必修3第三章 概率教案
人教版高中必修3(B版)第三章概率教学设计

人教版高中必修3(B版)第三章概率教学设计
一、教学目标
1.掌握基本概率概念,理解概率的基本性质;
2.掌握古典概型计算原理;
3.通过实际问题解决,了解概率实际应用。
二、教学重点
1.基本概率概念的理解及应用;
2.古典概型计算原理的掌握;
3.概率在现实生活中的应用。
三、教学难点
1.如何理解概率的基本性质及应用;
2.应用古典概型计算原理解决实际问题;
3.发现概率在现实生活中的应用。
四、教学过程
1. 概率的概念及基本性质
(1)导入环节
通过展示随机事件与个人生活的联系,引入概率的概念。
(2)概率的定义与基本性质
1.定义:在某一重复试验中,事件A发生的次数与试验总次数之比称为
A的概率。
1。
高中数学 第3章 概率 3.1 随机事件及其概率教案 苏教版必修3-苏教版高一必修3数学教案

第3章概率本章概述一、课标要求本章通过对随机现象的研究,学习认识客观世界的方法.多年来,学生学习数学,主要研究确定的现象,对于不确定现象的规律知之甚少.通过本章的学习,使学生进一步了解不仅确定性现象有规律,可以预知结果,可以用数学方法去研究,而且不确定现象也有规律可循,同样也能用数学方法去研究.使学生初步形成用科学的态度、辩证的思想、用随机观念去观察、分析、研究客观世界的态度,寻求并获得认识世界的初步知识和科学态度.1.在具体情境中了解随机事件发生的不确定性及频率的稳定性,进一步了解概率的意义以及概率与频率的区别.2.通过实例,理解古典概型概率的计算公式,会用列举法计算随机事件所包含的基本事件数以及事件发生的概率.3.了解随机数的意义,能运用模拟方法〔包括计算机产生随机数来模拟〕根据概率,初步体会几何概型的意义.4.通过实例,了解两个互斥事件的概率加法公式.5.通过阅读相关材料,了解人类认识随机现象的过程.6.使学生能初步利用概率知识对实际问题进行分析,并进行理性思考,学会对纷繁复杂的事物进行探索,养成透过事物表面现象把握事物本质所在的思维方法,培养学生理性思维能力与辩证思维能力、创新意识与探究能力、数学建模能力和实践能力,以及表达、交流的能力,增强学生的辩证唯物主义世界观,进一步树立科学的人生观、价值观.7.注重表达数学的文化价值与美学价值,增强学生的审美观,丰富学生的文化底蕴,提高学生的人文素质.二、本章编写意图与教学建议人们在认识自然的过程中,对自然现象进行大量的观察,通过观察得到大量的数据,再对得到的数据进行分析,找出其内在的规律.人们发现,有些现象并不像万有引力定律那样可以得到完全确定的规律.现实世界中发生的事件大多是随机事件,人们通过对随机事件的大量重复试验的结果进行理性的探讨,发现了随机事件也不是毫无规律可循.研究这些规律,最终导致了概率的诞生.学生在初中已经接触了概率的初步知识,本章那么是在此基础上开始系统地学习概率知识.本章又是高中阶段第一次学习这一内容,在后续的学习中还将继续学习概率的其他内容,因此,在高中阶段概率的学习中,起到了承前启后的作用,由于与概率计算密切相关的内容还没有学习,因此,在涉及有关计算的问题时采用枚举法,而在用枚举法时一定要做到既不重复也不遗漏,应该按照一定的顺序来计算有关数据,也可以用表格或树形图来进行有关数据的计算.本章包括了随机事件的概率、古典概型、几何概型以及互斥事件有一个发生的概率等内容.概率的核心问题是要让学生了解随机现象及概率的意义,为了让学生能更深入地理解,可以列举日常生活中的实例,由此正确理解随机事件发生的不确定性及其频率的稳定性,从而加深对概率的理解;古典概型从随机事件发生频率的稳定性导入,通过对频率稳定性研究得出随机事件的发生与否有一定的规律可循,从而得出概率的统计定义.在教学中让学生通过实例理解古典概型的特征是试验结果的有限性和每一个试验结果出现的等可能性,使学生学会把一些实际问题转化为古典概型;从古典概型到几何概型,是从有限到无限的延伸,在几何概型的教学中抓住较强直观性的特点.在教学中有意识地适当地运用现代信息技术辅助教学.在教学中要能做到:(1)注意概念的区别与联系,类似的概念不能够混淆,例如概率与频率,互斥事件与对立事件;(2)在运用公式时注意是否符合公式运用的前提条件;(3)注意顺向思维与逆向思维的合理运用,遵循“正难那么反〞的原那么;(4)注意学习前辈的学习和研究的思维方法,能通过对大量事件的观察抽象出事件的本质.在本章的教学中应注重培养学生学习的信心,提高学生学习数学的兴趣,使学生形成锲而不舍的钻研精神和科学态度;培养学生的数学思维能力,逐步地发展独立获取数学知识的能力,形成批判性的思维习惯,发展数学应用意识和创新意识;通过本章的学习,让学生感受数学与现实世界的重要联系,逐步形成辩证的思维品质;养成准确,清晰,有条理地表述问题以及解决问题的过程的习惯,提高数学表达和交流的能力;进一步拓展学生的视野,逐步认识数学的科学价值、应用价值和文化价值.三、教学内容及课时安排建议3.1 随机事件及其概率整体设计教材分析本节课是概率这一章的第一节课,所以有必要在上新课之前向学生简要地介绍概率论的发展、概率趣话以及概率的应用,以此激发学生对科学的探究精神和严肃认真的科学态度.随机事件及其概率为一课时.本节课主要学习随机现象、必然事件、不可能事件、随机事件的概念.通过抛掷硬币试验,探究随机事件的概率,揭示概率的本质,引出随机事件概率的求法,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.通过实例说明一个随机事件的发生是存在着统计规律性的,一个随机事件发生的频率总是在某个常数附近摆.我们给这个常数取一个名字,叫做这个随机事件的概率.它从数量上反映了这个事件发生的可能性的大小.它是0~1之间的一个数.将这个事件记为A,用P(A)表示事件A发生的概率.对于任意一个随机事件A,P(A)必须满足如下基本要求:0≤P(A)≤1.怎样确定一个事件发生的概率呢?可以从实际问题出发,创设问题情境.具体设计如下:首先利用多媒体展示奥地利遗传学家孟德尔〔G.Mendel,1822~1884〕用豌豆进行杂交试验的结果表格,通过商讨分析得到孟德尔是用某种性状发生的频率来估计生物遗传的基本规律的.然后依次展示抛掷硬币的模拟试验结果、π的前n位小数中数字6出现的频率、鞋厂某种成品鞋质量检验结果,通过商讨分析分别得出:掷硬币的模拟试验结果中,当模拟次数很大时,正面向上的频率值接近于常数0.5,并在其附近摆动;π的前n位小数中数字6出现的频率中数字6在π的各位小数数字中出现的频率值接近于常数0.1,并在其附近摆动;鞋厂某种成品鞋质量检验结果中,当抽取的样品数很多时,优等品的频率接近于常数0.95,并在其附近摆动.三维目标1.通过具体的例子了解随机现象,了解必然事件、不可能事件、随机事件的概念.采用实验探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学.使学生了解一个随机事件的发生既有随机性,又在大量重复试验中存在着一种客观规律性——频率的稳定性,以引出随机事件概率的意义和计算方法.2.理解随机事件在大量重复试验的情况下,它的发生呈现的规律性.3.掌握概率的统计定义及概率的性质.引导学生对身边的事件加以注意、分析,发挥学生的主体作用,设计好探究性试验.指导学生做简单易行的试验,让学生无意识地发现随机事件的某一结果发生的规律性,理论联系实际,激发学生的学习积极性.4.通过概率论的介绍,激发学生对科学的探究精神和严肃认真的科学态度.发动学生动手试验,体验数学的奥秘与数学美,激发学生的学习兴趣.培养学生的辩证唯物主义观点,增强学生的科学意识.重点难点教学重点:1.随机现象的定义,必然事件、不可能事件、随机事件的定义.2.概率的统计定义,概率的基本性质.教学难点:随机事件的定义,随机事件发生存在的统计规律性.课时安排1课时教学过程导入新课设计思路一:〔情境导入〕在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战〞搞得盟军焦头烂额.为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船〔为100艘〕编队规模越小,编次就越多〔为每次20艘,就要有5个编次〕,编次越多,与敌人相遇的概率就越大.美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.设计思路二:〔问题导入〕观察以下现象,各有什么特点?(1)在标准大气压下,水加热到100 ℃沸腾;(2)抛一石块,下落;(3)同性电荷互相吸引;〔4〕实心铁块丢入水中,铁块上浮;〔5〕射击一次,中靶;〔6〕掷一枚硬币,反面向上.解答:〔1〕、〔2〕两种现象必然发生,〔3〕、〔4〕两种现象不可能发生,〔5〕、〔6〕两种现象可能发生,也可能不发生.推进新课新知探究由上述事例可知现实生活中有很多现象,这些现象在一定条件下,可能发生也可能不发生.在一定条件下事先就能断定发生或不发生某种结果,这种现象就是确定性现象.在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象.对于某个现象,如果能让其条件实现一次,就是进行了一次试验,试验的每一种可能的结果,都是一个事件.在上述现象中,我们如果把〔1〕、(2)的条件实现一次,那么〔1〕、(2)的现象一定会出现“沸腾〞与“下落〞,“沸腾〞与“下落〞都是一个事件.对于在一定条件下必然要发生的事件,叫做必然事件(certain event);我们如果把(3)、〔4〕的条件各实现一次,那么“吸引〞与“上浮〞也都是一个事件,但这两个事件都是不可能发生的.在一定条件下不可能发生的事件,叫做不可能事件(impossible event);当(5)、(6)的条件各实现一次,那么“中靶〞与“反面向上〞也都是一个事件,这两个事件,可能发生,也可能不发生.在一定条件下可能发生也可能不发生的事件,叫做随机事件(random event).必然事件与不可能事件反映的都是在一定条件下的确定性现象,而随机事件反映的是随机现象.我们一般用大写的英文字母表示随机事件,例如随机事件A、随机事件B等,另外我们常常将随机事件简称为事件.由于随机事件具有不确定性,因而从表面上看,似乎偶然性在起着支配作用,没有什么必然性.但是,人们经过长期的实践并深入研究后,发现随机事件虽然就每次试验结果来说具有不确定性,然而在大量重复试验中,它却呈现出一种完全确定的规律性.历史上曾有人做过抛掷硬币的大量重复试验,结果如下表:从表中我们可以看到,当抛掷硬币的次数很多时,出现正面的频率值是稳定的,接近于常数0.5,在它左右摆动.对于给定的随机事件A,在相同的条件下,随着试验次数的增加,事件A发生的频率mn 总在某个常数附近摆动并趋于稳定,因此,可以用这个常数来刻画随机事件A发生的可能性的大小,并把这个常数称为随机事件A的概率〔probability〕,记作P(A).必然事件的概率为1,不可能事件的概率为0.因此0≤P(A)≤1 .