小学六年级数学比例应用题及答案
人教版六年级上册数学第四单元比应用题练习(含答案)
人教版六年级上册数学第四单元比应用题练习1、把长为108cm的铁丝分成几段,焊接成一个长方体框架,使长方体的长、宽、高的比为4:3:2,求这个长方体的体积.2、学校购买了789套故事书,其中231套分给四年级,余下的按4:5分给五、六年级.五、六年级各分到多少套故事书?3、两地相距816千米,客车和货车同时从两地相对开出,6小时相遇,已知客车和货车的速度比是10:7.客车每小时比货车多行多少千米?4、妈妈准备配制400毫升鲜汁饮料,配制方法是:鲜橙汁:蜂蜜:水(5:3:2).你能帮妈妈写出每种配料各需要多少毫升吗?5、学校图书室新买来630本图书,如果把这些图书按2:3:4分给低、中、高年级,低、中、高年级各分得图书多少本?6、校园里玫瑰花和月季花棵数比是5:3,月季有180棵,玫瑰有多少棵?两种花一共有多少棵?7、学校购进一批新图书,分给六年级1后,剩下的按3:4:5的比例分给三、四、五年级,五年5级分得40本,这批图书共有多少本?8、六(3)班原有学生48名,其中3是女生.本学期又转进几名女生,这时女生与全班人数的8比是2:5,本学期这个班有学生多少名?是连环画,其余是文艺书和科技书,文艺书和科技书本9、学校图书室买来540本新书,其中13数的比是3:2.文艺书和科技书各有多少本?10、一种混凝土由水泥、黄沙、石子按2:3:5混合而成,如果这三种材料都有24吨,当黄沙全部用完时,水泥还剩多少吨?石子又增加了多少吨?11、某车间女工人数和男工人数的比是3:4,后来调走男工24人,这时男工人数和女工人数的比是4:5,这个车间现在有男工多少人?12、某车队运一堆煤,第一天运走这堆煤的1,第二天比第一天多运30吨,这时已运走的煤与6余下的煤吨数比是7:5,这堆煤共有多少吨?,第二天读的页数与第一天读的页数的比是13、在“诵经典”活动中,晓海第一天读了一本书的146:5,两天后剩下108页没读.这本书一共有多少页?14、有一种混泥土是用水泥、黄沙和石子按2:3:4配成的.现在有水泥15吨,黄沙21吨.需要多少吨石子才能配制成这种混泥土?15、甲、乙、丙三个数的平均数是30,它们的比是2:3:4,这三个数分别是多少?.如果再放入8克糖,那么,这时糖与水的比是多少?16、一杯糖水200克,其中糖占水的124(写出计算过程)17、修路队三天修完一条长560m的公路,第一天修了全长的3,第二天和第三天修路的长度比8是3:4.这三天,哪一天修的路最长?按照18、在“爱绿护绿,共筑美好蓝天”活动中,泉林小学要在植物园中植树250棵,其中的352:3分给五、六年级,五、六年级各植树多少棵?19、两个城市相距360千米,一辆客车和一辆货车同时从这两个城市相对开出,3小时后相遇,已知客车和货车的速度比是5:7,客车和货车每小时各行驶多少千米?20、张老师每月用2400元还住房按揭贷款,正好是工资的2.剩余的工资按5:4分别用于家庭5开支和定期储蓄.张老师每月定期储蓄多少元?答案1. 【答案】108÷4=27(cm)4+3+2=9(cm)=12(cm)27×49=9(cm)27×39=6(cm)27×2912×9×6=648(cm3)2. 【答案】还剩下的本数:789−231=558(本),总份数:4+5=9,=248(本),五年级分得的本数:558×44+5=310(本),六年级分得的本数:558×54+5答:五年级分得248本,六年级分得310本.3. 【答案】客车和货车的速度和:816÷6=136(千米),=80(千米),客车的速度:136×1010+7=56(千米),货车的速度:136×710+7客车每小时比货车每小时多的:80−56=24(千米);答:客车每小时比货车每小时多走24千米.4. 【答案】5+3+2=10,=200(毫升),400×510=120(毫升),400×310=80(毫升),400×210答:鲜橙汁需要200毫升,蜂蜜需要120毫升,水需要80毫升.=140(本),5. 【答案】630×22+3+4140×2=280(本),630−140−280=210(本).6. 【答案】玫瑰花:180÷3×5=300(棵),两种花共有:180+300=480(棵),答:玫瑰花有 300 棵,两种花共有 480 棵.7. 【答案】 40÷53+4+5=96(本),96÷(1−15)=96×54=120(本).答:这批图书共有 120 本.8. 【答案】 50 名.9. 【答案】文艺书 216 本,科技书 144 本.10. 【答案】混凝土中水泥、黄沙、石子的比是 2:3:5,现在这三种材料都有 24 吨,当黄沙都用完的时候,水泥用了水泥 2×(24÷3)=16 吨,所以水泥还会剩下 24−16=8 吨,需要用石子 5×(24÷3)=40 吨,所以石子还需要增加 40−24=16 吨.11. 【答案】一开始男工与女工的人数比是 4:3,调走 24 个男工后,男女员工的比是 4:5,在这里女生人数没有发生变化,因为 3 和 5 的最小公倍数是 15,可以将一开始的男女比化为 20:15,之后的男女比为 12:15,男生人数减少 20−12=8 份,所以现在有男工 24÷8×12=36 个.12. 【答案】方法一:设这堆煤共有 x 吨,则:(16x +16x +30):[x −(16x +16x +30)]=7:5,解得:x =120.答:这堆煤共有 120 吨.13. 【答案】 108÷(1−14−14×65)=240(页),答:这本书一共有 240 页.14. 【答案】 15÷2=7.5(吨)21÷3=7(吨)7.5>77×4=28(吨)答:需要 28 吨石子才能配制成这种混泥土.15. 【答案】 30×3=90,90÷(2+3+4)=10,2×10=20,3×10=30,4×10=40,答:甲是20,乙是30,丙是40.16. 【答案】200×11+24=8(克),200×241+24=192(克),8+8=16(克),这时糖与水的比是:16:192=1:12.答:这时糖与水的比是1:12.17. 【答案】第一天修了560×38=210(米),第二天和第三天一共修了560−210=350(米),第二天修了350×33+4=150(米),第三天修了350×43+4=200(米),210>200>150,第一天修的路最长.18. 【答案】60,90.19. 【答案】此题考查的是行程问题,以及比例问题,由题目分析,这是一个相遇问题,已知路程和为360km,相遇时间为3小时,可以求出速度和,速度和=路程和÷相遇时间=360÷3=120(km/h),又知道客车和货车的速度比为5:7,按比分配.客车:120×55+7=50(km/h),货车:120×75+7=70(km/h).答:客车每小时行驶50千米,货车每小时行驶70千米.20. 【答案】2400÷25×(1−25)=6000×35=3600(元),3600×44+5=3600×49=1600(元),答:张老师每月定期储蓄1600元.。
六年级数学比和比例试题答案及解析
六年级数学比和比例试题答案及解析1.从6、24、20、18与5这五个数中选出四个数组成一个比例是( )。
【答案】24:4=20:5【解析】此题为一个开放题,有多种答案。
首先确定选哪4个数,根据比例的基本性质,发现:24×5=20×6,可以用24和5同时做内项或外项,20和6做另外两项,写出不同的比例。
如24:4=20:52.把1克盐放入100克水中,盐与盐水的比是1:100。
()【答案】×【解析】要求盐和盐水的比,就要先求出盐水的重量,1+100=101,所以盐和盐水的比是1:101,题目错误。
3.请在下图中画出一个钝角三角形,并用阴影表示,使得阴影部分的面积与空白部分的面积比是2:3。
【答案】只要画出的钝角三角形底和高的乘积是12,面积是6,即为正确。
答案不唯一。
【解析】本题需先计算出钝角三角形的面积是多少。
假设每个小正方形的边长为1,那么整个长方形的面积就是15,阴影面积与空白的比是2:3,说明阴影与整个图形面积的比是2:5,整个图形面积为15,钝角三角形的面积就是6。
根据三角形面积公式可知,底和高的乘积是12,所以只要画出的钝角三角形底和高的乘积是12,面积是6,即为正确。
答案不唯一。
4.有一块正方形铁片(如图),沿一边剪去底是6分米的一个三角形,剩下的铁片成了梯形(阴影部分),这个梯形的上底与下底的比是1:4,求梯形的面积。
【答案】9平方分米【解析】本题的关键是理解6分米对应的份数。
因为梯形的上底和下底的比是1:4,也就是说梯形的上底是1份,正方形的边长是4份,从而得到,空白三角形的底是3份。
6÷3=2(分米),说明1份表示2分米。
梯形上底:2×1=2(分米),梯形下底:2×4=8(分米),因为是正方形,所以梯形的高也是8分米。
(2+8)×8÷2=9(平方分米),梯形面积是9平方分米。
5.小王、小李、小刘三家共同在莲花村租了一套房子,共有三房一厅,每月要交物业管理费210元。
比例应用题(专项训练)数学六年级下册人教版
比例应用题(专项训练)20232024学年数学六年级下册人教版典例分析一.工程队修一段公路,原计划每天修4.8千米,18天修完。
实际提前2天修完,实际每天修多少千米?【答案】5.4千米【分析】根据题意可知:工作总量是一定的,工作效率和工作时间成反比例关系,设实际每天修x千米,据此列比例解答。
【详解】解:设实际每天修x千米。
(18-2)x=4.8×1816x=86.4x=86.4÷16x=5.4答:实际每天修5.4千米。
【点睛】明确工作总量一定,工作效率和工作时间成反比例关系,据此列出比例是解答本题的关键。
典例分析二.如图,学校大门在孔子雕像的正东方240米处。
1号教学楼在孔子雕像北偏东45°的200米处。
(1)分别计算出学校大门、1号教学楼到孔子雕像的图上距离。
(2)在图纸上画出学校大门和1号教学楼的位置。
【答案】(1)学校大门6厘米;1号教学楼5厘米(2)见详解【分析】(1)根据进率“1米=100厘米”以及“图上距离=实际距离×比例尺”,分别求出学校大门、1号教学楼到孔子雕像的图上距离。
(2)以图上的“上北下南,左西右东”为准,在孔子雕像的正东方画6厘米长的线段,即是学校大门;在孔子雕像的北偏东45°方向画5厘米长的线段,即是1号教学楼。
【详解】(1)240米=24000厘米24000×14000=6(厘米)200米=20000厘米20000×14000=5(厘米)答:学校大门到孔子雕像的图上距离是6厘米,1号教学楼到孔子雕像的图上距离是5厘米。
(2)如图:【点睛】本题考查比例尺的应用、根据比例尺画图以及根据方向、角度和距离确定物体的位置。
典例分析三.旗杆有多长?(1)操场上,同学们正在阳光下测量不同长度的竹竿、木棒、大树的长度及它们的影长,测量数据如表:实际长度(米)影长(米)实际长度与影长的比值跟踪训练1.在比例尺是1∶400000的地图上量得甲、乙两地的距离是6厘米。
六年级数学比和按比例分配试题答案及解析
六年级数学比和按比例分配试题答案及解析1.一个文具盒卖价5元,如果小东买了这个文具盒,小东与小鹏的钱数之比是2∶5,如果小鹏买了这个文具,则小东与小鹏的钱数之比是8∶13,小东原来有多少钱?【答案】5÷(﹣)÷ =20(元)答:所以小东原来有20元钱。
【解析】由比与除法的定义,根据题意列方程式得。
2.两辆汽车同时从相距360km的两地相对开出,2.4小时后相遇.已知两辆车的速度比是12:13,两辆车的速度分别是多少?【答案】其中一辆车的速度是每小时行72千米,另一辆车的速度是每小时行78千米.【解析】首先根据路程÷时间=速度,用两地之间的距离除以两车相遇用的时间,求出两车的速度之和是多少;然后把两车的速度之和看作单位“1”,则其中一辆车的速度占两车速度之和的(=),根据分数乘法的意义,用两车的速度之和乘以,求出其中一辆车的速度是多少;最后用两车的速度之和减去其中一辆车的速度,求出另一辆车的速度是多少即可.解答:解;360÷2.4×=150×=72(千米)360÷2.4﹣72=150﹣72=78(千米)答:其中一辆车的速度是每小时行72千米,另一辆车的速度是每小时行78千米.3.六(1)班男生和女生人数的比是5:4,男生比女生多6人,这个班一共有学生.【答案】54.【解析】男女生比是5:4,所以男生人数是全班人数的,女生人数是人班人数的,男生人数比女生人数多6人,所以全班人数是6.解:6÷=6÷=54(人)故答案为:54.【点评】本题关健是先根据男女生的比求出男女生各占全班人数的几分之几,然后将全班人数当做单位“1”求出全班人数.4. 27: = ÷12=0.75== %【答案】36,9,8,75.【解析】解:27:36=9÷12=0.75==75%.故答案为:36,9,8,75.5.如果A:B=4:5,那么A=3,B=5 .(判断对错)【答案】×【解析】解:A=3,B=5代入 A:B=4:5,得到3:5=4:5,因为4×5=20,3×5=15,两个内项积就不等于两个外项积,这样的两个比就不能组成比例了.故应判断为:×.6.把10克盐放入100克水中,盐和盐水的比是1:10..(判断对错)【答案】×.【解析】解:10:(10+100)=10:110=1:11,故答案为:×.7.大圆和小圆半径的比是5:4,小圆面积和大圆面积的比是()A.5:4B.4:5C.16:25D.10:8【答案】C【解析】解:设小圆的半径为4r,大圆的半径为5r,小圆的面积为:π(4r)2=16πr2大圆的面积为:π(5r)2,=25πr2大圆的面积与小圆面积的比为:16πr2:25πr2=16:25.故选:C.8. ÷20= :12=18÷ =3:4= (填小数)【答案】15,9,24,0.75.【解析】解:15÷20=9:12=18÷24=3:4=0.75.故答案为:15,9,24,0.75.9.甲数的与乙数的相等,甲乙两数的比是.【答案】8:9【解析】解:设甲数为1.则乙数为÷=甲数:乙数=1:=8:9.故答案为:8:9.10. 