初一圆和圆柱、圆锥全章导学案
《圆柱与圆锥》导学案
《圆柱与圆锥》导学案◆您现在正在阅读的《圆柱与圆锥》导学案文章内容由收集!本站将为您提供更多的精品教学资源!《圆柱与圆锥》导学案【学习目标】:借助日常生活中的圆柱体,能说出圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。
【学习重难点】:1、圆柱的特征和圆柱各部分的名称2、看懂圆柱的平面图。
一、【知识链接】:1、已知圆的半径,求周长的公式:已知圆的直径,求周长的公式:2、求下面各圆的周长(1)半径是1米(2)直径是3厘米(3)半径是2分米(4)直径是5分米二、【自主学习】:1、自学课本第10-12页,回答问题。
2、叫做底面,叫做侧面,叫做高。
3、圆柱的特征:圆柱的底面圆柱的侧面三、【合作探究,交流展示】:1、圆柱的高的特点。
圆柱的高有条,高的长度都。
2、拿出一张长方形的纸转动,得到图形3、圆柱的侧面展开(例2)◆您现在正在阅读的《圆柱与圆锥》导学案文章内容由收集!本站将为您提供更多的精品教学资源!《圆柱与圆锥》导学案(1)动手操作:拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状.讨论后得出:沿高剪开,展开后得到或斜着剪开,展开后得到(2)寻求发现:展开的长方形的长和宽与圆柱的关系.交流后得出:这个长方形的长就是,宽就是。
四、【拓展延伸】:延伸发现.展开的平行四边形的底和高及正方形的边长与圆柱的关系。
①讨论:平行四边形能否通过什么方法转化成长方形?课件显示:平行四边形通过割补转变成长方形,再还原成圆柱侧面的动画过程。
②想一想:当圆柱底面周长与高相等时,侧面展开图是③小结:不管侧面怎样剪,得到各种图形,都能通过割补的方法转化成长方形.其中正方形是特殊的长方形.五、【课堂小结】:这节课我们学习了哪些内容?你有什么收获?六、【课堂检测】:1.把圆柱体的侧面展开,得到一个(),它的长等于宽等于当圆柱底面周长与高相等时,侧面展开图是2、判断(1)圆柱的侧面展开后一定是长方形。
七年级数学上册导学案(全集)
七年级数学上册导学案第1章基本的几何图形1.1我们身边的图形世界一、导入激学:满天星斗的夜空,形形色色的建筑群,各式各样的交通工具和道路,五彩缤纷的自然界……只要你注意观察,就会发现我们生活在一个丰富多彩的图形世界里。
二、导标引学学习目标:1.认识不同的几何体,初步体会几何研究的对象、方法、并感悟抽象的数学思想。
2.了解从物体抽象出来的几何体、平面、曲面等概念的定义。
3.知道正方体、圆柱、圆锥、球等都是几何体,能认识表示它们的图形。
三、学习过程(一)导预疑学请你利用10分钟,自学课本第4页至第6页,并完成以下问题:1.说出下列立体图形的名称。
①②③④⑤⑥⑦2.上题中棱柱有:,棱锥有。
(填序号)3._____、_____、_____、_____、_____、______、______等都是几何体,几何体简称_____。
4.观察下列实物图片,它们的形状分别类似于哪种几何体?①②③④⑤(二)导问互学问题:棱柱与圆柱、棱锥与圆锥的区别与联系:顶点棱侧面底面棱柱圆柱棱锥圆锥解决问题评价:(三)导根典学在下图中的三幅图案中,你分别看到了哪些图形?它们是怎样组合而成的?(四)导标达学1.下列几何体,是由一个曲面和两个平面围成的是_____。
A B C D2. 一个以下说法中正确的是。
A.正方体是棱柱。
B.电视机的形状类似于球体。
C.生活中应用的六角螺母的形状类似于圆柱。
D.鸡蛋的形状类似于圆锥。
3.一个七棱柱共有个面,条棱,个顶点,形状和面积完全相同的只有个面.4.图中的的几何体由几个面围成,面与面相交成几条线?它们是直的还是曲的?5.下列几何体中不是多面体的是( )A、立方体B、长方体C、三棱锥D、圆柱6.下列几何体没有曲面的是()A、圆柱B、圆锥C、球D、棱柱7.下列图案是由哪些简单的几何图形组成的?8.请你用两个圆、两个三角形和两条线段组合几幅新奇、有趣的图形,并给出文字说明。
反馈评价:四、导法慧学1.将所学知识纳入知识体系.2.本节解决问题的具体方法是怎样的?据此请总结此类问题的解题思路.3.还有没有更好的解法?你还有疑问吗?设计人:王望中学王志海1.2 几何图形一、导入激学:我们学过的长方体有几个面?几个顶点?几条棱?二、导标引学学习目标:1.认识点、线、面、体,初步感受“点动成线、线动成面、面动成体”的生活实例。
1北师大版七年级数学上册全册导学案-教案 (2)
