2<α-β<π2. 又sin(α-β)=-35,得cos (α-β)=45.cos β=cos []α-(α-β)=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×⎝⎛⎭⎫-35=-43+310.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

相关文档
最新文档