对于概率的统计定义,教师应说明以下几点:〔1〕求一个事件的概率的基本方法是通过大量的重复试验;〔2〕只有当频率在某个常数附近摆动时,这个常数才叫做事件A的概率;〔3〕概率是频率的稳定值,而频率是概率的近似值;〔4〕概率反映了随机事件发生的可能性的大小.应用示例思路1例1 给出以下事件:①某人练习打靶,一枪命中十环;②手机没电,接听;③抛一枚硬币,结果正面向上;④冰棒在烈日下融化;⑤一粒植物种子,播种后发芽;⑥向上抛一只不锈钢杯子,结果杯口向上.其中随机事件的个数是〔〕A.3B.4解析:判断事件是否是随机事件,可以依据随机事件的概念判断,也就是该事件在一定条件下,是否可能发生也可能不发生,如果可能发生也可能不发生,那么该事件为随机事件.由随机事件的概念可知:①③⑤⑥是随机事件.答案:B点评:判断某一事件是否是随机事件依据随机事件的概念,同样判断某一事件是否是必然事件或是不可能事件也是依据相应的概念,因此,此题中的②是不可能事件,④是必然事件.例2 指出以下事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?〔1〕假设a、b、c 都是实数,那么a(bc)=(ab)c ;〔2〕没有空气,动物也能生存下去;〔3〕在标准大气压下,水在温度90°时沸腾;〔4〕直线y=k(x+1)过定点(-1,0);〔5〕某一天内某人接听20次;〔6〕一个袋内装有形状、大小相同的一个白球和一个黑球,从中任意摸出1个球为白球.分析:根据必然事件、随机事件和不可能事件的定义来判断.解:由必然事件的定义可知〔1〕、〔4〕是必然事件;由随机事件的定义知〔5〕、〔6〕是随机事件;由不可能事件的定义可知(2〕、〔3〕是不可能事件.点评:要判断一个事件是必然事件、随机事件还是不可能事件,应紧紧抓住这些事件的定义,从定义出发来作出判断.例3 任取一个由50名同学组成的班级〔称为一个标准班〕,至少有两位同学的生日在同一天〔记为事件T〕的概率是0.97,据此,我们知道( )A.取定一个标准班,事件T发生的可能性为97%B.取定一个标准班,事件T发生的概率大约是97%C.任意取定10 000个标准班,其中必有9 700个班有事件T发生D.随着抽取的班级数n的不断增大,事件T发生的频率逐渐接近0.97,并在它附近摆动解析:根据随机事件的概率的定义必须进行大量试验,才能得出某一随机事件的概率,因此,此题应从定义出发来研究.对于取定的一个标准班来说,T要么发生要么不发生,所以A,B都不对;对任意取定的10 000个标准班,也可能出现极端情况,如T都不发生,因此C也不对;据概率的统计定义知,选项D正确.答案:D点评:利用概率的统计定义计算随机事件的概率,需要大量重复的试验.对某一个随机事件来说,在一次试验中不一定发生,但在大量重复试验下它的发生又呈现一定的规律.通过对概率的定义的感悟,感受数学学科的实验性,体会偶然与必然的辩证统一.例4 对某电视机厂生产的电视机进行抽样检测的数据如下:〔1〕计算表中优等品的各个频率;〔2〕该厂生产的电视机优等品的概率是多少?分析:利用概率的定义来求解此题.解:〔1〕各次优等品的频率为 0.8, 0.92, 0.96, 0.95, 0.956, 0.954;〔2〕优等品的概率是0.95.点评:通过此题进一步理解概率的定义,领悟概率其实是某一随机事件发生的可能性的大小.例5 历史上曾有人做过抛掷硬币的大量随机试验,结果如下:〔1〕计算表中正面向上的频率;(2)试估计事件“正面向上〞的概率.分析:先运用频率计算的方法计算频率,再运用概率的定义确定事件“正面向上〞的概率.解:(1)表中频率自上而下依次为:0.518 1,0.506 9,0.501 6,0.500 5,0.499 6;〔2〕由(1)的结果发现:当抛掷的次数很多时,“正面向上〞的频率接近于常数0.5,在它附近摆动,所以抛掷一枚硬币,正面向上的概率约为0.5.点评:通过计算随机事件发生的频率来估计随机事件的概率是求随机事件概率常用的方法.思路2例1 指出以下事件中哪些是必然事件,哪些是不可能事件,哪些是随机事件.〔1〕我国东南沿海某地明年将受到3次热带风暴的侵袭;〔2〕假设a为实数,那么|a|≥0;〔3〕某人开车经过10个交叉路口都遇到绿灯;〔4〕一个正六面体的六个面分别标有数字1、2、3、4、5、6,将该正六面体连续抛掷两次,向上的一面数字之和大于12.分析:要判断某一事件是必然事件、随机事件还是不可能事件,可以依据必然事件、随机事件以及不可能事件的定义来判断.解:由必然事件、随机事件和不可能事件的定义可知:〔2〕是必然事件;〔1〕、〔3〕是随机事件;〔4〕是不可能事件.点评:对于某一事件是必然事件、随机事件还是不可能事件的判断依据是定义,其关键是看事件本身是如何发生的.例2 在一只口袋中装有形状与大小都相同的2只白球和3只黑球,从中任意取出3只球,试编拟一些事件,使它们分别为随机事件、必然事件和不可能事件.分析:要编拟一些事件,使其为随机事件、必然事件和不可能事件,就是在一定条件下,所编拟的事件必定发生那么为必然事件,必定不发生那么为不可能事件,可能发生也可能不发生那么为随机事件.解:事件A :任意取出3只球,恰有1只球是白球,那么事件A 是随机事件;事件B :任意取出3只球,至少有1只球是黑球,那么事件B 是必然事件;事件C :任意取出3只球,都是白球,那么事件C 是不可能事件.点评:此题在编拟随机事件、必然事件和不可能事件时,是开放性问题,因此根据相应的概念来编拟,答案不唯一.除了上述解答外,还可以是其他答案,例如:事件A :任意取出3只球,至少有1只球是白球,那么事件A 是随机事件;事件B :任意取出3只球,至多有2只球是白球,那么事件B 是必然事件;事件C :任意取出3只球,没有一只黑球,那么事件C 是不可能事件.例3 用一台自动机床加工一批零件,从中抽出100个逐个进行直径检验,结果如下:从这100个螺母中,任意抽取一个,求事件A 〔6.92<d≤6.94〕,事件B 〔6.90<d≤6.96〕,事件C 〔d>6.96〕,事件D 〔d≤6.89〕的频率并求这几个事件发生的概率约为多少?分析:分别求出事件A 〔6.92<d≤6.94〕,事件B 〔6.90<d≤6.96〕,事件C 〔d>6.96〕,事件D 〔d≤6.89〕的频率,再根据这几个事件的频率得出概率.解:事件A 的频率为17+10026=0.43,概率约为0.43; 事件B 的频率为10081526171710+++++=0.93,概率约为0.93; 事件C 的频率为10022+=0.04,概率约为0.04;事件D 的频率为1001=0.01,概率约为0.01. 点评:根据概率的统计定义求随机事件的概率的常用方法是先求随机事件发生的频率,再由频率得出随机事件发生的概率.例4 某射手在同一条件下进行射击,结果如下表所示:〔1〕填写表中击中靶心的频率;〔2〕这个射手射击一次,击中靶心的概率约是多少?分析:击中靶心的频率=击中靶心的次数÷射击的次数,再根据概率的统计定义可知:击中靶心的概率应为频率在某一常数P 的左右摆动,那么常数P 即为该事件的概率.解:〔1〕表中击中靶心的频率依次为0.8,0.95,0.88,0.92,0.89;〔2〕因频率在常数0.89的左右摆动,所以射手射击一次,击中靶心的概率约是0.89. 点评:在运用概率的统计定义求某一事件的概率时,应该先求频率,再根据频率来求该事件的概率.知能训练一、课本随机现象练习.解答:2.(1)随机事件;(2)不可能事件;(3)必然事件;(4)不可能事件;(5)随机事件;(6)随机事件.3.必然事件:③;不可能事件:⑤;随机事件:①②④.4.必然事件:太阳每天都从东方升起;不可能事件:电灯在断电时发亮;随机事件:同时抛两枚硬币,正面都向上.二、课本随机事件的概率练习.解答:1.不对.2.不同意,随机事件的发生概率与该事件以前是否发生无关,故下次发生的概率仍为21. 3.不一定,第10个人治愈的概率仍为10%.点评:通过练习,进一步加深必然事件、不可能事件、随机事件以及概率的概念的理解. 课堂小结本节课主要研究了以下内容:1.随机事件、必然事件、不可能事件的概念.2.随机事件A 的概率:一般地,如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可以将事件A 发生的频率n m 作为事件A 发生的概率的近似值,即P(A)≈nm .3.由于随机事件A 在各次试验中可能发生,也可能不发生,所以它在n 次试验中发生的次数〔称为频数〕m 可能等于0〔n 次试验中A 一次也不发生〕,可能等于1〔n 次试验中A 只发生一次〕,……也可能等于n 〔n 次试验中A 每次都发生〕.我们说,事件A 在n 次试验中发生的频数m 是一个随机变量,它可能取得0、1、2、…、n 这n+1个数中的任一个值.于是,随机事件A 的频率nm 也是一个随机变量,它可能取得的值介于0与1之间,即0≤P 〔A 〕≤1.特别,必然事件的概率为1,即P(Ω)=1,不可能事件的概率为0,即P()=0.这里说明随机事件的频率究竟取得什么值具有随机性.然而,经验说明,当试验重复多次时随机事件的频率又具有稳定性.4.说明:①求一个事件概率的基本方法是做大量的重复试验;②当频率在某个常数附近摆动时,这个常数叫做事件A 的概率;③概率是频率的稳定值,而频率是概率的近似值;④概率从数量上反映了随机事件发生的可能性的大小;⑤必然事件的概率是1,不可能事件的概率是0,因此0≤P〔A 〕≤1.作业课本习题3.1 1、2.设计感想本节课是概率这一章的第一节课,所以有必要在上新课之前向学生简要地介绍概率的发展、概率趣话以及概率的应用,以激发学生对科学的探究精神和严肃认真的科学态度.随机事件及其概率分为两部分,第一部分主要学习随机现象、必然事件、不可能事件、随机事件的概念.通过抛掷硬币试验,探究随机事件的概率,揭示概率的本质,引出随机事件概率的求法,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.第二部分是随机事件的概率.怎样确定一个事件发生的概率呢?设计时,从实际问题出发,创设问题情境.除了已有设计之外还可以有如下设计:首先利用多媒体展示奥地利遗传学家孟德尔〔G.Mendel ,1822~1884〕用豌豆进行杂交试验的结果表格,通过商讨分析得到孟德尔是用某种性状发生的频率来估计生物遗传的基本规律的.然后依次展示抛掷硬币的模拟试验结果、π的前n 位小数中数字6出现的频率、鞋厂某种成品鞋质量检验结果,通过商讨分析分别得出:掷硬币的模拟试验结果中,当模拟次数很大时,正面向上的频率值接近于常数0.5,并在其附近摆动;π的前n 位小数中数字6出现的频率中数字6在π的各位小数数字中出现的频率值接近于常数0.1,并在其附近摆动;鞋厂某种成品鞋质量检验结果中,当抽取的样品数很多时,优等品的频率接近于常数0.95,并在其附近摆动.最终得出概率的统计定义.习题详解1.〔1〕随机事件 〔2〕不可能事件 〔3〕随机事件 〔4〕必然事件 〔5〕不可能事件〔6〕必然事件 〔7〕随机事件 〔8〕随机事件2.D.3.(1)〔2〕概率约为0.81.4.。
人教B版高中数学必修三《第三章 概率 3.4 概率的应用》_0

