圆周运动的规律及其应用.
圆周运动规律及应用+答案
圆周运动的规律及其应用一、 匀速圆周运动的基本规律1.匀速圆周运动的定义:作 的物体,如果在相等时间内通过的 相等,则物体所作的运动就叫做匀速圆周运动。
2.匀速圆周运动是:速度 不变, 时刻改变的变速运动;是加速度 不变, 时刻改变的变加速运动。
3.描述匀速圆周运动的物理量 线速度:r Tr t s v ωπ===2,方向沿圆弧切线方向,描述物体运动快慢。
角速度:Tt πθω2== 描述物体转动的快慢。
转速n :每秒转动的圈数,与角速度关系n πω2= 向心加速度: v r rv a ωω===22描述速度方向变化快慢,其方向始终指向圆心。
向心力:向心力是按 命名的力,任何一个力或几个力的合力只要它的 是使物体产生 ,它就是物体所受的向心力.向心力的方向总与物体的运动方向 ,只改变线速度 ,不改变线速度 .==ma F v m r m rv m ωω==22。
二、 匀速圆周运动基本规律的应用【基础题】例1:上海锦江乐园新建的“摩天转轮”,它的直径达98m ,世界排名第五,游人乘坐时,转轮始终不停地匀速转动,每转一周用时25min.下列说法中正确的是 ( )A . 每时每刻,每个人受到的合力都不等于零 B. 每个乘客都在做加速度为零的匀速运动C. 乘客在乘坐过程中对座位的压力始终不变D. 在乘坐过程中每个乘客的线速度保持不变【同步练习】1.一物体作匀速圆周运动,在其运动过程中,不发生变化的物理量是( )A .线速度B . 角速度C .向心加速度D .合外力2.质量一定的物体做匀速圆周运动时,如所需向心力增为原来的8倍,以下各种情况中可能的是( )A. 线速度和圆半径增大为原来的2倍B. 角速度和圆半径都增大为原来的2倍C. 周期和圆半径都增大为原来的2倍D. 频率和圆半径都增大为原来的2倍3.用细线将一个小球悬挂在车厢里,小球随车一起作匀速直线运动。
当突然刹车时,绳上的张力将( )A. 突然增大B. 突然减小C. 不变D. 究竟是增大还是减小,要由车厢刹车前的速度大小与刹车时的加速度大小来决定4.汽车驶过半径为R 的凸形桥面,要使它不至于从桥的顶端飞出,车速必须小于或等于( )A. 2RgB. RgC. Rg 2D. Rg 35.做匀速圆周运动的物体,圆半径为R ,向心加速度为a ,则以下关系式中不正确的是( )A. 线速度aR v =B. 角速度R a =ωC. 频率R a f π2=D. 周期aR T π2= 6.一位滑雪者连同他的滑雪板共70kg ,他沿着凹形的坡底运动时的速度是20m/s ,坡底的圆弧半径是50m ,试求他在坡底时对雪地的压力。
《生活中的圆周运动》课件
圆周运动的周期和转速
总结词
描述圆周运动中物体完成一次循环所需要的时间和单位时间内完成循环的次数 。
详细描述
周期是圆周运动中物体完成一次循环所需要的时间,用字母T表示。转速是指单 位时间内物体完成循环的次数,用字母n表示。
圆周运动的向心力和向心加速度
总结词
描述圆周运动中物体受到指向圆心的力和由此产生的加速度 。
详细描述
自行车轮在转动时,其边缘点绕中心点做圆周运动,产生向心加速度。这种运动 形式在提供前进动力的同时,也使得自行车能够保持平衡。
电风扇的转动
总结词
电风扇的转动展示了圆周运动在日常 生活中的应用,涉及到能量的转换和 风力的产生。
详细描述
电风扇的叶片在转动时,其边缘点绕 中心点做圆周运动,产生风力。这种 运动形式将电能转换为机械能,为人 们带来凉爽的空气。
详细描述
向心力是指圆周运动中物体受到指向圆心方向的力,其大小 与物体的质量、速度和圆周半径有关。向心加速度是指物体 在向心力作用下产生的加速度,其大小与向心力的大小和物 体的质量有关。
02 生活中的圆周运 动实例
自行车轮的转动
总结词
自行车轮的转动是生活中常见的圆周运动实例,它涉及到圆周运动的原理和特点 。
详细描述
旋转木马上的座椅和动物模型随着中心轴的转动而做圆周运动,产生离心力。这种运动形式使得孩子们能够体验 到旋转带来的刺激和乐趣。
03 圆周运动的规律 和公式
圆周运动的线速度和角速度
线速度
描述物体沿圆周运动的快慢,计算公式为 $v = frac{s}{t}$,其中 $s$ 是物体在时间 $t$ 内所经过的 弧长。
转动惯量是描述刚体绕轴转动惯性的物理量,自行车轮的转动惯量会影响骑行时的 稳定性和响应性。
圆周运动的规律及其应用(开课)
§2-2讲、圆周运动的 规律及其应用
一、教学目标: ●掌握竖直面内圆周运动问题在最高点和最
低点的处理方法,能从运动、受力、能量的 角度分析绳球模型和杆球模型。
●掌握水平面内圆周运动临界问题的处理方法。
考点三 常见竖直平面内的圆周运动最高点临界问题
竖直平面内的圆周运动,是典型的变速圆周运动, 对于物体在竖直平面内做变速圆周运动的问题,中 学物理中只研究物体通过最高点和最低点的情况, 并且经常出现有关最高点的临界问题.