第一章丰富的图形世界导学案第一节生活中的立体图形【学习目标】1.经历从现实世界中抽象出形象的过程,感受图形世界的丰富多彩。
2.在具体情境中,认识圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们的某些特征。
3.通过丰富的实例,进一步认识点、线、面,初步感受点、线、面之间的关系。
4.在对图形进行观察、操作等活动中,积累处理图形的经验,发展空间观念。
【学习方法】自主探究与合作交流相结合【学习重难点】重点:认识常见的几何体的基本元素,了解棱柱的一些基本概念及其某些特性。
难点:用语言描述常见几何体的某些特征及对几何体的分类。
【学习过程】模块一预习反馈一、学习准备1.在小学学习了的立体图形有2.长方体有____个面,每一个面都是_______,正方体有____个面,每一个面都是__________ 长方体的表面积=_________________________,长方体的体积=_________________________ 正方体的表面积=_________________________,正方体的体积=_________________________3.阅读教材:p2—p6第1节《生活中的立体图形》,并完成随堂练习和习题二、教材精读4.写出下列几何体的名称____________________________________________________________________________ 5.棱柱的有关概念及其重要特点:(1)棱柱的有关概念:在棱柱中,相邻两个面的交线叫做;相邻两个侧面的交线叫做。
(2)棱柱的三个特征:一是棱柱的所有侧棱长都;二是棱柱的上下底面的形状,都是形;三是侧面都是形。
(3)棱柱的分类:根据底面多边形的将棱柱分为、、、……;它们的底面分别是、、……。
(4)棱柱中的元素之间的关系:底面多边形的边数n,可确定该棱柱是棱柱,它有个顶点,条棱,其中有条侧棱,有个面,个侧面实践练习:请你按适当的标准对下列几何体进行分类。
《圆柱、圆锥、圆台》 导学案
《圆柱、圆锥、圆台》导学案一、学习目标1、理解圆柱、圆锥、圆台的结构特征。
2、掌握圆柱、圆锥、圆台的侧面展开图及其面积公式。
3、能运用圆柱、圆锥、圆台的相关知识解决实际问题。
二、知识梳理1、圆柱(1)定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱。
(2)轴:旋转轴叫做圆柱的轴。
(3)底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面。
(4)侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面。
(5)母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
(6)圆柱的表示:用表示它的轴的字母表示,如圆柱 OO'。
2、圆锥(1)定义:以直角三角形的一条直角边为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。
(2)轴:旋转轴叫做圆锥的轴。
(3)底面:垂直于轴的边旋转而成的圆面叫做圆锥的底面。
(4)侧面:直角三角形的斜边旋转而成的曲面叫做圆锥的侧面。
(5)母线:无论旋转到什么位置,不垂直于轴的边都叫做圆锥侧面的母线。
(6)圆锥的表示:用表示它的轴的字母表示,如圆锥 SO。
3、圆台(1)定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。
(2)轴:圆锥的轴。
(3)上底面和下底面:原圆锥的上底面和下底面分别叫做圆台的上底面和下底面。
(4)侧面:圆锥的侧面在截去上面小圆锥后留下的部分叫做圆台的侧面。
(5)母线:圆锥的母线在截去上面小圆锥后留下的部分叫做圆台的母线。
(6)圆台的表示:用表示它的轴的字母表示,如圆台 OO'。
4、圆柱、圆锥、圆台的侧面展开图(1)圆柱的侧面展开图是一个矩形,矩形的一边长等于圆柱的底面圆的周长,另一边长等于圆柱的母线长。
(2)圆锥的侧面展开图是一个扇形,扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长。
(3)圆台的侧面展开图是一个扇环,扇环的上弧长等于圆台上底面圆的周长,下弧长等于圆台下底面圆的周长,母线长为扇环的母线。