5克糖放入15克水中,糖和水的比是5:15..(判断对错)【答案】√【解析】解:糖与水的比:5:15=1:3.故答案为:√.11. 3:5的前项增加12,要使比值不变,后项应增加20..(判断对错)【答案】√【解析】解:3:5比的前项增加12,由3变成15,相当于前项乘5;要使比值不变,后项也应该乘5,由5变成25,相当于后项加上:25﹣5=20;所以后项应该增加20,说法正确;故答案为:√.12.一套衣服480元,裤子是上衣的,裤子和上衣各是多少元?(用比的知识和列方程这两种方法解答)【答案】裤子180元,上衣300元【解析】解:方法①裤子的价格:上衣的价格=5:3480×=180(元)480×=300(元);答:裤子180元,上衣300元.方法②设上衣的价格是x元,则裤子的价格是x元,x+x=480x=480x=300480﹣300=180(元);答:裤子180元,上衣300元.13.妈妈准备按1:25的比例配用糖水,如果用糖20克,那么能配备克糖水.【答案】520.【解析】糖水中糖与水的比是1:25,把糖看成1份,那么水就是25份,水是糖的25倍,用糖的质量乘上25即可求出水的质量,再把糖和水的质量相加就是糖水的总质量.解:20×25+20=500+20=520(克)答:能配备 520克糖水.故答案为:520.【点评】解决本题把比看成份数,求出水的质量是糖的质量的多少倍,再根据乘法的意义求出水的质量,进而求出糖水的质量.14.是比例尺,把它改写成数值比例尺是.【答案】线段,1:1500000.【解析】根据比例尺的意义作答,即比例尺是图上距离与实际距离的比.解:是线段比例尺,15千米=1500000厘米,改写成数值比例尺为1:1500000.故答案为:线段,1:1500000.【点评】本题主要考查了比例尺的意义,注意图上距离与实际距离的单位要统一.15.农贸公司的香蕉占水果重量的,桔子占总重量的,其余的是苹果.(1)写出香蕉、苹果重量的最简比.(2)如果苹果是35千克,那么香蕉有多少千克?(3)你还能提出什么问题?并解答出来.【答案】(1)5:7(2)25千克.(3)写出香蕉和桔子的比,香蕉和桔子的比为5:8.【解析】把水果的总重量看成单位“1”,那么香蕉的重量就是,桔子的重量就是,苹果的重量就是1﹣;(1)先计算出苹果的重量占水果总重量的几分之几,然后再作比;(2)先根据苹果的重量求出水果的总重量,然后再用乘法求出香蕉的重量.(3)根据以上数据提出问题,并解答.解:(1)1﹣=,:=:=5:7;答:香蕉与苹果的比为5:7.(2)35×,=100×,=25(千克);答:香蕉有25千克.(3)写出香蕉和桔子的比,并化成最简整数比.:=:=:=5:8;香蕉和桔子的比为5:8.【点评】本题关键是把水果的总重量看成单位“1”,用分数分别把香蕉,桔子,苹果的重量表示出来,再根据基本的数量关系求解.16.:的最简整数比是,比值是.【答案】5:8,.【解析】(1)根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可.解:(1):,=(×20):(×20),=5:8;(2):,=÷,=;故答案为:5:8,.【点评】要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数、小数或分数.17.六(1)有男生35人,女生25人,男生占全班的,女生占全班的,男生和女生的比是,女生和男生的比是.【答案】7:5,5:7.【解析】把全班人数看成单位“1”,用男生人数除以全班总人数就是男生占全班人数的几分之几,再用1减去男生占的分率就是女生占的分率;分别写出男生和女生的比及女生和男生的比;再化简即可.解:35÷(35+25)=1﹣=35:25=7:525:35=5:7答:男生占全班的,女生占全班的,男生和女生的比是7:5,女生和男生的比是5:7.故答案为:7:5,5:7.【点评】本题属于基本的分数除法应用题,求一个数是另一个数的几分之几,只要找出单位“1”,问题不难解决.18.比的前项和后项同时乘或除以一个数,比值不变..(判断对错)【答案】×【解析】比的基本性质的内容是比的前项和后项同时乘或除以一个数(0除外)比值不变;所以此题的说法是错误的.解:比的基本性质的内容是比的前项和后项同时乘或除以一个数(0除外)比值不变;所以此题的说法是错误的.故判断为:×【点评】本题主要考查了比例的基本性质,注意“0”这个特殊的数.19. a是b的9倍,b与a的比是9:1..(判断对错)【答案】×【解析】设b为x,则a是9x,根据题意进行比,然后化成最简整数比即可.解:设b为x,则a是9x,则:b与a的比是:x:9x=1:9;故答案为:×.【点评】解答此题应进行假设,设出其中的一个量为x,另一个量也用未知数表示,根据题意进行比,解答即可.20.一个机器零件的长度是8毫米,画在比例尺是10:1的图纸上的长度是()A.8分米 B.8毫米 C.8厘米【答案】C【解析】比例尺=图上距离:实际距离,根据题意列出比例式求解即可.解:根据题意,设图纸上的长度是x毫米,10:1=x:8,x=10×8,x=80;80毫米=8厘米.故选:C.【点评】考查了图上距离与实际距离的换算(比例尺的应用),关键是理解比例尺的概念,正确进行计算.。
小学六年级数学比例、百分比、圆应用题大全及答案
小学六年级数学应用题大全——比例应用题1、一个长方形的周长是24厘米,长与宽的比是2:1 ,这个长方形的面积是多少平方厘米?2、一个长方体棱长总和为96 厘米,长、宽、高的比是3∶2 ∶1 ,这个长方体的体积是多少?3、一个长方体棱长总和为96 厘米,高为4厘米,长与宽的比是 3 ∶2 ,这个长方体的体积是多少?4、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是 4 ∶3,男生有多少人?5、有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?6、做一个600克豆沙包,需要面粉红豆和糖的比是3:2:1,面粉红豆和糖各需多少克?7、小明看一本故事书,第一天看了全书的1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?8、一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?小学六年级数学应用题大全——分数应用题1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快 2/7,两车经过多少小时相遇?7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只?9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米?小学六年级数学应用题大全——百分数应用题1、某化肥厂今年产值比去年增加了 20%,比去年增加了500万元,今年道值是多少万元?2、果品公司储存一批苹果,售出这批苹果的30%后,又运来160箱,这时比原来储存的苹果多1/10 ,这时有苹果多少箱?3、一件商品,原价比现价少百分之20,现价是1028元,原价是多少元?4、教育储蓄所得的利息不用纳税。
小学数学比例应用题100道及答案(完整版)
小学数学比例应用题100道及答案(完整版)1. 小明用10 元钱买了5 个本子,照这样计算,16 元可以买几个本子?答案:8 个解析:先算出每个本子的价格10÷5 = 2 元,16÷2 = 8 个2. 工厂生产一种零件,3 小时生产了180 个,照这样计算,8 小时可以生产多少个?答案:480 个解析:每小时生产180÷3 = 60 个,8 小时生产60×8 = 480 个3. 一辆汽车5 小时行驶250 千米,照这样的速度,7 小时行驶多少千米?答案:350 千米解析:速度为250÷5 = 50 千米/时,7 小时行驶50×7 = 350 千米4. 4 头牛5 天吃草800 千克,照这样计算,7 头牛8 天吃草多少千克?答案:2240 千克解析:1 头牛1 天吃草800÷4÷5 = 40 千克,7 头牛8 天吃草40×7×8 = 2240 千克5. 用20 千克花生可以榨油8 千克,照这样计算,100 千克花生可以榨油多少千克?答案:40 千克解析:出油率为8÷20 = 0.4,100×0.4 = 40 千克6. 某工厂8 个工人6 天加工零件720 个,照这样计算,12 个工人15 天可以加工零件多少个?答案:2700 个解析:1 个工人1 天加工720÷8÷6 = 15 个,12 个工人15 天加工15×12×15 = 2700 个7. 5 台织布机8 小时织布480 米,照这样计算,7 台织布机12 小时织布多少米?答案:1008 米解析:1 台织布机1 小时织布480÷5÷8 = 12 米,7 台织布机12 小时织布12×7×12 = 1008 米8. 修一条路,3 人5 天可以修150 米,照这样计算,8 人10 天可以修多少米?答案:800 米解析:1 人1 天修150÷3÷5 = 10 米,8 人10 天修10×8×10 = 800 米9. 10 辆汽车12 次运货物600 吨,照这样计算,20 辆汽车15 次可以运货物多少吨?答案:1500 吨解析:1 辆汽车1 次运600÷10÷12 = 5 吨,20 辆汽车15 次运5×20×15 = 1500 吨10. 学校用同样的方砖铺地,铺5 平方米需要方砖120 块,照这样计算,铺30 平方米需要方砖多少块?答案:720 块解析:1 平方米需要120÷5 = 24 块,30 平方米需要24×30 = 720 块11. 小明2 分钟走120 米,照这样的速度,他从家到学校走了8 分钟,他家到学校有多远?答案:480 米解析:速度为120÷2 = 60 米/分钟,8 分钟走60×8 = 480 米12. 工人师傅4 小时加工零件160 个,照这样计算,7 小时加工零件多少个?答案:280 个解析:每小时加工160÷4 = 40 个,7 小时加工40×7 = 280 个13. 6 台收割机8 天收割小麦240 公顷,照这样计算,10 台收割机12 天收割小麦多少公顷?答案:600 公顷解析:1 台收割机1 天收割240÷6÷8 = 5 公顷,10 台收割机12 天收割5×10×12 = 600 公顷14. 某服装厂3 天生产服装180 套,照这样计算,9 天可以生产服装多少套?答案:540 套解析:每天生产180÷3 = 60 套,9 天生产60×9 = 540 套15. 15 头牛4 天吃草180 千克,照这样计算,8 头牛6 天吃草多少千克?答案:576 千克解析:1 头牛1 天吃草180÷15÷4 = 3 千克,8 头牛 6 天吃草3×8×6 = 144 千克16. 5 个工人6 小时加工零件300 个,照这样计算,8 个工人10 小时加工零件多少个?答案:480 个解析:1 个工人1 小时加工300÷5÷6 = 10 个,8 个工人10 小时加工10×8×10 = 800 个17. 一辆汽车3 小时行驶180 千米,照这样的速度,5 小时行驶多少千米?答案:300 千米解析:速度为180÷3 = 60 千米/时,5 小时行驶60×5 = 300 千米18. 用100 千克大豆可以榨油16 千克,照这样计算,400 千克大豆可以榨油多少千克?答案:64 千克解析:出油率为16÷100 = 0.16,400×0.16 = 64 千克19. 修一条路,5 人7 天可以修350 米,照这样计算,10 人14 天可以修多少米?答案:1400 米解析:1 人1 天修350÷5÷7 = 10 米,10 人14 天修10×10×14 = 1400 米20. 3 台抽水机4 小时抽水240 立方米,照这样计算,5 台抽水机6 小时抽水多少立方米?答案:600 立方米解析:1 台抽水机1 小时抽水240÷3÷4 = 20 立方米,5 台抽水机6 小时抽水20×5×6 = 600 立方米21. 某工厂6 个工人5 天生产零件900 个,照这样计算,15 个工人8 天可以生产零件多少个?答案:3600 个解析:1 个工人1 天生产900÷6÷5 = 30 个,15 个工人8 天生产30×15×8 = 3600 个22. 8 台印刷机10 小时印刷纸张48000 张,照这样计算,12 台印刷机15 小时印刷纸张多少张?答案:108000 张解析:1 台印刷机1 小时印刷48000÷8÷10 = 600 张,12 台印刷机15 小时印刷600×12×15 = 108000 张23. 5 辆汽车7 次运煤140 吨,照这样计算,8 辆汽车10 次运煤多少吨?答案:320 吨解析:1 辆汽车1 次运煤140÷5÷7 = 4 吨,8 辆汽车10 次运煤4×8×10 = 320 吨24. 服装厂2 天生产服装120 套,照这样计算,6 天可以生产服装多少套?答案:360 套解析:每天生产120÷2 = 60 套,6 天生产60×6 = 360 套25. 12 头牛5 天吃草300 千克,照这样计算,18 头牛8 天吃草多少千克?答案:864 千克解析:1 头牛1 天吃草300÷12÷5 = 5 千克,18 头牛8 天吃草5×18×8 = 720 千克26. 4 个工人3 小时加工零件120 个,照这样计算,7 个工人8 小时加工零件多少个?答案:560 个解析:1 个工人1 小时加工120÷4÷3 = 10 个,7 个工人8 小时加工10×7×8 = 560 个27. 一辆汽车4 小时行驶280 千米,照这样的速度,7 小时行驶多少千米?答案:490 千米解析:速度为280÷4 = 70 千米/时,7 小时行驶70×7 = 490 千米28. 用80 千克花生可以榨油32 千克,照这样计算,200 千克花生可以榨油多少千克?答案:80 千克解析:出油率为32÷80 = 0.4,200×0.4 = 80 千克29. 修一条路,4 人6 天可以修240 米,照这样计算,6 人9 天可以修多少米?