数学有理数最经典练习题

合集下载

七年级数学试卷有理数选择题训练经典题目(附答案)100

七年级数学试卷有理数选择题训练经典题目(附答案)100

七年级数学试卷有理数选择题训练经典题目(附答案)100一、选择题1.下列判断:①若a+b+c=0,则(a+c)2=b2.②若a+b+c=0,且abc≠0,则.③若a+b+c=0,则x=1一定是方程a x+b+c=0的解④若a+b+c=0,且abc≠0,则abc>0.其中正确的是()A. ①②③B. ①③④C. ②③④D. ①②③④2.若方程:2(x-1)-6=0与的解互为相反数,则a的值为()A. B. C. D. -13.下列说法:①有理数的绝对值一定是正数;②两点之间的所有连线中,线段最短;③相等的角是对顶角;④过一点有且仅有一条直线与已知直线垂直;⑤不相交的两条直线叫做平行线,其中正确的有()A. 1个B. 2个C. 3个D. 4个4.如图,数轴上每个刻度为1个单位长,则 A,B 分别对应数 a,b,且b-2a=7,那么数轴上原点的位置在()A. A 点B. B 点C. C 点D. D 点5.满足的整数 a 的个数有()A. 9 个B. 8 个C. 5 个D. 4 个6.在数轴上表示有理数a,b,c的点如图所示.若ac<0,b+a<0,则一定成立的是()A. |a|>|b|B. |b|<|c|C. b+c<0D. abc<0 7.在数轴上表示有理数a,﹣a,﹣b-1的点如图所示,则()A. ﹣b<﹣aB. <C. >D. b-1<a 8.为求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+3+32+33+…+32018的值是 ( )A. 32019-1B. 32018-1C.D.9.已知a,b,c是三个有理数,它们在数轴上的位置如图所示,化简|a﹣b|+|c﹣a|﹣|b+c|得( )A. 2c﹣2bB. ﹣2aC. 2aD. ﹣2b 10.若a、b、c、d四个数满足,则a、b、c、d四个数的大小关系为()A. a>c>b>dB. b>d>a>cC. d>b>a>cD. c>a>b>d11.若ab≠0,则的取值不可能是()A. 0B. 1C. 2D. -2 12.设实数a,b,c满足a>b>c(ac<0),且|c|<|b|<|a|,则|x-a|+|x+b|+|x-c|的最小值为()A. B. |b| C. a+b D. -c-a 13.已知有理数a,b,c,d在数轴上对应的点如图所示,每相邻两个点之间的距离是1个单位长度.若3a=4b﹣3,则c﹣2d为()A. ﹣3B. ﹣4C. ﹣5D. ﹣6 14.如图,加工一种轴时,轴直径在299.5毫米到300.2毫米之间的产品都是合格品,在图纸上通常用φ300﹣0.5+0.2来表示这种轴的加工要求,这里φ300表示直径是300毫米,+0.2表示最大限度可以比300毫米多0.2毫米,﹣0.5表示最大限度可以比300毫米少0.5毫米.现加工四根轴,轴直径的加工要求都是φ50﹣0.02+0.03,下列数据是加工成的轴直径,其中不合格的是()A. 50.02B. 50.01C. 49.99D. 49.88 15.已知实数x、y满足等式:3x2+4xy+4y2﹣4x+2=0,则x+y的值为()A. 2B.C. ﹣2D.16.有理数a、b在数轴上的位置如图所示,且|a|<|b|,下列各式中正确的个数是()①a+b<0;②b﹣a>0;③ ;④3a﹣b>0;⑤﹣a﹣b>0.A. 2个B. 3个C. 4个D. 5个17.已知有理数a,b,c在数轴上的位置如图所示,下列错误的是( )A. b+c<0B. −a+b+c<0C. |a+b|<|a+c|D. |a+b|>|a+c| 18.我们知道:在整数中,能被2整除的数叫做偶数,反之则为奇数,现把2017个连续整数1,2,3,…,2017的每个数的前面任意填上“+”号或“﹣”号,然后将它们相加,则所得的结果必为()A. 正数B. 偶数C. 奇数D. 有时为奇数;有时为偶数19.在1、2、3、…99、100这100个数中,任意加上“+”或“-”,相加后的结果一定是()A. 奇数B. 偶数C. 0D. 不确定20.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A. a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B. a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C. a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D. (a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【解答】解:①若a+b+c=0,则a+c=﹣b,根据互为相反数的两个数的平方相等即可得到:(a+c)2=b2.故正确;②根据abc≠0即可得到a、b、c都是非0的数,根据a+b+c=0,可以得到a+c=﹣b,则=﹣1,则.故正确;③把x=1代入方程a x+b+c=0,即可求得a+b+c=0,即x=1一定是方程a x+b+c=0的解,故正确;④根据abc≠0,可得到a、b、c都是非0的数,若a+b+c=0,则a、b、c中一定至少有1个正数,至少有一个是负数,则abc>0.不一定是正确的.故答案为:A.【分析】将a+b+c=0转化为a+c=﹣b,再两边平方,可对①作出判断;将a+b+c=0转化为a+c=﹣b就可得出a+c与b的比值,可对②作出判断;将x=1代入方程,可对③作出判断;根据abc≠0,可得到a、b、c都是非0的数,若a+b+c=0,可知a、b、c中一定至少有1个正数,至少有一个是负数,可对④作出判断,综上所述可得出答案。

【中考数学】有理数解答题训练经典题目(附答案)

【中考数学】有理数解答题训练经典题目(附答案)

【中考数学】有理数解答题训练经典题目(附答案)一、解答题1.点A、O、B、C从左向右依次在数轴上的位置如图所示,点O在原点,点A、B、C表示的数分别是a、b、c .(1)若a=﹣2,b=4,c=8,D为AB中点,F为BC中点,求DF的长.(2)若点A到原点的距离为3,B为AC的中点.①用b的代数式表示c;②数轴上B、C两点之间有一动点M,点M表示的数为x,无论点M运动到何处,代数式|x﹣c|﹣5|x﹣a|+bx+cx 的值都不变,求b的值.2.已知表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离请试着探索:(1)找出所有符合条件的整数,使,这样的整数是________;(2)利用数轴找出,当时,的值是________;(3)利用数轴找出,当取最小值时,的范围是________.3.已知有理数a,b,c在数轴上的位置如图所示:解答下列式子:(1)比较a,,c的大小(用“<”连接);(2)若,试化简等式的右边;(3)在(2)的条件下,求的值.4.如图,点、、是数轴上三点,点表示的数为,, .(1)写出数轴上点、表示的数:________,________.(2)动点,同时从,出发,点以每秒个单位长度的速度沿数轴向右匀速运动,点以个单位长度的速度沿数向左匀速运动,设运动时间为秒.①求数轴上点,表示的数(用含的式子表示);② 为何值时,点,相距个单位长度.5.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,求a-b=________,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当a=﹣4,b=8,点M在A,B之间,且AM=3BM时,求m的值.②当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值.6.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=________.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值,如果没有说明理由.7.观察下列等式,,,以上三个等式两边分别相加得:(1)猜想并写出: ________(2)计算: ________(3)探究并计算:8.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.9.点A在数轴上对应的数为3,点B对应的数为b,其中A、B两点之间的距离为5 (1)求b的值(2)当B在A左侧时,一点D从原点O出发以每秒2个单位的速度向左运动,请问D运动多少时间,可以使得D到A、B两点的距离之和为8?(3)当B在A的左侧时,一点D从O出发以每秒2个单位的速度向左运动,同时点M从B出发,以每秒1个单位的速度向左运动,点N从A出发,以每秒4个单位的速度向右运动;在运动过程中,MN的中点为P,OD的中点为Q,请问MN-2PQ的值是否会发生变化?若发生变化,请说明理由;如果没有变化,请求出这个值.10.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1)若b=-4,则a的值为________.(2)若OA=3OB,求a的值.(3)点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.11.如图,数轴上两点分别表示有理数-2和5,我们用来表示两点之间的距离.(1)直接写出的值=________;(2)若数轴上一点表示有理数m,则的值是________;(3)当代数式∣n +2∣+∣n -5∣的值取最小值时,写出表示n的点所在的位置;(4)若点分别以每秒2个单位长度和每秒3个单位长度的速度同时向数轴负方向运动,求经过多少秒后,点到原点的距离是点到原点的距离的2倍.12.阅读材料:如图①,若点B把线段分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.回答问题:(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.①若A是线段DB的中点,则点D表示的数是________;②若E是线段AC的中点,求点E表示的数________.(2)在数轴上,若点M表示的数是m,点N所表示的数是n,点P是线段MN的中点.①若点P表示的数是1,则m、n可能的值是________(填写符合要求的序号);(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5;(iv)m=﹣1,n=2②直接用含m、n的代数式表示点P表示的数________.13.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请真接与出a=________,b=________;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值: (3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.14.我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离。