【典例4】 如图所示,质量为m的木块,用一轻
绳拴着,置于很大的水平转盘上,细绳穿过转盘
中央的细管,与质量也为m的小球相连,木块到 中央的距离为r=0.5 m,圆盘匀速转动,要保持 木块与转盘相对静止。求:(g取10 m/s2)
1、若水平转盘光滑,求ω1 。
2、若水平转盘与木块间的最大摩擦 m
力是木块重力的0.2倍,且剪断细线。
两种模型:
绳球模型
杆球模型
绳球模型 等效模型
讨论:
1、受力 2、运动 3、能量
杆球模型 等效模型
讨论:
1、受力 2、运动 3、能量
【典例3】(多选)如图所示,一内壁光滑的半径
为R的圆筒固定,横截面在竖直平面内,圆筒内 最低点有一小球.现给小球2.2mgR的初动能,使
小球从最低点开始沿筒壁运动,则小球沿筒壁运 动过程中( ). A.小球可以到达轨道的最高点 B.小球不能到达轨道的最高点 C.要使小球做完整圆周运动, 小球的最小初速度大于 5gR D.要使小球做完整圆周运动, 小球的最小初速度等于 4gR
ω
求ω2的最大不能超过多少? 力是木块重力的0.2倍,不剪断细线。 求ω3的范围。
圆周运动的物理规律
圆周运动的物理规律圆周运动是物体在确定的圆形轨道上运动的一种形式。
无论是行星绕太阳的运动,还是地球绕自转轴的运动,都可以看作是圆周运动。
而圆周运动的物理规律主要有以下几个方面。
一、牛顿第一定律适用于圆周运动牛顿第一定律也被称为惯性定律,其表述为“物体在没有外力作用下会保持匀速直线运动或静止状态”。
虽然圆周运动是物体在曲线轨道上运动,但由于受力方向始终垂直于速度方向,物体在运动过程中会始终保持匀速。
这是因为受力与速度的夹角为90°,所以力对速度没有做功,物体的动能和势能保持恒定。
二、向心力是圆周运动的关键因素向心力是保持物体在圆周运动中向心加速度的力。
根据牛顿第二定律,向心力与物体的质量和向心加速度成正比。
即 F = m·ac,其中F为向心力,m为物体质量,ac为向心加速度。
而向心加速度的大小则由物体的速度和半径决定。
向心力的方向指向圆心,使得物体在做圆周运动时受到向心加速度的约束。
三、角动量守恒定律适用于圆周运动角动量是物体在转动中的动量,它的大小与物体的转动速度和转动惯量有关。
对于圆周运动,角动量的大小可以表示为L = r·m·v,其中L为角动量,r为物体到转轴的距离,m为物体质量,v为物体的速度。
根据角动量守恒定律,当物体在圆周运动过程中转动惯量保持不变时,其角动量也保持不变。
四、离心力和引力共同影响圆周运动在天体运动中,离心力和引力共同作用于行星或卫星进行圆周运动。
离心力是指物体远离中心的力,其大小与物体的质量、角速度和半径有关。
而引力则是物体和中心天体之间的吸引力,其大小与物体的质量、中心天体的质量、以及物体到中心天体的距离有关。
这两者共同作用使得行星或卫星在圆轨道上保持稳定运动。
综上所述,圆周运动的物理规律可以通过牛顿第一定律、向心力、角动量守恒定律以及离心力和引力共同作用来解释。
这些规律揭示了物体在圆周运动中的受力情况和运动特征,对于我们理解宇宙中的天体运动以及地球自转等现象具有重要意义。
学而思圆周运动:圆周运动的基本规律、圆周运动的各种应用
匀速圆周运动做匀速圆周运动的物体的速度大小是恒定的,但速度方向时刻改变,所以匀速圆周运动是变速运动 做匀速圆周运动的物体并不处于平衡状态物体做匀速圆周运动的条件是物体时刻受到与速度方向垂直的合外力作用,并且这个合外力总沿着半径指向圆心,所以叫向心力向心力总是指向圆心,而线速度沿圆周的切线方向,故向心力始终与线速度垂直,所以向心力的作用效果只是改变物体线速度的方向而不改变线速度的大小向心力是根据力的作用效果命名的,它可以是重力、弹力、摩擦力等各种性质的力,也可以是它们的合力,还可以是某个力的分力向心加速度①意义:它是描述线速度方向改变快慢的物理量,向心力产生的加速度叫向心加速度,它遵循牛顿第二定律②方向:始终指向圆心,并且时刻变化③大小22224v a r r v r Tπωω====向做匀速圆周运动的物体,向心加速度大小不变对向心加速度的几点说明①向心加速度通过牛顿第二定律由物体所受向心力来确定由于做匀速圆周运动的物体在运动的过程中角速度、速率、周期都是不变的,因而物体在做匀速圆周运动的过程中,向心加速度的大小是不变的,但是向心加速度的方向在时刻变化着,所以匀速圆周运动是变加速曲线运动②向心加速度是匀速圆周运动的瞬时加速度而不是平均加速度在匀速圆周运动中,加速度不是恒定的,这里的向心加速度,是指某时刻或某一位置的瞬时加速度 ③向心加速度不一定是物体做圆周运动的实际加速度【例1】下列说法正确的是( )A .匀速圆周运动是一种匀速运动B .匀速圆周运动是一种匀变速运动C .匀速圆周运动是一种变加速运动D .物体做圆周运动时,其合力垂直于速度方向,不改变线速度大小圆周运动:圆周运动的基本规律、圆周运动的各种应用【例2】质点做匀速圆周运动,则①在任何相等的时间里,质点的位移都相等②在任何相等的时间里,质点通过的路程都相等③在任何相等的时间里,质点运动的平均速度都相同④在任何相等的时间里,连接质点和圆心的半径转过的角度都相等以上说法中正确的是( )A.①②B.③④C.①③D.②④【例3】做匀速圆周运动的两物体甲和乙,它们的向心加速度分别为a1和a2,且a1>a2,下列判断正确的是( )A.甲的线速度大于乙的线速度B.甲的角速度比乙的角速度小C.甲的轨道半径比乙的轨道半径小D.甲的速度方向比乙的速度方向变化得快【例4】甲、乙两物体均做匀速圆周运动,其向心加速度a随半径r变化的关系图线,分别如图中a甲、a乙所示,图线a甲是一条过原点的直线;图线a乙是以横轴和纵轴为渐近线的双曲线。
物体的圆周运动
物体的圆周运动物体的圆周运动是一种特殊的运动形式,它在物理学领域中有着广泛的应用和研究。
本文将介绍物体的圆周运动的原理和相关概念,并探讨其应用和意义。
一、圆周运动的原理物体的圆周运动是指物体在一个平面上以一定半径的圆轨道做匀速运动的现象。
圆周运动的原理可以通过向心力和离心力来解释。
1. 向心力当物体在圆轨道上运动时,会受到向心力的作用。
向心力的方向指向圆心,大小与物体的质量、圆周运动的半径和物体的线速度有关。
向心力的作用使得物体始终保持在圆轨道上,并向圆心靠近。
2. 离心力离心力是指物体在圆周运动中的超越向心力的力。
它的方向指向远离圆心的方向,与向心力方向相反。
离心力的大小与向心力大小相等,但方向相反。
离心力的作用使得物体始终倾向于离开圆心。
二、圆周运动的相关概念在理解物体的圆周运动时,需要了解一些相关的概念,如线速度、角速度和周期。
1. 线速度线速度是指物体在圆周运动中沿着圆轨道的路径长度与所花费的时间之比。
线速度的大小与物体运动的半径和角速度有关。
线速度可以通过公式v = rω来计算,其中v表示线速度,r表示半径,ω表示角速度。