答案:540 米解析:1 人1 天修240÷4÷6 = 10 米,6 人9 天修10×6×9 = 540 米30. 5 台拖拉机6 小时耕地150 亩,照这样计算,8 台拖拉机9 小时耕地多少亩?答案:216 亩解析:1 台拖拉机1 小时耕地150÷5÷6 = 5 亩,8 台拖拉机9 小时耕地5×8×9 = 360 亩31. 某工厂10 个工人8 天生产零件800 个,照这样计算,15 个工人12 天可以生产零件多少个?答案:1800 个解析:1 个工人1 天生产800÷10÷8 = 10 个,15 个工人12 天生产10×15×12 = 1800 个32. 6 台磨面机7 小时磨面粉2520 千克,照这样计算,9 台磨面机10 小时磨面粉多少千克?答案:3600 千克解析:1 台磨面机1 小时磨面粉2520÷6÷7 = 60 千克,9 台磨面机10 小时磨面粉60×9×10 = 5400 千克33. 4 辆卡车5 次运货物160 吨,照这样计算,7 辆卡车8 次运货物多少吨?答案:448 吨解析:1 辆卡车1 次运货物160÷4÷5 = 8 吨,7 辆卡车8 次运货物8×7×8 = 448 吨34. 服装厂3 天生产服装180 套,照这样计算,9 天可以生产服装多少套?答案:540 套解析:每天生产180÷3 = 60 套,9 天生产60×9 = 540 套35. 18 头牛6 天吃草540 千克,照这样计算,12 头牛8 天吃草多少千克?答案:480 千克解析:1 头牛1 天吃草540÷18÷6 = 5 千克,12 头牛8 天吃草5×12×8 = 480 千克36. 5 个工人8 小时加工零件400 个,照这样计算,7 个工人12 小时加工零件多少个?答案:840 个解析:1 个工人1 小时加工400÷5÷8 = 10 个,7 个工人12 小时加工10×7×12 = 840 个37. 一辆汽车6 小时行驶360 千米,照这样的速度,8 小时行驶多少千米?答案:480 千米解析:速度为360÷6 = 60 千米/时,8 小时行驶60×8 = 480 千米38. 用120 千克大豆可以榨油24 千克,照这样计算,300 千克大豆可以榨油多少千克?答案:60 千克解析:出油率为24÷120 = 0.2,300×0.2 = 60 千克39. 修一条路,6 人8 天可以修480 米,照这样计算,9 人12 天可以修多少米?答案:864 米解析:1 人1 天修480÷6÷8 = 10 米,9 人12 天修10×9×12 = 1080 米40. 7 台织布机9 小时织布630 米,照这样计算,10 台织布机12 小时织布多少米?答案:960 米解析:1 台织布机1 小时织布630÷7÷9 = 10 米,10 台织布机12 小时织布10×10×12 = 1200 米41. 某工厂12 个工人10 天生产零件1200 个,照这样计算,18 个工人15 天可以生产零件多少个?答案:2700 个解析:1 个工人 1 天生产1200÷12÷10 = 10 个,18 个工人15 天生产10×18×15 = 2700 个42. 8 台收割机9 天收割小麦360 公顷,照这样计算,12 台收割机15 天收割小麦多少公顷?答案:900 公顷解析:1 台收割机1 天收割360÷8÷9 = 5 公顷,12 台收割机15 天收割5×12×15 = 900 公顷43. 5 辆汽车6 次运货物150 吨,照这样计算,8 辆汽车10 次运货物多少吨?答案:400 吨解析:1 辆汽车1 次运货物150÷5÷6 = 5 吨,8 辆汽车10 次运货物5×8×10 = 400 吨44. 服装厂4 天生产服装240 套,照这样计算,12 天可以生产服装多少套?答案:720 套解析:每天生产240÷4 = 60 套,12 天生产60×12 = 720 套45. 20 头牛7 天吃草700 千克,照这样计算,15 头牛10 天吃草多少千克?答案:750 千克解析:1 头牛1 天吃草700÷20÷7 = 5 千克,15 头牛10 天吃草5×15×10 = 750 千克46. 6 个工人7 小时加工零件210 个,照这样计算,9 个工人14 小时加工零件多少个?答案:630 个解析:1 个工人1 小时加工210÷6÷7 = 5 个,9 个工人14 小时加工5×9×14 = 630 个47. 一辆汽车5 小时行驶250 千米,照这样的速度,9 小时行驶多少千米?答案:450 千米解析:速度为250÷5 = 50 千米/时,9 小时行驶50×9 = 450 千米48. 用150 千克花生可以榨油60 千克,照这样计算,350 千克花生可以榨油多少千克?答案:140 千克解析:出油率为60÷150 = 0.4,350×0.4 = 140 千克49. 修一条路,7 人9 天可以修630 米,照这样计算,10 人18 天可以修多少米?答案:1800 米解析:1 人1 天修630÷7÷9 = 10 米,10 人18 天修10×10×18 = 1800 米50. 8 台拖拉机7 小时耕地280 亩,照这样计算,12 台拖拉机10 小时耕地多少亩?答案:600 亩解析:1 台拖拉机1 小时耕地280÷8÷7 = 5 亩,12 台拖拉机10 小时耕地5×12×10 = 600 亩51. 某工厂15 个工人12 天生产零件1800 个,照这样计算,20 个工人18 天可以生产零件多少个?答案:5400 个解析:1 个工人 1 天生产1800÷15÷12 = 10 个,20 个工人18 天生产10×20×18 = 3600 个52. 9 台印刷机11 小时印刷纸张49500 张,照这样计算,15 台印刷机16 小时印刷纸张多少张?答案:120000 张解析:1 台印刷机1 小时印刷49500÷9÷11 = 500 张,15 台印刷机16 小时印刷500×15×16 = 120000 张53. 7 辆汽车8 次运煤224 吨,照这样计算,10 辆汽车12 次运煤多少吨?答案:480 吨解析:1 辆汽车1 次运煤224÷7÷8 = 4 吨,10 辆汽车12 次运煤4×10×12 = 480 吨54. 服装厂5 天生产服装300 套,照这样计算,15 天可以生产服装多少套?答案:900 套解析:每天生产300÷5 = 60 套,15 天生产60×15 = 900 套55. 25 头牛8 天吃草1000 千克,照这样计算,18 头牛12 天吃草多少千克?答案:864 千克解析:1 头牛 1 天吃草1000÷25÷8 = 5 千克,18 头牛12 天吃草5×18×12 = 1080 千克56. 8 个工人9 小时加工零件360 个,照这样计算,12 个工人15 小时加工零件多少个?答案:900 个解析:1 个工人1 小时加工360÷8÷9 = 5 个,12 个工人15 小时加工5×12×15 = 900 个57. 一辆汽车7 小时行驶420 千米,照这样的速度,10 小时行驶多少千米?答案:600 千米解析:速度为420÷7 = 60 千米/时,10 小时行驶60×10 = 600 千米58. 用200 千克大豆可以榨油80 千克,照这样计算,450 千克大豆可以榨油多少千克?答案:180 千克解析:出油率为80÷200 = 0.4,450×0.4 = 180 千克59. 修一条路,9 人11 天可以修990 米,照这样计算,12 人20 天可以修多少米?答案:2400 米解析:1 人1 天修990÷9÷11 = 10 米,12 人20 天修10×12×20 = 2400 米60. 10 台收割机12 小时收割小麦600 公顷,照这样计算,15 台收割机18 小时收割小麦多少公顷?答案:1350 公顷解析:1 台收割机1 小时收割600÷10÷12 = 5 公顷,15 台收割机18 小时收割5×15×18 = 1350 公顷61. 某工厂18 个工人14 天生产零件2520 个,照这样计算,24 个工人21 天可以生产零件多少个?答案:6048 个解析:1 个工人 1 天生产2520÷18÷14 = 10 个,24 个工人21 天生产10×24×21 = 5040 个62. 11 台磨面机13 小时磨面粉5720 千克,照这样计算,16 台磨面机18 小时磨面粉多少千克?答案:11520 千克解析:1 台磨面机1 小时磨面粉5720÷11÷13 = 40 千克,16 台磨面机18 小时磨面粉40×16×18 = 11520 千克63. 9 辆卡车10 次运货物450 吨,照这样计算,12 辆卡车15 次运货物多少吨?答案:900 吨解析:1 辆卡车1 次运货物450÷9÷10 = 5 吨,12 辆卡车15 次运货物5×12×15 = 900 吨64. 服装厂6 天生产服装360 套,照这样计算,18 天可以生产服装多少套?答案:1080 套解析:每天生产360÷6 = 60 套,18 天生产60×18 = 1080 套65. 30 头牛10 天吃草1200 千克,照这样计算,24 头牛15 天吃草多少千克?答案:1440 千克解析:1 头牛1 天吃草1200÷30÷10 = 4 千克,24 头牛15 天吃草4×24×15 = 1440 千克66. 10 个工人12 小时加工零件600 个,照这样计算,15 个工人20 小时加工零件多少个?答案:1500 个解析:1 个工人1 小时加工600÷10÷12 = 5 个,15 个工人20 小时加工5×15×20 = 1500 个67. 一辆汽车8 小时行驶480 千米,照这样的速度,12 小时行驶多少千米?答案:720 千米解析:速度为480÷8 = 60 千米/时,12 小时行驶60×12 = 720 千米68. 用250 千克花生可以榨油100 千克,照这样计算,550 千克花生可以榨油多少千克?答案:220 千克解析:出油率为100÷250 = 0.4,550×0.4 = 220 千克69. 修一条路,11 人13 天可以修715 米,照这样计算,14 人22 天可以修多少米?答案:1638 米解析:1 人1 天修715÷11÷13 = 5 米,14 人22 天修5×14×22 = 1540 米70. 12 台拖拉机14 小时耕地504 亩,照这样计算,18 台拖拉机20 小时耕地多少亩?答案:1080 亩解析:1 台拖拉机1 小时耕地504÷12÷14 = 3 亩,18 台拖拉机20 小时耕地3×18×20 = 1080 亩71. 某工厂20 个工人16 天生产零件3200 个,照这样计算,25 个工人24 天可以生产零件多少个?答案:9000 个解析:1 个工人 1 天生产3200÷20÷16 = 10 个,25 个工人24 天生产10×25×24 = 6000 个72. 13 台印刷机15 小时印刷纸张78000 张,照这样计算,18 台印刷机20 小时印刷纸张多少张?答案:144000 张解析:1 台印刷机1 小时印刷78000÷13÷15 = 400 张,18 台印刷机20 小时印刷400×18×20 = 144000 张73. 11 辆汽车12 次运煤396 吨,照这样计算,15 辆汽车18 次运煤多少吨?答案:810 吨解析:1 辆汽车1 次运煤396÷11÷12 = 3 吨,15 辆汽车18 次运煤3×15×18 = 810 吨74. 服装厂7 天生产服装420 套,照这样计算,21 天可以生产服装多少套?答案:1260 套解析:每天生产420÷7 = 60 套,21 天生产60×21 = 1260 套75. 35 头牛12 天吃草1680 千克,照这样计算,28 头牛16 天吃草多少千克?答案:1792 千克解析:1 头牛1 天吃草1680÷35÷12 = 4 千克,28 头牛16 天吃草4×28×16 = 1792 千克76. 12 个工人14 小时加工零件720 个,照这样计算,18 个工人21 小时加工零件多少个?解析:1 个工人1 小时加工720÷12÷14 = 5 个,18 个工人21 小时加工5×18×21 = 1890 个77. 一辆汽车9 小时行驶540 千米,照这样的速度,15 小时行驶多少千米?答案:900 千米解析:速度为540÷9 = 60 千米/时,15 小时行驶60×15 = 900 千米78. 用300 千克大豆可以榨油120 千克,照这样计算,650 千克大豆可以榨油多少千克?答案:260 千克解析:出油率为120÷300 = 0.4,650×0.4 = 260 千克79. 修一条路,13 人15 天可以修780 米,照这样计算,16 人25 天可以修多少米?答案:1600 米解析:1 人1 天修780÷13÷15 = 4 米,16 人25 天修4×16×25 = 1600 米80. 14 台收割机16 小时收割小麦896 公顷,照这样计算,20 台收割机24 小时收割小麦多少公顷?答案:1536 公顷解析:1 台收割机1 小时收割896÷14÷16 = 4 公顷,20 台收割机24 小时收割4×20×24 = 1920 公顷81. 某工厂22 个工人18 天生产零件3960 个,照这样计算,28 个工人27 天可以生产零件多少个?答案:9072 个解析:1 个工人 1 天生产3960÷22÷18 = 10 个,28 个工人27 天生产10×28×27 = 7560 个82. 15 台磨面机17 小时磨面粉8500 千克,照这样计算,20 台磨面机25 小时磨面粉多少千克?答案:12500 千克解析:1 台磨面机1 小时磨面粉8500÷15÷17 = 100/3 千克,20 台磨面机25 小时磨面粉100/3×20×25 = 50000/3 千克≈16666.67 千克83. 13 辆卡车14 次运货物588 吨,照这样计算,18 辆卡车21 次运货物多少吨?答案:1134 吨解析:1 辆卡车1 次运货物588÷13÷14 = 3 吨,18 辆卡车21 次运货物3×18×21 = 1134 吨84. 服装厂8 天生产服装480 套,照这样计算,24 天可以生产服装多少套?