七年级数学下册《圆锥的认识》导学案 新人教版
四川省射洪县外国语学校七年级数学《圆锥的认识》导学案单元主题圆柱与圆锥课题圆锥的认识学习目标【知识目标】1、初步认识圆锥,知道圆锥各部分的名称,掌握圆锥的特征2、了解圆锥的高的测量方法【能力目标】我要理解和掌握圆柱、圆锥体积的计算公式,并能正确地解决实际问题。
【思维目标】培养学生初步的空间观念和发展学生的思维能力。
学习重点1、进一步理解体积的意义;2、理解和掌握圆柱和圆锥的体积的计算方法,并能解决一些实际问题。
学习难点等底等高圆柱与圆锥的体积关系。
学习过程备注◆正面思考主动学习1、什么是体积?举例说明。
2、探索怎样求圆柱的体积计算方法.3、认识圆锥。
4、经历圆锥的体积计算方法的探索过程。
归纳怎样求圆柱和圆锥的体积的方法?一、自主学习:1、圆锥底面的形状是(),侧面是()面。
2、从圆锥的()到()之间的距离叫圆锥的高,圆锥的高有()条。
3、把圆锥的侧面展开可以得到一个()。
4、以一个直角三角形的一条直角边为轴旋转一周,可以得到一个()。
二、尝试练习:5、圆锥的侧面是一个三角形。
()6、因为圆柱的高有无数条,所以圆锥的高也有无数条。
()7、圆柱的侧面展开是长方形,圆锥的侧面展开也是长方形。
()8、半圆不能围成圆锥。
()9、从圆锥的顶点到底面圆周上任意一点的连线叫做圆锥的高。
()10、以直角三角形的一条直角边为轴旋转一周,就可以得到一个圆锥。
()反面质疑交流辩论1、你是怎么理解体积的?2、圆柱的体积是由那些因素决定的?3、圆锥的体积是由那些因素决定的?在等底等高的前提下,为什么圆锥的体积是圆柱体积的三分之一?◆合学共商检测过关1、以直角三角形的一条直角边为轴,旋转一周,就可以得到一个()。
14、如图所示,这个圆锥的底面半径是()厘米,高是()厘米,底面积是()平方厘米。
2、右图是一块带有圆形空洞和三角形空洞的木板。
下列物体中既能堵住圆形空洞,又能堵住三角形空洞的是()A.长方体B.正方体C.圆柱D.圆锥E.球3、圆锥有()条高。
华东师大版数学七年级上第四章《图形的初步认识》4.1 生活中的立体图形导学案
学习目标
1)通过观察认识到我们周围的规则物体能找到与它们相似的立体图形。
(2)能正确识别柱体、锥体、圆柱、圆锥……
学习重点
直观认识规则的立体图形,常见的几何体正确识别与分类
学习难点
找出各个立体图形的个性特征及们之间的联系.
预习笔记
【一】预习交流。
一.几何体的分类
1.看一看
图1图2图3
图4图5
在上面的图形中:
(1)图1所表示的立体图形是柱体()
(2)图2所表示的立体图形是柱体()
(3)图3所表示的立体图形是锥体()
(4)图4所表示的立体图形是球体;
(5)图5所表示的立体图形是锥体()
2.填一填
正四面体(三棱锥)正方体(四棱柱)正八面体
【三】学以致用
1.说出下列立体图形的名称:
2.判断下列的陈述是否正确:
⑴柱体的上、下两个面不一样大()
⑵圆柱、圆锥的底面都是圆()
⑶棱柱的底面不一定是四边形()
⑷圆柱的侧面是平面()
⑸棱锥的侧面不一定是三角形()
⑹柱体都是多面体()
2.在下面四个物体中,最接近圆柱的是()
作业
课本127页习题第1、2、3题
学习后记
(1)柱体包括________和_________锥体包括________和__________
二.圆柱、棱柱、圆锥、棱锥概念
三.我们都知道,我们的生活空间是一个三维的世界,我们生活中的生活中的物体都是立体的物体,而这些物体中有一部分是较有规则的,如:
生活物体
苹果、球
天坛顶端
塔顶
粉笔盒
笔筒
类似图形
【二】课堂研讨
《圆柱、圆锥、圆台、球的表面积和体积》教学设计、导学案、同步练习
《8.3.2 圆柱、圆锥、圆台、球的表面积和体积》教学设计【教材分析】本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第八章《立体几何初步》,本节课是第2课时,本节课主要学习圆柱、圆锥、圆台、球的表面积和体积公式。
本节课从圆柱、圆锥、圆台的展开图推出它们的表面积,然后比较它们的表面积公式,让学生更容易记忆公式。
类比棱台的体积公式,进而得到圆台的体积公式,再进一步比较圆柱、圆锥、圆台、棱柱、棱锥、棱台的体积公式,找到它们公式之间的关系。
类比初中圆的面积公式的推导,从而推导球的体积公式。
【教学目标与核心素养】【教学重点】:圆柱、圆锥、圆台、球的表面积与体积;【教学难点】:与圆柱、圆锥、圆台、球有关的组合体的表面积与体积会解决球的切、接问题。