2. 角速度角速度是指物体在圆周运动中角度增量与所花费的时间之比。
角速度的大小与物体运动周期和角度增量有关。
角速度的单位是弧度/秒。
角速度可以通过公式ω = Δθ/Δt来计算,其中ω表示角速度,Δθ表示角度增量,Δt表示时间。
3. 周期周期是指物体完成一次圆周运动所需要的时间。
周期可以通过公式T = 2π/ω来计算,其中T表示周期,π表示圆周率,ω表示角速度。
三、圆周运动的应用和意义圆周运动在现实生活和科学研究中有着广泛的应用和意义。
1. 行星公转行星围绕太阳做圆周运动的规律是天体力学中的一个重要问题。
研究行星的圆周运动可以揭示宇宙的结构和演化规律。
2. 粒子加速器粒子加速器利用向心力原理,将高能粒子沿着圆轨道进行加速运动,以便进行粒子物理实验。
圆周运动在粒子加速器的设计和操作中起着重要作用。
圆周运动的应用领域与实例分析
圆周运动的应用领域与实例分析圆周运动是指物体在规定中心进行的匀速旋转运动,是自然界中常见且广泛应用的一种运动形式。
圆周运动在许多领域中发挥着重要的作用,下面将从物理学、机械工程和天文学等角度对其应用领域与实例进行详细分析。
一、物理学中的应用圆周运动在物理学中是一个基础概念,在力学、电磁学等学科中有着广泛的应用。
其中,最典型的应用是在力学中的离心力和向心加速度的研究。
离心力是指在圆周运动中由于惯性而产生的偏离轨迹的力,它的大小与物体质量和角速度成正比。
离心力的应用非常广泛,例如在离心机中,离心力可用于分离混合物中的不同组分。
离心机通过不同物质的质量差异以及离心力的作用,使得混合物中的成分分离出来,从而在生物科学、化学和制药等领域发挥了重要的作用。
向心加速度则是指在圆周运动中,物体向圆心靠拢时所受到的加速度。
向心加速度是圆周运动的基本性质,它决定了物体在圆周运动中的速度和轨迹。
向心加速度的研究在机械工程中有着广泛的应用,例如在离心泵中,向心加速度可以用来增加液体的压力,并将其输送到较远的地方。
二、机械工程中的应用圆周运动在机械工程中有许多应用领域,如轮胎的旋转、轴承的转动和摩擦等。
其中,最突出的应用是摆线与齿轮的设计与制造。
摆线是一种特殊的圆周运动,其轨迹为与定长线段接触的轮廓线。
摆线具有良好的传动性能和高效的运动特性,因此在工业制造中广泛应用于齿轮设计、漏斗锥形的设计等领域。
例如,在传动装置中,摆线齿轮的设计可以实现平稳的传递运动,提高传动效率。
另外,齿轮的设计与制造也是机械工程中圆周运动的重要应用。
齿轮的主要作用是将电动机的高速旋转转换为较低速度但更大的扭矩输出,广泛应用于各种机械设备中。
例如,在汽车行业中,齿轮传动系统通过将发动机的高速旋转转换为车轮的运动,实现汽车的前进和倒退。
三、天文学中的应用圆周运动在天文学中也有许多重要的应用,如行星轨道、恒星运动和星际空间探索等。
其中,行星轨道的研究和预测是最广泛的应用之一。
物理圆周运动总结归纳
物理圆周运动总结归纳物理学中,圆周运动是一个重要的概念。
它涉及到物体在一个固定半径的圆形轨道上运动的问题。
在本文中,我们将对物理圆周运动进行总结归纳,探讨其相关理论和应用。
一、基本概念圆周运动是指物体在固定半径的圆形轨道上运动,维持在此轨道上的力称为向心力。
向心力的大小与物体质量成正比,与物体的速度的平方成正比,与物体运动半径的倒数成正比。
圆周运动的速度大小恒定,而速度的方向则始终朝向圆心。
同时,圆周运动还存在一个与速度大小相对的概念,即角速度。
二、角速度与角加速度角速度是描述物体在圆周运动中旋转快慢的物理量。
它的大小等于物体绕圆心转动的角度的变化率。
使用符号ω表示,单位为弧度/秒。
公式为:ω = Δθ / Δt其中,Δθ是物体绕圆心转动的角度变化量,Δt是时间的变化量。
角加速度则是描述物体在圆周运动中转速变化的物理量。
它的大小等于角速度随时间的变化率。
使用符号α表示,单位为弧度/二次方秒。
公式为:α = Δω / Δt三、牛顿第二定律在圆周运动中的应用牛顿第二定律是物理学中最基本的定律之一,它在圆周运动中也有重要的应用。
当物体受到向心力作用时,可以利用牛顿第二定律来推导物体的运动方程。
假设质量为m的物体在半径为r的圆形轨道上运动,并受到向心力F_c的作用。
根据牛顿第二定律,物体的向心加速度a_c与向心力的关系为:F_c = m * a_c由于向心加速度与角加速度之间存在关联,可以推导出物体在圆周运动中的运动方程为:a_c = r * α将上述两个等式结合,可以得到:F_c = m * r * α四、应用领域1. 行星公转行星公转是天体运动中的一种圆周运动。
行星沿着围绕恒星的轨道运动,即围绕一个公共圆心进行圆周运动。
该应用领域研究行星的轨道、速度以及力学规律,对于了解天体运动和星际空间探索具有重要的意义。
2. 粒子加速器粒子加速器是一种利用电磁场加速高能粒子的装置,广泛应用于粒子物理学和核物理学领域。
生活中的圆周运动
生活中的圆周运动圆周运动是一种非常常见的运动形式,它在我们的日常生活中无时不在。
圆周运动是指物体在做一个圆形的运动,圆形的路径是被称为圆周,这个运动的性质和特点非常有趣,这篇文章将会围绕圆周运动展开,介绍一些我们日常生活中圆周运动的应用。
工业机器上的圆周运动做圆周运动的机器往往有一个能够旋转的部分,这个部分需要以稳定的速度旋转。
这种运动可以在工业机器上找到。
例如,汽车的发动机,它的活塞每一个上下运动就是一个圆周运动,而发动机的曲轴则完成了一个完整的圆周运动,从而将活塞的运动转换为转向轮的动力。
在机械工程中,圆锥齿轮和齿轮的设计常常涉及到圆周运动的速度和方向的控制。
在流水线工厂生产线上,各种机器的控制电机、伺服马达和开关也需要使用圆周运动来实现。
儿童乐园上的圆周运动在儿童乐园上,圆周运动也起到了非常大的作用。
这种运动是指将一个圆形结构转动起来,从而使小孩可以坐在圆形结构上摆动。
这种运动可以经常看到在露天游乐场上的旋转木马、回旋螺旋梯和旋转视角等游乐设施上。
圆周运动给人们带来的感觉是非常愉悦的,而且还能锻炼小孩的平衡感和协调能力。
运动员的圆周运动在许多体育项目中,运动员也需要以一定的速度、强度和频率进行圆周运动。
例如,田径运动员在跑步时会使用“弯道战术”,在圆形赛道的弯道处以稍微缓慢一些的速度跑,而在直道处以更快的速度跑,以此来实现最快的比赛成绩。
在手球、篮球和足球等室内外运动项目中,运动员经常需要在场地上绕圆形的轨道移动,跳跃和弯曲,从而打出配合和进攻的配合。
天文学中的圆周运动圆周运动在天文学中也扮演着非常重要的角色。
例如,地球在绕着太阳运动时,它的轨道就是一个圆周,绕着自己的轴旋转一周所需要的时间也是固定的。
太阳系中其他星球的运动轨迹也是类似的。
这些圆周运动的规律性对于天文学家来说非常重要,因为它能够帮助他们了解星球和行星的轨迹、运动速度和方向,这些都是研究天文学的重要基础。