《概率的应用》教学设计一、教材分析让学生了解随机事件发生的不确定性和频率的稳定性;让学生澄清生活中的一些对概率的错误认识,进一步体会频率的稳定性和随机思想;让学生感受概率就在身边,从而深化对概率定义的认识。
就知识的应用价值上来看;概率是反映自然规律的基本模型。
概率已经成为一个常用词汇,为人们做决策提供依据。
就内容的人文价值来看:研究概率涉及了必然与偶然的辩证关系,是培养学生应用意识和思维能力的良好载体。
二、教学目标1.正确理解概率的意义;利用概率知识正确理解现实生活中的实际问题.2.通过对现实生活中的“掷币”“游戏的公平性”“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.3.通过对概率的实际意义的理解,体会知识来源于实践并应用于实践的辩证唯物主义观,进而体会数学与现实世界的联系.三、教学重难点教学重点:理解概率的意义.教学难点:用概率的知识解释现实生活中的具体问题.四、教学过程(一)导入部分1、概率在现实生活中有哪些应用?教师给出天气预报的例子2、在我们身边有很多概率的例子,你能举出概率的实例吗?活动学生思考举例可以说,概率来源于生活,应用于生活,只要你有一双善于观察的眼睛,便会发现生活中到处都有概率。
(二)研探新知,建构概念给出概率的意义涉及到三个概念1、概率的客观性概率的大小是随机事件发生的“可能性”的客观体现,与我们所说的“可能”“估计”是不同的,也就是说,单独一次结果的不肯定性与大量重复试验累积的结果是有规律的,才是概率意义上的“可能性”。
2、概率的可能性概率是根据大量的随机试验得到的一个相应的期望值,它说明一个事件发生可能性的大小,并不说明这事件一定发生或不发生。
3、随机事件变量的大小任何事件的概率都是区间[0,1]上的一个确定数,它度量该事件发生的可能性。
小概率(概率接近于0)事件不是不发生,也就是发生的可能性较小;大概率(概率接近于1)事件不是一定发生,而是经常发生,也就是发生的可能性较大。
。必修3第三章概率教案

什么是概率天气预 报?
概率天气预报是 用概率值表示预报量 出现可能性的大小, 它 所提供的不是某种天 气现象的 \" 有 \" 或 \" 无
\" ,某种气象要素值的 \"大\" 或\"小\",而是天 气现象出现的可能性 有多大。如对降水的预 报,传统的天气预报一 般预报有雨或无雨, 而 概率预报则给出可能 出现降水的百分数, 百 分数越大,出现降水的 可能性越大。一般来 讲,概率值小于或等于 30%,可认为基本不会 降 水 ;概 率 值在 30%-60%,降水可能发 生,但可能性较小; 概 率在 60%-70%,降水 可能性很大;概率值大 于 70%,有降水发生。 概率天气预报既反映 了天气变化确定性的 一面,又反映了天气变 化的不确定性和不确
度来看这一问题,它具有一定的规律性.一定
数量的船(为 100 艘)编队规模越小,编次就
越多(为每次 20 艘,就要有 5 个编次),编次
越多,与敌人相遇的概率就越大.
美国海
军接受了数学家的建议,命令舰队在指定海域
集合,再集体通过危险海域,然后各自驶向预
定港口.结果奇迹出现了:盟军舰队遭袭被击
沉的概率由原来的 25%降为 1%,大大减少了
出了 10
1
贫困地区:
参加测试的人数
30 50
得 60 分以上的人数
16 27Байду номын сангаас
得 60 分以上的频率
发达地区:
参加测试的人数
30 50
得 60 分以上的人数
17 29
得 60 分以上的频率
(1) 计算两地区参加测试的儿童得
人教A版高中数学必修3《三章概率3.3几何概型阅读与思考概率与密码》优质课教案_6

几何概型教案一、教材分析1. 教材内容:高中人教A版(必修3)3.31几何概型2. 教材所处的地位和作用:本章主要的研究对象是日常生活中我们无法事先预测结果的事情,对我们的生活是很有意义的。
本节课是在古典概型基础上的发展,是等可能事件的概念从无限向有限的延伸,使概率的知识更加完善,更有助于提高学生的全面系统的分析问题的能力。
3. 教学目标(1)知识与技能:①了解几何概型的两个基本特征②了解古典概型与几何概型的异同点③掌握几何概型的概率公式:(= 构成事件A的区域长度(面积或体积)p=试验的全部结果所构成__的区域长度(面积或体__积);④正确的计算几何概型概率(2)过程与方法:①采用发现法教学,通过师生共同探究,辨析古典概型与几何概型的异同,并引导学生发现概念,体会数学知识的形成。
②引导学生类比古典概型与几何概型的解决方法,促进学生吸收本节知识。
(3)情感、态度与价值观:①本节课的内容贴近生活,学生能体会概率在生活中的重要作用②随机试验多,有助学生养成严谨的思维习惯。
③培养学生的数学兴趣和逻辑思维能力,帮助学生树立辩证的思想4. 重点与难点4.1 教学重点:(1)几何概型的基本特征,几何概型的识别;(2)几何概型的计算公式及其应用4.2 教学难点:(1)如何将随机试验转化到几何区域上研究(2)几何概型的计算方法二、学情分析(以我带的辅导班为例)本班学生都是文科类的。
基础较薄弱。
前面学习随机事件的概率和古典概型,但是从有限到无限,从古典概型到几何概型的过度,要懂得将随机试验的实际背景转化为几何度量”此时学生会遇到一些困难。
故在创设问题情境和举例子都应恰当,尽量举与生活相关的例子。
并进行恰当的引导、合理的解释和明确的辨析。
三、教法分析采用发现法教学,师生共同探究,通过提出问题、分析问题、解决问题等教学过程, 引导学生观察对比、并概括归纳出几何概型的概念及其公式。
充分发挥教学过程中学生的主体性。
再通过一些实际问题学以致用,加深学生的理解。
人教A版高中数学必修3第三章 概率3.1 随机事件的概率教案(1)