初中数学有理数经典测试题含答案解析

初中数学有理数经典测试题含答案解析

初中数学有理数经典测试题含答案解析一、选择题1.12a=-,则a的取值范围是()A.12a≥B.12a>C.12a≤D.无解【答案】C【解析】【分析】=|2a-1|,则|2a-1|=1-2a,根据绝对值的意义得到2a-1≤0,然后解不等式即可.【详解】=|2a-1|,∴|2a-1|=1-2a,∴2a-1≤0,∴12a≤.故选:C.【点睛】此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.2.若a为有理数,且|a|=2,那么a是()A.2 B.﹣2 C.2或﹣2 D.4【答案】C【解析】【分析】利用绝对值的代数意义求出a的值即可.【详解】若a为有理数,且|a|=2,那么a是2或﹣2,故选C.【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.3.在﹣3,﹣1,1,3四个数中,比2大的数是()A.﹣3 B.﹣1 C.1 D.3【答案】D【解析】【分析】根据有理数比较大小的方法解答即可.【详解】解:比2大的数是3.故选:D .【点睛】本题考查了有理数比较大小,掌握有理数比较大小的比较方法是解题的关键.4.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1a b <<B .11b <-<C .1a b <<D .1b a -<<-【答案】A【解析】【分析】首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】解:根据实数a ,b 在数轴上的位置,可得a <-1<0<1<b ,∵1<|a|<|b|,∴选项A 错误;∵1<-a <b ,∴选项B 正确;∵1<|a|<|b|,∴选项C 正确;∵-b <a <-1,∴选项D 正确.故选:A .【点睛】此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.5.如果实数a ,b 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .a b <B .a b >-C .2a >-D .b a >【解析】【分析】根据数轴可以发现a<b,且-3<a<-2,1<b<2,由此即可判断以上选项正确与否.【详解】∵-3<a<-2,1<b<2,∴|a|>|b|,∴答案A错误;∵a<0<b,且|a|>|b|,∴a+b<0,∴a<-b,∴答案B错误;∵-3<a<-2,∴答案C错误;∵a<0<b,∴b>a,∴答案D正确.故选:D.【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.6.-6的绝对值是()A.-6 B.6 C.- 16D.16【答案】B【解析】【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6故选B【点睛】考点:绝对值.7.下列各数中,最大的数是()A.12-B.14C.0 D.-2【答案】B【解析】【分析】将四个数进行排序,进而确定出最大的数即可.【详解】112024-<-<<,则最大的数是14,【点睛】此题考查了有理数大小比较,熟练掌握有理数大小比较的方法是解本题的关键.8.如图数轴所示,下列结论正确的是()A.a>0 B.b>0 C.b>a D.a>b【答案】A【解析】【分析】根据数轴,可判断出a为正,b为负,且a距0点的位置较近,根据这些特点,判定求解【详解】∵a在原点右侧,∴a>0,A正确;∵b在原点左侧,∴b<0,B错误;∵a在b的右侧,∴a>b,C错误;∵b距离0点的位置远,∴a<b,D错误【点睛】本题是对数轴的考查,需要注意3点:(1)在0点右侧的数为正数,0点左侧的数为负数;(2)数轴上的数,从左到右依次增大;(3)离0点越远,则绝对值越大9.实数a、b在数轴上的位置如图所示用下列结论正确的是( )A.a+b>a>b>a−b B.a>a+b>b>a−bC.a−b>a>b>a+b D.a−b>a>a+b>b【答案】D【解析】【分析】首先根据实数a,b在数轴上的位置可以确定a、b的取值范围,然后利用有理数的加减运算即可比较数的大小.【详解】解:由数轴上a,b两点的位置可知,∵b<0,a>0,|b|<|a|,设a=6,b=-2,则a+b=6-2=4,a-b=6+2=8,又∵-2<4<6<8,∴a-b>a>a+b>b.【点睛】此题主要考查了实数与数轴之间的对应关系,解答此题的关键是根据数轴上a ,b 的位置估算其大小,再取特殊值进行计算即可比较数的大小.10.已知实数a 满足2006a a -=,那么22006a -的值是( ) A .2005B .2006C .2007D .2008【答案】C【解析】【分析】先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.【详解】∵a-2007≥0,∴a ≥2007,∴2006a a -=可化为a 2006a -+=,2006=,∴a-2007=20062,∴22006a -=2007.故选C .【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.11.已知a 、b 、c 都是不等于0的数,求a b c abc a b c abc+++的所有可能的值有( )个.A .1B .2C .3D .4 【答案】C【解析】【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.如图,数轴上每相邻两点距离表示1个单位,点A ,B 互为相反数,则点C 表示的数可能是( )A .0B .1C .3D .5 【答案】C【解析】【分析】根据相反数的几何意义:在数轴上,一组相反数所表示的点到原点的距离相等,即可确定原点的位置,进而得出点C 表示的数.【详解】∵点A ,B 互为相反数,∴AB 的中点就是这条数轴的原点,∵数轴上每相邻两点距离表示1个单位,且点C 在正半轴距原点3个单位长度, ∴点C 表示的数为3.故选C.【点睛】本题考查了相反数和数轴的知识.利用相反数的几何意义找出这条数轴的原点是解题的关键.13.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】 此题主要考查了二次根式的性质和绝对值的性质,关键是掌握2a =|a|.14.-14的绝对值是( ) A .-4B .14C .4D .0.4 【答案】B【解析】【分析】直接用绝对值的意义求解.【详解】 −14的绝对值是14. 故选B .【点睛】 此题是绝对值题,掌握绝对值的意义是解本题的关键.15.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a 、b 的正负性,a 、b 的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a <-1,0<b <1,∴a+b <0,|a|>|b|,ab <0,a-b <0.所以只有选项D 成立.故选:D .此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.16.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”和“6cm ”分别对应数轴上表示﹣2和实数x 的两点,那么x 的值为( )A .3B .4C .5D .6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x 之间的距离为6,∴x 表示的数为:﹣2+6=4,故选:B .【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.17.已知a ,b ,c 是有理数,当0a b c ++=,0abc <时,求a b c b c a c a b +-+++的值为( )A .1或-3B .1,-1或-3C .-1或3D .1,-1,3或-3 【答案】A【解析】【分析】根据0a b c ++=,0abc <,可知这三个数中只能有一个负数,另两个为正数,把0a b c ++=变形代入代数式求值即可.【详解】解:∵0a b c ++=,∴b c a +=-、a c b +=-、a b c +=-,∵0abc <,∴a 、b 、c 三数中有2个正数、1个负数, 则a b c a b c b c a c a b a b c+-=+-+++---, 若a 为负数,则原式=1-1+1=1,若b 为负数,则原式=-1+1+1=1,若c 为负数,则原式=-1-1-1=-3,所以答案为1或-3.故选:A .【点睛】本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.18.下列各组数中互为相反数的一组是( )A .3与13B .2与|-2|C .(-1) 2与1D .-4与(-2) 2【答案】D【解析】 考点:实数的性质.专题:计算题. 分析:首先化简,然后根据互为相反数的定义即可判定选择项.解答:解:A 、两数数值不同,不能互为相反数,故选项错误;B 、2=|-2|,两数相等,不能互为相反数,故选项错误.C 、(-1)2=1,两数相等;不能互为相反数,故选项错误;D 、(-2)2=4,-4与4互为相反数,故选项正确;故选D .点评:此题主要考查相反数定义:互为相反数的两个数相加等于0.19.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.20.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( )A .2a+bB .-2a+bC .bD .2a-b【答案】B【解析】【分析】根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简.【详解】解:由数轴可知:0a <,0b >,∴0a b -<,∴()2a a b a a b =-+-=-+, 故选:B .【点睛】本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.。

初中数学专项练习《有理数》50道计算题包含答案

初中数学专项练习《有理数》50道计算题包含答案

初中数学专项练习《有理数》50道计算题包含答案一、解答题(共50题)1、定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,(1)a2是a1的差倒数,求a2;(2)a3是a2的差倒数,则a3;(3)a4是a3的差倒数,…依此类推an+1是an的差倒数,直接写出a2015.2、如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B 点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?3、一天,甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是-1ºC,乙此时在山脚测得温度是5ºC,已知该地区每增加100米,气温大约降低0.6ºC,这个山峰的高度大约是多少米?4、设,,当为何值时,与互为相反数?5、把下列各数在数轴上表示出来,并按从小到大的顺序用“<”连接起来.-3.5,0,2,-0.5,-2 ,0.5.6、画出数轴,在数轴上标出表示下列各数的点,并按从大到小的顺序用“>”号把这些数连接起来:-|-2.5|,0,-(-),+(-1)2015,7、把下列各数在数轴上表示出来,3.5, -3.5, 0, 2, -0.5, -2, 0.5. 并按从小到大的顺序用“<”连接起来.8、春天到了,为了试验某种杀菌剂的效果,实验室进行了实验,研究发现房间空气中每立方米含个病菌,已知1毫升杀菌剂可以杀死个这种病菌,问要将长5米、宽4米、高3米的房间内的病菌全部杀死,需多少毫升杀菌剂?9、在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来:10、把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.﹣5,﹣|﹣3|,﹣,0,3 ,﹣(﹣1)11、把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来:-2.5 ,0 ,+3.5 ,-12、已知与互为相反数,求的绝对值.13、在数轴上表示下列各数,并用“>”连接起来.,﹣|﹣4|,,0,﹣1,﹣(﹣1)14、画出数轴并在数轴上表示出下面的有理数,然后把它们用“<”连接起来.-2,|-1.5|,0,-(-3),,(-1)201915、把下列各数填入相应的括号内:2.5,-10%,22,0,-|- |,-20,+9.78,-0. ,-(- )整数:{……}负分数:{……}非正数:{……}非负整数:{……}16、画出数轴并在数轴上表示出下面的有理数,然后把它们用“<”连接起来. -2,|-1.5|,0,-(-3),,(-1)201917、在数轴上表示下列各数:0,-3, 2,-, 5.并将上述各数的绝对值用“<”号连接起来.18、在数轴上把下列各数表示出来,并用“ ”连接各数.+5,-3.5,,,4,019、有理数m所表示的点与-1所表示的点的距离为3个单位,a、b互为相反数且都不为0,c、d互为倒数,求的值.20、某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:这批样品的平均质量比标准质量多还是少?多或少几克?若每袋标准质为450克,则抽样检测的总质量是多少?与标准质量的差值(单-5 -2 0 1 3 6 位:g)袋数 1 4 3 4 5 3 21、用4个长7厘米、宽2厘米的长方形拼成一个大长方形(如图,左下角和右上角重叠),大长方形的周长是多少厘米?图中阴影部分的面积是多少平方厘米?22、借助你的计算器分别得出,,,的循环节.23、据测算,我国每天因土地沙漠化造成的经济损失为1.5亿元,若一年按365天计算,我国一年因土地沙漠化造成的经济损失为多少元(用科学记数法表示,且保留两个有效数字)?24、将下列各数在如图的数轴上表示出来,然后用“<”连接起来.,0,|﹣4|,0.5,﹣(﹣3).25、把数,表示在数轴上,并用<号把这些数连接起来.26、已知x,y为实数,且满足,求的值.27、若|a|=2, b=-3,c是最大的负整数,求a+b-c的值。

【绝对经典】初一数学有理数30题含详细答案

【绝对经典】初一数学有理数30题含详细答案
(3)当代数式|x+1|+|x﹣2|+|x﹣3|取最小值时,x的值为_____.
30.a、b、c三个数在数轴上位置如图所示,且|a|=|b|
(1)求出a、b、c各数的绝对值;
(2)比较a,﹣a、﹣c的大小;
(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.
参考答案
1.D
【解析】
【分析】
负数小于0,可将各项化简,然后再进行判断.
3.C
【解析】
【分析】
(25±0.2)的字样表明质量最大为25.2,最小为24.8,二者之差为0.4.
【详解】
解:根据题意得:标有质量为(25±0.2)的字样,
(3)如果点A、C表示的数互为相反数,求点B表示的数.
29.数轴上两点之间的距离等于相应两数差的绝对值,如2与3的距离可表示为|2﹣3|=1,2与﹣3的距离可表示为|2﹣(﹣3)|=5
(1)数轴上表示3和8的两点之间的距离是_____;数轴上表示﹣3和﹣9的两点之间的距离是_____;
(2)数轴上表示x和﹣2的两点A和B之间的距离是_____;如果|AB|=4,则x为_____;
2.B
【解析】
【分析】
根据有理数的分类逐一作出判断即可.
【详解】
解:A.0既不是正数也不是负数,故A错误;B.整数和分数统称为有理数;故B正确;C.若|a|=|b|,则a=b或a与b互为相反数.故C错误;D.整数包括正整数、0和负整数,故D错误.
【点睛】
本题考查了有理数的分类,掌握有理数的分类是解题的关键.
A.0.2 kgB.0.3 kgC.0.4 kgD.50.4 kg
4.小丽在纸上画了一条数轴后,折叠纸面,使数轴上表示2的点与表示-4的点重合;若数轴上A、B两点之间的距离为10(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数是()