总的来说,圆周运动是我们日常生活中非常常见的运动形式,它不仅存在于机械工程、儿童乐园和体育运动中,还存在于天文学研究中。
圆周运动实例分析
圆周运动实例分析圆周运动是一种物体绕固定轴旋转的运动方式,它在日常生活和科学研究中有着广泛的应用。
下面将以多种实例来分析圆周运动。
实例一:地球公转地球绕着太阳公转是一个经典的圆周运动实例。
地球绕着太阳运动的轨道近似为一个椭圆,但是由于地球到太阳的距离相对较远,可以近似为一个圆周运动。
地球与太阳之间的重力提供了地球公转的向心力,使得地球保持在固定的轨道上。
这个圆周运动的周期为一年,即将地球绕公转一周所需要的时间。
实例二:卫星绕地球运动人造卫星绕地球运动也是一个常见的圆周运动实例。
卫星在地球轨道上运行时,地球的引力提供了卫星运动所需的向心力,使得卫星保持在圆周轨道上。
卫星的圆周运动速度称为轨道速度,是卫星绕地球一周所需的时间和轨道的半径所决定的。
实例三:风车旋转风车旋转也可以看作是一种圆周运动。
当风吹来时,风叶会受到风的力推动,从而开始转动。
风叶的运动轨迹是一个近似于圆周的曲线。
旋转的轴心是固定的,风向则决定了旋转的方向。
风车的旋转速度取决于风的强度和风叶的设计。
实例四:车轮滚动车轮的滚动也可以看作是一种圆周运动。
当车轮开始滚动时,轮胎与地面之间的摩擦力提供了一个向心力,使得车轮保持在一条直线上。
我们可以观察到车轮的外侧速度较大,而内侧速度较小,这是因为车轮在滚动过程中,中心处的点相对于半径较大的外侧点要走更长的路程。
实例五:转盘游乐设备转盘游乐设备也是一个典型的圆周运动实例。
当转盘开始旋转时,内侧的座椅相对于外侧的座椅要经历一个更小的半径,因此内侧的座椅速度较小,而外侧的座椅速度较大。
这种圆周运动会给乘坐者带来旋转的感觉,增加乘坐的刺激性。
总的来说,圆周运动在日常生活和科学研究中非常常见,上述实例仅仅是其中的几个例子。
人们通过对圆周运动的观察和研究,不仅可以深化对运动规律的理解,还可以为工程设计和科学实验提供有价值的参考。
圆周运动规律及应用
圆周运动规律及应用圆周运动是指物体在一个固定的圆形轨道上运动的过程。
它是一种常见的运动形式,在日常生活中有着广泛的应用。
圆周运动的规律和应用涉及到物体的角速度、切线速度、向心加速度等概念,下面将详细介绍。
首先,圆周运动的基本概念是角度和弧长之间的关系。
当物体在圆周上移动一个角度时,会对应一个弧长的变化。
这个关系是通过弧度制来表示的,即角度的度数除以180再乘以π。
例如,一个物体在圆周上旋转一周,对应的角度是360度,弧度是2π。
这个关系为后面的计算提供了基础。
其次,圆周运动可以通过角速度来描述。
角速度是指物体在圆周运动中,单位时间内所转过的角度。
它的公式是角速度=角度/时间。
角速度的单位通常是弧度/秒。
角速度可以用来描述物体的运动快慢,具体数值越大表示转动越快。
然后,圆周运动的速度可以分为切线速度和角速度。
切线速度是指物体在圆周运动时切线方向上的速度。
它的公式是切线速度=角速度×半径。
切线速度可以通过测量单位时间内物体经过的弧长来计算。
切线速度是表示物体在圆周运动中的真实速度,与角速度和半径有关。
再次,圆周运动中常常会涉及到一个重要的物理量,即向心加速度。
向心加速度是指物体在圆周运动中径向方向的加速度。
它的公式是向心加速度=切线速度²/半径。
向心加速度是由于物体受到向心力的作用而产生的,它的方向始终指向圆心。
向心加速度的大小与切线速度的平方成正比,与半径的倒数成反比。
向心加速度是决定圆周运动轨迹的重要因素。
最后,圆周运动的规律和应用在日常生活中有着广泛的应用。
其中之一是汽车在行驶过程中的转向。
当汽车转弯时,驾驶员会施加向心力来改变汽车的方向。
向心力的大小与汽车速度的平方成正比,与转弯半径成反比。
这是因为向心力与向心加速度成正比,而向心加速度又与切线速度的平方成正比,与半径的倒数成反比。
因此,汽车转弯时,向心力越大,转弯越快。
另一个应用是摩托车在绕弯过程中的倾斜角度。
当摩托车绕弯时,为了保持稳定状态,驾驶员会倾斜摩托车,使重心向内侧偏移。
圆周运动的规律及其应用课件
选择合适的转动半径,以减小离 心力对圆周运动的影响。
增加质量
增加运动物体的质量,可以降低离 心力对圆周运动的影响。
增加约束力
通过增加约束力,如使用弹性绳或 弹簧,可以减小离心运动的影响。
如何利用圆周运动进行工作?
旋转机械
利用圆周运动设计旋转机械,如 电动机、发电机和泵等,以实现
能量的转换和传输。
旋转木马的速度和旋转半径可以根据需要进行调整,为游客提供安全、舒适的旋 转体验。
洗衣机脱水原理
洗衣机脱水原理基于离心力作用,通过高速旋转将衣物中的 水分甩出。
脱水时,洗衣机内桶高速旋转,使衣物受到离心力作用紧贴 内桶壁,同时衣物中的水分被甩出,从而达到脱水的目的。
05 圆周运动的挑战与解决方 案
离心力
当物体做圆周运动时,会受到一个始 终指向圆外的力,称为离心力。离心 力的大小与速度的大小和半径有关, 速度越大,半径越小,离心力越大。
匀速圆周运动
01
匀速圆周运动是指物体做圆周运 动时,速度大小保持不变。匀速 圆周运动中,向心加速度的大小 不变,方向始终指向圆心。
02
匀速圆周运动中,物体所受的合 外力提供向心力,即合外力等于 向心力。
如何保持稳定的圆周运动?
确定合适的转动半径
01
根据物体质量和运动速度,选择合适的转动半径,以确保圆周
运动稳定。
保持恒定的角速度
02
在圆周运动过程中,应尽量保持恒定的角速度,以减少不稳定
性。
减小摩擦力
03
减小运动过程中的摩擦力,如使用润滑油或改进轴承设计,有
助于提高圆周运动的稳定性。
如何减小离心运动的影响?
圆周运动的周期和频率
圆周运动的基本规律及应用
返回导航页
结束放映
(2014· 新课标全国卷Ⅰ)如图所示,两个质量均为 m 的小木块 a 和 b(可视为质点)放在水平圆盘上,a 与转轴 OO′的距离为 l,b 与转轴的距 离为 2l,木块与圆盘的最大静摩擦力为木块所受重力的 k 倍,重力加速度大 小为 g。若圆盘从静止开始绕转轴缓慢地加速转动,用 ω 表示圆盘转动的角 速度,下列说法正确的是( ) A.b 一定比 a 先开始滑动 B.a、b 所受的摩擦力始终相等 kg C.ω= 是 b 开始滑动的临界角速度 2l 2kg D.当 ω= 时,a 所受摩擦力的大小为 kmg 3l
×
返回导航页
结束放映
汽车与路面间的动摩擦因数为 μ,公路某转 弯处半径为 R(设最大静摩擦力等于滑动摩擦力),问: (1)若路面水平,汽车转弯不发生侧滑,汽车速度不 能超过多少? (2)若将公路转弯与路面设计成外侧高、内侧低,使 路面与水平面有一倾角 α,汽车以多大速度转弯时,可 以使车与路面间无侧向摩擦力?