《3.1.1随机事件的概率》教学设计一、教材分析随机事件的概率主要研究事件的分类,概率的定义、概率的意义及统筹算法。
现实生活中存在大量不确定事件,而概率正是研究不确定事件的一门学科,它在人们的生活和生产建设中有着广泛的应用,也是今后学习概率统计的预备知识,所以它在教材中处于非常重要的地位。
概率是新课程高考的新增内容,由于概率问题与人们的实际生活有着紧密的联系,所以概率也成为了近几年新课程高考的一个热点。
二、学情分析概率所研究的对象具有抽象和不确定性等特点,学生很难用已获得的解决确定性数学问题的思维方法,去求的“活”的概率问题的解,这就决定了概率教学中教师的教学方式和学生的学习方式的转变,学生不能沿用传统的记忆加形成性训练的机械学习方法去学习,教师不能沿用传统的给予加示范性的灌输式教学方法去教学,教师必须引导学生经历概率模型的构建过程和模型的应用过程,从中获得问题情境性的情境体验和感悟,才能面对“活”的概率问题。
三、目标定位1、知识与技能:(1)结合实例了解必然事件,不可能事件,随机事件的概念;(2)通过试验了解随机事件的发生在大量重复试验下,呈现规律性,从而理解频率的稳定性及概率的统计定义;(3)结合概率的统计定义理解频率与概率的区别和联系.2、过程与方法:通过在抛硬币的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高。
3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识。
四、学习重难点学习重点:事件的分类;理解频率的稳定性及概率的统计定义。
学习难点:频率与概率的区别和联系;用概率的知识解释现实生活中的具体问题。
五、教法学法分析:针对本节课的特点,在教法上,我采用以教师引导为主,学生合作探索、积极思考为辅的探究式教学方法;在教学过程中,我注重启发式引导、反馈式评价,充分调动学生的学习积极性,鼓励同学们动手试验,让同学们积极主动分享自己的发现和感悟;在学法上,通过对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;做简单易行的实验,发现随机事件的某一结果发生的规律性;通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高。
人教版高中数学必修三第三章 概率全章教案

第一课时 3.1.1 随机事件的概率教学要求:了解随机事件、必然事件、不可能事件的概念;正确理解事件A 出现的频率的意义;正确理解概率的概念,明确事件A 发生的频率f n (A)与事件A 发生的概率P (A )的区别与联系;利用概率知识正确理解现实生活中的实际问题.教学重点:事件的分类;概率的定义以及概率和频率的区别与联系.教学难点:随机事件及其概率,概率与频率的区别和联系.教学过程:1. 讨论:①抛一枚硬币,它将正面朝上还是反面朝上? ②购买本期福利彩票是否能中奖?2. 提问:日常生活中,有些问题是很难给予准确无误的回答的,但当我们把某些事件放在一起时,会表现出令人惊奇的规律性.这其中蕴涵什么意思?二、讲授新课:1. 教学基本概念:① 实例:①明天会下雨 ②母鸡会下蛋 ③木材能导电② 必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件;③ 不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; ④ 确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件; 随机事件:…… ⑤ 频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=nn A 为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率;⑥ 频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值nn A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率.2. 教学例题:① 出示例1:指出下列事件是必然事件、不可能事件还是随机事件?(1)如果,a b 都是实数,a b b a +=+;(2)没有水分,种子发芽;(3)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签.(教法:先依次填入表中的数据,在找出频率稳定在常数,即为击中靶心的概率)③ 练习:某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的频率,假设此人射击1次,试问中靶的频率约为多大?中10环的概率约为多大?3. 小结:随机事件、必然事件、不可能事件的概念;事件A 出现的频率的意义,概率的概念三、巩固练习:1. 练习:1. 教材 P105 1、22. 作业 2、3第二课时 3.1.2 概率的意义教学要求:正确理解概率的意义, 并能利用概率知识正确解释现实生活中的实际问题. 教学重点: 概率意义的理解和应用.教学难点:用概率知识解决现实生活中的具体问题.教学过程:一、复习准备:1. 讨论:有人说,既然抛一枚硬币出现正面的概率是0.5,那么连续两次抛一枚质地均匀的硬币,一定是“一次正面朝上,一次反面朝上”,你认为这种想法正确吗?2. 提问:如果某种彩票的中奖概率是11000,那么买1000张这种彩票一定能中奖吗?二、讲授新课:1. 教学基本概念:①概率的正确理解:概率是描述随机事件发生的可能性大小的度量,事件A的概率P(A)越大,其发生的可能性就越大;概率P(A)越小,事件A发生的可能性就越小.②概率的实际应用(知道随机事件的概率的大小,有利我们做出正确的决策,还可以判断某些决策或规则的正确性与公平性.)③游戏的公平性:应使参与游戏的各方的机会为等可能的,即各方的概率相等,根据这一教学要求确定游戏规则才是公平的④决策中的概率思想:以使得样本出现的可能性最大为决策的准则⑤天气预报的概率解释:降水的概率是指降水的这个随机事件出现的可能,而不是指某些区域有降水或能不能降水.⑥遗传机理中的统计规律:2. 教学例题:①出示例1:有人说,既然抛一枚硬币出现正面向上的概率为0.5,那么连续抛一枚硬币两次,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?②练习:如果某种彩票的中奖概率是11000,那么买1000张这种彩票一定能中奖吗?请用概率的意义解释.(分析:买1000张彩票,相当于1000次试验,因为每次试验的结果都是随机的,所以做1000次试验的结果也是随机的,也就是说,买1000张彩票有可能没有一张中奖。
人教A版高中数学必修3《三章 概率 小结》优质课教案_1

概率小节(1)教案一、教材分析此处概率是指高中数学人教A版必修3第三章。
这里的概率先从多次重复试验说起,定义了频率和概率。
接下来主要讲了两个概率模型——古典概型和几何概型。
在讲具体的概型之前,编者首先介绍了事件,互斥事件、对立事件这些小概念。
此处未涉及到排列组合的相关知识,但是能分析清楚基本事件将对后面的学习有很大的帮助。
在当代高中数学新课改的背景下,数学教育要把“数学育人”作为根本目标,要将“德育”渗透到教育教学的各环节中。
通过引导学生开展独立思考、主动探究、合作交流等多种活动形式来理解和掌握基本的数学方法和教学技能。
要鼓励学生的创新思考,加强学生的数学实践,培养学生的理性精神,从而激发学生的学习兴趣。
在数学教学过程中,学生成为课堂学习的主体,教师成为学生活动的组织者、引导者、合作者。
二、学情分析学生已在一个半星期内完成了对本章的学习,同学们对概率的掌握大都还停留在概念的简单运用,公式的简单运用上。
尤其在对基本事件的罗列上大部分同学都还比较生疏。
三、教学目标1.知识与技能:掌握对立事件求概率的容斥原理;掌握古典概型的计算公式2.过程与方法:会利用互斥事件和对立事件求解概率;在利用对立事件求解概率的过程中能利用方程的思想;能快速准确地罗列清楚基本事件3.情感态度价值观:帮助学生树立学习概率的信心;在罗列基本事件的过程中训练有条理地思考问题,解决问题。
四、教学重、难点重点:1.会利用互斥事件和对立事件求解概率2.在利用对立事件求解概率的过程中能利用方程的思想3.能快速准确地罗列清楚基本事件4.求古典概型的概率难点:1. 在利用对立事件求解概率的过程中能利用方程的思想2. 能快速准确地罗列清楚基本事件五、教学过程授课时间:清明收假回来第一天早上的第一节课1.互斥事件和对立事件的概率求解1.1 某射手在一次射击中射中10环、9环、8环、7环、7环以下的概率分别为、、、、计算这个射手在一次射击中:射中10环或9环的概率,至少射中7环的概率;射中环数不足8环的概率.解:设“射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”的事件分别为A、B、C、D、E,题目设计目的:开篇放置一道简单题,调到大家参与的积极性,同时引导同学们回忆概率的相关内容。
最新人教版高中数学必修3第三章《随机事件的概率》教案

《随机事件的概率》教案教学目标:1.了解随机事件、必然事件、不可能事件的概念;通过试验了解随机事件发生的不确定性和频率的稳定性;2.通过抛硬币试验,获取数据,归纳总结试验结果,体会随机事件发生的随机性和规律性,在探索中不断提高;明确概率与频率的区别和联系,理解利用频率估计概率的思想方法;3.培养学生的辩证唯物主义观点,增强学生的科学意识,并通过数学事实史实渗透,培育学生刻苦严谨的科学精神.教学重点难点:1.重点:通过抛掷硬币了解概率的定义、明确其与频率的区别和联系;2.难点:利用频率估计概率,体会随机事件发生的随机性和规律性.教法与学法:1.教法选择:指导学生通过实验,发现随机事件随机性中的规律性,更深刻的理解事件的分类,认识频率,区分概率;2.学法指导:在教师的指导下,学生分组互相讨论,尤其注意频率与概率的区别和联系.教学过程:一、设置情境,引出概念二、例题详解,深化概念三、思维拓展,共同探究四、归纳小结,课堂延展教学设计说明1.教材地位分析:“随机事件的概率”是学生学习《概率》的入门课,也是一堂概念课.现实生活中存在大量不确定事件,而概率正是研究不确定事件的一门学科.概率也是每年高考的必查内容之一,主要是对基础知识的运用以及生活中的随机事件的概率的计算,这些都是学生今后的学习、工作与生活中必备的数学素养,所以它在教材中处于非常重要的地位.2.学生现实分析:由于大部分学生对于数学缺乏兴趣,学习数学缺少主动性,很少动手解题.因此,教学过程中要不断增强学生学习的兴趣,让学生主动学习数学.3. 本节课的特点是教学任务相对简单,可以留给学生思考和活动的空间较大.所以在设计本节课时,着力体现如下设计思想:渗透数学源于生活、用于生活的意识,激发学生的好奇心.学生通过动手实验,自己来探究解决问题的方法,并通过实验结果总结出规律.通过巧妙地创设问题情景,让学生主动、积极地体会知识的形成过程,体验数学概念的产生、完善的过程.。
最新人教版高中数学必修3第三章《第三章概率》示范教案