人教版初中数学有理数经典测试题附答案解析

人教版初中数学有理数经典测试题附答案解析

人教版初中数学有理数经典测试题附答案解析一、选择题1.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( )A .2a+bB .-2a+bC .bD .2a-b 【答案】B【解析】【分析】根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简.【详解】解:由数轴可知:0a <,0b >,∴0a b -<,∴()()22a a b a b a a b -=-+-=-+, 故选:B .【点睛】本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.2.16的绝对值是( ) A .﹣6B .6C .﹣16D .16 【答案】D 【解析】【分析】 利用绝对值的定义解答即可.【详解】16的绝对值是16, 故选D .【点睛】本题考查了绝对值得定义,理解定义是解题的关键.3.若︱2a ︱=-2a ,则a 一定是( )A .正数B .负数C .正数或零D .负数或零【答案】D【解析】试题分析:根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数,可知a 一定是一个负数或0.故选D4.已知2350x y +-=则xy 的值是( )A .19B .-6C .9D .1-6【答案】B【解析】【分析】根据非负数的应用,列出方程组,解方程组,即可求出x 、y 的值,然后得到答案.【详解】解:∵2350x y +-=,∴2350280x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, ∴236xy =-⨯=-;故选:B.【点睛】本题考查了非负数的应用,解二元一次方程组,解题的关键是正确求出x 、y 的值.5.四个有理数﹣2,1,0,﹣1,其中最小的数是( )A .1B .0C .﹣1D .﹣2【答案】D【解析】【分析】根据正数大于零,零大于负数,可得答案.【详解】∵-2<-1<0<1,最小的是-2.故选D .【点睛】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.6.如图是张小亮的答卷,他的得分应是( )A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.7.若(x+y﹣1)2+|x﹣y+5|=0,则x=()A.﹣2 B.2 C.1 D.﹣1【答案】A【解析】【分析】由已知等式,利用非负数的性质列出方程组,求出方程组的解得到x即可.【详解】解:∵(x+y﹣1)2+|x﹣y+5|=0,∴1050 x yx y+-=⎧⎨-+=⎩,解得:23xy=-⎧⎨=⎩,故选:A.【点睛】本题主要考查了非负数的性质和二元一次方程组的解法,根据两个非负数的和为零则这两个数均为零得出方程组是解决此题的的关键.8.在–2,+3.5,0,23-,–0.7,11中.负分数有( ) A .l 个B .2个C .3个D .4个 【答案】B【解析】根据负数的定义先选出负数,再选出分数即可.解:负分数是﹣23,﹣0.7,共2个. 故选B .9.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .n m ->C .m n ->D .m n <【答案】C【解析】【分析】从数轴上可以看出m 、n 都是负数,且m <n ,由此逐项分析得出结论即可.【详解】解:因为m 、n 都是负数,且m <n ,|m|<|n|,A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选:C .【点睛】此题考查有理数的大小比较,关键是根据绝对值的意义等知识解答.10.如果||a a =-,下列成立的是( )A .0a >B .0a <C .0a ≥D .0a ≤【答案】D【解析】【分析】绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.【详解】如果||a a =-,即一个数的绝对值等于它的相反数,则0a ≤.【点睛】本题考查绝对值,熟练掌握绝对值的性质是解题关键.11.小麦做这样一道题“计算()3-+W ”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是( )A .5B .-5C .11D .-5或11【答案】D【解析】【分析】根据绝对值的性质求得结果,采用排除法判定正确选项.【详解】解:设”□”表示的数是x ,则|(-3)+x|=8,∴-3+x=-8或-3+x=8,∴x=-5或11.故选:D .【点睛】本题考查了绝对值的运算,掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.已知a b 、两数在数轴上的位置如图所示,则化简代数式|||1||1|a b a b ---++的结果是( )A .2b -B .2aC .2D .22a -【答案】A【解析】【分析】根据数轴判断出绝对值符号内式子的正负,然后去绝对值合并同类项即可.【详解】解:由数轴可得,b <−1<1<a ,∴a −b >0,1−a <0,b +1<0,∴|||1||1|a b a b ---++, ()()11a b a b =-+--+,11a b a b =-+---,2b =-,【点睛】本题考查数轴,绝对值的性质,解答此题的关键是确定绝对值内部代数式的符号.13.若2(21)12a a -=-,则a 的取值范围是( )A .12a ≥ B .12a > C .12a ≤ D .无解 【答案】C【解析】【分析】 根据二次根式的性质得2(21)a -=|2a-1|,则|2a-1|=1-2a ,根据绝对值的意义得到2a-1≤0,然后解不等式即可.【详解】解:∵2(21)a -=|2a-1|,∴|2a-1|=1-2a ,∴2a-1≤0,∴12a ≤. 故选:C .【点睛】 此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.14.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,【点睛】.15.下列结论中:①若a=b;②在同一平面内,若a⊥b,b//c,则a⊥c;③直线外一点到直线的垂线段叫点到直线的距离;( ) A.1个B.2个C.3个D.4个【答案】B【解析】【分析】【详解】解:①若a=b0≥②在同一平面内,若a⊥b,b//c,则a⊥c,正确③直线外一点到直线的垂线段的长度叫点到直线的距离正确的个数有②④两个故选B16.下列各组数中互为相反数的是()A.5B.-和(-C.D.﹣5和1 5【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A、5,两数相等,故此选项错误;B、和-()互为相反数,故此选项正确;C、=-2,两数相等,故此选项错误;D、-5和15,不互为相反数,故此选项错误.故选B.【点睛】本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.17.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为( )A .()2019,0B .()2019,1C .()2019,2D .()2020,0【答案】C【解析】【分析】 分析点P 的运动规律,找到循环次数即可.【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位. ∴2019=4×504+3, 当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.18.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a 、b 的正负性,a 、b 的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a <-1,0<b <1,∴a+b <0,|a|>|b|,ab <0,a-b <0.所以只有选项D 成立.故选:D .【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.19.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .c d <【答案】D【解析】【分析】根据数轴得到-5<a<b<0<c<d ,且a d b c >>>,再依次判断各选项即可得到答案.【详解】由数轴得-5<a<b<0<c<d ,且a d b c >>>,∴A 错误;∵b+d>0,故B 错误; ∵a c >,∴C 错误; ∵d c >,c>0, ∴c d <D 正确,故选:D.【点睛】此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.20.已知一个数的绝对值等于2,那么这个数与2的和为( )A .4B .0C .4或—4D .0或4 【答案】D【解析】【分析】先根据绝对值的定义,求出这个数,再与2相加【详解】∵这个数的绝对值为2∴这个数为2或-22+2=4,-2+2=0故选:D【点睛】本题考查求绝对值的逆定理,需要注意,一个数的绝对值为正数a ,则这个为±a。

数学有理数相关习题3篇

数学有理数相关习题3篇

数学有理数相关习题3篇当告别拉开窗帘,当回忆睡在胸前,要说再见真的很伤感,只有爱依旧辉煌!情谊万岁!考试顺利,共闯人生这一关!下面是小编给大家带来的数学有理数相关习题,欢迎大家阅读参考,我们一起来看看吧!初一数学有理数练习题一、耐心填一填,一锤定音(每小题3分,共30分)1、若太平洋最深处低于海平面11034米,记作-11034米,则珠穆朗玛峰高出海平面8848米,记作______。

2、+10千米表示王玲同学向南走了10千米,那么-9千米表示_______;0千米表示_____。

3、在月球表面上,白天阳光垂直照射的地方温度高达127℃,夜晚温度可降到-183℃,那么-183℃表示的意义为_______。

4、七(8)班数学兴趣小组在一次数学智力大比拼的竞赛中的平均分数为90分,张红得了85分,记作-5分,则小明同学行92分,可记为____,李聪得90分可记为____,程佳+8分,表示______。

5、有理数中,最小的正整数是____,最大的负整数是____。

6、数轴上表示正数的点在原点的___,原点左边的数表示___,____点表示零。

7、数轴上示-5的点离开原点的距离是___个单位长度,数轴上离开原点6个单位长度的点有____个,它们表示的数是____8、数轴上表示的点到原点的距离是_____9、在1.5-7.5之间的整数有_____,在-7.5与-1.5之间的整数有_____10、已知下列各数:-23、-3.14、,其中正整数有__________,整数有______,负分数有______,分数有_________。

二、精心选一选,慧眼识金!(每小题3分,共30分)1、把向东运动记作“+”,向西运动记作“_”,下列说法正确的是( )A、-3米表示向东运动了3米B、+3米表示向西运动了3米C、向西运动3米表示向东运动-3米D、向西运动3米,也可记作向西运动-3米。

2、下列用正数和负数表示相反意义的量,其中正确的是( )A、一天凌晨的气温是-5℃,中午比凌晨上升4℃,所以中午的气温是+4℃B、如果+3.2米表示比海平面高3.2米,那么-9米表示比海平面低5.8米C、如果生产成本增加5%,记作+5%,那么-5表示生产成本降低5%D、如果收入增加8元,记作+8元,那么-5表示支出减少5元。

《常考题》初中七年级数学上册第一单元《有理数》经典练习题(含答案解析)(1)

《常考题》初中七年级数学上册第一单元《有理数》经典练习题(含答案解析)(1)

一、选择题1.某测绘小组的技术员要测量A,B两处的高度差(A,B两处无法直接测量),他们首先选择了D,E,F,G四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A,B之间的高度关系为()A.B处比A处高B.A处比B处高C.A,B两处一样高D.无法确定2.已知︱x︱=4,︱y︱=5且x>y,则2x-y的值为()A.-13 B.+13 C.-3或+13 D.+3或-13.下列说法中,正确的是()A.正数和负数统称有理数B.既没有绝对值最大的数,也没有绝对值最小的数C.绝对值相等的两数之和为零D.既没有最大的数,也没有最小的数4.下列有理数的大小比较正确的是()A.1123<B.1123->-C.1123->-D.1123-->-+5.将(-3.4)3,(-3.4)4,(-3.4)5从小到大排列正确的是() A.(-3.4)3<(-3.4)4<(-3.4)5B.(-3.4)5<(-3.4)4<(-3.4)3C.(-3.4)5<(-3.4)3<(-3.4)4D.(-3.4)3<(-3.4)5<(-3.4)46.一个数的绝对值是3,则这个数可以是()A.3B.3-C.3或者3-D.1 37.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=b C.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|8.如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 29.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多1010.如果向右走5步记为+5,那么向左走3步记为( )A .+3B .-3C .+13D .-1311.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( )A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m 12.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃ 13.已知有理数a ,b 满足0ab ≠,则||||a b a b +的值为( ) A .2±B .±1C .2±或0D .±1或0 14.把实数36.1210-⨯用小数表示为() A .0.0612 B .6120 C .0.00612 D .612000 15.下面说法中正确的是 ( )A .两数之和为正,则两数均为正B .两数之和为负,则两数均为负C .两数之和为0,则这两数互为相反数D .两数之和一定大于每一个加数二、填空题16.23(2)0x y -++=,则x y 为______.17.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.18.若两个不相等的数互为相反数,则两数之商为____.19.把35.89543精确到百分位所得到的近似数为________.20.下列说法正确的是________.(填序号)①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1b a=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.21.点A 表示数轴上的一个点,将点A 向右移动10个单位长度,再向左移动8个单位长度,终点恰好是原点,则点A 到原点的距离为______.22.在数轴上,距离原点有2个单位的点所对应的数是________.23.在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ . 24.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________. 25.用计算器计算:(1)-5.6+20-3.6=____;(2)-6.25÷25=____;(3)-7.2×0.5×(-1.8)=____;(4)-15×(-2.4)÷(-1.2)=____; (5)4.6÷113-6×3=____; (6)42.74.23.5-≈____(精确到个位). 26.(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位;(2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.三、解答题27.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?28.表格记录的是龙岗区图书馆上周借书情况:(规定:超过200册记为正,少于200册记为负).(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?29.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)若经过这一周,该粮仓存有大米88吨.(1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用. 30.计算:(1)22123()0.8(5)35⎡⎤-⨯--÷-⎢⎥⎣⎦(2)5233(2)4()(12)1234⨯-+-+--⨯-。