1.匀速圆周运动 (1)定义:线速度大小 不变 (2)性质:加速度大小 不变 动。 2.描述匀速圆周运动的物理量 定义、意义 描述做圆周运动的物体运动 线速度 快慢 _______的物理量(v) 描述物体绕圆心 转动 角速度 快慢 的物理量(ω) 公式、单位 Δx 2πr ② v= = T Δt ②单位: m/s Δθ 2π ②ω= = T Δt ②单位: rad/s
返回导航页
结束放映
思维诊断 (1)匀速圆周运动是匀加速曲线运动。 (× )
(2)做匀速圆周运动的物体所受合外力为变力。(
√
)
(3)随水平圆盘一起匀速转动的物体受重力、 支持力和向心力作用。 ( (4)做圆周运动的物体所受到的合外力不一定等于向心力。 (
圆周运动的规律及其应用(2)
第2-2讲圆周运动的规律及其应用(2)教学目标:(1)掌握竖直面内圆周运动问题在最高点和最低点的处理方法,能从运动、受力、能量的角度分析绳球模型和杆球模型。
(2)掌握水平面内圆周运动临界问题的处理方法。
考点三常见竖直平面内的圆周运动最高点临界问题竖直平面内的圆周运动,是典型的变速圆周运动,对于物体在竖直平面内做变速圆周运动的问题,中学物理中只研究物体通过最高点和最低点的情况,并且经常出现有关最高点的临界问题.轻绳模型轻杆模型常见类型过最高点的临界条件讨论分析【典例3】(多选)如图所示,一内壁光滑的半径为R的圆筒固定,横截面在竖直平面内,圆筒内最低点有一小球.现给小球2.2mgR的初动能,使小球从最低点开始沿筒壁运动,则小球沿筒壁运动过程中().A.小球可以到达轨道的最高点B.小球不能到达轨道的最高点C.要使小球做完整圆周运动,小球的最小初速度等于5gRD.要使小球做完整圆周运动,小球的最小初速度等于4gR【变式3】(单选)如图所示,质量为m的小球置于正方体的光滑盒子中,盒子的边长略大于球的直径。
某同学拿着该盒子在竖直平面内做半径为R的匀速圆周运动,已知重力加速度为g,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则()A.该盒子做匀速圆周运动的周期一定小于2π R gB.该盒子做匀速圆周运动的周期一定等于2π R gC.盒子在最低点时盒子与小球之间的作用力大小可能小于2mgD.盒子在最低点时盒子与小球之间的作用力大小可能大于2mg考点四水平面内圆周运动的临界问题求解水平面内圆周运动的临界问题的一般思路1.判断临界状态:认真审题,找出临界状态.(1)有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程存在着临界点;(2)若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就是临界状态;(3)若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点也往往是临界状态。
高考物理一轮复习讲义 第2讲 圆周运动的基本规律及应用
高考物理一轮复习讲义 第2讲 圆周运动的基本规律及应用一、描述圆周运动的物理量物理量 物理意义定义、公式、单位线速度描述物体沿切向运动的快慢程度①物体沿圆周通过的弧长与时间的比值②v =Δl Δt③单位:m/s④方向:沿圆弧切线方向角速度描述物体绕圆心转动的快慢①连接运动质点和圆心的半径扫过的角度与时间的比值②ω=ΔθΔt③单位:rad/s周期和转速描述匀速圆周运动的快慢程度①周期T :物体沿圆周运动一周所用的时间,公式T =2πrv,单位:s②转速n :物体单位时间内所转过的圈数,单位:r/s 、r/min向心加速度描述速度方向变化快慢的物理量①大小:a n =v 2r=ω2·r②方向:总是沿半径指向圆心,方向时刻变化③单位:m/s 2v 、ω、T 、n 、a 的相互关系v =ωr =2πrTa =v 2r =ω2r =ω·v =⎝ ⎛⎭⎪⎫2πT 2·r 二、向心力1.定义:做圆周运动的物体受到的指向圆心方向的合外力,只改变线速度方向,不会改变线速度的大小.2.大小:F 向=ma 向=m v 2R=mRω2=mR ⎝ ⎛⎭⎪⎫2πT 2=mR (2πf )2.3.方向:总指向圆心,时刻变化,是变力.4.向心力的向心力是按效果来命名的,对各种情况下向心力的来源要明确. 三、匀速圆周运动和非匀速圆周运动 1.匀速圆周运动(1)运动特点:线速度的大小恒定,角速度、周期和频率都恒定不变的圆周运动.(2)受力特点:合外力完全用来充当向心力.向心力(向心加速度)大小不变、方向时刻指向圆心(始终与速度方向垂直),是变力.(3)运动性质:变加速曲线运动(加速度大小不变、方向时刻变化). 2.变速圆周运动(非匀速圆周运动)(1)运动特点:线速度大小、方向时刻在改变的圆周运动.(2)受力特点:变速圆周运动的合外力不指向圆心,合外力产生两个效果(如图所示).①沿半径方向的分力F n :此分力即向心力,产生向心加速度而改变速度方向. ②沿切线方向的分力F τ:产生切线方向加速度而改变速度大小. (3)运动性质:变加速曲线运动(加速度大小、方向都时刻变化). 四、离心运动1.定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动.2.本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的倾向. 3.受力特点:(1)当F =m rω2时,物体做匀速圆周运动; (2)当F =0时,物体沿切线方向飞出;(3)当F <m rω3时,物体逐渐远离圆心,F 为实际提供的向心力,如图所示.1.关于运动和力的关系,下列说法正确的是( ) A .物体在恒力作用下不可能做直线运动 B .物体在恒力作用下不可能做曲线运动 C .物体在恒力作用下不可能做圆周运动 D .物体在恒力作用下不可能做平抛运动解析:物体在恒力作用下不可能做圆周运动,选项C 正确. 答案: C2.关于向心力,下列说法中正确的是( ) A .向心力不改变做圆周运动物体速度的大小 B .做匀速圆周运动的物体,其向心力是不变的 C .做圆周运动的物体,所受合力一定等于向心力D .做匀速圆周运动的物体,一定是所受的合外力充当向心力解析:向心力始终指向圆心,所以方向是时刻变化的;做匀速圆周运动的物体,所受合力才等于向心力.答案:AD 3.汽车在公路上行驶一般不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长.某国产轿车的车轮半径约为30 cm ,当该型号的轿车在高速公路上行驶时,驾驶员面前速率计的指针指在“120 km/h”上,可估算出该车轮的转速约为( )A .1000 r/sB .1 000 r/minC .1 000 r/hD .2 000 r/s解析: 由公式ω=2πn ,v =ωr =2πrn ,其中r =30 cm =0.3 m ,v =120 km/h =1003m/s ,代入公式得n =1 00018πr /s ,约为1 000 r/min.答案: B4.(2013·山西高三月考)荡秋千是儿童喜爱的运动,当秋千荡到最高点时小孩的加速度方向可能是( )A .1方向B .2方向C .3方向D .4方向解析:小孩在最高点时速度为零,由a =v 2R可知,此时的向心加速度为零,小球只沿切线方向加速,切向加速度不为零,所以在最高点时小孩的加速度方向为2方向,B 选项正确.答案: B5.