答案:1440 套解析:每天生产480÷8 = 60 套,24 天生产60×24 = 1440 套85. 40 头牛15 天吃草1800 千克,照这样计算,32 头牛20 天吃草多少千克?解析:1 头牛1 天吃草1800÷40÷15 = 3 千克,32 头牛20 天吃草3×32×20 = 1920 千克86. 14 个工人16 小时加工零件896 个,照这样计算,20 个工人24 小时加工零件多少个?答案:1920 个解析:1 个工人1 小时加工896÷14÷16 = 4 个,20 个工人24 小时加工4×20×24 = 1920 个87. 一辆汽车10 小时行驶600 千米,照这样的速度,18 小时行驶多少千米?答案:1080 千米解析:速度为600÷10 = 60 千米/时,18 小时行驶60×18 = 1080 千米88. 用350 千克花生可以榨油140 千克,照这样计算,750 千克花生可以榨油多少千克?答案:300 千克解析:出油率为140÷350 = 0.4,750×0.4 = 300 千克89. 修一条路,15 人18 天可以修900 米,照这样计算,18 人30 天可以修多少米?答案:1800 米解析:1 人1 天修900÷15÷18 = 10 / 3 米,18 人30 天修10 / 3×18×30 = 1800 米90. 16 台拖拉机18 小时耕地864 亩,照这样计算,24 台拖拉机27 小时耕地多少亩?答案:1944 亩解析:1 台拖拉机1 小时耕地864÷16÷18 = 3 亩,24 台拖拉机27 小时耕地3×24×27 = 1944 亩91. 某工厂25 个工人20 天生产零件5000 个,照这样计算,30 个工人30 天可以生产零件多少个?答案:9000 个解析:1 个工人 1 天生产5000÷25÷20 = 10 个,30 个工人30 天生产10×30×30 = 9000 个92. 17 台印刷机19 小时印刷纸张96900 张,照这样计算,22 台印刷机25 小时印刷纸张多少张?答案:165000 张解析:1 台印刷机1 小时印刷96900÷17÷19 = 300 张,22 台印刷机25 小时印刷300×22×25 = 165000 张93. 15 辆汽车16 次运煤600 吨,照这样计算,20 辆汽车24 次运煤多少吨?答案:1200 吨解析:1 辆汽车 1 次运煤600÷15÷16 = 2.5 吨,20 辆汽车24 次运煤 2.5×20×24 = 1200 吨94. 服装厂9 天生产服装540 套,照这样计算,27 天可以生产服装多少套?答案:1620 套解析:每天生产540÷9 = 60 套,27 天生产60×27 = 1620 套95. 45 头牛18 天吃草2160 千克,照这样计算,36 头牛24 天吃草多少千克?答案:2592 千克解析:1 头牛1 天吃草2160÷45÷18 = 8 / 3 千克,36 头牛24 天吃草8 / 3×36×24 = 2592 千克96. 16 个工人18 小时加工零件960 个,照这样计算,24 个工人27 小时加工零件多少个?答案:2592 个解析:1 个工人1 小时加工960÷16÷18 = 10 / 3 个,24 个工人27 小时加工10 / 3×24×27 = 2160 个97. 一辆汽车11 小时行驶660 千米,照这样的速度,16 小时行驶多少千米?答案:960 千米解析:速度为660÷11 = 60 千米/时,16 小时行驶60×16 = 960 千米98. 用400 千克花生可以榨油160 千克,照这样计算,850 千克花生可以榨油多少千克?答案:340 千克解析:出油率为160÷400 = 0.4,850×0.4 = 340 千克99. 修一条路,17 人21 天可以修1020 米,照这样计算,20 人35 天可以修多少米?答案:2000 米解析:1 人1 天修1020÷17÷21 = 10 / 3 米,20 人35 天修10 / 3×20×35 = 2000 米100. 18 台收割机20 小时收割小麦960 公顷,照这样计算,27 台收割机30 小时收割小麦多少公顷?答案:2160 公顷解析:1 台收割机1 小时收割960÷18÷20 = 8 / 3 公顷,27 台收割机30 小时收割8 / 3×27×30 = 2160 公顷。
人教版六年级下册数学第四单元比例应用题专题训练(带答案)
人教版六年级下册数学第四单元比例应用题专题训练1.把一个长方形养鱼池按1:200 的比例尺画在图纸上,长是4d m,宽是3dm。
这个养鱼池的实际占地面积是多少平方米?2.两个互相咬合的齿轮,大齿轮有60个齿,每分钟转80圈,小齿轮有20个齿,每分钟转多少圈?3.一架飞机所带的燃料最多可以飞行6小时,飞机去时顺风,每小时可以飞行1500 km,返回时逆风,每小时可以飞行1200 km。
这架飞机最多能飞行多少千米就需要返回?4.制一批零件,甲单独完成要8小时,已知甲、乙的工作效率比是4:3,则乙单独完成要多长时间?5.有种钢管长6 m,把它锯成50 cm的小段,要锯44分钟,照这样计算,如果把它锯成40 cm的小段,要锯多少分钟?6.王大爷种了一块直角三角形的菜地,两条直角边共长10.8 m,它们的长度比是5:4。
将这块菜地用1:200的比例尺画在图上,这块菜地的图上面积是多少平方厘米?7.在比例尺为1 :9000000的航空图上,甲、乙两地相距30cm,有两架飞机同时从甲、乙两地起飞,分别以810km/h和690km/h的速度相向飞行,经过几小时两架飞机在空中相遇?8.在比例尺是1:2500000的地图上,量得A、B两地相距12厘米。
如果李叔叔和王叔叔开车同时从两地相对出发,李叔叔开车每小时行105千米,王叔叔开车每小时行95千米,几小时后两人能相遇?9.为了加快推进美丽乡村建设,某工程队铺一条乡村公路,原计划每天铺320m,15天铺完。
实际施工时,由于改进了铺路方法,前4天就铺了1600m。
照这样计算,该工程队可以比原计划提前几天完成铺路任务?(用比例解答)10.一间房子用方砖铺地,如果用边长4分米的正方形地砖一共需要360块;如果改用边长为6分米的正方形地砖来铺,一共需要多少块?11.爸爸暑假准备开车带小明去上海迪士尼玩,他在一幅比例尺是1:4000000的中国地图上量得台州到上海的距离大约是8.5cm,如果爸爸开车平均每小时行驶85km,多少小时能到达?12.一间房子要用方砖铺地,用边长3分米的方砖,需要96块;如果改用边长是2分米的方砖,需要多少块?(用比例知识解答)13.在一幅比例尺是1∶5000000 的地图上,量得A地和B 地相距6 厘米。
六下数学 正比例与反比例 应用题训练30题 带答案
相同时间内,路程和速度成正比例,速度之比=路程之比
(2x-130):(x+130)=3:2 解得x=650
8、一辆卡车与一辆小轿车同时从甲、乙两城相对开出,相遇后两 车继续向前行驶.当小轿车到达甲地、卡车到达乙地后.立即返回 ,第二次相遇点距甲城120千米,已知:卡车与小轿车的速度比是3 :4,甲、乙两城相距多少千米?
13、用方砖铺一间教室的地面,如果用边长为2dm的方砖 ,需要用60块,如果改用边长为3dm的方砖,需要用多少 块? 27块 解析:解设需要用x块砖 教室的面积一定,所用的方砖的块数和每块方砖的面积成 反比例
2×2×60=3×3×x 解得 x=80/3 进一法,所以需要27块
14、有甲乙丙三个相互咬合的齿轮,当甲齿轮转动2圈时, 乙齿轮转动3圈,丙齿轮转动4圈,这三个齿轮的齿数之比 是( ):( ):( )。 6:4:3 解析:相互咬合的齿轮转动的总齿数是相同的,那么一圈 的齿数和转动的圈数是成反比例的,设三个齿轮的齿数分 别为x y z 则2x=3y=4z 得x:y :z=6:4:3
16、学校组织同学参观爱国主义纪念展,每60名同学配2
X=18
4、某修路队修一条公路,前6天修了180米,照这样的速度,修路 队又修了5天才全部修完,这条公路全长是多少米?
解设这条公路的全长是x米 每天修的长度一定,路的全长和时间成正比例关系 180:6=x:(6+5)
X=330
5、甲乙丙三人进行200米赛跑(他们的速度保持不变),甲到 终点时,乙还差20米,丙离终点还有25米,问乙到达终点时, 丙还差多少米?
解设:甲乙两城相距x千米 则第二次相遇时,卡车经过的路程为:x+x-120=2x-120 小轿车经过的路程为:x+120
六年级数学比和比例试题答案及解析
六年级数学比和比例试题答案及解析1.甲、乙、丙三人分一箱苹果.若按3:2:5或1:2:3分配,两种分法()分得一样多.A.甲 B.乙 C.丙【答案】C【解析】根据两种分配方法,分别求出两种方案中甲、乙、丙各分得总数的几分之几,分数值相同的及时分得糖果相同的.解答:解:第一种:3+2+5=10甲占:乙占:=丙占:=第二种:1+2+3=6甲占:乙占:=丙占:=所以两次丙分得的一样多.故选:C.点评:本题的关键是求出两次甲、乙、丙各占总份数的几分之几.2.:==80%=÷40=折=小数.【答案】4,5,50,32,八,0.8【解析】分析:80%可以化成,根据分数的性质,的分子和分母同时乘10可化成;用的分子4做比的前项,分母5做比的后项也可转化成比为4:5;用的分子4做被除数,分母5做除数可转化成除法算式为4÷5,根据商不变的性质,把被除数和除数同时乘8可化成32÷40;80%也就是八折;把80%的百分号去掉,把小数点向左移动两位可化成0.8;由此进行转化并填空.解答:解:4:5==80%=32÷40=八折=0.8.故答案为:4,5,50,32,八,0.8.点评:此题考查小数、分数、比、除法和百分数之间的关系和转化,也考查了分数的性质和商不变性质的运用.3.用一根长120米的钢筋,围成一个长方体的房间框架,已知长、宽、高的比是3:2:1,房间的长宽高分别是多少?若粉刷屋顶和四面墙壁,除去门窗20平方米,粉刷的面积是多少平方米?【答案】房间的长是15米、宽是10米、高是5米,粉刷的面积是480平方米.【解析】用一根长120米的钢筋,围成一个长方体的房间框架,已知长、宽、高的比是3:2:1,首先求得一条长、宽、高的和:120÷4=30厘米,进而求出长、宽、高的总份数,再求得长、宽、高所占总数的几分之几,最后求得长方体的长、宽、高分别是多少,列式解答即可;粉刷的是四面墙壁和顶棚,根据长方体的表面积的计算方法,求出这5个面的总面积减去门窗和黑板面积即可.据此解答.解答:解:长:120÷4×=30×=15(米)宽:120÷4×=30×=10(米)高:120÷4×=30×=5(米)15×10+(15×5+10×5)×2﹣20=150+(75+50)×2﹣20=150+250﹣20=400﹣20=480(平方米)答:房间的长是15米、宽是10米、高是5米,粉刷的面积是480平方米.点评:此题解答的关键字在于求出长、宽、高的和,再运用按比例分配的方法解决,还要搞清粉刷的是哪几个面,然后根据长方体的表面积的计算方法进行解答.4. 4:3的后项加上12,要使比值不变,前项应加上.【答案】16.【解析】比的后项加上12,扩大了5倍,根据比的基本性质,要使比值不变,比的前项也应扩大5倍,即乘上5,据此解答即可.解答:解:3+12=15,15÷3=5比的后项变成15,扩大了5倍,要使比值不变,比的前项也应扩大5倍;即比的前项应乘上5,或加上4×5﹣4=16.故答案为:16.点评:此题主要考查了比的基本性质的灵活应用.5. 1.2:化成最简整数比是,比值是.【答案】2:1,2.【解析】化简比是根据比的基本性质(比的前项和后项同时乘上或除以一个相同的数(0除外),比值不变),把比的前项和后项同时乘上或除以一个相同的不为0的数,使比的前项和后项变成互质数.求比值是用比的前项除以后项,小数化成分数进行计算,结果最好用分数表示.解答:解:化成最简整数比是:1.2:=:=:=():()=6:3=(6÷3):(3÷3)=2:1比值是:1.2:=:===2.故填:2:1,2.点评:化简比是把一个比化成最简单的整数比(前项和后项是互质数)的形式,求比值是求出比的值的大小.6.画一个周长是24厘米,长与宽的比是3:1的长方形.【答案】24÷2=12(厘米)12×=9(厘米)12×=3(厘米)据此画图如下:【解析】解:24÷2=12(厘米)12×=9(厘米)12×=3(厘米)据此画图如下:【点评】依据长方形的周长公式,分别计算出长方形的长和宽的值,是解答本题的关键.7. 10克药溶解在100克水中,药和药水的比是()A.1:10 B.1:9 C.1:11【答案】C【解析】将10克药放入100克水中,即可配制成10+100=110克药水,那么药和药水的比是10:110,然后化简即可.解:10:(10+100)=10:110=1:11答:药和药水的比是1:11.故选:C.【点评】此题解题的关键是看所求的问题是谁与谁比,然后根据题意进行解答,继而得出结论.8.男生与女生的人数比是6:5,男生比女生多()A. B. C.【答案】C【解析】男生与女生人数的比是6:5,把男生人数看作6份,则女生人数就是5份,就是求男生比女生多的人数占女生人数的几分之几,用男生比女生多的人数除以女生人数即可解答.解:(6﹣5)÷5=1÷5=;故选:C.【点评】求一个数比另一个数多或少百分之几,用这两数之差除以另一个数.9.在一个比例中,两个外项的积是,一个内项是3,另一个内项是.【答案】.【解析】根据比例的性质“在比例里,两内项的积等于两外项的积”,先确定出两个內项的积也是,进而根据一个内项是3,用除法计算即可求得另一个內项的数值.解:在一个比例中,两个外项的积是根据比例的性质,可知两个内项的积也是,其中一个内项是3,则另一个内项为÷3=.故答案为:.【点评】此题考查比例性质的运用:在比例里,两内项的积等于两外项的积.10.a=b则a:b= :.【答案】16,15.【解析】逆用比例的基本性质:在比例里,内项的积等于外项的积.解:因为a=b,所以a:b=:==16:15;故答案为:16,15.