示范教案整体设计教学分析本章是对第三章知识和方法的归纳与总结,从总体上把握本章,使学生的基本知识系统化和网络化,基本方法条理化,本章共有三部分内容,随机事件的概率是基础,在此基础上学习了古典概型和几何概型,要注意它们的区别和联系.三维目标1.归纳、总结本章知识,形成知识网络.2.让学生体验归纳在数学中的重要性,提高直觉思维能力. 3.通过合作学习交流,感受与他人合作的重要性. 重点难点教学重点:知识系统化、网络化,并初步形成一些基本技能. 教学难点:画知识网络图. 课时安排 1课时教学过程 导入新课思路1.大家都知道,农民伯伯在春天忙着耕地、播种、浇水、沲肥、治虫,非常辛苦,到了秋天,他们便忙着收获.到了收获的季节,他们既高兴又紧张,因为收获比前面的工作更重要,收获的多少决定着一年的收成.我们前面的学习就像播种,今天的章节复习就像收获,希望大家重视今天的小结学习.教师点出课题.思路2.为了系统掌握本章的知识,我们复习本章内容,教师直接点出课题. 推进新课 新知探究 提出问题1.事件与概率包括几部分? 2.古典概型包括几部分?3.随机数的含义与应用包括几部分? 4.本章涉及的主要数学思想是什么? 5.画出本章的知识结构图. 讨论结果: 1.事件与概率随机事件是本章的主要研究对象,基本事件是试验中不能再分的最简单的随机事件. (1)概率的概念在大量重复进行的同一试验中,事件A 发生的频率mn 总是接近于某一常数,且在它的附近摆动,这个常数就是事件A 的概率P(A),概率是从数量上反映一个事件.求某一随机事件的概率的基本方法是:进行大量重复试验,用这个事件发生的频率近似地作为它的概率.(2)概率的意义与性质①概率是描述随机事件发生的可能性大小的度量,事件A 的概率越大,其发生的可能性就越大;概率越小,事件A 发生的可能性就越小.②由于事件的频数总是小于或等于试验的次数,所以频率在[0,1]之间,从而任何事件的概率都在[0,1]之间,即:0≤P(A)≤1.概率的加法公式:如果事件A 与事件B 互斥,则P(A ∪B)=P(A)+P(B). (3)频率与概率的关系与区别频率是概率的近似值.随着试验次数的增加,频率会越来越接近概率,频率本身也是随机的,两次同样的试验,会得到不同的结果;而概率是一个确定的数,与每次试验无关.2.古典概型 (1)古典概型①试验中所有可能出现的基本事件只有有限个;(有限性) ②每个基本事件出现的可能性相等.(等可能性)我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.(2)古典概型的概率计算公式为:P(A)=A 所包含的基本事件的个数基本事件的总数.在使用古典概型的概率公式时,应该注意: ①要判断该概率模型是不是古典概型;②要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数. 学习古典概型要通过实例理解古典概型的特点:实验结果的有限性和每一个实验结果出现的等可能性.要学会把一些实际问题化为古典概型,不要把重点放在“如何计数”上.3.随机数的含义与应用(1)对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.(2)几何概型的基本特点①试验中所有可能出现的结果(基本事件)有无限多个; ②每个基本事件出现的可能性相等.(3)几何概型的概率公式:P(A)=μAμΩ.其中μΩ表示区域Ω的几何度量,μA 表示区域A 的几何度量.(4)随机数是在一定范围内随机产生的数,可以利用计算器或计算机产生随机数来做模拟试验,估计概率,学习时应尽可能利用计算器、计算机来处理数据,进行模拟活动,从而更好地体会概率的意义.4.本章涉及的主要思想是化归与转化思想(1)古典概型要求我们从不同的背景材料中抽象出两个问题:一是所有基本事件的个数即总结果数n ,二是事件A 所包含的结果数m ,最后化归为公式P(A)=mn.(2)几何概型中,要首先求出试验的全部结果所构成的区域长度和构成事件的区域长度,最后化归为几何概型的概率公式求解.5.本章知识结构图如下所示:应用示例思路1例1下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答问题.(1)完成上面表格.(2)估计该油菜子发芽的概率约是多少.分析:(1)代入公式得频率;(2)估计频率的稳定值即为概率. 解:(1)由n An得各批种子发芽的频率:22=1;45=0.8;910=0.9;6070=0.857;116130=0.892;269300=0.896;1 3471 500=0.898;1 7942 000=0.897;2 6883 000=0.896.所以从左到右依次填入:1,0.8,0.9,0.857,0.892,0.896,0.898,0.897,0.896.(2)由于每批种子的发芽的频率稳定在0.897附近,所以估计该油菜子发芽的概率约为0.897.点评:概率知识成为近几年高考考查的新热点之一,多与现实生活结合考查,强化概率的应用性.高考中以直接考查互斥事件的概率与运算为主,随机事件的有关概率和频率在高考中鲜见单独考查,但是由于是基础,一些概念会经常应用,所以应引起重视.(1)求两枚骰子点数相同的概率;(2)求两枚骰子点数之和为5的倍数的概率. 分析:利用列举法计算全部结果.解:用(x ,y)表示同时抛出的两枚均匀骰子中一枚骰子向上的点数是x ,另一枚骰子向上的点数是y ,则全部结果有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6), (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6), (5,1),(5,2),(5,3),(5,4),(5,5),(5,6), (6,1),(6,2),(6,3),(6,4),(6,5),(6,6). 即同时抛出两枚均匀骰子共有36种结果.则同时抛出两枚均匀骰子的结果是有限个,属于古典概型. (1)设“两枚骰子的点数相同”为事件A ,事件A 有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)共6种,则P(A)=636=16.即两枚骰子点数相同的概率是16.(2)设“两枚骰子点数之和为5的倍数”为事件B ,事件B 有(1,4),(2,3),(3,2),(4,1),(4,6),(5,5),(6,4)共7种, 则P(B)=736.即两枚骰子点数之和为5的倍数的概率是736.点评:古典概型是本章的重要内容,更是高考考查的重要内容之一,选择、填空或解答题三种题型都有可能出现.试题的设计主要是考查公式P(A)=mn 的应用及与其他知识的综合.思路2例 在以3为半径的圆内任取一点P 为中点作圆的弦,求弦长超过圆内接等边三角形边长的概率.分析:满足弦长超过圆内接等边三角形边长的点P 在圆内接等边三角形边的内切圆内,转化为几何概型求解.解:设弦长超过圆内接等边三角形的边长为事件A.在以半径为3的圆内任取一点P 的结果有无限个,属于几何概型. 如图所示,△BCD 是圆内接等边三角形,再作△BCD 的内切圆,则满足“弦长超过圆内接等边三角形边长”的点P 在等边三角形△BCD 的内切圆内,可以计算得:等边三角形△BCD 的边长为3,等边三角形△BCD 的内切圆的半径为32,所以事件A 构成的区域面积是等边三角形△BCD 的内切圆的面积为π×(32)2=34π,全部结果构成的区域面积是π×(3)2=3π,所以P(A)=34π3π=14,即弦长超过圆内接等边三角形的边长的概率是14.点评:几何概型是新增内容,在高考中鲜见考查随机模拟,主要涉及几何概型的概率求解问题,难度不会太大,题型可能较灵活,涉及面可能较广.几何概型的三种类型为长度型、面积型和体积型,在解题时要准确把握,要把实际问题作合理化转化;要注意古典概型和几何概型的区别(基本事件的个数的有限性与无限性),正确选用几何概型解题. =12,事件A 的区域是 知能训练1.下列说法正确的是( )A .任何事件的概率总是在(0,1)之间B .频率是客观存在的,与试验次数无关C .随着试验次数的增加,频率一般会越来越接近概率D .概率是随机的,在试验前不能确定解析:任何事件的概率总是在[0,1]之间,所以A 不正确;频率不是客观存在的,与试验次数有关,所以B 不正确;概率不是随机的,在试验前已经确定,所以D 不正确.很明显C 正确.答案:C2.抛掷一枚质地均匀的硬币,如果连续抛掷1 000次,那么第999次出现正面朝上的概率是( )A.1999B.11 000C.9991 000D.12解析:概率不受实验次数的限制,在实验前已经确定,抛掷一枚质地均匀的硬币,每次正面朝上的概率都是12.答案:D3.从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是( )A .A 与C 互斥B .B 与C 互斥C .任何两个均互斥D .任何两个均不互斥 解析:三件产品不全是次品包含三种情况:三件产品全不是次品或一件正品两件次品或两件正品一件次品,所以B 与C 互斥.答案:B4.有一种电子产品,它可以正常使用的概率为0.992,则它不能正常使用的概率是________.解析:正常使用和不能正常使用是对立事件,所以不能正常使用的概率是1-0.992=0.008.答案:0.0085.小明和小刚各掷一枚骰子,出现点数之和为10的概率是________.解析:设(x ,y)表示小明抛掷骰子点数是x ,小刚抛掷骰子点数是y ,则该概率属于古典概型.所有的基本事件是:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6), (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6), (5,1),(5,2),(5,3),(5,4),(5,5),(5,6), (6,1),(6,2),(6,3),(6,4),(6,5),(6,6). 即有36种基本事件.则出现点数之和为10的基本事件有(4,6),(5,5),(6,4)共3种,所以出现点数之和为10的概率是336=112.答案:1126.我国西部一个地区的年降水量在下列区间内的概率如下表所示:则年降水量在[200,300]范围内的概率是________.解析:年降水量在[200,300]范围内包含在[200,250)和[250,300],则年降水量在[200,300]范围内的概率是0.13+0.12=0.25.答案:0.257.从甲、乙、丙、丁四个人中选两名代表, 求:(1)甲被选中的概率; (2)丁没被选中的概率.解:选出的两名代表有甲乙或甲丙或甲丁或乙丙或乙丁或丙丁共6种.(1)记甲被选中为事件A ,则P(A)=36=12.(2)记丁被选中为事件B ,则P(B )=1-P(B)=1-12=12.8.如下图所示,阴影部分是一个等腰三角形ABC ,其中一边过圆心O ,现在向圆面上随机撒一粒豆子,求这粒豆子落到阴影部分的概率.解:向圆面上随机撒一粒豆子,其结果有无限个,属于几何概型. 设圆的半径为r ,全部结果构成的区域面积是圆面积πr 2,阴影部分的面积是等腰直角三角形ABC 的面积r 2,则这粒豆子落到阴影部分的概率是r 2πr 2=1π,即这粒豆子落到阴影部分的概率是1π.拓展提升某初级中学共有学生2 000名,各年级男、女生人数如下表:(1)求x 的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?分析:(1)利用抽到初二年级女生的概率解得x 的值;(2)先计算出初三年级学生数,根据抽样比确定在初三年级抽取的人数.解:(1)由题意得x2 000=0.19,解得x =380.(2)抽样比是482 000=3125,初三年级学生数是2 000-(373+380+377+370)=500. 则应在初三年级抽取500×3125=12(名). 课堂小结本节课复习了第三章的基本知识,并形成知识网络,对概率问题重点进行了复习巩固. 作业本章小节Ⅲ.巩固与提高1、3.设计感想 这章内容与其他数学知识联系较少,其解题方法独特,对同学们的思维能力、分析及解决问题能力要求较高.钻研课本,理解概念,弄清公式的“来龙去脉”,尤其是公式中字母的内涵.在此基础上,适当地做一些练习,并及时归纳解题方法,不断反思及加深自己对数学知识(概念、公式等)的理解.备课资料一名数学家=10个师的由来第二次世界大战中,美国曾经宣称:一名优秀数学家的作用超过10个师的兵力.你可知道这句话的由来吗?1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额.为此,有位美国海军将领专门去请教了几位数学家,数学家运用概率论分析后发现,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律.一定数量的船(如100艘)编队规模越小,编次就越多(如每次20艘,就要5个编次);编次越多,与敌人相遇的概率就越大.比如5位学生放学都回自己家里,老师要找一位同学的话,随便去哪家都行,但若这5位同学都在其中某一家的话,老师要找几家才能找到,一次找到的可能性只有20%.美国海军接受了数学家的建议,命令船队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降低为1%,大大减少了损失,保证了物资的及时供应.。
高中数学 第三章概率教案 新人教版必修3