一种新型高速列车转弯时,车厢会自动倾斜,提供转弯需要的向心力;假设这种新型列车以360 km/h 的速度在水平面内转弯,弯道半径为1.5 km ,则质量为75 kg 的乘客在列车转弯过程中所受到的合力为( )A .500 NB .1 000 NC .500 2 ND .0 答案: A圆周运动的运动学问题对公式v =rω和a n =v 2r=rω2的理解(1)由v =rω知,r 一定时,v 与ω成正比;ω一定时,v 与r 成正比;v 一定时,ω与r 成反比.(2)由a n =v 2r=rω2知,在v 一定时,an 与r 成反比;在ω一定时,a n 与r 成正比.如图所示是一个玩具陀螺.A 、B 和C 是陀螺上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是( )A .A 、B 和C 三点的线速度大小相等 B .A 、B 和C 三点的角速度相等 C .A 、B 的角速度比C 的大D .C 的线速度比A 、B 的大解析:A 、B 和C 均是同一陀螺上的点,它们做圆周运动的角速度都为陀螺旋转的角速度ω,B 对、C 错.三点的运动半径关系r A =r B >r C ,据v =ωr 可知,三点的线速度关系v A =v B >v C ,A 、D 错.答案:B在传动装置中各物理量之间的关系传动类型图示结论共轴传动各点角速度ω相同,而线速度v =ωr 与半径r 成正比,向心加速度大小a =rω2与半径r 成正比.皮带(链条)传动当皮带不打滑时,用皮带连接的两轮边沿上的各点线速度大小相等,由ω=v r 可知,ω与r 成反比,由a =v 2r可知,a 与r 成反比.1-1:如图所示为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑.下列说法正确的是( )A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为r 1r 2nD .从动轮的转速为r 2r 1n解析:因为主动轮顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,A 错误、B 正确;由于通过皮带传动,皮带与轮边缘接触处的速度相等,所以由2πnr 1=2πn 2r 2,得从动轮的转速为n 2=nr 1r 2,C 正确、D 错误. 答案:BC匀速圆周运动的实例分析1.汽车转弯类问题汽车(或自行车)在水平路面上转弯如图所示.路面对汽车(或自行车)的静摩擦力提供向心力.若动摩擦因数为μ,则由μmg =m v 2R得汽车(或自行车)安全转弯的最大速度为v =μgR .2.火车拐弯问题 设火车车轨间距为L ,两轨高度差为h ,火车转弯半径为R ,火车质量为M ,如图所示.因为θ角很小,所以sin θ≈tan θ,故h L=F n Mg,所以向心力Fn =h LMg .又因为Fn =Mv 2/R ,所以车速v =ghR L.3.汽车过桥问题 项目 凸形桥 凹形桥受力 分析图以a 方向为正方向,根据牛顿第二定律列方程mg -F N 1=m v 2r F N 1=mg -m v 2rF N 2-mg =m v 2r F N 2=mg +m v 2r讨论v 增大,小车对桥的压力F′N 1减小;当v增大到rg 时,F′N 1=0 v 增大,小车对桥的压力F′N 2增大;只要v ≠0,F′N 1<F′N 2由列表比较可知,汽车在凹形桥上行驶对桥面及轮胎损害大,但在凸形桥上,最高点速率不能超过gr .在半径为r 的半圆柱面最高点,汽车以v =gr 的速率行驶将脱离桥面. 在高速公路的拐弯处,通常路面都是外高内低.如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些.汽车的运动可看做是做半径为R 的圆周运动.设内外路面高度差为h ,路基的水平宽度为d ,路面的宽度为L .已知重力加速度为g .要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于( )A. gRhL B. gRh d C.gRLh D. gRd h解析:汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力提供,且向心力的方向水平,向心力大小F 向=mg tan θ.根据牛顿第二定律:F 向=m v 2R,tan θ=h d ,解得汽车转弯时的车速v =gRhd,B 对. 答案:B解决圆周运动问题的主要步骤2-1:“飞车走壁”是一种传统的杂技艺术,演员骑车在倾角很大的桶面上做圆周运动而不掉下来.如图所示,已知桶壁的倾角为θ,车和人的总质量为m ,做圆周运动的半径为r .若使演员骑车做圆周运动时不受桶壁的摩擦力,下列说法正确的是( )A .人和车的速度为gr tan θB .人和车的速度为gr sin θC .桶面对车的弹力为mg cos θD .桶面对车的弹力为mgsin θ解析:对人和车进行受力分析如图所示.根据直角三角形的边角关系和向心力公式可列方程:F N cos θ=mg ,mg tan θ=m v 2r.解得v =gr tan θ,F N =mgcos θ. 答案:AC竖直面内圆周运动中的临界问题有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况.(2012·济南模拟)如图所示,小球紧贴在竖直放置的光滑圆形管道内壁做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是( ) A.小球通过最高点时的最小速度v min=g R+rB.小球通过最高点时的最小速度v min=0C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力解析:小球沿管上升到最高点的速度可以为零,故A错误,B正确;小球在水平线ab以下的管道中运动时,由外侧管壁对小球的作用力F N与球重力在背离圆心方向的分力F mg的合力提供向心力,即:F N-F mg=ma,因此,外侧管壁一定对球有作用力,而内侧壁无作用力,C正确;小球在水平线ab以上的管道中运动时,小球受管壁的作用力情况与小球速度大小有关,D错误.答案:BC(2012·江西南昌模拟)如图所示,两段长均为L 的轻质线共同系住一个质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间距也为L .现使小球在竖直平面内做圆周运动,当小球到达最高点的速率为v 时,两段线中张力恰好均为零,若小球到达最高点速率为2v ,则此时每段线中张力为多大?(重力加速度为g )解析:本题属于最高点无支持物的情况.当速率为v 时,mg =mv 2R当速率为2v 时,满足mg +F =m 2v 2R得F =3mg则设每根线上的张力为F T ,满足:2F T cos 60°2=3mg即F T =3mg . 答案: 3mg1.如图是摩托车比赛转弯时的情形.转弯处路面常是外高内低,摩托车转弯有一个最大安全速度,若超过此速度,摩托车将发生滑动.对于摩托车滑动的问题,下列论述正确的是( )A .摩托车一直受到沿半径方向向外的离心力作用B .摩托车所受外力的合力小于所需的向心力C .摩托车将沿其线速度的方向沿直线滑去D .摩托车将沿其半径方向沿直线滑去解析:本题考查圆周运动的规律和离心现象.摩托车只受重力、地面支持力和地面的摩擦力作用,没有离心力,A 项错误;摩托车正确转弯时可看做是做匀速圆周运动,所受的合力等于向心力,如果向外滑动,说明提供的向心力即合力小于需要的向心力,B 项正确;摩托车将在沿线速度方向与半径向外的方向之间做离心曲线运动,C 、D 项错误.答案:B2.如图所示,用细线拴着一个小球,在光滑水平面上做匀速圆周运动,则下列说法中正确的是( )A .