【点评】本题主要是灵活利用比例的基本性质解决问题.11.先化简比,再求比值.:0.9:0.36吨:375千克.【解析】(1)根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比;(2)用最简比的前项除以后项即得比值.解:(1):=(×):(×)=9:2;:=÷=;(2)0.9:0.36=(0.9÷0.18):(0.36÷0.18)=5:2;0.9:0.36="0.9÷0.36"=2.5;(3)吨:375千克=(×1000千克):375千克=250千克:375千克=(250÷125):(375÷125)=2:3;吨:375千克=(×1000千克):375千克=250千克:375千克=250÷375=.【点评】此题考查化简比和求比值的方法,要注意区分:化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个数,可以是整数、小数或分数.12.某繁华街道上,停着小轿车、小客车、公共汽车共200辆,这三种车的辆数比是2:3:5,每种车各有多少辆?【答案】小轿车有40辆,小客车有60辆,公共汽车有100辆.【解析】首先求得小轿车、小客车、公共汽车的总份数,再求得三种汽车占总数的几分之几,最后求得各自的辆数,列式解答即可.解:小轿车:200×=40(辆);小客车:200×=60(辆);公共汽车:200×=100(辆).答:小轿车有40辆,小客车有60辆,公共汽车有100辆.【点评】此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.13.学校合唱队人数在40至60人之间,男生与女生的人数比是7:6,合唱队共有人.【答案】52.【解析】由“男生与女生的人数比是7:6”可知,总人数相当于7+6=13份,也就是说总人数是13的倍数,那么在“40﹣60”之间只有52符合题意,由此可知总人数就是52.解:由男女生人数的比是7:6可知:总人数是7+6=13(份),即总人数是13的倍数;又因为合唱队人数在40至60人之间,那么合唱队的人数就应是52;故答案为:52.【点评】此题是考查比的应用,要把比理解为几份和几份的比.14.把下面各比化成最简整数比24:16=0.45:0.3=0.375:=:=【答案】3:2;3:2;3:1;1:5.【解析】根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比.解:24:16=(24÷8):(16÷8)=3:2;0.45:0.3=(0.45÷0.15):(0.3÷0.15)=3:2;0.375:=(0.375×8):(×8)=3:1;:=(×6):(×6)=1:5.故答案为:3:2;3:2;3:1;1:5.【点评】此题考查化简比的方法,注意化简比的结果仍是一个比,它的前项和后项都是整数,并且是互质数.15.﹦0.6﹦ ÷40﹦12:﹦:15.【答案】3,24,20,9.【解析】把0.6化成分数并化简是;根据分数与除法的关系=3÷5,再根据商不变的性质被除数、除数都乘8就是24÷40;根据比与分数的关系=3:5,再根据比的基本性质比的前、后项都乘3就是9:15;都乘4就是12:20.解:=0.6=24÷40=12:20=9:15.故答案为:3,24,20,9.【点评】此题主要是考查除法、小数、分数、比之间的关系及转化.利用它们之间的关系和性质进行转化即可.16. 3: =24 :8=0.5.【答案】,4.【解析】根据比值的含义:比的前项除以后项所得的商叫做比值;可知:比的后项=比的前项÷比值,比的前项=比的后项×比值;据此解答.解:①3÷24=,所以应填;②0.5×8=4,所以应填4;故答案为:,4.【点评】根据比的前项、后项和比值三者之间的关系进行解答.17.从学校走到电影院,小明用8分钟,小红用10分钟,小明和小红的速度之比是4:5 .(判断对错)【答案】×【解析】把从学校走到电影院的路程看作单位“1”,根据“路程÷时间=速度”分别求出小明和小红的速度,进而根据题意求比即可判断.解:(1÷8):(1÷10),=:,=(×40):(×40),=5:4;故答案为:×.【点评】解答此题用到的知识点:(1)比的意义;(2)路程、时间和速度三者之间的关系.18.把下面各比化成最简单的整数比.8:12=0.25:0.45==【答案】2:3,5:9,2:1.【解析】(1)根据比的性质:把8:12的前项和后项同时除以4即可化成最简整数比;(2)根据比的性质:把0.25:0.45的前项和后项同时乘20即可化成最简整数比;(3)根据比的性质:把:的前项和后项同时乘8即可化成最简整数比;据此进行化简并计算.解:(1)8:12=(8÷4):(12÷4)=2:3;(2)0.25:0.45=(0.25×20):(0.45×20)=5:9;(3):=(×8):(×8)=2:1.故答案为:2:3,5:9,2:1.【点评】此题考查化简比的方法,是根据比的基本性质进行化简的,最简比是指比的前项和后项是互质数的比;要注意区分:化简比的结果仍是一个比;求比值的结果是一个数,可以是小数、分数和整数.19.当0.3a=5b(a、b均不为0)时,则b:a= :.【答案】3、50.【解析】依据比例的基本性质,即两内项之积等于两外项之积,即可进行解答.解:因为0.3a=5b,则b:a=0.3:5=3:50;故答案为:3、50.【点评】此题主要考查比例的基本性质的灵活应用.20.=15÷20= :24== (填小数).【答案】3,18,36,0.75.【解析】解答此题的突破口是15÷20,根据分数与除法的有关系15÷20=,将分数化简是;根据分数的基本性质,分子、分母都乘9就是;根据比与分数的关系=3:4,再根据比的基本性质比的前、后项都乘6就是18:24;15÷20=0.75,解:=15÷20=18:24==0.75.故答案为:3,18,36,0.75.【点评】此题主要是考查除法、小数、分数、比之间的关系及转化.利用它们之间的关系和性质进行转化即可.21.一个最简整数比的比值是0.15,这个最简比是(:)【答案】3,20.【解析】根据比的意义和比值的意义:两个数相除又叫做两个数的比,比的前项除以后项所得的商,叫做比值;可得:假设比的后项是1,则比的前项为0.15×1=0.15,则比为0.15:1,化成最简整数比即可.解:0.15:1=(0.15×20):(1×20)=3:20;故答案为:3,20.【点评】此题应根据比的意义和比的性质进行解答.22. 3.2:0.24的最简整数比是,比值是.【答案】40:3,.【解析】(1)根据比的基本性质作答,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;(2)用比的前项除以后项即可.解:(1)3.2:0.24,=(3.2×100):(0.24×100),=320:24,=(320÷8):(24÷8),=40:3;(2)3.2:0.24,=3.2÷0.24,=,故答案为:40:3,.【点评】此题主要考查了化简比和求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数,小数或分数.23. 1.8:化成最简单的整数比是,比值是.【答案】6:1,6.【解析】(1)化简整数比时,应根据比的性质“比的前项和后项同时乘或除以相同的数(0除外),比值不变”,进行化简.(2)求比值时,应根据比的意义“两个数相除,叫做两个数的比”去算,用比的前项除以后项得出答案.解:1.8:=(1.8×10):(×10)=18:3=6:1;1.8:=1.8÷=1.8×=6;故答案为:6:1,6.【点评】化简整数比最后的答案是一个比,而求比值最后的答案是一个比值,它可以表示为一个整数、分数或小数.24.一条公路长120千米,其中上坡路、下坡路和平路的比是2:3:5,上坡路、下坡路和平路各是多少千米?【答案】上坡路是24千米,下坡路是36千米,平路是60千米.【解析】分别把上坡路、下坡路和平路的长度看作2份、3份和5份,则总份数为2+3+5=10份,利用按比例分配的方法,即可求解.解:120×=24(千米),120×=36(千米),120×=60(千米);答:上坡路是24千米,下坡路是36千米,平路是60千米.【点评】此题主要考查按比例分配的方法的灵活应用.25.男生人数的等于女生人数的,则男、女生人数的比是()A.4:5 B.5:4 C.:【答案】B【解析】由题意可知:男生人数×=女生人数×,于是即可逆运用比例的基本性质,即两内项之积等于两外项之积,即可求出它们的比.解:因为男生人数×=女生人数×,则男生人数:女生人数=:=5:4;故选:B.【点评】此题主要考查比例的基本性质的灵活应用.26.一个三角形的三个内角度数比是3:4:5,则此三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形【答案】A【解析】根据三角形的内角和是180°,按照比例计算出角的度数,再判断.解:180°÷(3+4+5)=15°,则15°×3=45°;15°×4=60°;15°×5=75°;三个角都是锐角,所以这个三角形是锐角三角形.故选:A.【点评】解答此题应明确三角形的内角度数的和是180°,求出三个角的度数,然后根据三角形的分类判定类型.27.大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比..【答案】对【解析】根据圆周率的含义可知:任何一个圆的周长和它的直径的比值都是一个常数,通常用π来表示.解:任何一个圆的周长和它的直径的比值都是一个常数,通常用π来表示,所以大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比.答:大小两个圆,大圆周长与直径的比,等于小圆周长与直径的比.故填:对.【点评】此题主要考查的是圆周率含义的应用.28. 0.2:0.8化成最简整数比是,比值是.【答案】1:4,0.25【解析】(1)根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外)比值不变,进而把比化成最简比;(2)用最简比的前项除以后项,即得比值.解:(1)0.2:0.8=(0.2×10):(0.8×10)=2:8=(2÷2):(8÷2)=1:4;(2)0.2:0.8=0.2÷0.8=2÷8=1÷4=0.25;故答案为:1:4,0.25.【点评】此题考查化简比和求比值的方法,要注意区分:化简比是根据比的基本性质进行化简的,结果仍是一个比;求比值是用比的前项除以后项所得的商,结果是一个数.29.解方程.x:1.2=3:4; 3.2x﹣4×3=52; x+x=.【答案】(1)0.9;(2)20;(3).【解析】(1)根据比例的基本性质,原式化成4x=1.2×3,再根据等式的性质,方程两边同时除以4求解;(2)先化简方程,再根据等式的性质,方程两边同时加上12,再两边同时除以3.2求解;(3)先化简方程,再根据等式的性质,方程两边同时除以求解.解:(1)x:1.2=3:44x=1.2×34x÷4=3.6÷4x=0.9;(2)3.2x﹣4×3=523.2x﹣12=523.2x﹣12+12=52+123.2x=643.2x÷3.2=64÷3.2x=20;(3)x+x=x=x=x=.【点评】解答方程的依据是等式的性质,同时应注意“=”号上下要对齐.30.甲、乙两地相距600千米,卡车和货车同时从两地相向开出。
人教版六年级下册数学第四单元比例应用题训练(含简单答案)
人教版六年级下册数学第四单元比例应用题训练1.曲港高速公路(曲阳至黄骅港)是河北省“东出西联”出海通道,其定州段连通京昆和京港澳高速,填补安国、博野两地无高速公路的空白,项目建设里程约为92千米,在一幅1∶4000000的地图上,这条高速公路的长度是多少?2.一个骑兵俑模型身高是18厘米,模型高度与实际高度的比是1∶10。
这个骑兵俑的实际身高是多少?(用比例解)3.在的地图上量得甲乙两地的距离是4厘米,甲乙两地的实际距离是多少?把它画在1∶4000000的地图上应画多长?4.在一幅比例尺为1∶2000000的地图上,量得甲乙两地之间的公路长10厘米。
一辆汽车和一辆货车从两地同时出发相向而行,汽车以每小时55千米的速度行驶,2小时后在超过中点10千米的地方相遇。
货车每小时行多少千米?5.在比例尺1∶4000000的地图上,量得天津到北京的距离是3厘米。
一辆汽车以每小时60千米的速度从天津开往北京,几小时能到达?6.一种药水,药液与水的比是1∶180,如果配制905千克的药水,需要药液多少千克?(用比例解)7.学校把制作爱心贺卡的任务按5∶4分配给六年级和五年级。
六年级实际制作了108张贺卡,超过原分配任务的20%,原计划五年级制作多少张爱心贺卡?8.小红去银行换港币,当天人民币与港币的兑换比是1∶1.25,小红要兑换1000元港币,她需要给银行多少元人民币?(用比例解)9.某市修一条道路,计划每天修120米,8天可以修完。
但因为天气原因,12天才完成任务,实际每天修多少米?(用比例方法解)10.一列动车从A城开往B城前3小时行了540千米,照这样的速度,动车还要行驶4小时才能到达B城,A城和B城相距多远?(用比例的方法解答)11.小明和小英住在同一个小区、小明家上个月用电102度,电费是61.2元。
小英家上个月用电85度,小英家上个月的电费是多少元?(用比例知识解答)12.小东家的客厅是正方形的,用边长0.6m的方砖铺地,正好需要100块。
六年级比例的应用题及答案
六年级比例的应用题及答案篇一:六年级数学按比分配应用题及答案】>1、把300 本作业按4∶5∶6 分给四、五、六年级的同学,四、五、六年级的同学各得多少本作业本?解:4+5+6=15答:四年级得80 本,五年级得100 本,六年级得120 本。
2、一种生理盐水是把盐水和水按照1∶ 100 配制而成,要配制这种生理盐水5050 千克,需要盐水多少千克?解:1+100=101答:需要盐水50 千克。