人教版初中七年级数学上册第一章《有理数》经典习题(含答案解析)

人教版初中七年级数学上册第一章《有理数》经典习题(含答案解析)

1.若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D【分析】 根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】 本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b判断出a 和b 异号. 2.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.3.丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③ 1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道 A .1道B .2道C .3道D .4道A 解析:A【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断.【详解】①2018(1)1-=,故本小题错误;②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题.故选A .【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键. 4.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.5.在-1,2,-3,4,这四个数中,任意三数之积的最大值是( )A .6B .12C .8D .24B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B .【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.6.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a D 解析:D【解析】【分析】根据数轴表示数的方法得到a <0<b ,且|a|>b ,则-a >b ,-b >a ,然后把a ,b ,-a ,-b 从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.7.若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .1C解析:C【解析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.8.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.9.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.10.下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- A 解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.11.下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D 解析:D【分析】 根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D .【点睛】 本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 12.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0C解析:C【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n 大于m ,并从数轴知m 小于0,n 大于0,所以mn 小于0,则A ,B ,D 均错误.故选C .13.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C 解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.14.计算(-2)2018+(-2)2019等于( )A.-24037B.-2 C.-22018D.22018C 解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.15.下列计算结果正确的是()A.-3-7=-3+7=4B.4.5-6.8=6.8-4.5=2.3C.-2-13⎛⎫-⎪⎝⎭=-2+13=-213D.-3-12⎛⎫-⎪⎝⎭=-3+12=-212D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.1.若a、b、c、d、e都是大于1、且是不全相等的五个整数,它们的乘积2000abcde=,则它们的和a b c d e++++的最小值为__.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.2.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.3.数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.4.在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.5.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.【解析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值大于10时n是正数;当原数的绝对解析:71.610⨯【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.16000000 =71.610⨯.6.绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.7.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键解析:1621(3)3-【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【详解】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-. 【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.8.填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.9.在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.++-+++-++++-=_____.【分析】第1 10.计算:(1)(2)(3)(4)(2019)(2020)个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两-解析:1010【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】=-+-++-=-----=-.原式(12)(34)(20192020)11111010-.故答案为:1010【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.11.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解.【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=;当输入2-时,输出的结果为24(3)524350-+---=-++-=.故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 1.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58) 解析:(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =154()68-÷⨯- =5468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.2.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】 (1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=;①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.3.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.4.计算:(1)13 |38|44⎛⎫--+- ⎪⎝⎭(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦解析:(1)4;(2)13;(3)14-;(4)26.【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13 |38|44⎛⎫--+- ⎪⎝⎭=13 544 --=5-1 =4;(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭=1 1269-+⨯⨯=-1+4 3=13;(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭=211 1()1 369⨯-÷=519() 3610⨯-⨯=14 -;(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦=157 (48)()(48)(48)2812 -⨯---⨯+-⨯=24+30-28=26.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.。