【教学过程】思考1:圆柱的展开图是什么?怎么求它的表面积? 【答案】圆柱的侧面展开图为矩形思考2:圆锥的展开图是什么?怎么求它的表面积? 【答案】圆锥的侧面展开图是扇形思考3:参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么 ,它的表面积是什么? 【答案】圆台的侧面展开图是扇环思考4:圆柱、圆锥、圆台三者的表面积公式之间有什么关系?你能用圆柱、圆锥、圆台的结构特征来解释这种关系吗?)(2222l r r rl r S +=+=πππ圆柱表面积)(2l r r rl r S +=+=πππ圆锥表面积)(22rl l r r r S +'++'=π圆台表面积【答案】思考5:根据圆台的特征,如何求圆台的体积?由于圆台是由圆锥截成的,因此可以利用两个锥体的体积差.得到圆台的体积公式(过程略).其中S ,分别为上、下底面面积,h 为圆台(棱台)的高.思考6:圆柱、圆锥、圆台的体积公式之间有什么关系?结合棱柱、棱锥、棱台的体积公式,你能将它们统一成柱体、锥体、台体的体积公式吗?柱体、椎体、台体的体积公式之间又有什么关系?1.球的表面积公式:(R 为球的半径)例1.如图,某种浮标由两个半球和一个圆柱黏合而成,半球的直径是0.3m ,圆柱高0.6m ,如果在浮标表面涂一层防水漆,每平方米需要0.5kg 涂料,那么给1000个这样的浮标涂防水漆需要多少涂料?hS S S S V )(31+'+'=S '24S R π=球解:一个浮标的表面积为所以给1000个这样的浮标涂防水漆约需涂料思考7:在小学,我们学习了圆的面积公式,你记得是如何求得的吗?类比这种方法,你能由球的表面积公式推导出球的体积吗? 【分析】第一步,分割球面被分割成n 个网格,连接球心O 和每个 小网格的顶点。
七年级数学上册第一章1.1导学案
§1.1.1《生活中的立体图形》导学稿班级 姓名 等级一、 学习目标1.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、球等几何体,能用语言描述它们的某些特征,并能对它们进行简单的分类。
2.经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发对空间与图形的学习兴趣,培养积极参与数学活动、主动与他人合作交流的意识。
二、 预习指导:认真预习课本P2-3,完成下列预习检测.1. 请你找出P2彩图中你熟悉的几何体,并在图中标出.2. 根据P3议一议的图形回答下列问题:(1)与长方体形状类似的有: 与正方体形状类似的有: 与圆住形状类似的有: 与圆锥形状类似的有:与笔筒形状类似的有: 与地球形状类似的有:(2) 圆柱与圆锥的相同点:圆柱与圆锥的不同点:3. 给下列各图形标注名称,用自己的语言描述上列各几何体的特征(上课展示)( ) ( ) ( ) ( ) ( ) ( ) ( )4.与圆柱的相同点: 棱柱与圆柱的不同点:5.试着完成P5 T1练习。
6 举例说明形状类似于棱柱、圆柱、圆锥、与球的物体.(P4随堂练习)棱柱: 圆柱:圆锥: 球:7 .找出P5数学理解T2图中你熟悉的几何体写到下面(1) (2) (3) (4) (5)预习检测2:认真看课本P4想一想的有关内容后完成下面的学习检测。
1.指出P4 上面两个物体分别由什么几何体组成:1.2.2.指出P6 T3 中的物体可以近似的看成是由什么几何体组成:1. 2. 3. 4.3.举例说明你在生活中见过的由多个(包括两个)几何体组成的物体?1. 2.4. 棱柱注:本书我们只讨论:(简称: )三、预习、讨论成果展示与反馈(做任务组展示,其他组质疑或补充)认真看课本P2-6,2分钟后展示学习成果。
1. 请你找出P2彩图中你熟悉的几何体,并在图中标出,P5 T2。
第1组展示2.根据P3议一议的图形回答其问题。
第2组展示3.用自己的语言描述以下图形的名称与特点。
圆柱和圆锥导学案.doc
联系生活,在生活中辨认圆柱和圆锥体的物体,并能抽象出几何 图形的形状来。
学习难点
通过观察,初步了解圆柱和圆锥的组成及其特点。
学习准备
各种面、圆柱和圆锥模型。
集体备课
二度备课
导学过程
温故互查:
将自行车后轮架支起,在后车车条上系 上彩带。转动后车轮,观察并思考彩带 随着车轮转动后形成的图形是什么? 学生根据发现的现象(彩带随着车轮的 转动形成了圆)说明自己的想法,并体 验:点动成线
合作探究:
(1)观察课本P2各图,你发现了什 么?