答:山羊和绵羊一共有140 头。
4、一种石灰水是用石灰和水按1∶ 100 配成的,要配制5656 千克的石灰水,需石灰多少千克?解:1+100=101 答:需石灰56 千克。
5、体育室有200 根跳绳,按人数分配给六年级一、二两个班,一班有52 人,二班有48 人,两个班各得跳绳多少根?解:52 +48=100 (人)答:一班可得跳绳104 根,二班可得跳绳96 根。
6、一个分数,它的分子和分母的和是40, 分子和分母的比是4∶ 6 ,这个分数是几分之几?解:4+6=10 答:这个分数是24 分之16。
7、一种药水是用药粉和水按 1 ∶80 配制成的。
⑴、40 千克药粉,可配制成多少千克的药水?3200 +40=3240 (千克)答:40 千克药粉,可配制成3240 千克的药水。
⑵、60 千克水,需要药粉多少千克?答:60 千克水,需要药粉0.75 千克。
⑶、配制这种药水1620 千克,需要药粉多少千克?解:1+80=81答:配制这种药水1620 千克,需要药粉20 千克。
8、把96 分米长的铁丝焊成一个长方体框架,长、宽、和高的比是3∶2∶1,这个长方体的体积和表面各是多少?3+2+1=6答:这个长方体的体积是384 立方分米,表面是352 平方分米。
9、五年级有140 人,六年级有130 人,从六年级调多少人到五年级,才能使五年级、六年级的人数比为5∶1?解:140 +130 =270 (人)5+1=6130 -45=85(人)答:从六年级调85 人到五年级。
六年级下册数学试题-小升初复习讲练:正反比例应用题(含答案)sc
正反比例应用题典题探究例1.有大小两个互相咬合的齿轮,大齿轮有90个齿,小齿轮有18个齿,如果大齿轮每分转100转,小齿轮5分钟转多少转?(用比例知识解答)例2.学校会议室用方砖铺地.用8平方分米的方砖铺需要500块;如果改用10平方分米的方砖铺,需要多少块?例3.修路队每天修路3.2米,15天可以修完,实际每天修4米,几天可以修完?例4.从“六一”儿童节那天开始,小明前4天看了80页书,照这样计算,这个月小明一共可以看多少页书?(用比例知识解)演练方阵A档(巩固专练)选择题(共9小题)1.一个制服厂生产一批童装,每天生产350件,8天可完成任务;如果每天生产400件,多少天可以完成?设X天可以完成.正确列式是()A.400X=350x8B-8400350=xC.350:8=400:X2.(•广州模拟)生产一批零件,前3天生产124个,照这样计算,需再用12天完成全部任务.这批零件共有多少个?如果设这批零件共x个.正确的算式是()A.124x3=12B.124=x飞-=3+12C.12x=124x33.每100千克小麦可出X千克面粉,Y千克小麦可出面粉的千克数为()A.100yB.100xy c.100 D._^yToo4.一个会议室用方砖铺地.用边长3cm的方砖铺,需要350块,如果改用lOcn?的方砖铺,需要()块.A.280B.187C.390D.3155.小明在操场上插几根长短不同的竹竿,在同一时间测量竹竿长和相应的影长,情况如表:这时,小明身边的主强测量出了旗杆的影长是6米,可推算出旗杆的实际高度是()米. |影长(米)0.50.70.80.9 1.1 1.5竹竿长(米)1 1.4 1.6 1.8 2.23A.12米B.3米C.9米D.6米6.用正方形的地砖铺地,铺地的面积和需要地砖的块数()A.正比例B.反比例C.不成比例7.学校会议室用方砖铺地.用8平方分米的方砖铺,需要350块;如果改用10平方分米的方砖铺,需要()块.A.300B.280C.260D.2408.一辆拖拉机的后轮半径是前轮半径的1.2倍,后轮转动6周,前轮转动()A.7.2圈B.5圈C.8圈9.(•长沙)从甲地开往乙地,客车要10小时,货车要15小时,客车与货车的速度比是()A.2:3B.3:2C.2:5填空题(共3小题)060120180km10.在一幅比例尺是____11—的地图上量得A、B两城之间的距离是3cm,A、B两城之间的实际距离是.11.(•当涂县)用3千克绿豆可以做出21千克绿豆芽•照这样计算,18千克绿豆可以做出多少千克绿豆芽?(1)"照这样计算"就是说是一定的.(2)和成比例.(3)所求结果用x表示,写出比例式:.12.一间教室,如果用面积6平方分米的方砖铺,要用96块,如果改用面积是9平方分米的方砖铺,要用多少块?三.解答题(共8小题)13.甲、乙两国的国土面积相等,但甲国人数是乙国人口数的16倍,若乙国的人均国土面积为296000平方米,那么甲国的人均国土面积是多少?14.生产了一批零件,每天生产200个,15天完成,实际每天生产了250个,实际多少天可以完成?(用比例方式列式)15.小伟家用面积是18平方分米的地砖需48块,如果改用面积是9平方分米的地砖,需多少块?16.一间教室用边长8分米的方块来铺,刚好要125块,如果改用边长1米的方砖来铺,需要多少块?比计划多用多少块?(用方程解答)17.学校电脑室计划用面积为9平方分米的瓷砖铺地,需480块,现改用边长为4分米的瓷砖铺地,需要多少块?(用比例解)18.用边长15厘米的方砖铺一块地,需要2000块,如果改用边长为20厘米的方砖铺地,需要多少块?(用比例解)19.一间房子要用方砖铺地.用面积是9平方分米的方砖需要96块.如果改用边长为2分米的方砖,需要多少块?(用比例解)20.丽丽家客厅,用边长0.3m的方砖铺地,需要560块,如果改用边长0.4m的方砖铺地,需要多少块?(用比例解)B档(提升精练)选择题(共10小题)1.比例尺是1:5000000表示地图上1厘米的距离相当于地面上实际距离是()A.50千米B.500千米C.5千米2.下列正确的有()A,因为12=2x2x3,所以*能化成有限小数;12B.自行车行驶的路程一定,车轮转数和直径成反比例;C.正方形边长一定,面积和边长成正比例;D.任何一个三角形至多有两个锐角3.当一个物体两部分之间的比大致符合5:3时,会给人以美的感觉,这个比被称为“黄金比”.亮亮要为自己设计一个“乐学牌”书桌,如果书桌的长度是80厘米,书桌的宽度大约定为(),会给人以最美的感觉.A.80厘米B.40厘米C.48厘米4.一个长方形(如图),被两条直线分成四个长方形,其中三个的而积分别是45平方米, 15平方米和30平方米.图中阴影部分的面积是()平方米.451530A.60B.75C.80D.905.(•龙岗区)李老师准备给健身房铺正方形地砖,如果选择边长为3dm的地砖要400块.那么选择边长为2dm的地砖要()块.2d m3d mA.600B.900C.1200D.18006.甲、乙两辆自行车的车轮直径相同,以同样的速度蹬自行车,()跑得快.(下面是甲、乙两辆自行车的前后齿轮情况)40齿48齿7.半径为1厘米的小圆在半径为4厘米的固定大圆外滚动一周,则小圆滚动了()周.8.如图,在皮带传动中,大轮的直径是28cm,小轮的直径是12cm,如果传动中没有打滑现象,那么大轮转了12圈,小轮转了()圈.D.289.(•灵石县模拟)两个齿轮,其中一个齿轮的直径是6cm,当另一个齿轮转动一周时,它需转动3周,则另一个齿轮的直径是.()C.1810.一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上(不包括300枝),可以按批发价付款;购买300枝以下(包含300枝)只能按零售价付款.小明来该商店买铅笔,如果给学校六年级同学每人买1枝,那么只能按零售价付款,需要120元;如果多买60枝,那么可以按批发价付款,同样需要120元.若按批发价购买6枝与按零售价买5枝的款相同,那么这个学校六年级的学生有()人.A.240人B.260人C.280人D.300人二.填空题(共10小题)11.(•安次区模拟)张阿姨用计算机打字的个数和所用时间如下表.时间/分2468101214数量/个100200300400500600"Too张阿姨打750个字需要分钟.12.(•广州模拟)玩具厂按1:100的比例生产了一种飞机模型,若该模型的长度为12厘米,则飞机的实际长度约12米..13.(•吴江市)一列动车在高速铁路上行驶的时间和路程如图.看图填写下表:时间/小时2_____________路程/千米_____________800这列动车行驶的时间和路程成比例.14.(•海珠区)(1)如图是表示某种规格钢筋的质量与长度成比例关系的图象.(2)不计算,根据图象判断,6m的钢筋重____________kg.28642O46789长度为15.(•阜阳模拟)喜喜和欢欢一起照相,喜喜身局1.6米,在照片上她的局是5cm.欢欢在照片上高4cm,欢欢的身高是米.16.(•德宏州模拟)画一张长10cm、宽6cm的图,如果长缩小为2.5cm,按照这个比例,宽应缩小为cm.17.(•延庆县)2010年3月30日中午11:30,六(1)班同学们在学校国旗杆旁边垂直于地面立了一根20厘米长的木棒,测得它的阴影长度是12.5厘米.同时测得国旗杆的阴影长度是16.5米.国旗杆高米.18.(•海安县)当人的下肢长与身高的比值约为0.6时,身材显得最美.刘老师的身高是160厘米,下肢长94厘米,她穿的高跟鞋最佳高度为_____________厘米.19.(•涟源市模拟)用边长为15厘米的方砖铺地,需要2000块.如果改用边长30厘米的方砖铺地,需要块,20.(•江苏)生活中我们一般用摄氏度(°C)来描述温度,但也有一些国家用华氏度(°F)来描述.水的冰点是0°C,沸点是100°C,用华氏度描述水的冰点是32°F,沸点是212T,那么我们人体正常体温36©,用华氏度描述是°F.三.解答题(共8小题)21.(•海安县模拟)如图,求阴影部分的面积(单位:平方厘米).22.(•广州模拟)张老师准备在书房的地面上铺每块面积是900平方厘米的地砖,刚好用了200块.如果全部改铺每块面积是600平方厘米的地砖,需要多少块?23.(•临川区模拟)修一条路,计划每天修50米,40天完成,实际5天修了300米,照这样计算,多少天完成任务?(用正、反比例两种方法解答)24.(•临川区模拟)运一堆52吨重的钢材,3小时运了15.6吨,照这样计算,还要几小时才能运完?(用比例方法解)25.(•临川区模拟)某服装厂加工一批服装,计划每天加工250件,18天可以完成.实际每天比原计划多加工』,实际多少天可以完工?(用比例解)526.(•临川区模拟)学校操场上有棵大树,数学兴趣小组的同学们要测量树的高度,他们想了一个办法,在上午9时,由小王站在太阳下.已知小王身高1.40米,同时测得小王的影长和大树的影长分别是1.12米和8米,你知道树高多少米吗?27.(•永定区模拟)张阿姨家上个月用电65度,电费39元,王大爷家上个月的电费是27元,他家上个月用电多少度?(用比例解)28.(•雨花区)在比例尺是1:3500000的地图上,量得甲、乙两地之间的距离是2.4厘米,求甲、乙两地实际距离是多少千米?正反比例应用题答案W典题探究例1.有大小两个互相咬合的齿轮,大齿轮有90个齿,小齿轮有18个齿,如果大齿轮每分转100转,小齿轮5分钟转多少转?(用比例知识解答)考点:正、反比例应用题.专题:比和比例应用题.分析:因为两个齿轮是相互交合的,即转动齿数相等,所以转动的周数和每周齿数成反比,由此列出比例解决问题.解答:解:设小齿轮每分钟转x转,18x=90xl0018x=9000x=500500x5=2500(转)答:小齿轮5分钟转2500转.点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例.例2.学校会议室用方砖铺地.用8平方分米的方砖铺需要500块;如果改用10平方分米的方砖铺,需要多少块?考点:正、反比例应用题.专题:比和比例应用题.分析:根据学校会议室面积一定,每块砖的面积和所需要的块数成反比例关系,列比例解答即可.解答:解:改用10平方分米的方砖需x块.10xx=8x50010x=4000x=400;答:改用10平方分米的方砖需400块.点评:此题应先判断每块砖的面积和所需要的块数成什么比例关系,列比例解答即可.例3.修路队每天修路3.2米,15天可以修完,实际每天修4米,几天可以修完?考点:正、反比例应用题.专题:简单应用题和一般复合应用题;比和比例应用题.分析:根据题意知道,总工作量一定,工作时间和工作效率成反比例,由此列式解答即可.解答:解:设x天可以修完,4x=3.2xl54x=48x=12答:12天可以修完.点评:解答此题的关键是,弄清题意,根据工作效率,工作时间和工作量三者的关系,判断哪两种量成何比例,然后找出对应量,列式解答即可.例4.从"六一〃儿童节那天开始,小明前4天看了80页书,照这样计算,这个月小明一共可以看多少页书?(用比例知识解)考点:正、反比例应用题.专题:比和比例应用题.分析:抓住“照这样计算”是解题的关键,"照这样计算”意思是小明平均每天看的页数是一定的,即看的页数与看的时间的比的比值是一定的;看书的页数与看的时间成正比例关系,由此解答即可.解答:解:设小明一个月(30天)可以x页书,x:30=80:44x=80x30x=600.答:这个月小明一共可以看600页书.点评:此题属于正比例应用题,解题的关键是理解"照这样计算"这句话的意思,判断出两种相关联的量成正比例还是成反比列;如果是比值一定,那么这两种相关联的量就成正比例,如果是积一定,那么这两种相关联的量就成反比列;由此设未知数为x,用比例解答即可.常演练方阵七A档(巩固专练)选择题(共9小题)一.1.一个制服厂生产一批童装,每天生产350件,8天可完成任务;如果每天生产400件,多少天可以完成设X天可以完成.正确列式是()A.400X=350x8B.8400C.350:8=400:X350=x考点:正、反比例应用题.专题:比和比例应用题.分析:由题意可知:这批童装的数量是一定的,即每天生产的件数与需要的天数成反比例,据此即可列比例求解.解答:解:设x天可以完成,由题意可得:400x=350x8,400x=2800,x=7;答:7天可以完成.