初一数学:有理数经典练习题

初一数学:有理数经典练习题

有理数经典练习题一.选择题1.(2021•广州)如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A 表示的数为()A.﹣3B.0C.3D.﹣6 2.(2021•枣庄)如图,数轴上有三个点A,B,C,若点A,B表示的数互为相反数,则图中点C对应的数是()A.﹣2B.0C.1D.4 3.(2021•河北)能与﹣(﹣)相加得0的是()A.﹣﹣B.+C.﹣+D.﹣+ 4.(2020•长春)如图,数轴上被墨水遮盖的数可能为()A.﹣1B.﹣1.5C.﹣3D.﹣4.2 5.(2021•毕节市)6月6日是全国“放鱼日”为促进渔业绿色发展,今年“放鱼日”当天,全国同步举办增殖放流200余场,放流各类水生生物苗种近30亿尾.数30亿用科学记数法表示为()A.0.3×109B.3×108C.3×109D.30×108 6.(2020•怀化)《三国演义》《红楼梦》《水浒传》《西游记》是我国古典长篇小说四大名著.其中2016年光明日报出版社出版的《红楼梦》有350万字,则“350万”用科学记数法表示为()A.3.5×106B.0.35×107C.3.5×102D.350×104 7.(2020•长沙)为了将“新冠”疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中632400000000用科学记数法表示为()A.6.324×1011B.6.324×1010C.632.4×109D.0.6324×10128.(2021•大庆)下列说法正确的是()A.|x|<x B.若|x﹣1|+2取最小值,则x=0C.若x>1>y>﹣1,则|x|<|y|D.若|x+1|≤0,则x=﹣1 9.(2020•包头)点A在数轴上,点A所对应的数用2a+1表示,且点A到原点的距离等于3,则a的值为()A.﹣2或1B.﹣2或2C.﹣2D.1 10.(2020•枣庄)计算﹣﹣(﹣)的结果为()A.﹣B.C.﹣D.11.(2021•河北)如图,将数轴上﹣6与6两点间的线段六等分,这五个等分点所对应数依次为a1,a2,a3,a4,a5,则下列结论正确的是()A.a3>0 B.|a1|=|a4| C.a1+a2+a3+a4+a5=0D.a2+a5<0 12.(2020•郴州)如图表示互为相反数的两个点是()A.点A与点B B.点A与点D C.点C与点B D.点C与点D 13.(2020•凉山州)﹣12020=()A.1B.﹣1C.2020D.﹣2020 14.(2020•临沂)如图,数轴上点A对应的数是,将点A沿数轴向左移动2个单位至点B,则点B对应的数是()A.﹣B.﹣2C.D.15.(2020•株洲)一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()A.B.C.D.16.(2020•大庆)若|x+2|+(y﹣3)2=0,则x﹣y的值为()A.﹣5B.5C.1D.﹣1 17.(2020•济宁)用四舍五入法将数3.14159精确到千分位的结果是()A.3.1B.3.14C.3.142D.3.141 18.(2020•巴中)定义运算:若a m=b,则log a b=m(a>0),例如23=8,则log28=3.运用以上定义,计算:log5125﹣log381=()A.﹣1B.2C.1D.44 19.(2019•威海)据央视网报道,2019年1~4月份我国社会物流总额为88.9万亿元人民币,“88.9万亿”用科学记数法表示为()A.8.89×1013B.8.89×1012C.88.9×1012D.8.89×1011 20.(2019•乐山)﹣a一定是()A.正数B.负数C.0D.以上选项都不正确21.(2020•乐山)数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4B.﹣4或10C.﹣10D.4或﹣10 22.(2019•呼和浩特)如图,检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,下面检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是()A.B.C.D.23.(2020•南充)若=﹣4,则x的值是()A.4B.C.﹣D.﹣4 24.(2020秋•南开区期末)若ab≠0,那么+的取值不可能是()A.﹣2B.0C.1D.225.(2019•徐州)如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.10826.(2020秋•乌苏市期末)若|x﹣2|+(y+3)2=0,则y x的值为()A.﹣6B.6C.9D.﹣9 27.(2020秋•淅川县期末)有理数a,b在数轴上的对应点如图,下列式子:①a>0>b;②|b|>|a|;③ab<0;④a﹣b>a+b;⑤<﹣1,其中错误的个数是()A.1B.2C.3D.4 28.(2021•宜宾)在我国远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,类似现在我们熟悉的“进位制”.如图所示是远古时期一位母亲记录孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满五进一,根据图示可知,孩子已经出生的天数是()A.27B.42C.55D.21029.(2020•达州)中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是()A.10B.89C.165D.294 30.(2021春•铜仁市期末)求1+2+22+23+…+22016的值,可令S=1+2+22+23+…+22016,则2S=2+22+23+…+22016+22017,因此2S﹣S=22017﹣1,S=22017﹣1.参照以上推理,计算4+42+43+…+42018+42019的值为()A.42020﹣1B.42020﹣4C.D.31.(2020秋•晋安区期末)如图,直径为2个单位长度的圆从原点开始沿数轴向右无滑动地滚动一周到达点A,则点A表示的数是()A.1B.2C.πD.2π32.(2020秋•卢龙县期末)一根1m长的绳子,第一次剪去绳子的,第二次剪去剩下绳子的,如此剪下去,第100次剪完后剩下绳子的长度是()A.B.C.D.33.(2020秋•雁江区期末)下列说法中,正确的是()A.一个有理数不是正数就是负数B.|a|一定是正数C.两个数的差一定小于被减数D.如果两个数的和为正数,那么这两个数中至少有一个正数34.(2006•临汾)学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价一定为()A.180元B.202.5元C.180元或202.5元D.180元或200元二.填空题35.(2020•西宁)计算:(﹣1)2020=.36.(2019•聊城)计算:(﹣﹣)÷=.37.(2020秋•夏津县期末)数轴上表示﹣4.5与2.5之间的所有整数之和是.38.(2021春•东莞市期末)已知|x+1|+(y﹣3)2=0,则xy=.39.(2020秋•秦淮区期末)如图是一个数值运算的程序,若输出y的值为5,则输入的值为.40.(2019•德州)已知:[x]表示不超过x的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x}=x﹣[x],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}=.41.(2021•自贡)如图,某学校“桃李餐厅”把WIFI密码做成了数学题.小红在餐厅就餐时,思索了一会儿,输入密码,顺利地连接到了“桃李餐厅”的网络.那么她输入的密码是.42.(2020•江西)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的计数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号计数的方法,如图符号表示一个两位数,则这个两位数是.43.(2019•绍兴)我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,字母m所表示的数是.44.(2020秋•城厢区期末)如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2.则圆与数轴的公共点到原点的距离最远时,该点所表示的数是.45.(2020秋•遂宁期末)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.46.(2021春•威宁县期末)定义:a*b=a2﹣4b2,例如3*2=32﹣4×22=﹣7,请你计算:5*1.5=.47.(2021春•随县期末)已知[x]表示不超过x的最大整数.如:[3.2]=3,[﹣0.7]=﹣1.现定义:{x}=[x]﹣x,如{1.5}=[1.5]﹣1.5=﹣0.5,则{3.9}+{﹣}﹣{1}=.48.(2020秋•涪城区校级期末)已知a、b互为相反数,c、d互为倒数,m的绝对值是2,则代数式﹣m2+﹣cd的值为.三.解答题49.(2021•广西)计算:23×(﹣+1)÷(1﹣3).50.(2020•梧州)计算:(﹣2)×(﹣3)﹣[5﹣(﹣3)]+(﹣7﹣1)÷2.51.(2020•广西)计算:﹣(﹣1)+32÷(1﹣4)×2.52.(2020秋•鼓楼区期末)计算(1)(﹣+﹣)×16;(2)﹣12﹣(1﹣)÷3×(﹣)2.53.(2020秋•淅川县期末)计算:(1)﹣32÷(﹣3)2+3×(﹣2)+|﹣4|;(2)66×.54.(2020秋•农安县期末)计算:﹣23﹣[(﹣3)2﹣22×﹣8.5]÷(﹣)255.(2021春•南岗区期末)已知:a、b互为相反数,c、d互为倒数,x的平方等于9,求a+b+x﹣的值.56.(2021春•松北区期末)为庆祝端午节,和平加油站开展了加油每满10L返现金5元(不足10L不返现金)的活动.出租车司机王师傅只在东西走向的路上开车接送乘客,他7:00从甲地出发(向东行驶的里程数记作正数),到8:00为止,他所行驶的里程记录如下(单位:公里)+4,﹣3,﹣6,+13,﹣10,﹣4,+5.(1)计算到8:00时,王司机在甲地的哪个方向,距甲地多远?(2)若王师傅当日工作10小时,每小时行驶的里程相同,该车每百公里耗油6L,每升油5元,则王师傅当日在该加油站加油共花费多少元?57.(2020秋•城厢区期末)出租车司机刘师傅某天上午从A地出发,在东西方向的公路上行驶营运,下表是每次行驶的里程(单位:千米)(规定向东走为正,向西走为负;×表示空载,〇表示载有乘客,且乘客都不相同).次数12345678里程﹣3﹣15+19﹣1+5﹣12﹣6+12载客×〇〇×〇〇〇〇(1)刘师傅走完第8次里程后,他在A地的什么方向?离A地有多少千米?(2)已知出租车每千米耗油约0.06升,刘师傅开始营运前油箱里有7升油,若少于2升,则需要加油,请通过计算说明刘师傅这天上午中途是否可以不加油.(3)已知载客时2千米以内收费10元,超过2千米后每千米收费1.6元,问刘师傅这天上午走完8次里程后的营业额为多少元?58.(2021春•哈尔滨期末)某文具店在一周的销售中,盈亏情况如下表(盈为正,单位:元):星期一星期二星期三星期四星期五星期六星期日合计﹣27.8﹣50.3162138.1●●188458表中星期五和星期六的盈亏数被墨水污染了.(1)能看到数据的这5天中,哪天赚的最多?哪天赚的最少?差距是多少?(2)星期五和星期六这两天一共是盈还是亏?盈亏是多少?(3)若周六的盈亏数比周五的盈亏数大62,求周五的盈亏数是多少?59.(2019•重庆)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特殊的自然数﹣“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.60.(2020秋•沙坪坝区期末)数字“6”由于谐音“六六大顺”深受人们喜爱.若一个正整数各数位上的数字之和为6的倍数,则称这个正整数为“六六大顺”数.例如:正整数24,因为2+4=6且6÷6=1,所以24是“六六大顺”数;正整数125,因为1+2+5=8且8÷6商1余2,所以125不是“六六大顺”数.(1)判断96和615是否是“六六大顺”数?请说明理由;(2)求出所有大于600且小于700的“六六大顺”数的个数.有理数经典练习题参考答案与试题解析一.选择题(共34小题)1.(2021•广州)如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=6,则点A 表示的数为()A.﹣3B.0C.3D.﹣6【解答】解:∵a+b=0,∴a=﹣b,即a与b互为相反数.又∵AB=6,∴b﹣a=6.∴2b=6.∴b=3.∴a=﹣3,即点A表示的数为﹣3.故选:A.2.(2021•枣庄)如图,数轴上有三个点A,B,C,若点A,B表示的数互为相反数,则图中点C对应的数是()A.﹣2B.0C.1D.4【解答】解:因为点A,点B表示的数互为相反数,所以原点在线段AB中间,即在点A 右边的第3格,得出点C在原点的右边第1格,所以点C对应的数是1.故选:C.3.(2021•河北)能与﹣(﹣)相加得0的是()A.﹣﹣B.+C.﹣+D.﹣+【解答】解:﹣(﹣)=﹣+,与其相加得0的是﹣+的相反数.﹣+的相反数为+﹣,故选:C.4.(2020•长春)如图,数轴上被墨水遮盖的数可能为()A.﹣1B.﹣1.5C.﹣3D.﹣4.2【解答】解:由数轴上墨迹的位置可知,该数大于﹣4,且小于﹣2,因此备选项中,只有选项C符合题意,故选:C.5.(2021•毕节市)6月6日是全国“放鱼日”为促进渔业绿色发展,今年“放鱼日”当天,全国同步举办增殖放流200余场,放流各类水生生物苗种近30亿尾.数30亿用科学记数法表示为()A.0.3×109B.3×108C.3×109D.30×108【解答】解:30亿=3000000000=3×109,故选:C.6.(2020•怀化)《三国演义》《红楼梦》《水浒传》《西游记》是我国古典长篇小说四大名著.其中2016年光明日报出版社出版的《红楼梦》有350万字,则“350万”用科学记数法表示为()A.3.5×106B.0.35×107C.3.5×102D.350×104【解答】解:350万=350×104=3.5×102×104=3.5×106.故选:A.7.(2020•长沙)为了将“新冠”疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中632400000000用科学记数法表示为()A.6.324×1011B.6.324×1010C.632.4×109D.0.6324×1012【解答】解:632 400 000 000=6.324×1011,故选:A.8.(2021•大庆)下列说法正确的是()A.|x|<xB.若|x﹣1|+2取最小值,则x=0C.若x>1>y>﹣1,则|x|<|y|D.若|x+1|≤0,则x=﹣1【解答】解:A、当x=0时,|x|=x,故此选项错误,不符合题意;B、∵|x﹣1|≥0,∴当x=1时,|x﹣1|+2取最小值,故此选项错误,不符合题意;C、∵x>1>y>﹣1,∴|x|>1,|y|<1,∴|x|>|y|,故此选项错误,不符合题意;D、∵|x+1|≤0,|x+1|≥0,∴x+1=0,∴x=﹣1,故此选项正确,符合题意.故选:D.9.(2020•包头)点A在数轴上,点A所对应的数用2a+1表示,且点A到原点的距离等于3,则a的值为()A.﹣2或1B.﹣2或2C.﹣2D.1【解答】解:由题意得,|2a+1|=3,解得,a=1或a=﹣2,故选:A.10.(2020•枣庄)计算﹣﹣(﹣)的结果为()A.﹣B.C.﹣D.【解答】解:﹣﹣(﹣)==﹣.故选:A.11.(2021•河北)如图,将数轴上﹣6与6两点间的线段六等分,这五个等分点所对应数依次为a1,a2,a3,a4,a5,则下列结论正确的是()A.a3>0B.|a1|=|a4|C.a1+a2+a3+a4+a5=0D.a2+a5<0【解答】解:﹣6与6两点间的线段的长度=6﹣(﹣6)=12,六等分后每个等分的线段的长度=12÷6=2,∴a1,a2,a3,a4,a5表示的数为:﹣4,﹣2,0,2,4,A选项,a3=﹣6+2×3=0,故该选项错误;B选项,|﹣4|≠2,故该选项错误;C选项,﹣4+(﹣2)+0+2+4=0,故该选项正确;D选项,﹣2+4=2>0,故该选项错误;故选:C.12.(2020•郴州)如图表示互为相反数的两个点是()A.点A与点B B.点A与点D C.点C与点B D.点C与点D 【解答】解:3和﹣3互为相反数,则点A与点D表示互为相反数的两个点.故选:B.13.(2020•凉山州)﹣12020=()A.1B.﹣1C.2020D.﹣2020【解答】解:﹣12020=﹣1.故选:B.14.(2020•临沂)如图,数轴上点A对应的数是,将点A沿数轴向左移动2个单位至点B,则点B对应的数是()A.﹣B.﹣2C.D.【解答】解:点A向左移动2个单位,点B对应的数为:﹣2=﹣.故选:A.15.(2020•株洲)一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()A.B.C.D.【解答】解:∵|+1.2|=1.2,|﹣2.3|=2.3,|+0.9|=0.9,|﹣0.8|=0.8,又∵0.8<0.9<1.2<2.3,∴从轻重的角度看,最接近标准的是选项D中的元件.故选:D.16.(2020•大庆)若|x+2|+(y﹣3)2=0,则x﹣y的值为()A.﹣5B.5C.1D.﹣1【解答】解:∵|x+2|+(y﹣3)2=0,∴x+2=0,y﹣3=0,解得:x=﹣2,y=3,故x﹣y=﹣2﹣3=﹣5.故选:A.17.(2020•济宁)用四舍五入法将数3.14159精确到千分位的结果是()A.3.1B.3.14C.3.142D.3.141【解答】解:3.14159精确到千分位的结果是3.142.故选:C.18.(2020•巴中)定义运算:若a m=b,则log a b=m(a>0),例如23=8,则log28=3.运用以上定义,计算:log5125﹣log381=()A.