(2)如图:用纸片和小棒做成下面的 小旗,快速的旋状小棒,观察并想象旋 转后形成的图形,再连一连。
汇报点评:
(1)风筝的每一个节连起来看,形成了一
条线;雨刷器扫过后形成一个半圆形 学生体验:线动成面
(2)学生实际动手操作,然后根据想象的
图形连线
学生体验:线动成面
学生能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧 面积、表面积的计算公式。
学习准备
课件 教学圆规
集体备课二度备课
自学感悟:
拿出圆柱体茶叶罐,谁能说说圆柱由哪 几部分组成的?想一想工人叔叔做这个 茶叶罐是怎样下料的?(学生会说出做 两个圆形的底面再加一个侧面)那么大 家猜猜侧面是怎样做成的呢?(说说自 己的猜想)
圆柱的表面积 = 圆柱的侧面积+底面积X2
课 型
练习课模式 目标引领四步导学
总课时3
课题/页码
第 课时
学习内容
圆柱的表面枳(二)
学习目标
通过圆柱切分和拼合的练习,使学生进一步加深对圆柱的特 征认识,掌握圆柱体表面积变化的规律。
学习重点
通过学生动手操作,积极思考,提高空间的想象能力。
《圆柱、圆锥、圆台》导学案
《圆柱、圆锥、圆台和球》导学案编制人:李培廷审核:米静时间:2012/11/27 组长签字:一、课标要求1、了解旋转体的概念2、利用实物模型、计算机软件观观察大量空间图形认识圆柱圆锥圆台球及简单组合体的结构特征并能运用这些特征描述现实生活中简单物体的结构二、本节主要问题(一)圆柱、圆锥、圆台的性质1.圆柱、圆锥、圆台分别是怎么旋转形成的?2.平行于圆柱、圆锥、圆台的底面的截面是什么图形?3.过圆柱、圆锥、圆台的轴的截面(轴截面)是什么图形?(二)圆柱、圆锥、圆台的侧面展开图圆柱、圆锥、圆台去掉底面,沿任意一条母线割开,然后放在平面上展开,分别是什么样的图形?例1:用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是1:4,截去的圆锥的母线长是3cm,求圆台的母线长。
分析:利用圆锥平行于底面的截面的性质以及三角形相似对应线段成比例1、圆柱、圆锥、圆台和球都叫做旋转体,球是如何旋转形成的?2、类比圆的定义,你能否用集合的观点定义球?以及球心,球的半径、球的直径。
(四)球的截面性质1.用一个平面截球得到的截面是什么图形?何时该图形面积最大?2.球心与不过球心截面圆的圆心的连线与截面的关系是怎样的?3.球半径R,不过球心的截面圆的半径r,球心与截面圆的圆心的连线d之间有什么关系?例2、我国首都北京靠近北纬40︒,求北纬40︒纬线的长度(地球半径约是6370km,cos40︒=0.766 ,2×3.14×6370×0.766≈30660)。
1.什么是球的大圆、小圆?地球上的经线圈和纬线圈哪些是大圆,哪些是小圆?2.球面距离的概念。
例3、设地球的半径为R ,若甲地位于北纬045东经0120,乙地位于南纬075东经0120,则甲、乙两地的球面距离为( ) A 3R B 6R πC 56R πD 23R π (六 ) 组合体由具有柱、锥、台、球等简单几何体组合而成的几何体叫简单组合体.现实生活中的物体大多是简单组合体.简单组合体的构成有两种方式:(1)由简单几何体拼接而成;(2)由简单几何体截去或挖去一部分而成.四、巩固练习1、一个圆柱的母线长为5,底面半径为2,求圆柱的轴截面的面积.2、一个圆锥的母线长20cm ,母线与轴的夹角为030,求圆锥的高.3、一个圆台的母线长为5,上底面和下底面直径分别为2和8,求圆台的高.4.一个圆台的母线长20cm ,母线与轴的夹角为030,上底面的半径为15cm ,求圆台的高和下底面的面积.5.一条直线被一个半径为5的球截得的线段长为8,求球心到直线的距离。
圆柱、圆锥、圆台和球导学案