小球线速度大小一定时,线越长越容易断B .小球线速度大小一定时,线越短越容易断C .小球角速度一定时,线越长越容易断D .小球角速度一定时,线越短一定越容易断 解析:小球线速度大小一定时,线的拉力大小与线的长度L 的关系可用F =m v 2L来判断;小球角速度一定时,线的拉力大小与线的长度L的关系可用F =mω2L 来判断.答案:BC3.如图所示的齿轮传动装置中,主动轮的齿数z 1=24,从动轮的齿数z 2=8,当主动轮以角速度ω顺时针转动时,从动轮的运动情况是( )A .顺时针转动,周期为2π/3ωB .逆时针转动,周期为2π/3ωC .顺时针转动,周期为6π/ωD .逆时针转动,周期为6π/ω解析:主动轮顺时针转动,从动轮逆时针转动,两轮边缘的线速度相等,由齿数关系知主动轮转一周时,从动轮转三周,故T 从=2π3ω,B 正确.答案:B4.如图所示,长为L 的轻杆一端固定一质量为m 的小球,另一端可绕固定光滑水平转轴O 转动,现使小球在竖直平面内做圆周运动,C 为圆周的最高点,若小球通过圆周最低点D 的速度大小为6gL ,则小球在C 点( )A .速度等于gLB .速度大于gLC .受到轻杆向上的弹力D .受到轻杆向下的拉力解析:小球从最低点转到最高点,由2mgL =12mv 2D -12mv 2C ,解得v C =2gL ,则小球在C 点的速度大于gL ,B 项对.在C 点,由牛顿第二定律得F +mg =m v 2CL,得F =mg ,F 方向向下,故D 项正确.答案:BD5.“飞车走壁”杂技表演比较受青少年的喜爱,这项运动由杂技演员驾驶摩托车,简化后的模型如图所示.表演者沿表演台的侧壁做匀速圆周运动.若表演时杂技演员和摩托车的总质量不变.摩托车与侧壁间沿侧壁倾斜方向的摩擦力恰好为零,轨道平面离地面的高度为H 、侧壁倾斜角度α不变,则下列说法中正确的是( )A .摩托车做圆周运动的H 越高,向心力越大B .摩托车做圆周运动的H 越高,线速度越大C .摩托车做圆周运动的H 越高,向心力做功越多D .摩托车对侧壁的压力随高度H 变大而减小 解析:考查圆周运动向心力相关知识,学生的分析能力、建模能力.经分析可知向心力由重力及侧壁对摩托车弹力的合力提供,因摩托车和演员整体做匀速圆周运动,所受合外力等于向心力,因而B 正确.答案:B。
圆周运动知识点总结
圆周运动知识点总结圆周运动是物体沿着圆形轨迹运动的一种基本运动形式。
这种运动常常出现在日常生活中的各种场景中,如地球的自转和公转、自行车轮子的旋转等等。
本文将重点总结圆周运动的相关知识点,并探讨其在科学和技术中的应用。
一、圆周运动的基本概念圆周运动是物体围绕一个确定的轴心按照圆形轨迹做直线运动的一种运动形式。
在圆周运动中,轴心是确定的,但是圆周运动的速度、半径、角度等参数可以不同。
二、圆周运动的基本量1. 弧长(S):物体在圆周上移动的路径长度,单位为米(m)。
2. 角度(θ):物体绕轴旋转的弧度数,用弧度(rad)或角度(°)表示。
3. 弧度(rad):表示角度的单位,1弧度等于沿单位圆对应圆心角的弧长。
4. 角速度(ω):单位时间内物体绕轴旋转的角度变化,单位为弧度/秒(rad/s)。
5. 周期(T):物体绕轴一周所需的时间,单位为秒(s)。
6. 频率(f):单位时间内物体绕轴旋转的次数,单位为赫兹(Hz)。
三、圆周运动的相关公式1. 圆周运动的速度(v):速度等于物体在圆周上运动的长度与所需时间的比值,即v = S/T = rω。
2. 圆周运动的加速度(a):加速度等于速度的变化率,即 a =Δv/Δt = ω^2r。
3. 圆周运动的周期与频率之间的关系:T = 1/f。
四、圆周运动的应用1. 地球的自转和公转:地球自转一周的周期为约24小时,而公转一周的周期为约365.25天。
这两个运动共同决定了地球的自然日、季节和年份等现象。
2. 车轮的旋转:自行车、汽车等车辆通过轮子的圆周运动来产生动力和行进。
利用圆周运动的变化,可以实现转向、制动等操作。
3. 常用物理实验:圆周运动也经常在物理实验中应用,如离心机、圆周运动的惯性等。
离心机可以通过圆周运动的离心力来分离物质,而圆周运动的惯性则可以用来研究物体在非惯性参考系中的运动规律。
总结:圆周运动是物体按照圆形轨迹绕轴旋转的一种基本运动形式。
第四章第3讲 圆周运动的基本规律及应用
一、描述圆周运动的物理量 定义、意义 ①描述做圆周运动的物体沿圆弧运 动快慢的物理量(v) ②是矢量,方向和半径垂直,沿圆周 切线方向 公式、单位 ①
s 2 πr v= = t T
②单位:m/s
定义、意义 描述物体绕圆心转动快慢的物 理量(ω ) ①周期是物体沿圆周运动一周 的时间(T) ②转速是物体单位时间转过的 圈数(n)
由列表比较可知,汽车在凹形桥上行驶对桥面及轮胎损
三、离心运动 1.本质:做圆周运动的物体,由于本身的惯性,总有沿着 切线方向 飞出去的倾向. 圆周 2.受力特点(如图所示) (1)当F= mrω2 时,物体做匀速圆周运 动; (2)当F=0时,物体沿 切线方向 飞出; (3)当F <mrω2时,物体逐渐远离圆 心,F为实际提供的向心力; (4)当F>mrω2时,物体逐渐向 圆心 靠近.
3. 如图所示,靠摩擦传动做匀速转动的大、小两 轮接触面互不打滑,大轮半径是小轮半径的2倍.A、 B分别为大、小轮边缘上的点,C为大轮上一条半径的 中点.则( D ) A.两轮转动的角速度相等 B.大轮转动的角速度是小轮的2倍 C.质点加速度aA=2aB D.质点加速度aB=4aC [解析] 两轮不打滑,边缘质点线速度大小相 等,vA=vB,而rA=2rB,故ωA=ωB/2,选项A、B错 误;由an=v2/r得:aA/aB=rB/rA=1/2,选项C错误;由an =ω2r得aA/aC=rA/rC=2, 则aB/aC=4,选项D正确.
2014届高考一轮物理复习课件必修(教科版)
第3讲 圆周运动及其应用
考纲展示
复习目标
1.知道描述圆周运动的物理量,掌 握各物理量之间的关系
1.匀速圆周运动、角 速度、线速度、向心 2.理解物体做匀速圆周运动的条件, 明确向心力是效果力,会分析和解 加速度.(Ⅰ) 决圆周运动问题 2.匀速圆周运动的向 3.知道离心运动以及产生离心运动 心力.(Ⅱ) 的条件.会根据离心运动产生条件 3.离心现象.(Ⅰ) 分析解决生产、生活中的离心运动 问题
第4章 第3讲 圆周运动的规律及其应用课件课件
向心力可以由一个力提供,也可以由几个力的 合力 提供, 还可以由一个力的 分力 义:做_圆__周__运__动___的物体,在所受合外力突然消失或不 足以提供圆周运动__所__需__向__心__力___的情况下,就做逐渐远 离圆心的运动.
2.本质:做圆周运动的物体,由于本身的惯性,总有沿着 _圆__周__切__线__方__向____飞出去的趋势.
1 000 r/min.
答案 B
5.(单选)甲、乙两质点均做匀速圆周运动,甲的质量与运动
半径分别是乙的一半,当甲转动80转时,乙正好转过60
转,则甲与乙所受的向心力大小之比为
( ).
A.1∶4
B.4∶1
C.4∶9
D.9∶4
解 析 由 题 意 知 m 甲 ∶ m 乙 = 1∶2 , r 甲 ∶ r 乙 = 1∶2 , ω 甲∶ω乙=4∶3,则由Fn=mω2r知:Fn甲∶Fn乙=4∶9. 答案 C
【典例1】 如图4-3-2所示为皮带传动装置,右轮的半径为
r,a是它边缘上的一点,左侧是一轮轴,大轮的半径是
4r,小轮的半径是2r,b点在小轮上,到小轮中心的距离
为r,c点和d点分别位于小轮和大轮的边缘上,若在传动
过程中皮带不打滑,则
( ).