﹣1B.2C.1D.44【解答】解:由题意可得,log5125﹣log381=3﹣4=﹣1,故选:A.19.(2019•威海)据央视网报道,2019年1~4月份我国社会物流总额为88.9万亿元人民币,“88.9万亿”用科学记数法表示为()A.8.89×1013B.8.89×1012C.88.9×1012D.8.89×1011【解答】解:法一:88.9万亿=88.9×104×108=88.9×1012用科学记数法表示:88.9×1012=8.89×1013法二:科学记数法表示为:88.9万亿=889 000 000 000 00=8.89×1013故选:A.20.(2019•乐山)﹣a一定是()A.正数B.负数C.0D.以上选项都不正确【解答】解:﹣a中a的符号无法确定,故﹣a的符号无法确定.故选:D.21.(2020•乐山)数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4B.﹣4或10C.﹣10D.4或﹣10【解答】解:点A表示的数是﹣3,左移7个单位,得﹣3﹣7=﹣10,点A表示的数是﹣3,右移7个单位,得﹣3+7=4.所以点B表示的数是4或﹣10.故选:D.22.(2019•呼和浩特)如图,检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,下面检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是()A.B.C.D.【解答】解:由题意得:四个排球质量偏差的绝对值分别为:0.6,0.7,2.5,3.5,绝对值最小的为0.6,最接近标准.故选:A.23.(2020•南充)若=﹣4,则x的值是()A.4B.C.﹣D.﹣4【解答】解:∵=﹣4,∴x=﹣,故选:C.24.(2019•徐州)如图,数轴上有O、A、B三点,O为原点,OA、OB分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B表示的数最为接近的是()A.5×106B.107C.5×107D.108【解答】解:由题意应该单位长为5×106,∵10×5×106=5×107∴从数轴看比较接近C.故选:C.25.(2020秋•南开区期末)若ab≠0,那么+的取值不可能是()A.﹣2B.0C.1D.2【解答】解:∵ab≠0,∴有四种情况:①a>0,b>0,②a<0,b<0,③a>0,b<0,④a<0,b>0;①当a>0,b>0时,+=1+1=2;②当a<0,b<0时,+=﹣1﹣1=﹣2;③当a>0,b<0时,+=1﹣1=0;④当a<0,b>0时,+=﹣1+1=0;综上所述,+的值为:±2或0.故选:C.26.(2020秋•乌苏市期末)若|x﹣2|+(y+3)2=0,则y x的值为()A.﹣6B.6C.9D.﹣9【解答】解:由题意得,x﹣2=0,y+3=0,解得x=2,y=﹣3,所以,y x=(﹣3)2=9.故选:C.27.(2020秋•淅川县期末)有理数a,b在数轴上的对应点如图,下列式子:①a>0>b;②|b|>|a|;③ab<0;④a﹣b>a+b;⑤<﹣1,其中错误的个数是()A.1B.2C.3D.4【解答】解:从数轴上可以看出a<0,b>0,且|a|>|b|.则:①a>0>b,错误;②|b|>|a|,错误.∵a<0,b>0,∴ab<0.∴③ab<0,正确.∵b>0,∴﹣b<0.∴﹣b<b.∴a﹣b<a+b.∴④a﹣b>a+b,错误.∵|a|>|b,a<0,b>0,∴a<﹣b.∴.∴⑤<﹣1,正确.综上,错误的个数有3个,故选:C.28.(2021•宜宾)在我国远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,类似现在我们熟悉的“进位制”.如图所示是远古时期一位母亲记录孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满五进一,根据图示可知,孩子已经出生的天数是()A.27B.42C.55D.210【解答】解:根据题意得:孩子出生的天数的五进制数为132,化为十进制数为:132=1×52+3×51+2×50=42.故选:B.29.(2020•达州)中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是()A.10B.89C.165D.294【解答】解:2×53+1×52+3×51+4×50=294,故选:D.30.(2021春•铜仁市期末)求1+2+22+23+…+22016的值,可令S=1+2+22+23+…+22016,则2S=2+22+23+…+22016+22017,因此2S﹣S=22017﹣1,S=22017﹣1.参照以上推理,计算4+42+43+…+42018+42019的值为()A.42020﹣1B.42020﹣4C.D.【解答】解:设S=4+42+43+…+42018+42019,则4S=42+43+…+42019+42020,∴4S﹣S=42020﹣4,∴3S=42020﹣4,∴S=,即4+42+43+…+42018+42019的值为.故选:C.31.(2020秋•晋安区期末)如图,直径为2个单位长度的圆从原点开始沿数轴向右无滑动地滚动一周到达点A,则点A表示的数是()A.1B.2C.πD.2π【解答】解:圆旋转一周,周长为2π,∴点A所表示的数为0+2π=2π.故选:D.32.(2020秋•卢龙县期末)一根1m长的绳子,第一次剪去绳子的,第二次剪去剩下绳子的,如此剪下去,第100次剪完后剩下绳子的长度是()A.B.C.D.【解答】解:∵第一次剪去绳子的,还剩m;第二次剪去剩下绳子的,还剩=m,……∴第100次剪去剩下绳子的后,剩下绳子的长度为()100m;故选:C.33.(2020秋•雁江区期末)下列说法中,正确的是()A.一个有理数不是正数就是负数B.|a|一定是正数C.两个数的差一定小于被减数D.如果两个数的和为正数,那么这两个数中至少有一个正数【解答】解:A、一个有理数是正数、0或负数两个数的和不一定大于每一个加数(﹣1+(﹣2)=﹣3,﹣3小于任何一个数),故本选项错误;B、|a|一定是非负数,故本选项错误;C、两个数的差不一定小于被减数(3﹣(﹣1)=4,4大于任何一个数),故本选项错误;D、如果两个数的和为正数,那么这两个数中至少有一个正数是正确的.故选:D.34.(2006•临汾)学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价一定为()A.180元B.202.5元C.180元或202.5元D.180元或200元【解答】解:∵200×0.9=180,200×0.8=160,160<162<180,∴一次性购书付款162元,可能有两种情况.162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.故选:C.二.填空题(共14小题)35.(2020•西宁)计算:(﹣1)2020=1.【解答】解:原式=1.故答案为:1.36.(2019•聊城)计算:(﹣﹣)÷=﹣.【解答】解:原式=(﹣)×=﹣,故答案为:﹣.37.(2020秋•夏津县期末)数轴上表示﹣4.5与2.5之间的所有整数之和是﹣7.【解答】解:如图所示:,数轴上表示﹣4.5与2.5之间的所有整数为:﹣4,﹣3,﹣2,﹣1,0,1,2,故符合题意的所有整数之和是:﹣4﹣3﹣2﹣1+0+1+2=﹣7.故答案为:﹣7.38.(2021春•东莞市期末)已知|x+1|+(y﹣3)2=0,则xy=﹣3.【解答】解:∵|x+1|+(y﹣3)2=0,|x+1|≥0,(y﹣3)2≥0,∴x+1=0,y﹣3=0,解得x=﹣1,y=3,∴xy=(﹣1)×3=﹣3.故答案为:﹣3.39.(2020秋•秦淮区期末)如图是一个数值运算的程序,若输出y的值为5,则输入的值为4或﹣4.【解答】解:设输入的数为x,由运算程序得:(x2﹣1)÷3=5,解得x1=4,x2=﹣4,故答案为:4或﹣4.40.(2019•德州)已知:[x]表示不超过x的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x}=x﹣[x],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}= 1.1.【解答】解:根据题意可得原式=(3.9﹣3)+[(﹣1.8)﹣(﹣2)]﹣(1﹣1)=0.9+0.2=1.1;故答案为:1.141.(2021•自贡)如图,某学校“桃李餐厅”把WIFI密码做成了数学题.小红在餐厅就餐时,思索了一会儿,输入密码,顺利地连接到了“桃李餐厅”的网络.那么她输入的密码是244872.【解答】解:由三个等式,得到规律:5*3⊕6=301848可知:5×6 3×6 6×(5+3),2*6⊕7=144256可知:2×7 6×7 7×(2+6),9*2⊕5=451055可知:9×5 2×5 5×(9+2),∴4*8⊕6=4×6 8×6 6×(4+8)=244872.故答案为:244872.42.(2020•江西)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的计数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号计数的方法,如图符号表示一个两位数,则这个两位数是25.【解答】解:由题意可得,表示25.故答案为:25.43.(2019•绍兴)我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,字母m所表示的数是4.【解答】解:根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15,∴第一列第三个数为:15﹣2﹣5=8,∴m=15﹣8﹣3=4.故答案为:444.(2020秋•城厢区期末)如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2.则圆与数轴的公共点到原点的距离最远时,该点所表示的数是﹣8π.【解答】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4(周),滚动第3次,所对应的周数为0﹣3﹣1+2=﹣2(周),滚动第4次,所对应的周数为0﹣3﹣1+2﹣1=﹣3(周),滚动第5次,所对应的周数为0﹣3﹣1+2﹣1+3=0(周),滚动第6次,所对应的周数为0﹣3﹣1+2﹣1+3+2=2(周),所以圆与数轴的公共点到原点的距离最远是﹣4周,即该点所表示的数是﹣8π,故答案为:﹣8π.45.(2020秋•遂宁期末)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为110个.【解答】解:3×62+0×6+2=3×36+0+2=108+0+2=110(个).故她一共采集到的野果数量为110个.故答案为:110.46.(2021春•威宁县期末)定义:a*b=a2﹣4b2,例如3*2=32﹣4×22=﹣7,请你计算:5*1.5=16.【解答】解:∵a*b=a2﹣4b2,∴5*1.5=52﹣4×1.52=25﹣4×2.25=25﹣9=16,故答案为:16.47.(2021春•随县期末)已知[x]表示不超过x的最大整数.如:[3.2]=3,[﹣0.7]=﹣1.现定义:{x}=[x]﹣x,如{1.5}=[1.5]﹣1.5=﹣0.5,则{3.9}+{﹣}﹣{1}=﹣1.4.【解答】解:根据题意可得{3.9}+{﹣}﹣{1}=(3﹣3.9)+[(﹣2)﹣(﹣1.5)]﹣(1﹣1)=﹣0.9+(﹣0.5)=﹣1.4.故答案为:﹣1.4.48.(2020秋•涪城区校级期末)已知a、b互为相反数,c、d互为倒数,m的绝对值是2,则代数式﹣m2+﹣cd的值为﹣.【解答】解:根据题意知a+b=0,cd=1,m=2或m=﹣2,当m=2时,原式=﹣22+=﹣4﹣=﹣;当m=﹣2时,原式==﹣(﹣2)2+=﹣4﹣=﹣;综上,代数式﹣m2+﹣cd的值为﹣.故答案为:﹣.三.解答题(共12小题)49.(2021•广西)计算:23×(﹣+1)÷(1﹣3).【解答】解:原式=8×÷(﹣2)=4÷(﹣2)=﹣2.50.(2020•梧州)计算:(﹣2)×(﹣3)﹣[5﹣(﹣3)]+(﹣7﹣1)÷2.【解答】解:原式=6﹣8+(﹣8)÷2=6﹣8+(﹣4)=﹣2﹣4=﹣6.51.(2020•广西)计算:﹣(﹣1)+32÷(1﹣4)×2.【解答】解:原式=1+9÷(﹣3)×2=1﹣3×2=1﹣6=﹣5.52.(2020秋•鼓楼区期末)计算(1)(﹣+﹣)×16;(2)﹣12﹣(1﹣)÷3×(﹣)2.【解答】解:(1)(﹣+﹣)×16=﹣12+14﹣8=﹣6;(2)﹣12﹣(1﹣)÷3×(﹣)2=﹣1﹣××=﹣1﹣=﹣.53.(2020秋•淅川县期末)计算:(1)﹣32÷(﹣3)2+3×(﹣2)+|﹣4|;(2)66×.【解答】解:(1)原式=﹣9÷9﹣6+4=﹣1﹣2=﹣3;(2)原式=66×(﹣)﹣66××=﹣33﹣14=﹣47.54.(2020秋•农安县期末)计算:﹣23﹣[(﹣3)2﹣22×﹣8.5]÷(﹣)2【解答】解:﹣23﹣[(﹣3)2﹣22×﹣8.5]÷(﹣)2=﹣8﹣[9﹣4×﹣8.5]×4=﹣8﹣[9﹣1﹣8.5]×4=﹣8﹣(﹣0.5)×4=﹣8+2=﹣6.55.(2021春•南岗区期末)已知:a、b互为相反数,c、d互为倒数,x的平方等于9,求a+b+x﹣的值.【解答】解:a、b互为相反数,c、d互为倒数,x的平方等于9,∴a+b=0,cd=1,x=±3,当x=3时,a+b+x﹣=0+3﹣=,当x=﹣3时,a+b+x﹣=0﹣3﹣=﹣,即a+b+x﹣的值是或﹣,56.(2021春•松北区期末)为庆祝端午节,和平加油站开展了加油每满10L返现金5元(不足10L不返现金)的活动.出租车司机王师傅只在东西走向的路上开车接送乘客,他7:00从甲地出发(向东行驶的里程数记作正数),到8:00为止,他所行驶的里程记录如下(单位:公里)+4,﹣3,﹣6,+13,﹣10,﹣4,+5.(1)计算到8:00时,王司机在甲地的哪个方向,距甲地多远?(2)若王师傅当日工作10小时,每小时行驶的里程相同,该车每百公里耗油6L,每升油5元,则王师傅当日在该加油站加油共花费多少元?【解答】解:(1)4﹣3﹣6+13﹣10﹣4+5=﹣1(公里),∴王司机在甲地的西1公里位置;(2)10×(4+3+6+13+10+4+5)=450(公里),450÷100×6=27(L),27×5﹣2×5=125(元).∴王师傅当日在该加油站加油共花费125元.57.(2020秋•城厢区期末)出租车司机刘师傅某天上午从A地出发,在东西方向的公路上行驶营运,下表是每次行驶的里程(单位:千米)(规定向东走为正,向西走为负;×表示空载,〇表示载有乘客,且乘客都不相同).次数12345678里程﹣3﹣15+19﹣1+5﹣12﹣6+12载客×〇〇×〇〇〇〇(1)刘师傅走完第8次里程后,他在A地的什么方向?离A地有多少千米?(2)已知出租车每千米耗油约0.06升,刘师傅开始营运前油箱里有7升油,若少于2升,则需要加油,请通过计算说明刘师傅这天上午中途是否可以不加油.(3)已知载客时2千米以内收费10元,超过2千米后每千米收费1.6元,问刘师傅这天上午走完8次里程后的营业额为多少元?【解答】解:(1)因为﹣3﹣15+19﹣1+5﹣12﹣6+12=﹣1,所以刘师傅走完第8次里程后,他在A地的西面,离A地有1千米;(2)行驶的总路程:|﹣3|+|﹣15|+|+19|+|﹣1|+|+5|+|﹣12|+|﹣6|+|+12|=73(千米),耗油量为:0.06×73=4.38(升),因为7﹣4.38=2.62>2,所以不需要加油;(3)第2次载客收费:10+(15﹣2)×1.6=30.8(元),第3次载客收费:10+(19﹣2)×1.6=37.2(元),第5次载客收费:10+(5﹣2)×1.6=14.8(元),第6次载客收费:10+(12﹣2)×1.6=26(元),第7次载客收费:10+(6﹣2)×1.6=16.4(元),第8次载客收费:10+(12﹣2)×1.6=26(元),所以总营业额为:30.8+37.2+14.8+26+16.4+26=151.2(元),答:刘师傅这天上午走完8次里程后的营业额为151.2元.58.(2021春•哈尔滨期末)某文具店在一周的销售中,盈亏情况如下表(盈为正,单位:元):星期一星期二星期三星期四星期五星期六星期日合计﹣27.8﹣50.3162138.1●●188458表中星期五和星期六的盈亏数被墨水污染了.(1)能看到数据的这5天中,哪天赚的最多?哪天赚的最少?差距是多少?(2)星期五和星期六这两天一共是盈还是亏?盈亏是多少?(3)若周六的盈亏数比周五的盈亏数大62,求周五的盈亏数是多少?【解答】(1)周日最多188,周二最少﹣50.3,差距188﹣(﹣50.3)=238.3(元);(2)458﹣[﹣27.8+(﹣50.3)+162+138.1+188]=48(元),∵48为正数,∴这两天一共是盈利,盈利48元;(3)设周五的盈亏数为x,根据题意得,x+(x+62)=48∴x=﹣7,∴周五的盈亏数是﹣7.59.(2019•重庆)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特殊的自然数﹣“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.【解答】解:(1)2019不是“纯数”,2020是“纯数”,理由:当n=2019时,n+1=2020,n+2=2021,∵个位是9+0+1=10,需要进位,∴2019不是“纯数”;当n=2020时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不需要进位,千位为2+2+2=6,不需要进位,∴2020是“纯数”;(2)由题意可得,连续的三个自然数个位数字是0,1,2,其他位的数字为0,1,2时,不会产生进位,当这个数是一位自然数时,只能是0,1,2,共三个,当这个自然数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,共九个,当这个数是三位自然数时,只能是100,由上可得,不大于100的“纯数”的个数为3+9+1=13,即不大于100的“纯数”的有13个.。