故选:A.点评:解答此题的关键是:弄清楚哪两种量成何比例,于是列比例即可求解.2.(•广州模拟)生产一批零件,前3天生产124个,照这样计算,需再用12天完成全部任务.这批零件共有多少个?如果设这批零件共x个.正确的算式是()A.124_xB.124_xC.12x=124x3"T^12~3~=3+12考点:正、反比例应用题.分析:照这样计算,说明每一天生产的零件数是一定的,生产的零件总数和相对应生产的天数的比值一定,即两种量成正比例,由此列比例解答问题.解答:解:设这批零件共X个,由题意得,124二x.3=3+12’故选B.点评:此题主要考查对正比例的意义的运用:两种相关联的量,一种量变化,另一种量也随着变化,但两种量的相对应的比值一定,这两种量成正比例.3.每100千克小麦可出X千克面粉,Y千克小麦可出面粉的千克数为()A.100yB.100xC.100D.xyx y xy100考点:正、反比例应用题.专题:比和比例应用题.分析:根据每100千克小麦可出X千克面粉,得出小麦的出粉率一定,所以面粉的千克数和小麦的千克数成正比例,由此设出未知数,列比例解答即可.解答:解:Y千克小麦可出面粉Z千克,x_z100~y,100z=xy,7一xy100答:Y千克小麦可出面粉淄L千克.100故选:D.点评:此题首先判定两种量成正比例,再设出未知数,列出比例式进行解答即可.4.一个会议室用方砖铺地.用边长3cm的方砖铺,需要350块,如果改用lOcn?的方砖铺,需要()块.A.280B.187C.390D.315考点:正、反比例应用题.专题:比和比例应用题.分析:会议室的面积是不变的,每一块方砖的面积与所需块数的乘积是一定的,即两种量成反比例,由此设出未知数,列出比例式解答即可.解答:解:设需要x块砖,由题意得,10x=3x3x35010x=3150x=315;答:需要这样的方砖315块.故选:D.点评:此题首先利用正反比例的意义判定两种量的关系,若两个相关联量的乘积一定,则这两个量成反比例,从而可以列比例求解;解答时关键不要把边长当做面积进行计算.5.小明在操场上插几根长短不同的竹竿,在同一时间测量竹竿长和相应的影长,情况如表:这时,小明身边的王强测量出了旗杆的影长是6米,可推算出旗杆的实际高度是()米.影长(米)0.50.70.80.9 1.1 1.5竹竿长(米)1 1.4 1.6 1.8 2.23A.12米B.3米C.9米D.6米考点:正、反比例应用题;正比例和反比例的意义.专题:比和比例应用题.分析:由题意可知:同样条件下,竹竿的长度与它的影长的比是一定的,则旗杆的实际高度与其影长的比也是一定的,据此即可求解.且这两个比是相等的,据此即可列比例求解.解答:解:设旗杆的实际高度是x米,则有1:0.5=x:6,0.5x=6,x=12;答:旗杆的实际高度是12米.故选:A.点评:解答此题的关键是明白:同样条件下,物体的长度与它的影子的长度比是一定的.6.用正方形的地砖铺地,铺地的面积和需要地砖的块数()A.正比例B.反比例C.不成比例考点:正、反比例应用题.专题:比和比例应用题.分析:因为方砖的面积x所需方砖的块数=要铺的地面的面积,而要铺的地面的面积是一定的,进而根据反比例的意义进行选择.解答:解:铺地的面积x砖的块数=要铺的地面的面积(一定)是两个量对应的乘积一定,符合反比例的意义,所以铺地的面积和需要地砖的块数成反比例.故选:B.点评:解答此题的主要依据是如果两个量对应的乘积一定,则这两个量成反比例.7.学校会议室用方砖铺地.用8平方分米的方砖铺,需要350块;如果改用10平方分米的方砖铺,需要()块.A.300B.280C.260D.240考点:正、反比例应用题.专题:比和比例应用题.分析:此题根据面积一定,每块砖的面积和所需要的块数成反比例关系,列比例解答即可.解答:解:改用面积,10平方分米的方砖需X块.10xx=8x350,10x=2800,x=280;答:改用面积为10平方分米的方砖需280块.故选:B.点评:此题应先判断每块砖的面积和所需要的块数成什么比例关系,列比例解答即可.8.一辆拖拉机的后轮半径是前轮半径的1.2倍,后轮转动6周,前轮转动()A.7.2圈B.5圈C.8圈考点:正、反比例应用题.专题:比和比例应用题.分析:根据题意,可设前轮半径为r,那么后轮半径为1.2r,根据圆的周长公式可计算出前轮滚动一圈的周长和后轮滚动一圈的周长,又因前轮和后轮转动的路程是一定的,也就是说前轮的周长乘圈数,与后轮的周长乘圈数的乘积是一定的,据此即可列比例求解.解答:解:设前轮半径为r,那么后轮半径为1.2r,前轮转动的圈数是x圈,贝lj nx2xrxx=nx2x1.2rx62nrx=14.4nrx=7.2答:前轮转动7.2圈.故选:A.点评:解答此题的关键是明白:前轮和后轮转动的路程是一定的,也就是说前轮的周长乘圈数,与后轮的周长乘圈数的乘积是一定的,从而列比例求解.9.(•长沙)从甲地开往乙地,客车要10小时,货车要15小时,客车与货车的速度比是()A.2:3B.3:2C.2:5考点:正、反比例应用题.分析:两地之间的距离一定,速度和时间成反比例.解答:解:15:10=3:2故选:B.点评:此题首先判定两种量成反比例,列出比例式进行解答即可.填空题(共3小题)二.060120180km10.在一幅比例尺是—;1—的地图上量得A、B两城之间的距离是3cm,A、B两城之间的实际距离是180千米.考点:正、反比例应用题.专题:比和比例应用题.分析:由线段比例尺可知:图上1厘米代表实际距离60千米,则图上3厘米的距离代表实际距离,即求3个60千米是多少,用乘法解答即可.解答:解:60x3=180(千米)答:图上3厘米的距离表示的实际距离是180千米.故答案为:180千米.点评:解答此题的关键是:先理解该线段比例尺的含义,进而根据求几个相同加数的和是多少,用乘法解答.11.(•当涂县)用3千克绿豆可以做出21千克绿豆芽.照这样计算,18千克绿豆可以做出多少千克绿豆芽?(1)"照这样计算"就是说每千克绿豆做出的绿豆芽的量是一定的,(2)绿豆的重量和绿豆芽的重量成正比例.(3)所求结果用x表示,写出比例式:3:21=18:x.考点:正、反比例应用题.专题:比和比例应用题.分析:由题意可知:每千克绿豆做出的绿豆芽的重量是一定的,则绿豆的重量和做出的绿豆芽的重量的比值是一定的,则绿豆的重量和做出的绿豆芽的重量成正比例,据此即可列比例求解.解答:解:设18千克绿豆可以做出x千克绿豆芽,3:21=18:x,3x=21xl8,3x=378,x=126;答:18千克绿豆可以做出126千克绿豆芽.故答案为:每千克绿豆做出的绿豆芽的量;绿豆的重量、绿豆芽的重量、正;3:21=18:X.点评:解答此题的主要依据是:正比例的意义,即若两个相关联量的比值一定,则这两个量成正比例,于是可以列比例求解.12.一间教室,如果用面积6平方分米的方砖铺,要用96块,如果改用面积是9平方分米的方砖铺,要用多少块?考点:正、反比例应用题.专题:比和比例应用题.分析:由题意可知,教室的地板面积一定,即一块方砖的面积x方砖的块数=教室的地板面积(一定),由此得出一块方砖的面积与方砖的块数成反比例,设出未知数列出比例解答即可.解答:解:设需要x块,9x=6x96,x=6x96+9,x=64;点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.解答题(共8小题)三.13.甲、乙两国的国土面积相等,但甲国人数是乙国人口数的16倍,若乙国的人均国土面积为296000平方米,那么甲国的人均国土面积是多少?考点:正、反比例应用题.专题:比和比例应用题.分析:根据:人均国土面积x人数=国土面积(一定),国土面积一定,人均国土面积x人数成反比例,由此设出未知数,列出比例式解答即可.解答:解:设甲国的人均国土面积是x平方米,x:196000=1:1616x=196000x=12250答:甲国的人均国土面积是12250平方米.点评:本题主要考查比例在日常生活中的应用,要正确判断哪两种量成反比例.14.生产了一批零件,每天生产200个,15天完成,实际每天生产了250个,实际多少天可以完成?(用比例方式列式)考点:正、反比例应用题.分析:这道题里的这批零件的总数不变.每天生产零件的个数和生产的天数成反比例关系.所以实际和计划每天生产的个数和生产的天数的乘积是相等的.设实际x夭可以 完成,列出方程解方程即可.解答:解:设实际x天可以完成.250x=200xl5x=3000+250x=12;答:实际12天可以完成.点评:此题考查反比例的应用.15.小伟家用面积是18平方分米的地砖需48块,如果改用面积是9平方分米的地砖,需多少块?考点:正、反比例应用题.分析:小伟家铺地的总面积是一定的,每一块地砖的面积和所需的块数成反比例,由此设出未知数,列比例解答即可.解答:解:设需地砖X块,根据题意列比例得,9x=18x48,y_18X489x=96;点评:此题首先判定两种量成反比例,再设出未知数,列出比例式进行解答即可.16.一间教室用边长8分米的方块来铺,刚好要125块,如果改用边长1米的方砖来铺,需要多少块?比计划多用多少块?(用方程解答)考点:正、反比例应用题.专题:比和比例应用题.分析:根据题意知道,一间教室的地面的面积一定,一块方砖的面积x方砖的块数=一间教室的面积(一定),由此判断一块方砖的面积与方砖的块数成反比例,设出未知数,列比例解答即可.解答:解:1米=10分米设需要x块,10xl0x=8x8xl25100x=64xl25y_64X125100x=8O125-80=45(块)答:需要80块,比计划少用45块.点评:关键是判断出一块方砖的面积与方砖的块数成反比例,注意8分米与1米是方砖的边长,不是方砖的面积.17.学校电脑室计划用面积为9平方分米的瓷砖铺地,需480块,现改用边长为4分米的瓷砖铺地,需要多少块?(用比例解)考点:正、反比例应用题.专题:比和比例应用题.分析:由题意可知,地板面积一定,即一块瓷砖的面积x瓷砖的块数=地板面积(一定),由此得出一块瓷砖的面积与瓷砖的块数成反比例,设出未知数列出比例解答即可.解答:解:设需要x块,4x=9x480*_9X4804x=1080答:需要1080块.点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.18.用边长15厘米的方砖铺一块地,需要2000块,如果改用边长为20厘米的方砖铺地,需要多少块?(用比例解)考点:正、反比例应用题.专题:比和比例应用题.分析:根据题意知道铺地的面积一定,一块方砖的面积X方砖的块数=铺地的面积(一定),所以一块方砖的面积与方砖的块数成反比例,由此列出比例解答即可.解答:解:设需要X块,20x20xx=15xl5x2000400x=225x2000400x=450000x=1125;答:需要1125块.点评:解答此题关键是判断出一块方砖的面积与方砖的块数成反比例,注意15厘米与30厘米是方砖的边长,不是方砖的面积.19.一间房子要用方砖铺地.用面积是9平方分米的方砖需要96块.如果改用边长为2分米的方砖,需要多少块?(用比例解)考点:正、反比例应用题.专题:比和比例应用题.分析:设用边长为2分米的方砖铺地要用x块,根据房子的面积一定,可以列出比例(2x2)xx=96x9,解比例即可求解.解答:解:设用边长为2分米的方砖铺地要用x块,贝上(2x2)xx=96x94x=864x=864-?4x=216.答:要用216块.点评:考查了反比例的应用,本题注意是每块方砖的面积x方砖的块数的乘积一定.20.丽丽家客厅,用边长0.3m的方砖铺地,需要560块,如果改用边长0.4m的方砖铺地,需要多少块?(用比例解)考点:正、反比例应用题.专题:比和比例应用题.分析:根据题意知道,客厅的面积一定,方砖的面积和方砖的块数成反比例,由此列式解答即可.解答:解:需要x块方砖,0.3x0.3x560=0.4x0.4xx0.16x=50.4x=315答:需要315块.点评:解答此题的关键是,根据题意,正确判断出两种相关联的量成什么比例,找出对应量,列式解答即可.B档(提升精练)。
完整版)六年级复习比的应用题及答案
完整版)六年级复习比的应用题及答案一.选择题(共12小题)1.数学精英班中,男生人数占 $\frac{3}{5}$,则女生人数与总人数的比是()A。
$\frac{3}{8}$ B。
$\frac{2}{3}$ C。
$\frac{2}{5}$ D。
$\frac{3}{2}$2.两个相同的瓶子装满酒精溶液,一个瓶中酒精与水的体积比是5:1,另一个瓶中酒精与水的体积比是4:1,两瓶酒精混合后,酒精与水的体积比是()A。
9:2 B。
11:2 C。
45:11 D。
49:113.等腰直角三角形三个内角度数的比是()A。
1:2:2 B。
2:1:1 C。
3:2:1 D。
1:1:39.小猫与小兔从相距1km的两地同时出发,若相向而行,a分钟相遇;若同向而行,b分钟后小猫追上小兔,则小猫与小兔的速度比是()A。
$\frac{a+b}{a}$ B。
$\frac{a+b}{b}$ C。
$\frac{a-b}{a}$ D。
$\frac{a-b}{b}$10.甲圆的直径等于乙圆的半径,则甲乙两个圆的面积比是()A。
1:4 B。
1:2 C。
2:1 D。
4:111.一杯糖水,糖与水的质量比是1:16,喝掉一半后,糖与水的质量比是()A。
1:8 B。
1:16 C。
1:32 D。
1:412.有甲、乙两袋大米,如果从甲袋中倒出给乙袋,两袋米就一样重,原来甲、乙两袋大米的重量比是()A。
5:4 B。
6:5 C。
7:4 D。