圆柱、圆锥、圆台和球导学案1.1.3圆柱、圆锥、圆台、球学习⽬标:1. 理解圆柱、圆锥、圆台和球的有关概念,初步掌握运⽤旋转的观点去观察问题。
2. 理解这⼏种⼏何体的轴截⾯的概念和它在决定⼏何体时的重要作⽤。
知识点1:圆柱、圆锥、圆台(1)定义圆柱圆锥分别看作圆台_________________________________所在的直线为旋转轴,将矩形直⾓三⾓形直⾓梯形分别旋转⼀周⽽形成的曲⾯所围成的⼏何体,这类⼏何体叫旋转体。
(2)相关概念:①⾼:在的这条边(或它的长度);②底⾯:的边旋转⽽成的圆⾯;③侧⾯:旋转⽽成的曲⾯;④母线:绕轴旋转的边。
(3)图形表⽰:2.球(1)定义:⼀个球⾯可以看作绕着所在的直线旋转⼀周所形成的曲⾯,围成的⼏何体叫做球。
(2)相关概念:①球⼼:形成球的半圆的;球的半径:连接球⼼和球⾯上⼀点的;②球的直径:连接球⾯上两点并且通过的线段;③球的⼤圆:的平⾯截得的圆;④球的⼩圆:球⾯被不经过球⼼的平⾯截得的圆;⑤两点的球⾯距离:在球⾯上,两点之间的最短距离,就是的长度,把这个叫做两点的球⾯距离。
(3)图形表⽰:3.旋转体(1)定义:由⼀个绕着⼀条直线旋转产⽣的曲⾯所围成的⼏何体。
(2)轴:这条直线叫做旋转体的轴。
4.组合体由、、、等基本⼏何体组合⽽成的⼏何体叫做组合体。
⾃我检测1.圆柱的母线长为10,则其⾼等于()A. 5B. 10C. 20D.不确定2.下列⼏何体是组合体的是3.圆锥的⾼与底⾯半径相等,母线等于,则底⾯半径等于。
4.圆台上、下底⾯半径分别为1cm,4cm,则母线长为cm.5.下列图形中是圆柱的序号为典例剖析类型⼀圆柱、圆锥、圆台和球的结构特征例⼀1.下列说法正确的是()A.圆台是直⾓梯形绕其任意⼀边旋转⽽成的B.圆锥是直⾓三⾓形绕其任意⼀边旋转⽽成的C.圆柱不是旋转体D.圆台可以看作是由平⾏于底⾯的平⾯截⼀个圆锥⽽得到的2.给出下列命题:①过球⾯上任意两点只能作球的⼀个⼤圆;②球的任意两个⼤圆的交点的连线是球的直径;③⽤不过球⼼的平⾯截球,球⼼和截⾯圆⼼的连线垂直于截⾯;④球⾯也可以看作到定点的距离等于定长的所有点的集合;⑤半圆弧以其直径为轴所形成的曲⾯叫做球⾯。
初中数学教案认识圆锥圆柱和圆台
初中数学教案认识圆锥圆柱和圆台初中数学教案认识圆锥、圆柱和圆台一、教学目标:1. 理解圆锥、圆柱和圆台的定义和特点。
2. 掌握圆锥、圆柱和圆台的公式,能够计算它们的表面积和体积。
3. 能够应用所学知识解决实际问题。
二、教学准备:教材、黑板、彩色粉笔、尺子、计算器。
三、教学过程:1. 导入(5分钟)教师出示一个圆锥形冰淇淋和一个圆柱形饮料罐,请学生观察冰淇淋和饮料罐的形状,并简要介绍圆锥、圆柱和圆台的概念。
2. 学习圆锥(15分钟)(1)定义和性质:圆锥是以一个平面曲线为边界,一个顶点位于曲线外的几何体。
(2)分析圆锥的特点:底面、侧面、顶点、高线等。
(3)计算圆锥的表面积和体积公式:- 表面积公式:S=πrl+πr²- 体积公式:V=1/3πr²h3. 学习圆柱(15分钟)(1)定义和性质:圆柱是以一个平面曲线(底面圆)为边界,在平行于底面圆的平面上都相交的几何体。
(2)分析圆柱的特点:底面、侧面、轴线、母线等。
(3)计算圆柱的表面积和体积公式:- 表面积公式:S=2πrh+2πr²- 体积公式:V=πr²h4. 学习圆台(15分钟)(1)定义和性质:圆台是以一个平面曲线(上底圆)和一个平行于它的平面曲线(下底圆)为边界的几何体。
(2)分析圆台的特点:上底、下底、侧面、高等。
(3)计算圆台的表面积和体积公式:- 表面积公式:S=π(R+r)l+π(R²+r²)- 体积公式:V=1/3πh(R²+Rr+r²)5. 应用实例(20分钟)教师出示一些实际问题,如利用圆锥体积公式计算冰淇淋的体积、利用圆柱表面积公式计算笔筒的表面积等,让学生应用所学知识解决问题。