《常考题》初中七年级数学上册第一章《有理数》经典练习(含答案解析)

《常考题》初中七年级数学上册第一章《有理数》经典练习(含答案解析)

1.13-的倒数的绝对值()A.-3 B.13-C.3 D.13C解析:C 【分析】首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】13-的倒数为-3,-3绝对值是3,故答案为:C.【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.2.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有()A.4个B.3个C.2个D.1个B解析:B【分析】根据有理数的减法运算法则对各小题分析判断即可得解.【详解】①减去一个数等于加上这个数的相反数,故本小题正确;②互为两个相反数的两数相加得零,故本小题正确;③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确;综上所述,正确的有①②④共3个.故选B.【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键.3.下列计算正确的是()A.|﹣3|=﹣3 B.﹣2﹣2=0C.﹣14=1 D.0.1252×(﹣8)2=1D解析:D【分析】根据绝对值的性质,有理数的减法法则,有理数的乘方法则即可求出答案.【详解】A、原式=3,故A错误;B、原式=﹣4,故B错误;C、原式=﹣1,故C错误;D、原式=[0.125×(﹣8)]2=1,故D正确.故选:D.【点睛】本题考查了绝对值的化简,有理数的运算法则,熟练掌握有理数运算的运算法则是本题的关键,要注意符号变号问题.4.2--的相反数是()A.12-B.2-C.12D.2D解析:D【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.5.定义一种新运算2x yx yx+*=,如:2212122+⨯*==.则()(42)1**-=()A.1 B.2 C.0 D.-2C 解析:C【分析】先根据新定义计算出4*2=2,然后再根据新定义计算2*(-1)即可.【详解】4*2=4224+⨯=2, 2*(-1)=()2212+⨯-=0.故(4*2)*(-1)=0.故答案为C.【点睛】定义新运算是近几年的热门题型,首先要根据新运算正确列出算式,本题考查了有理数混合运算,根据新运算定义正确列出算式并熟练掌握有理数的运算法则是解答本题的关键. 6.据报通,国家计划建设港珠澳大桥,估解该项工程总报资726亿元,用科学记数法表示726亿正确的是()A.7.26×1010B.7.26×1011C.72.6x109D.726×108A解析:A【解析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可.【详解】726亿=7.26×1010.故选A .【点睛】本题考查了用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a |<10,确定a 与n 的值是解题的关键.7.下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- A 解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.8.围绕保障疫情防控、为企业好困解难,财政部门快速行动,持续加大资金投入,截至2月14日,各级财政已安排疫情防控补助资金901.5亿元,把“901.5”用科学记数法表示为( )A .109.01510⨯B .39.01510⨯C .29.01510⨯D .109.0210⨯ C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】901.5=9.015×102.故选:C.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.在数轴上距原点4个单位长度的点所表示的数是().A.4 B.-4 C.4或-4 D.2或-2C解析:C【解析】解:距离原点4个单位长度的点在原点的左边和右边各有一个,分别是4和-4,故选C.10.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|D解析:D【分析】根据绝对值的定义进行分析即可得出正确结论.【详解】选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,故选D.【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.11.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多10D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.12.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m B解析:B【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm 用科学记数法可表示为:2.8×10﹣8m ,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.若1<x <2,则|2||1|||21x x x x x x ---+--的值是( ) A .﹣3B .﹣1C .2D .1D解析:D【分析】在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.【详解】 解:12x <<,20x ∴-<,10x ->,0x >,∴原式1111=-++=,故选:D .【点睛】 本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.14.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元C 解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.在数3,﹣13,0,﹣3中,与﹣3的差为0的数是()A.3 B.﹣13C.0 D.﹣3D解析:D【分析】与-3的差为0的数就是0+(-3),据此即可求解.【详解】解:根据题意得:0+(﹣3)=﹣3,则与﹣3的差为0的数是﹣3,故选:D.【点睛】本题考查了有理数的运算.熟练掌握有理数减法法则是解本题的关键.1.3-的平方的相反数的倒数是___________.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义解析:1 9 -【分析】根据倒数,相反数,平方的概念可知.【详解】−3的平方是9,9的相反数是-9,-9的倒数是1 9 -故答案为1 9 -.【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义.2.在|﹣3|、﹣32、﹣(﹣3)2、﹣(3﹣π)、﹣|0|中,负数的个数为_____.2个【分析】分别计算出题目中所给的每一个数即可作出判定【详解】∵|﹣3|=3﹣32=﹣9﹣(﹣3)2=﹣9﹣(3﹣π)=π﹣3﹣|0|=0∴﹣32﹣(﹣3)2是负数故答案为2个【点睛】此题考查的知识解析:2个【分析】分别计算出题目中所给的每一个数,即可作出判定.【详解】∵|﹣3|=3,﹣32=﹣9,﹣(﹣3)2=﹣9,﹣(3﹣π)=π﹣3,﹣|0|=0,∴﹣32、﹣(﹣3)2是负数.故答案为2个.【点睛】此题考查的知识点是正数和负数,关键是理解负数的概念,而且要把这些数化为最后结果才能得出正确答案.这就又要理解平方、绝对值,正负号的变化等知识点.3.绝对值不大于2.1的所有整数是____,其和是____.﹣2﹣10120【分析】找出绝对值不大于21的所有整数求出之和即可【详解】绝对值不大于21的所有整数有﹣2﹣1012之和为﹣2﹣1+0+1+2=0故答案为:﹣2﹣1012;0【点评】此题考查了绝对值解析:﹣2,﹣1,0,1,2 0【分析】找出绝对值不大于2.1的所有整数,求出之和即可.【详解】绝对值不大于2.1的所有整数有﹣2、﹣1、0、1、2,之和为﹣2﹣1+0+1+2=0,故答案为:﹣2,﹣1,0,1,2;0【点评】此题考查了绝对值的意义和有理数的加法,熟练掌握运算法则是解本题的关键.4.填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.5.把35.89543精确到百分位所得到的近似数为________.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.6.计算-32+5-8×(-2)时,应该先算_____,再算_____,最后算_____.正确的结果为_____.乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可【详解】解:原式=-9+5+16=12故答案为:乘方乘法加法12【点睛】本题主要考查了有理数混合运算的运算顺序先算乘方再算乘除最后解析:乘方 乘法 加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可.解:原式=-9+5+16=12.故答案为:乘方,乘法,加法,12【点睛】本题主要考查了有理数混合运算的运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.7.校运动会的拔河比赛真是紧张刺激!规定拔河时,任意一方拉过30cm就算获胜.小胖他们班在每次喊过“拉”声之后都可拉过7cm,但又会被拉回3cm.如此下去,该班在第________次喊过“拉”声后就可获得胜利.7【分析】根据题意得到当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取得胜利【详解】解:由题意得喊过一次拉声之后可拉过当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取解析:7【分析】根据题意得到当喊到第6次时,一共拉过了6(73)24(cm)⨯-=,离胜利还差30246(cm)-=,所以再喊一次后拉过7cm,超过了30cm,即可取得胜利.【详解】解:由题意得喊过一次“拉”声之后可拉过4cm.当喊到第6次时,一共拉过了6(73)24(cm)⨯-=.离胜利还差30246(cm)-=,所以再喊一次后拉过7cm,超过了30cm,即可取得胜利.故答案为:7.【点睛】此题考查了有理数的混合运算的应用,正确理解题意,掌握有理数的各运算法则是解题的关键.8.计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0【分析】将同分母的分数分别相加,再计算加法即可.【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:0.此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.9.截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn 为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n ,n 为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a 的要求和10的指数n 的表示规律为关键,10.如果点A 表示+3,将A 向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可 解析:-1【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.11.已知0a >,0b <,b a >,比较a ,a -,b ,b -四个数的大小关系,用“<”把它们连接起来:_______.b <-a <a <-b 【分析】先在数轴上标出ab-a-b 的位置再比较即可【详解】解:∵a >0b <0|b|>|a|∴b <-a <a <-b 故答案为:b <-a <a <-b 【点睛】本题考查了数轴相反数和有理数的大小解析:b <-a <a <-b【分析】先在数轴上标出a 、b 、-a 、-b 的位置,再比较即可.【详解】解:∵a >0,b <0,|b|>|a|,∴b <-a <a <-b ,故答案为:b <-a <a <-b .【点睛】本题考查了数轴,相反数和有理数的大小比较,能知道a 、b 、-a 、-b 在数轴上的位置是解此题的关键.1.点A 、B 在数轴上所表示的数如图所示,回答下列问题:(1)将A 在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C ,求出B 、C 两点间的距离是多少个单位长度?(2)若点B 在数轴上移动了m 个单位长度到点D ,且A 、D 两点间的距离是3,求m 的值.解析:(1)B 、C 两点间的距离是3个单位长度;(2)m 的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C 所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC =|2﹣5|=3;(2)分类考虑当点D 在点A 的左侧与右侧,利用AD=3,求出点D 所表示的数,再利用BD=m 求出m 的值即可.【详解】解:(1)点C 所表示的数为﹣3﹣1+9=5,∴BC =|2﹣5|=3.(2)当点D 在点A 的右侧时,点D 所表示的数为﹣3+3=0,所以点B 移动到点D 的距离为m =|2﹣0|=2,当点D 在点A 的左侧时,点D 所表示的数为﹣3﹣3=﹣6,所以点B 移动到点D 的距离为m =|2﹣(﹣6)|=8,答:m 的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 2.计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 解析:(1)23-;(2)-11 【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法;(2)先计算乘方和绝对值,再计算乘除法,最后计算加减法.【详解】(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+=23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1 =116(8)123122÷--+⨯⨯+ =3312144--++ =-11.【点睛】 此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键. 3.某粮库6天内粮食进、出库的吨数如下(“+”表示进库,“-”表示出库)+25,-22,-14,+35,-38,-20(1)经过这6天,仓库里的粮食是增加了还是减少了?)(2)经过这6天,仓库管理员结算时发现库里还存280吨粮,那么6天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少装卸费?解析:(1)减少了34吨;(2)314吨;(3)770元【分析】(1)求出6天的数据的和即可判断;(2)根据(1)中结果计算即可;(3)求出数据的绝对值的和,再乘5即可;【详解】解:(1)25−22−14+35−38−20=−34<0,答:经过6天,粮库里的粮食减少了34吨;(2)280+34=314(吨),答:6天前粮库里的存量314吨;(3)(25+22+14+35+38+20)×5=770(元),答:这6天要付出770元装卸费.【点睛】本题考查有理数混合运算的实际应用,正确理解题意,列出算式是解题的关键. 4.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.。