第三章概率一、课时学习目标知识与技能1、掌握随机事件、必然事件、不可能事件的概念。
2、正确理解事件A出现的频率的意义。
3、正确理解概率的概率和意义,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系。
4、利用概率知识,正确理解现实生活中的实际问题。
过程与方法通过在抛硬币、抛骰子的试验中获取数据的过程,培养探索、归纳的能力和自主学习的能力。
情感、态度与价值观1、通过自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系。
2、培养辩证唯物主义观点,增强科学意识。
二、课前预习导学请同学们阅读P108—112,完成下列问题1、事件的有关概念(1)必然条件:在条件S下,_________会发生的事件,叫做相对于条件S的必然事件,简称必然事件;(2)不可能事件:在条件S下,__________会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件;(3)确定事件:__________事件与___________事件统称为相对于条件S的确定事件,简称确定事件;(4)随机事件:在条件S下,___________的事件叫做相对于条件S的随机事件,简称随机事件。
(5)_________事件与________事件统称为事件,一般用________表示。
2、概率与频率(1)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的_________,称事件A出现的比例fn(A)=nAn为事件A出现的__________,显然频率的取值范围是____________。
(2)概率:在大量重复试验后,随着试验次数的增加,事件A发生的频率如果逐渐________在区间[0,1]中的某个______上,这个便称为事件A的概率,用P(A)表示,显示概率的取值范围是[0,1],且不可能事件的概率为_________,必然事件的概率为___________。
人教新课标A版必修3第三章《概率》教案

人教新课标A版必修3第三章《概率》教案
人教新课标A版必修3第三章《概率》全部教案
3.1随机事件的概率
3.1.1—3.1.2随机事件的概率及概率的意义(第一、二课时)
一、教学目标:
1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系;(3)利用概率知识正确理解现实生活中的实际问题.
2、过程与方法:(1)发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.
3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.
二、重点与难点:(1)教学重点:事件的分类;概率的定义以及和频率的区别与联系;(2)教学难点:用概率的知识解释现实生活。
人教版高中数学必修三 第三章 概率 《几何概型》教案

《几何概型》教案教材分析:几何概型是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸.几何概型的基本特点是:在每次随机试验中,不同的试验结果有无限多个,即基本事件有无限个;在这个随机试验中,每个试验结果出现的可能性相等,即基本事件是等可能的.几何概型与古典概型的区别在于,几何概型是无限个等可能事件的情况,而古典概型中的等可能事件只有有限个.教材从两者的比较入手,通过分析简单的几何概型的例子入手引出几何概型的计算方法。
本节安排的例题和习题分别从一维的长度,二维的面积,三维的体积作为测度进行分析的.教学目标:知识与技能:1.学生初步掌握并运用几何概型解决有关概率问题;2、能够正确区分几何概型与古典概型;3、提高学生判断与选择几何概型的概率公式的能力;过程与方法:通过实例把几何概型与古典概型进行比较分析发掘几何概型的特点以及几何概型的概率计算方法;情感态度价值观:学生体会数学来源于实践,并且培养学生发现问题、分析问题进而解决问题的良好习惯.教学重点与难点:重点:几何概型的特点及其几何概型的概率公式的判断与选择;难点:几何概型的概率公式的判断与选择.教学方法:探究性学习,体现以“教师为主导,学生为主体”教学过程:一、知识回顾1.古典概型的特点2.概率公式:二、探索研究【对比研究】(骰子游戏):甲乙两人掷骰子,掷一次,规定谁掷出6点朝上则谁胜,请问甲、乙谁获胜的概率大?学生分析:掷骰子的结果是有限个,且掷得每个结果都是等可能性的,符合古典概型的特点,因而可以利用古典概型计算;学生求解:1;6p=甲16p=乙。
(转盘游戏):图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?①②师生共同分析:1、指针指向的每个方向都是等可能性的,但指针所指的位置却是无限个的,因而不是古典概型;2、利用B区域的所对弧长、所占的角度或所占的面积与整个圆的弧长、角度或面积成比例研究概率;学生求解:法一(利用B区域所占的弧长):1(1)();2B p B ==所在扇形区域的弧长整个圆的弧长3(2)().5B p B ==所在扇形区域的弧长整个圆的弧长法二(利用B 区域所占的圆心角):1801(1)();3602B p B ︒︒===所在圆心角的大小圆周角336035(2)();3605B p B ︒︒⨯===所在圆心角的大小圆周角 法三(利用B 区域所占的面积):1(1)();2B p B ==所在扇形的面积整个圆的面积3(2)().5B p B ==所在扇形的面积整个圆的面积【提出问题】⑴两个问题中,求概率的方法一样吗?若不一样,请问是什么原因? ⑵你是如何解决这些问题的?学生对比分析:⑴ 骰子游戏中色子的六个面上的数字是有限个的,且每次投掷都是等可能性的,因而是古典概型;转盘游戏中指针指向的每个方向都是等可能性的,但指针所指的方向却是无限个的,因而不是古典概型.⑵借助几何图形的长度、面积等计算概率;【问题探究】分析下列三个问题的概率,从中你能得出哪些求概率的结论?问题 1(绳子问题):某人在家门前相距6米的两棵树间系一条绳子,并在绳子上挂一个衣架,求衣架钩与两树的距离都大于2米的概率.学生分析:衣架钩与两树的距离都大于2米, 所以衣架钩应在图中B 、C 之间的任何一点都可以,结果有无数多种,而且等可能,所以不是古典概型;学生求解:记“衣架钩与两树的距离都大于2米”为事件A , 所以30P()0.650A == 学生归纳:1、该概率的特点不符合古典概型,不能利用古典概型;2、A P()A =构成事件的区域长度试验的全部结果构成的区域长度 问题2(撒豆子问题):如图,假设你在每个图形上随机撒一粒黄豆,计算它落到阴影部分的概率.学生分析:豆子撒在图形的每个位置的机会是等可能的,但豆子的位置却是无限多个的,因而不能利用古典概型。
人教版高中数学必修三 第三章 概率随机事件的概率-教案