6. 总结归纳(5分钟)教师引导学生回顾并总结今天所学内容,概括圆锥、圆柱和圆台的定义、性质和计算公式。
四、课堂小结:通过本节课的学习,我们认识了圆锥、圆柱和圆台的定义、性质和计算公式,并通过实际问题的应用掌握了它们的计算方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡西市第十九中学学案
班级 学科 数学 课题 认识圆 新课 六年级上 时间 2011 年 月 日 学习 1.认识圆,掌握圆的各部分名称. 目标 2.通过动手操作、实验观察探索出圆的特征及同一个圆里半径和直径 的关系. 重点 3.初步学会用圆规画圆,培养学生的作图能力. 难点 4.培养学生观察、分析、抽象、概括等思维能力. 学习内容 学法指导 一、画一画、想一想。 你 (1)先把圆对折、打开,换个方向,再对折,再打开…… 折过若干次后, 发现了什么? 这样反复折几次. 仔细观察一下,这些折痕总在圆的什么地方相交? 我们把圆中心的这一点叫 。圆心一般用字母 O 讨论: 在同一个圆 里, 直径的长度与 表示. 半径的长度又有 (2)用尺子量一量圆心到圆上任意一点的距离。 什么关系呢? 我们把连接圆心和圆上任意一点的线段叫做 径一般用字母 在同一个圆里有 都 有 一般用字母 . 条直径,所有直径的长度也都 表示. .直径 表示. 条半径,所有半径的长度 ,半 姓名 课型 人教版
活动一:创设情境,引起猜想:认识圆的周长
(一)激发兴趣 小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着 圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心 里很不服气它说这样的比赛不公平。同学们,你认为这样的比赛 公平吗? (二)探究新知:认识圆的周长 1.回忆正方形周长: 2.认识圆的周长: 3.圆周长的测量方法: (三)讨论圆周长的测量方法 动手操作,探索圆的周长与直径的关系。 (一)分组合作测算 (二)发现规律,初步认识圆周率 1.看了几组同学的测算结果,你有什么发现? 2.虽然倍数不大一样,但周长大多是直径的几倍? 归纳:圆的周长总是直径的( )一些。 活动一:认识圆周率、介绍祖冲之 1. 我们把圆的周长与直径的比值叫做圆周率, 用希腊字母 π 表示. 2.谁能介绍祖冲之 现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗? 活动二:总结圆的周长公式 1.怎样求周的长?如果我用字母 c 代表圆的周长,d 表示圆的直 径,那圆的周长公式用字母怎样表示? C= 或者
) ) ) ) ) ) ) )
(三)下面图形中,你能分别画出几条对称轴
(四)怎样测量没有圆心的圆的直径?
2
鸡西市第十九中学初一数学组
鸡西市第十九中学学案
班级 学科 时间 学习 目标 重点 难点 数学 课题 2011 年 月 姓名 课型 人教版 新课 六年级上
圆的周长
日
1.理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算. 2.培养观察、比较、分析、综合及动手操作能力. 1.理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算. 2.培养观察、比较、分析、综合及动手操作能力. 学习内容 学法指导
3
【思考】小黄狗跑的 路程实际上就是正 方形的什么?什么 是正方形的周长? 正方形的周长和它 的哪部分有关系? 正方形的周长是边 长的几倍? 【思考】那小灰狗所 跑的路程呢?圆的 周长又指的是什么 意思?