七年级上册数学有理数练习题及答案

七年级上册数学有理数练习题及答案

七年级上册数学有理数练习题及答案导语:数学是一门需要重复练习和不断巩固的学科,特别是对于初中的学生来说,在学习有理数的过程中,练习题是非常重要的。

本文将为你提供一些七年级上册数学有理数的练习题及答案,希望能够帮助你巩固知识点,提高解题能力。

一、填空题1. 将-5.2表示成有理数的形式是 ____________。

2. 一个负数和一个正数相加的结果可能是 _____________。

3. 已知a是负有理数,b是正有理数,那么a乘以b的结果是_____________。

4. 这个数,负有理数,和它的相反数的和是 ___________。

5. -2.5减去6.8,结果是 ____________。

答案:1. -5 2/102. 一个正数3. 负有理数4. 05. -9.3二、选择题1. -7.5的相反数是:A. 7.5B. -7.5C. -6.5D. 6.5答案:B2. 下列哪个是负有理数:A. 0B. 3/4C. -1D. 5/6答案:C3. 两个负有理数相加的结果可能是:A. 正有理数B. 负有理数C. 0D. 无法确定答案:B4. 两个相反数相加的结果是:A. 正有理数B. 负有理数C. 0D. 无法确定答案:C5. -1.5加上0.9的结果是:A. -2.4B. -0.6C. 0.6D. 2.4答案:B三、计算题1. 用分数表示下列数:-2.8,-4.6,3.75。

答案:-2 4/5,-4 3/5,3 3/42. 计算:-7.3 +3.5 - 1.8。

答案:-5.63. 计算:(-1.5) × (-4.2)。

答案:6.34. 计算:-9.2 ÷ (-0.5)。

答案:18.45. 计算:-3.6 - 7.5 × (1/2)。

答案:-7.35四、应用题1. 有一冰柜的温度为-5.2摄氏度,经过一段时间后,温度下降了3.6摄氏度,求现在冰柜的温度。

答案:-8.8摄氏度2. 小明在学校时,距离家2.5千米,他走了1.8千米后转了个弯,又走了3.6千米才到了学校,求小明走到学校一共走了多远。

有理数运算练习题

有理数运算练习题

有理数运算练习题有理数是数学中的一种数,它包括整数、分数和小数。

有理数的运算是数学中的基础知识之一,对于学习数学的同学来说,掌握有理数运算是非常重要的。

下面我将给大家提供一些有理数运算的练习题,希望能够帮助大家巩固知识。

一、加法运算1. 计算:3/4 + 5/6 = ?2. 计算:-2/3 + 1/5 = ?3. 计算:-1/2 + (-3/4) = ?4. 计算:7/8 + (-1/3) = ?5. 计算:-5/6 + 2/3 = ?二、减法运算1. 计算:2/3 - 1/4 = ?2. 计算:-1/2 - 1/3 = ?3. 计算:-3/4 - (-1/5) = ?4. 计算:7/8 - (-1/3) = ?5. 计算:-5/6 - 2/3 = ?三、乘法运算1. 计算:2/3 × 1/4 = ?2. 计算:-1/2 × 1/3 = ?3. 计算:-3/4 × (-1/5) = ?4. 计算:7/8 × (-1/3) = ?5. 计算:-5/6 × 2/3 = ?四、除法运算1. 计算:2/3 ÷ 1/4 = ?2. 计算:-1/2 ÷ 1/3 = ?3. 计算:-3/4 ÷ (-1/5) = ?4. 计算:7/8 ÷ (-1/3) = ?5. 计算:-5/6 ÷ 2/3 = ?五、混合运算1. 计算:2/3 + 1/4 - 1/5 = ?2. 计算:-1/2 - 1/3 + 1/4 = ?3. 计算:-3/4 × (-1/5) + 1/3 = ?4. 计算:7/8 ÷ (-1/3) - 2/5 = ?5. 计算:-5/6 + 2/3 × 1/2 = ?通过以上的练习题,我们可以巩固和提升自己对有理数运算的掌握程度。

在解题的过程中,我们需要注意以下几点:首先,对于分数的加减运算,我们需要找到它们的公共分母,然后进行运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、下列说法正确的是()
A、正数、0、负数统称为有理数
B、分数和整数统称为有理数
C、正有理数、负有理数统称为有理数
D、以上都不对
2、-a一定是()
A、正数
B、负数
C、正数或负数
D、正数或零或负数
3、在数轴上,点A、B分别表示-5和2,则线段AB的长度是___。

4、-(-3)的相反数是___。

5、已知数轴上A、B表示的数互为相反数,并且两点间的距离是6,点A 在点B的左边,则点A、B表示的数分别是___。

6、下列结论正确的有()
①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a,b互为相反数,那么a+b=0;
⑤若有理数a,b互为相反数,则它们一定异号。

A 、2个B、3个C、4个D、5个
7、下列结论中,正确的有()
①符号相反且绝对值相等的数互为相反数;②一个数的绝对值越大,表示它的点在数轴上离原点越远;③两个负数,绝对值大的它本身反而小;④正数大于一切负数;⑤在数轴上,右边的数总大于左边的数。

A、2个
B、3个
C、4个
D、5个
8、下列各式可以写成a-b+c的是()
A、a-(+b)-(+c)
B、a-(+b)-(-c)
C、a+(-b)+(-c)
D、a+(-b)-(+c)
9、下列结论不正确的是()
A、若a>0,b<0,则a-b>0
B、若a<0,b>0,则a-b<0
C、若a<0,b<0,则a-(-b)>0
D、若a<0,b<0,且,则a-b>0.
1.如果两个有理数的积是正的,那么这两个因数的符号一定______.
2.如果两个有理数的积是负的,那么这两个因数的符号一定_______.
3.奇数个负数相乘,结果的符号是_______.
4.偶数个负数相乘,结果的符号是_______.
5.如果41
0,0
a b
>>
,那么
a
b_____0.
6.如果5a>0,0.3b<0,0.7c<0,那么b
ac____0.
7.-0.125的相反数的倒数是________.
8.若a>0,则a
a=_____;若a<0,则
a
a=____.
1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )
A.一定为正
B.一定为负
C.为零
D. 可能为正,也可能为负
2.若干个不等于0的有理数相乘,积的符号( )
A.由因数的个数决定
B.由正因数的个数决定
C.由负因数的个数决定
D.由负因数和正因数个数的差为决定
3.下列运算结果为负值的是( )
A.(-7)×(-6)
B.(-6)+(-4);
C.0×(-2)(-3)
D.(-7)-(-15)
4.下列运算错误的是( )
A.(-2)×(-3)=6
B.
1
(6)3
2
⎛⎫
-⨯-=- ⎪
⎝⎭
C.(-5)×(-2)×(-4)=-40
D.(-3)×(-2)×(-4)=-24
5.若两个有理数的和与它们的积都是正数,则这两个数( )
A.都是正数
B.是符号相同的非零数
C.都是负数
D.都是非负数
6.下列说法正确的是( )
A.负数没有倒数
B.正数的倒数比自身小
C.任何有理数都有倒数
D.-1的倒数是-1
7.关于0,下列说法不正确的是( )
A.0有相反数
B.0有绝对值
C.0有倒数
D.0是绝对值和相反数都相等的数
8.下列运算结果不一定为负数的是( )
A.异号两数相乘
B.异号两数相除
C.异号两数相加
D.奇数个负因数的乘积
9.下列运算有错误的是( )
A.1
3
÷(-3)=3×(-3) B.
1
(5)5(2)
2
⎛⎫
-÷-=-⨯-

⎝⎭
C.8-(-2)=8+2
D.2-7=(+2)+(-7)
10.下列运算正确的是( )
A.
11
34
22
⎛⎫⎛⎫
---=
⎪ ⎪
⎝⎭⎝⎭
; B.0-2=-2; C.
34
1
43
⎛⎫
⨯-=

⎝⎭
; D.(-2)÷(-4)=2。

相关文档
最新文档