A.a点和b点的线速度大小相等
B.a点和b点的角速度大小相等
转轴转动,两轮转动的角速度大小相等,即 ωA=ωB.
【跟踪短训】 1.(2013·桂林模拟)如图4-3-5所示,B和C是一组塔轮,
即B和C半径不同,但固定在同一转动轴上,其半径之比 为RB∶RC=3∶2,A轮的半径大小与C轮相同,它与B轮 紧靠在一起,当A轮绕过其中心的竖直轴转动时,由于摩 擦作用,B轮也随之无滑动地转动起来.a、b、c分别为 三轮边缘的三个点,则a、b、c三点在运动过程中的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【名师点睛】
(1)无论匀速圆周运动还是非匀速圆周运动,
沿半径指向圆心的合力均为向心力.
(2)当采用正交分解法分析向心力的来源时,做圆周运动的物
体在坐标原点,一定有一个坐标轴沿半径指向圆心. 例2.一个内壁光滑的圆锥的轴线垂直于水平面,圆锥固定不
动,两个质量相同的球 A 、 B紧贴着内壁分别在图中所示的
心的合力就是向心力.
3.解决圆周运动问题的基本步骤 (1)审清题意,确定研究对象; (2) 分析物体的运动情况,即物体的线速度、角速度、周期、 轨道平面、圆心、半径等; (3) 分析物体的受力情况,画出受力示意图,确定向心力的来 源; (4)据牛顿运动定律及向心力公式列方程; (5)求解、讨论.
11
二、圆周运动中的动力学问题分析
1.向心力的来源 向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力
C 错误, D 正确.
等各种力,也可以是几个力的合力或某个力的分力,因此在受
力分析中要避免再另外添加一个向心力.
10
பைடு நூலகம்
2.向心力的确定
(1)确定圆周运动的轨道所在的平面,确定圆心的位置. (2)分析物体的受力情况,找出所有的力沿半径方向指向圆
9
由向心加速度公式 a= ω2r 得: 1 2 1 2 1 2 ab= ωbr= ( ωa) r= ωar= aa, 2 4 4 1 2 1 2 1 2 ac= ω c2r=( ωa) 2r= ωar= aa, 2 2 2 1 2 2 2 ad= ωd4r= ( ωa) 4r= ωar= aa,故 2
8
A.a点与b点的线速度大小相等
B.a点与c点的角速度大小相等 C.a点与b点的向心加速度大小相等
D.a、b、c、d四点中,加速度最小的是b点
解析:选 D.由题图可知,a 点和 c 点是与皮带接触的 两个点,所以在传动过程中二者的线速度大小相等, 即 va=vc, 又因 v= ωr,所以 ωar= ωc2r,即 ωa=2ωc. 而 b、 c、 d 三点在同一轮轴上,它们的角速度相等, 1 1 则 ωb= ωc= ωd= ωa,故 B 错误.因 vb= ωbr= ωar 2 2 1 = va,故 A 错误. 2
水平面内做匀速圆周运动,则( ) A.球A的线速度必大于球B的线速度
B.球A的角速度必小于球B的角速度
C.球A的运动周期必小于球B的运动周期 D.球A对筒壁的压力必大于球B对筒壁的压力
12
解析:选 AB.对 A、 B 球进行受力分析可知, A、 B 两 球受力一样,它们均受重力 mg 和支持力 N,则重力和 支持力的合力提供向心力,受力图如图所示.则可知筒 mg 壁对小球的弹力 N= ,而重力和弹力的合力 F= sinθ mg/tanθ,由牛顿第二定律可得: 2 2 v 4 π r 2 mg/tanθ= mrω = m = m 2 ,则可得: r T ω= g ,v= gr/tanθ ,T= 2π rtanθ rtanθ mg ,N= g sinθ
2.在不考虑皮带打滑的情况下,传动皮带和皮带连接的两轮边缘的 v 各点线速度大小相等,而角速度 ω= 与半径 r 成反比.这两点往往 r 是我们求连比的过渡桥梁.另外由 v、ω、T、f 之间的关系,
7
v 2π 2 2 a=ωv= =ω r=( ) r=(2πf)2r,在应用时,应按已知 r T 条件,结合实际选择使用.
2
【名师点睛】
在传动方式中,还经常遇到链条传动和摩
擦传动及齿轮传动,这三种传动方式的分析方法与皮带传 动相同. 例1.如图所示为一皮带传动装置,右轮的半径为r,a是它 边缘上的一点,左侧为一轮轴,大轮的半径为4r,小轮的 半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d 点分别位于小轮和大轮的边缘上,若在传动过程中,皮带 不打滑,则( )
t
单位: rad/s
2
物理 量 周期 和转 速 向心 加速 度 v、 ω、 T、 a 间的 关系
物理意义 描 述 物体 做 圆 周运 动的快慢 描述线速 度方向变 化的快慢
定义和公式 周期 T:物体沿圆周运
一周 所用的时间. 动 ______
方向和单位 周期单位: s 转速单位: r/s 或 r/min 方向:总是沿半径指向 圆心,与线速度方向垂 直.单位: m/s2
5
当 F<______ mrω2 时,物体逐渐远离圆心, F 为实际提供 的向心力.如图所示.
2.向心运动 当提供向心力的合外力大于做圆周运动所需向心力时, 即F>mrω2时,物体逐渐向___________ 如图所示. 圆心靠近.
6
【学法导引】
一、在传动装置中各物理量之间的关系 线速度、角速度、周期、频率都是从不同的侧面描述匀速 圆周运动快慢的物理量,它们之间有一定的必然联系,在分 析传动问题时,要抓住不等量和相等量的关系,其中要特别 注意以下两点: 1.同转轴上各点ω相同,而线速度v=ωr与半径成正比.
4
三、离心运动和向心运动
1.离心运动 (1)定义:做圆周运动的物体,在所受合外力突然消失 或不足以提供圆周运动所需向心力情况下,就做逐渐 远离圆心的运动.
(2)本质:做圆周运动的物体,由于本身的惯性,总有
沿着圆周切线方向飞出去的倾向. (3)受力特点: 当F=_____ mrω2 时,物体做匀速圆周运动; 当F=0时,物体沿切线方向飞出;
转速 n:物体单位时间 圈数. 内转过的 _______ v a= r
2
2πr v= ωr= T v2 4π2 2 a= = ω r= 2 r r T
3
二、匀速圆周运动和非匀速圆周运动 1.匀速圆周运动 (1)定义:线速度大小不变的圆周运动. (2)性质:向心加速度大小 _____ ________的变 不变 ,方向时刻变化 加速曲线运动. (3)质点做匀速圆周运动的条件: 不变 ,方向始终与速度方向______ 垂直 且指向 合力大小_____ 圆心. 2.非匀速圆周运动 (1)定义:线速度大小、方向均_________ 不断变化 的圆周运动.
圆周运动的规律及其应用
【教法探析】 一、描述圆周运动的物理量
物理 物理意义 量
方向和单 定义和公式 位 物体沿圆周通过 方 向 : 沿 描述物体 弧长 与 所 用 圆 弧 切 线 的 _____ 线速 做圆周运 时 间 的 比 值 . v 方向. 度 s 动的快慢 = t 单位:m/s
运动物体与圆心 描述质点 扫过的角 连 线 _________ 角速 绕圆心转 度 与所用时间的比 动的快慢 值.ω= Δθ