鸡西市第十九中学初一数学组
2.圆的周长还可以怎样求? C=2πr 3.圆的周长分别是直径与半径的几倍? 活动三: 阅读教材 38 页例题 课堂反馈:38 页练习 【当堂检测】 一、判断. 1. =3. 2.计算圆的周长必须知道圆的直径. ( ) 3.只要知道圆的半径或直径,就可以求圆的周长。 ( ) 二、选择. 1.较大的圆的圆周率( )较小的圆的圆周率. A.大于 B .小于 C. 等于 2.半圆的周长( )圆周长. A.大于 B .小于 C.等于 三、实践操作 ⑴、老师家里有一块圆形的桌布,直径为 1 米。为了美观,准备 在桌布边缘镶上一圈花边。 请问, 老师至少需要准备多长的花边?
圆的面积
日
1.理解圆的面积计算工式的推导过程,掌握圆面积的计算公式; 2.能正确进行圆的面积的计算并能解答有关圆的面积的实际问题。 1.理解圆的面积计算工式的推导过程,掌握圆面积的计算公式; 2.能正确进行圆的面积的计算并能解答有关圆的面积的实际问题。 学习内容 学法指导
一、知识链接: 【思考】 1、一匹小斑马用一根绳子把它拴在木桩上。请问小斑马最多能 吃到多大范围的草呢? 2、圆的面积--含义: 叫做圆的面积。 3、如果将绳子加长一点,又会出现什么情况?产生这种变化的 原因是什么?这说明了什么? 4、回忆平行四边形、三角形、梯形面积计算公式推导过程。 二、预习环节: 通过回忆这三种平面图形面积计算公式的推导,你发现了什么? 怎样推导出它们的面积计算公式呢? 探究圆面积的计算公式。看教材 P41 平均分的份数越多,边越直,拼成的图形越接近于长方形。 想一想拼成的近似长方形的长和宽与圆的周长、半径有什么关 系? 如果圆的半径是 r,长方形的长是 ,宽是 ,长方 形的面积是( )× ( ) , 那么圆的面积是( )× ( )=( ) 。 看 p42 例 1、例 2 【当堂检测】 1、计算下面图形的面积。 (单位:厘米)
如何用字母表示这种关系?
全章课件亲购买后请私信联系,或 QQ;43783952
二、圆的画法. 1、自学,看书 32 页。 2、试画。 3、通过试画小结用圆规画圆的方法。 画圆的两要素:1、 2、 决定圆的位置, 决定圆的大小。 三、认识轴对称
1
【提示】画圆时, 圆规两脚间的距 离不能改变, 有针 尖的一脚不能移 动, 旋转同学们以小组为单位,画一个周长是 12.56 厘米的圆,先 讨论如何画,再操作.
【B】保龄球的半径大约是 1dm,球道的长度为 18cm,保龄球从一 端滚到另一端,至少要滚动多少周?
【总结归纳】 学习反思
4
鸡西市第十九中学初一数学组
鸡西市第十九中学学案
班级 学科 时间 学习 目标 重点 难点 数学 课题 2011 年 月 姓名 课型 人教版 新课 六年级上
鸡西市第十九中学初一数学组
阅读教材 P33 页练习下面的部分,回答; 什么是轴对称图形? 是轴对称图形 圆是是轴对称图形吗? 长方形、正方形、平行四边形、等边三角形、梯形等。折 折看,哪些是轴对称图形?画出他们的对称轴。
【当堂检测】
(一)判断 1.画圆时,圆规两脚间的距离是半径的长度. ( 2.两端都在圆上的线段,叫做直径. ( 3.圆心到圆上任意一点的距离都相等. ( 4.半径 2 厘米的圆比直径 3 厘米的圆大. ( 5.所有圆的半径都相等. ( 6.在同一个圆里,半径是直径的 . ( 7.在同一个圆里,所有直径的长度都相等. ( 8.两条半径可以组成一条直径. ( (二)按下面的要求,用圆规画圆. 1.半径 2 厘米. 2.半径 2.5 厘米. 3.直径 8 厘米.