[师](打出投影片§10.5.1 B),请同学们来看这样一组数据:历史上曾有人作过抛掷硬币的大量重复试验,这便是试验结果.大家从这组数据中,是否可获得什么结论呢?
[生]出现正面的频率值都接近于0.5.
(打出投影片§10.5.1 C)
[师]再请同学们看这样两组数据,从表2可看到……
[生]当抽查的球数很多时,抽到优等品的频率接近于0.95.
[师]从表3可看到……
[生]当试验的油菜籽的粒数很多时,油菜籽发芽的频率接近于0.9.
[师]随机事件在一试验中是否发生虽然不能事先确定,但随着试验次数的不断增加,它的发生会呈现出一定的规律性,正如我们刚才看到的:某事件发生的频率在大量重复的试验中总是接近于某个常数.
[生甲]事件(1)是必然要发生的.
[师]还有必然要发生的事件吗?
[生乙]有,还有事件(4)、(6)都是一定会发生的事件.
[师]那么,其余的事件……
[生丙]事件(2)、(9)、(10)是一定不发生的事件.
[师]也就是说,这些事件是不可能发生的事件.
[生丁]事件(3)、(5)、(7)、(8)有可能发生,也有可能不发生.
若记事件A:油菜籽发芽,则P(A)=0.9,即:任取一油菜籽,发芽的概率为0.9.
[师]概率这一常数从数量上反映了一个事件发生的可能性的大小.
如上:抛掷一枚硬币出现“正面向上”的可能性是50%;任取一乒乓球得到优等品的可能性是95%;任取一油菜籽,发芽的可能性是90%.
这一数值会给我们的生活和统计工作带来很多方便,很有研究价值.
2.增强学生的科学意识.
●教学重点
1.事件的分类.
2.概率的统计定义.
高中数学必修3教学设计:第3章 概率 第3章 概率复习与

第3章概率复习与小结教学目标:通过复习,使学生在具体情景中:1.了解随机事件发生的不确定性及频率的稳定性;2.了解概率的某些基本性质和简单的概率模型;3.会计算一些随机事件所含的基本事件数及事件发生的概率;4.能运用实验、计算器(机)模拟估计简单随机事件发生的概率;5.培养学生的理性思维能力和辩证思维能力,增强学生的辩证唯物主义世界观.教学重点:求解一些简单古典概型、几何概型.教学难点:古典概型、几何概型的对比.教学方法:谈话、启发式.教学过程:一、问题情境1.回顾本章所涉及到的定义或概念.2.说出你对这些定义或概念的理解及它们之间的区别和联系.3.你能否用知识网络将它们联系起来.二、学生活动⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎩⎪⎪⎧⎪⎨⎩⎪⎪⎩必然事件随机事件不可能事件随机事件频率等可能事件概率概率互斥事件对立事件古典概型应用几何概型三、建构数学随机事件注意点:1.要搞清楚什么是随机事件的条件和结果.2.事件的结果是相应于“一定条件”而言的.因此,要弄清某一随机事件,必须明确何为事件发生的条件,何为在此条件下产生的结果.3.随机事件在一次试验中是否发生虽然不能事先确定,但是在大量重复试验的情况下,它的发生呈现出一定的规律性.概率注意点:(1)求一个事件的概率的基本方法是通过大量的重复试验;(2)只有当频率在某个常数附近摆动时,这个常数才叫做事件A 的概率;(3)概率是频率的稳定值,而频率是概率的近似值;(4)概率反映了随机事件发生的可能性的大小;(5)必然事件的概率为1,不可能事件的概率为0.因此()10≤≤A P .四、数学运用(一)随机现象例1 指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?(1)若a b c ,,都是实数,则()()c ab bc a =;(2)没有空气,动物也能生存下去;(3)在标准大气压下,水在温度c ︒90时沸腾;(4)直线()1+=x k y 过定点()0,1-;(5)某一天内电话收到的呼叫次数为0;(6)一个袋内装有性状大小相同的一个白球和一个黑球,从中任意摸出1个球则为白球.(二)古典概型与几何概型的对比.古典概型的概率公式:nn A P A =基本事件的总数数所包含的基本事件的个事件A )(= 几何概型的概率公式积等)的区域长度(面积或体试验的全部结果所构成积等)的区域长度(面积或体构成事件A A P =)( 相同:两者基本事件的发生都是等可能的;不同:古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个.例2 掷一颗均匀的骰子,求掷得偶数点的概率.分析:先确定掷一颗均匀的骰子试验的样本空间Ω和掷得偶数点事件A ,再确定样本空间元素的个数n ,和事件A 的元素个数m .最后利用公式即可. 解:掷一颗均匀的骰子,它的样本空间是Ω={1, 2,3, 4,5,6}∴n =6而掷得偶数点事件A ={2, 4,6}∴m =3∴P (A ) =2163= 点评 枚举法是计算古典概型中事件的重要方法,同时也要能熟练地运用图表法和树形图对某些等可能事件进行列举,教材例3的图表法采用坐标系的形式,横、纵轴分别表示第一、二次抛掷后向上的点数,此表能清楚直观地表现出各种情况,树形图对于元素不多而又易于分类的计数问题很有效,例4中画出了三“树”,其实只要画出一个树即可推知其余两个树的情况.例3 如图所示,在边长为1的正方形OABC 内任取一点P (x ,y ).(1)求点P 到原点距离小于1的概率;(2)求以x ,y ,1为边长能构成锐角三角形的概率.解析(1)所有的点P 构成正方形区域D ,若点P 到原点距离小于1,则⎩⎨⎧ 0<x <1,0<y <1,x 2+y 2<1,所以符合条件的点P 构成的区域是圆x 2+y 2=1在第一象限所围的平面部分.∴点P 到原点距离小于1的概率为:14·π·1212=π4=π4.(2)构成三角形的点P 在△ABC 内,若构成锐角三角形,则最大边1所对的角α必是锐角,cos α=x 2+y 2-122xy>0,x 2+y 2>1, 即点P 在以原点为圆心,1为半径的圆外,∴点P 在边AB ,BC 及圆弧AC 围成的区域内,∴其概率为:12-π4·1212=π4. 答:点P 到原点距离小于1的概率为π4;以x ,y ,1为边长能构成锐角三角形的概率为1-π4.注: 解决几何概型问题,判断事件的等可能性这是易忽略点,其次要正确理解几何概型的含义:某一事件A 发生的概率只与构成该事件区域的长度(面积或体积)成比例,而与位置和形状无关系,这是易错之处.为防止错误发生,解决实际问题时,一定要按部就班,先判断是否为几何概型,再严格按照几何概型的计算方法求解,最后做出正确判断,防止想当然,凭直觉.(三) 互斥事件1.互斥事件概率的理解.(1)互斥事件概率的加法公式,是在事件A 和事件B互斥的前提下进行的.事件A ,B 互为对立事件的条件是:A ∩B 为不可能事件,A ∪B 为必然事件,且有P (A )+P (B )=1.(2)对立事件一定是互斥事件,而互斥事件却不一定是对立事件,只有当两个互斥事件中有一个发生时,它才能成为对立事件.(3)从集合的角度来看,若将总体看成全集U ,将事件A 看成由A 所含的结果组成的集合,则A 是U 的子集,这时A 的对立事件可看成是A 的补集;判断两个事件是否为对立事件,首先要判断它们是否互斥;其次要确定它们中必定要有一个发生.2.从正面解决问题较困难时,可转换思维视角从其反面考虑,即从事件的对立事件考虑,往往可以降低解题的难度,简化运算.此技巧为“正难则反”策略,此策略在互斥事件的概率中应用相当广泛和频繁,应引起我们足够的重视.例4 一只蚂蚁在边长分别为3,4,5的三角形ABC 区域内任意爬行,则其恰在离三个顶点的距离都大于1的地方的概率是 .答:112π-.(四)练习.1.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的事件是 ( )A .至少有1个白球和全是白球B .至少有1个白球和至少有1个红球C .恰有1个白球和恰有2个白球D .至少有1个红球和全是白球2.如果事件A ,B 互斥,那么 ( )A .A +B 是必然事件 B . B A +是必然事件C . A 与B 一定互斥D . A 与B 一定不互斥3.下列命题中,真命题的个数是 ( )①将一枚硬币抛两次,设事件A 为“两次出现正面”,事件B 为“只有一A B C 4 5次出现反面”,则事件A与B是对立事件;②若事件A与B为对立事件,则事件A与B为互斥事件;③若事件A与B为互斥事件,则事件A与B为对立事件;④若事件A与B为对立事件,则事件A+B为必然事件.A.1 B. 2 C.3 D.44.甲,乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲,乙两人下成和棋的概率为( ) A.60%B.30%C.10%D.50%5.某射击运动员在一次射击训练中,命中10环,9环,8环,7环的概率分别为0.21,0.23,0.25,0.28.则这名运动员在一次射击中:命中10环或9环的概率是__________,少于7环的概率是____________.6.在区间[0,10]上任取一个数,求x<3 或x>6的概率______.7.有5张1角,3张2角和2张5角的邮票,任取2张,求其中两张是同价格的概率___________.8.已知随机事件E为“掷一枚骰子,观察点数”,事件A表示“点数小于5”,事件B表示“点数是奇数”,事件C表示“点数是偶数”.问:(1)事件A+C表示什么?(2)事件C+,A+,分别表示什么?ACA9.我国已经正式加入WTO,包括汽车在内的进口商品将最多在5年内把关税全部降低到世贸组织所要求的水平,其中有21%的进口商品恰好5年关税达到要求,18%的进口商品恰好4年关税达到要求,其余的进口商品将在3年或3年内达到要求,求进口汽车在不超过4年的时间内关税达到要求的概率.10.袋中有2个伍分硬币,2个贰分硬币,2个壹分硬币,从中任取3个,求总数超过7分的概率.11.某公共汽车站每隔10分钟就有一趟车经过,小王随机赶到车站,则小王等车时间不超过4分钟的概率是________.五、要点归纳与方法小结本节课学习了以下内容:指导学生阅读有关资料,了解人类认识随机现象的过程.结合概率的教学,进行偶然性和必然性对立统一观点的教育.让学生感受数学与现实世界的重要联系,崇尚数学的理性精神,逐步形成辨证的思维品质;养成准确、清晰、有条理地表述问题的习惯,提高学生的数学表达和交流的能力;进一步拓宽学生的视野,逐步认识数学的科学价值、应用价值和文化价值.。
北师大版高中数学必修3第三章《概率》全部教案姚连省编制.docx