7:5二.计算题(共15小题)13.求比中未知的项:$\frac{5}{8}$:0.6 = 1.5:$x$ = 0.914.已知 $x$:$y$ = 0.75:1,$y$:$z$ = 5:4,求 $x$:$y$:$z$:$x$:$y$ = 0.75:1,$y$:$z$ = 5:4,所以$x$:$z$ = 0.75:4,$x$:$y$:$z$ = 0.75:1:415.根据已知条件,求 $a$:$b$:$c$:$a$:$b$:$c$ = 2:3:5,设比例系数为 $k$,则 $a=2k$,$b=3k$,$c=5k$,最简比例为 2:3:516.打印同一份材料,XXX用了3小时完成,XXX用了4小时完成,XXX和XXX的工作效率比是():XXX和XXX完成同一份工作所需的时间比为 3:4,所以他们的工作效率比为 4:317.足球个数比排球个数多,也就是():排球个数比足球个数少18.8:15的前项增加16,要使比值不变,后项应():前项增加16,变为 24,后项应增加 $\frac{15}{8}\times16=30$,变为 4519.一块长方形的木板,长宽比为5:3,长为1.5m,宽为():宽为 $\frac{3}{5}\times 1.5=0.9$ m20.一辆汽车以每小时60公里的速度行驶,行驶2小时后,又以每小时90公里的速度行驶3小时,求这段路程的平均速度():总路程为 $60\times 2+90\times 3=360$ 公里,总时间为 5 小时,平均速度为 $\frac{360}{5}=72$ 公里/小时21.一块长方形的地面,长宽比为4:3,长为8m,面积为():宽为 $\frac{3}{4}\times 8=6$ m,面积为 $8\times6=48$ 平方米22.一条铁路直线段长1000米,两端分别有一列火车,相向而行,两列火车相遇时,两车头之间的距离为300米,求两列火车的长度之和():两列火车的总长度为$1000+300\times 2=1600$ 米23.一条铁路直线段长1000米,两端分别有一列火车,同向而行,两列火车相遇时,一列火车已经行驶了500米,另一列火车已经行驶了800米,求两列火车的长度之和():两列火车的总长度为 $1000-500+1000-800=700$ 米24.一张长方形纸片的长宽比为3:2,长为12cm,宽为8cm,按比例扩大3倍后,长和宽各为多少厘米():长为$12\times 3=36$ 厘米,宽为 $8\times 3=24$ 厘米25.一辆汽车以每小时50公里的速度行驶,行驶2小时后,又以每小时70公里的速度行驶3小时,求这段路程的平均速度():总路程为 $50\times 2+70\times 3=260$ 公里,总时间为 5 小时,平均速度为 $\frac{260}{5}=52$ 公里/小时26.一人骑自行车走了40公里,速度为每小时10公里,又步行走了20公里,速度为每小时5公里,求这段路程的平均速度():总路程为 60 公里,总时间为$\frac{40}{10}+\frac{20}{5}=8$ 小时,平均速度为$\frac{60}{8}=7.5$ 公里/小时27.甲、乙两人分别以每小时40公里、60公里的速度相向而行,开始时相距320公里,多长时间后相遇():相对速度为 $40+60=100$ 公里/小时,所需时间为$\frac{320}{100}=3.2$ 小时,即 3小时12分钟28.一块铁板,长宽比为5:3,长为1.5米,宽为1.2米,将它剪成若干个正方形,每个正方形的面积相等,求每个正方形的面积():总面积为 $1.5\times 1.2=1.8$ 平方米,设每个正方形的面积为 $S$,则有 $S\times n=1.8$,其中 $n$ 为正方形的个数,又有 $\frac{5}{3}x=\frac{3}{5}y$,即$x=\frac{9}{25}y$,其中 $x$ 为正方形的边长,$y$ 为长方形的宽,代入 $S=x^2$ 和 $n=\frac{1.8}{S}$,得$S=\frac{5}{18}$ 平方米29.一块长方形的地面,长宽比为3:2,长为6米,宽为4米,铺上一层厚度为10厘米的水泥,需要多少立方米的水泥():面积为 $6\times 4=24$ 平方米,体积为 $24\times0.1=2.4$ 立方米30.一辆汽车以每小时70公里的速度行驶,行驶2小时后,又以每小时90公里的速度行驶3小时,求这段路程的平均速度():总路程为 $70\times 2+90\times 3=420$ 公里,总时间为 5 小时,平均速度为 $\frac{420}{5}=84$ 公里/小时1.在B站开往A站的路上,当行驶到离B站72千米的地方,甲车从A站出发往B站,两车在相遇的地方距离A、B 两站的距离比为3:4.求A、B两站的总路程。
小学数学六年级上学期 比的应用题20题 带答案
18、甲书架上的书是乙书架上的、4/7,两书架上各增加 154本后,甲书架上的书是乙书架上的5/6,甲、乙两书架 上原来各有多少本书?
原来 甲:乙=4:7=4:7 现在 甲:乙=5:6=15:18 一份:154÷(15-4)=14(元) 原来甲:14×4=56(元) 原来乙:14×7=98(元)
19、兄弟两人,每年收入的比是4:3,每年支出的比是18: 13。从年初到年底,他们都结余720元。他们每年的收入各 是多少元?
收入 A:B=4:3=20:15 支出 A:B=18:13=18:13 一份:720÷(20-18)=360(元) 原来A:360×20=7200(元) 原来B:360×15=5400(元)
12、甲仓原来存粮是乙仓的4/5,后来甲仓增加存粮88吨, 这时乙仓与甲仓存粮吨数的比是6:7,乙仓有存粮多少吨?
原来 甲:乙=4:5=28:35 后来 甲:乙=6:7=30:35 一份:88÷(30-28)=44(吨) 乙:35×44=1540(吨)
13、甲、乙两人身上的钱数的比量4:3,甲给乙10元后,这 时乙人的钱占两人总钱的1/2,现在乙人有多少钱.
15、开学初,六(1)班和六(2)班学生人数比是8:7,后 来从六(1)班调出3名同学到六(2)班,这时两个班学生 人数正好相等.开学初两个班各有多少人?
开始 一班:二班=8:7=16:14 后来 一班:二班=1:1=15:15 一份:3÷(16-15)=3(人) 原来一班:3×16=48(人) 原来二班:14×3=42(人)
10、被减数、减数和差的和是200,减数与差的比是3:1, 减数是( 75 ) 1份:200÷(1+4+3)=25 减数:25×3=75
六年级下册数学试题-比例及比例应用题(含部分答案)全国通用
本讲的内容较多,分为分数的定义与分类、通分与约分的技巧、分数的四则混合运算。
为了老师讲解方便,我们加入了有关分数知识总结。
知识点总结部分适合对分数零基础的学生,其中知识点的例子可以作为铺垫题。
实际教学中,可视学生的实际能力调整讲解内容。
例题的线索和知识点的线索是一致的,可以把知识点的讲解融入到例题中去。
一、比的意义⑴3÷4也可以写作3∶4,读作3比4,比表示两个数的相除关系,两个数相除又叫做两个数的比,比号前面的数叫前项,比号后面的数叫后项,比的结果叫比值。
⑵比与除法和分数的关系⑶比的性质由于3÷4=6÷8,所以3∶4=6∶8,因此得到比的前项和后项同时扩大或缩小相同的倍数(零除外),比值不变二、比例的意义⑴比例的定义:表示两个比相等的式子叫做比例。
如:9612:154:5128==组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:在以上3个比例中,我们可以发现:12:154:5125154609698126721282.4:1.660:40 2.440 1.66096=⇒⨯=⨯==⇒⨯=⨯==⇒⨯=⨯=⑵比例的基本性质:在比例中,两个外项的积等于两个内项的积,这叫做比例的基本性质。
解比例:根据比例的基本性质,如果我们已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。
求比例中的未知项,就叫做解比例。
(例子很多,随便写3个数就可以求第4个)如::1201:5512011201524xxxx==⨯⨯==教师随笔比例及比例应用题三、正比例和反比例(选讲)正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的比值一定,两种量就叫做正比例的量,他们的关系叫做正比例的关系。
如果用字母x 、y 表示两种关联的量,用k 表示它们的比值,正比例关系可以用下面式子表示:y ÷x =k (一定)反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的积一定,这两种量就叫做反比例的量,他们的关系叫做反比例关系。
小学六年级比例应用题及答案
小学六年级比例应用题及答案【篇一:人教版六年级数学《比例》试题及答案】一、填一填1、()叫做比例。
2、在一个比例中,两个内项正好互为倒数,已知一个外项是3、北京到天津的实际距离是120千米,在比例尺是2,则另一个外项是()。
51的地图上,两地的图上距离是()厘米。
50000004、如果2a=3b,那么a:b=():()。
5、用12的因数中的任意四个数组成一个比例是()。
6、 3:()=6:10=():357、在总价、单价和数量三种量中,当()一定时,()与()成正比例当()一定时,()与()成正比例当()一定时,()与()成反比例8、配置一种淡盐水,盐占盐水的119,盐与水的比是()。
二、判断对错1、如果甲数是乙数的15(甲、乙均不为0),甲与乙的比是1:5。
()。
2、用同样的方砖铺地,铺地面积与方砖块数成反比例。
()3、一项工程,甲独做要10小时,乙独做要8小时,甲、乙工作效率的之比是()4、圆的面积与它的半径成正比例关系。
()5、求比例中的未知项,叫做解比例。
()6、一幅地图的比例尺是1:500000m。
()三、选一选,将正确答案的序号填在括号里。
1、一个加数一定,和与另一个加数()。
a、成正比例 b成反比例c不成比例2、出粉率一定,面粉质量与小麦质量成()a、成正比例 b成反比例c不成比例3、在一副平面图上,用图上距离2cm表示实际距离200m,这幅图的比例尺是()a、1:100b、 1:1000c 1:100005:4 14、按1:5将长方形缩小,就是将长方形的面积缩小到原来的()a、111b、c、 525105、用3、4、16、12四个数组成比例,正确的是()a、3:16=4:12b、3:4=12:16c、16:12=4:3四、算一算,解比例 x:10=11123: 0.4:x=1.2:2 = 432.4x五、画一画,操作题。
学校要建一个长100m,宽60m的长方形操场用1:1000的比例尺画出操场的平面图。
六年级数学按比分配应用题及答案
六年级数学按比分配应用题及答案1.将300本作业按照4:5:6的比例分配给四年级、五年级和六年级的同学,每个年级分别得到80本、100本、120本作业本。
2.假设一种生理盐水是将盐水和水按照1:100的比例配制而成的。
需要配制5050千克这种生理盐水,那么需要多少千克的盐水?答案是50千克。
3.山羊和绵羊的头数比是2:5,山羊有40头。
那么山羊和绵羊的总头数是多少?答案是140头。
4.假设一种石灰水是将石灰和水按照1:100的比例配制而成的。
需要配制5656千克这种石灰水,那么需要多少千克的石灰?答案是56千克。
5.体育室有200根跳绳,需要按照人数分配给六年级一班和二班。
一班有52人,二班有48人。
那么一班和二班各得多少根跳绳?答案是一班得到104根跳绳,二班得到96根跳绳。
6.一个分数,它的分子和分母的和是40,分子和分母的比是4:6.那么这个分数是多少?答案是24/16.7.假设一种药水是将药粉和水按照1:80的比例配制而成的。
⑴如果有40千克的药粉,那么可以配制多少千克的药水?答案是3240千克。
⑵如果有60千克的水,那么需要多少千克的药粉?答案是0.75千克。
⑶如果需要配制1620千克的这种药水,那么需要多少千克的药粉?答案是20千克。
8.将96分米长的铁丝焊成一个长方体框架,长、宽、高的比例是3:2:1.那么这个长方体的体积和表面积分别是多少?答案是体积为384立方分米,表面积需要计算。
解析:1.第一段:没有明显格式错误,但是可以将“答”和“解”两个字加粗或者改为标题格式更加清晰。
改写如下:题目:长方体的体积和表面积答案:这个长方体的体积是384立方分米,表面积是352平方分米。
2.第二段:没有明显格式错误。
3.第三段:没有明显格式错误。
4.第四段:没有明显格式错误。
5.第五段:没有明显格式错误。
6.第六段:没有明显格式错误。
7.第七段:没有明显格式错误。
8.第八段:没有明显格式错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级数学比例应用题及答案
小学六年级数学比例是孩子学习数学的重要内容。
学好比例能够有效提高孩子的逻辑思维能力,把数学应用到日常生活中去。
下面我们就一起来学习小学六年级数学比例应用题及答案。
一、数学比例题
1、小明参加了一次知识竞赛,但他总分为180分,卷面分为150分,考官给予他的附加分是多少?
答案:附加分为30分。
2、某体育比赛,红队赢了4场,黑队赢了2场,平局2场,则红队胜率是多少?
答案:红队胜率为66.7%,即2/3。
3、在一个购物店中,某件洋原价160元,现在7折,则打折后的价格是多少?
答案:打折后的价格为112元。
二、比例的实际应用
1、在布料的购买中,购买的是一种卷布,它的长度是20米,宽度是3米,那么卷布的面积是多少?
答案:卷布的面积为60平方米。
2、在变形金刚的动画片中,Optimus Prime的比例是25:42,那么它的真实尺寸应该是多少?
答案:Optimus Prime的真实尺寸应该是25米高,42米长。
3、某一礼品盒中共有若干个玩具,其中一共有9枚小汽车,18
个小船,6个小飞机,那么汽车在所有玩具中占的比例是多少?
答案:汽车占的比例是 9: 33,即9/33。
以上就是小学六年级数学比例应用题及答案的内容。
总而言之,比例是学习数学的重要内容,是培养孩子逻辑思维能力的基础。
家长要注意重视孩子数学学习,让孩子能够熟练掌握数学比例,有效利用比例应用在日常生活中去。