北师大版高中数学必修3第三章《概率》全部教案扶风县法门高中姚连省§ 3.1随机事件的概率第一课时3. 1. 1频率与概率(-)一、 教学目标:1。
经历试验,统计等活动过程,在活动中进一步发展学生合作交流的意识和能 力。
2.通过试验,理解当试验次数较大时试验频率稳定于理论概率,并可据此估计一事件发生的 概率。
3.能运用树状图和列表法计算简单事件发生的概率。
二、 教学重点:运用树状图和列表法计算事件发生的概率。
教学难点:树状图和列表法的运用方法。
三、 教学方法:探究讨论法 四、 教学过程:(一)、问题引入:对于前面的摸牌游戏,在一次试验中,如果摸得第一张牌面数字为L 那么 摸第二张牌的数字为几的可能性大?如果摸得第一张牌的牌面数字为2呢?(山此引入课题,然 后要求学生做实验来验证他们的猜想)(二)、做一做:实验1:对于上面的试验进行30次,分别统计第一张牌的牌面字为1时,第二 张牌的牌面数字为1和2的次数。
实验的具体做法:每两个人一个小组,一个负责抽纸张,另一个人负责记录, 如:12 2 1(上面一行为第一次抽的) 2 12 1--(下面一行为第二次抽的)议一议:小明的对自己的试验记录进彳丁了统计,结果如下:第二张牌的牌市第二张牌的牌面 数字为1 (7次)数字为2 (9次)因此小明认为,如果摸得第一张牌面数字为1,那么摸第二张牌时,摸得牌面数字为2的可能性 比较大。
你同意小明的看法吗?让学生去讨论小明的看法是否正确,然后让学生去说说自已的看法。
想一想:对于前面的游戏,一次试验中会出现哪些可能的结果?每种结果出现的可能性相同吗?第一张牌的牌面(16 汰)会出现3种可能的结果: 牌面数字和为2,牌面数宁和3,牌面数字和4,每种结果出现的可能性相同会出现4种可能的结果:牌面数字为(1, 1), 牌面数字为(1, 2), 牌面数字为(2, 1),牌面数字为(2, 2)每种结果出现的可能性相同实际上,摸第一张牌时,可能出现的的结果是:牌面数字为1或2,而且这两种结果出现的可能性相同;摸第二张牌时,情况也是如此,因此,我们可以用下面的“树状图”或表格来表示所有可能出现的结果:可能出现的结果(1, 1)(1, 2)(2, 1)(2, 2)第二张牌面的数字第一张牌面的数字121(1, 1)(1, 2)2(2, 1)(2, 2)从上面的树状图或表格可以看出,一次试验可能出现的结果共有4种:(1, 1)(1, 2)(2, 1)(2, 2),而且每种结果出现的可能性相同,也就是说,每种结果出现的概率都是1/4。
必修3第三章 概率教案

第三章概率在自然界与人类的社会活动中会出现各种各样的现象,既有确定性现象,又有随机现象。
随机现象在日常生活中随处可见,概率是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的方法。
教科书把概率放在统计之后,体现了先统计后概率的思想。
现代社会是信息化的社会,人们常常需要收集数据,根据所获得的数据提取有价值的信息,做出合理的决策。
统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。
近年来,统计在实际中得到广泛的应用,用数据、图表等说明问题更有说服力,更直观、更容易理解。
概率为统计学的发展提供了理论基础。
由于概率统计的应用性强,有利于培养学生的应用意识和动手能力,在数学课程中,加强概率统计的份量成为必然。
“课标”设置了“统计与概率”的内容,目的就在于发展数学应用意识,使学生体会数学在实际中的应用价值,同时更全面地培养学生解决问题的能力。
本章包括3节,教学约需8课时,具体内容和课时分配(仅供参考)如下:3.1 随机事件的概率约3课时3.2 古典概型约2课时3.3 几何概型约2课时小结约1课时一、教科书内容与课程学习目标本章知识结构框图如下:本章包括以下内容:(1)随机事件的概率的统计定义,通过一些具体实例介绍概率的意义,概率的基本性质;(2)古典概型的特征及概率的计算公式;(3)几何概型的特征及概率的计算公式;(4)利用随机模拟的方法估计随机事件的概率。
教科书首先通过具体实例给出了随机事件的定义,通过抛掷硬币的试验,观察正面朝上的次数和比例,引出了随机事件出现的频数和频率的定义,并且利用计算机模拟掷硬币试验,给出试验结果的统计表和直观的折线图,使学生观察到随着试验次数的增加,随机事件发生的频率稳定在某个常数附近,从而给出概率的统计定义。
概率的意义是本章的重点内容。
教科书从下列几方面解释概率的意义:(1)概率的大小可以用来检验游戏的公平性。
(2)正确理解随机事件的概率的意义,澄清日常生活中出现的一些错误认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 随机事件的概率3.1.1 —3.1.2随机事件的概率及概率的意义(第一、二课时)一、教学目标:1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A 出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系;(3)利用概率知识正确理解现实生活中的实际问题.2、过程与方法:(1)发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.二、重点与难点:(1)教学重点:事件的分类;概率的定义以及和频率的区别与联系;(2)教学难点:用概率的知识解释现实生活中的具体问题.三、学法与教学用具:1、引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;2、教学用具:硬币数枚,投灯片,计算机及多媒体教学.四、教学设想:1、创设情境:日常生活中,有些问题是很难给予准确无误的回答的。
例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等。
2、问题:我们来看下面一些事件,哪些一定会发生?哪些一定不会发生?哪些是可能发生的?(1)导体通电时发热;(2)抛一石块,下落;(3)在标准大气压下且温度低于0°c时,冰融化.(4)在常温下,焊锡熔化;(5)掷一枚硬币,出现正面;(6)某人射击一次,中靶;3.基本概念:一般的,我们把在条件S下,一定会发生的事件,叫做相对于条件S的必然事件,简称必然事件;在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件;必然事件与不可能事件统称为相对于条件S的确定事件,简称确定事件。
在条件S下可能发生也可能不发生的事件,叫做相对于条件S的随机事件,简称随机事件。
确定事件和随机事件统称为事件。
常用大写字母A,B,C等表示。
问题:现在有10件相同的产品,其中8件是正品,2件是次品。
我们要在其中任意抽出3件。
那么,我们可能会抽到怎样的样本?可能: A 、 三件正品B 、 二正一次 随机事件C 、 一正二次我们再仔细观察这三种可能情况,还能得到一些什么发现、结论?对于随机事件,知道它发生的可能性大小是非常重要的,它能为我们的决策提供关键性的依据。
那么如何度量随机事件发生的可能性大小呢?由于随机事件在一次试验中是否发生不能事先确定,但是在大量重复试验的情况下,它的发生具有一定的规律性,或称随机事件频率的稳定性。
下面我们来做抛掷硬币的实验。
4.频率的定义在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数nA 为事件A 出现的频数,称事件A 出现的比例fn(A)=nA/n 为事件A 出现的频率。
思考:频率的取值范围是什么?必然事件出现的频率为1,不可能事件出现的频率为0。
掷硬币试验:思考:1、每次抛硬币之前,你能否确定抛掷结果?2、随着试验次数的增加,频率的值有什么特点?从这次试验,我们可以得到一些什么启示?1、每次试验的结果我们都无法预知,正面朝上的频率要在试验后才能确定。
2、随着试验次数的增加,频率的值越来越接近常数0.5。
5.概率的定义:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记做P (A ),称为事件A 的概率,简称为A 的概率。
定义巩固:某农科所对某种油菜籽在相同条件下的发芽情况进行了大量重复试验,结果如下表所示:在上述油菜籽发芽的试验中,每批油菜籽发芽的频率的稳定值为多少?概率是多少? 定义巩固:某批乒乓球产品质量检查结果表:当抽查的球数很多时,抽到优等品的频率接近于常数0.95,在它附近摆动。
(1)求一个事件的概率的基本方法是通过大量的重复试验;(2)概率反映了随机事件发生的可能性的大小;(3)必然事件的概率为1,不可能事件的概率为0.因此(4)概率是频率的稳定值,而频率是概率的近似值;(5)只有当频率在某个常数附近摆动时,这个常数才叫做事件A 的概率;6.频率与概率的区别与联系:思考:事件A 发生的频率fn(A)是不是不变的?事件A 发生的 概率P(A)是不是不变的?1、频率本身是随机的,在试验前不能确定。
做同样次数的重复试验得到事件的频率会不同。
2、概率是一个确定的数,与每次试验无关。
是用来度量事件发生可能性大小的量。
3、频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率。
例1指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?(1)2018年前中国完成统一大业;(2)手电筒的电池没电,灯泡发亮.(3)在标准大气压下,水在温度在90摄氏度时沸腾(4)直线y=k(x+1)过定点(-1,0);(5)当 x 是实数时,x² ≥ 0;(6)一个袋内装有形状大小相同的一个白 球和一个黑球,从中任意摸出1个球则为白球. 例2 某射手在同一条件下进行射击,结果如下表所示:(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是多少?7.归纳小结:a 、相关概念随机事件 必然事件 不可能事件 确定事件b 、频率与概率的定义,它们之间的区别与联系c 、作业 课本105第1、38.思考:小军和小民玩掷色子是游戏,他们约定:两颗色子掷出去,如果朝上的两个数的和是5,那么小军获胜,如果朝上的两个数的和是7,那么小民获胜。
这样的游戏公平吗?第二课时:1.复习引入:概率的定义是什么?频率与概率的有什么区别和联系?2.问题1:有人说,既然抛掷一枚硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?问题2:若某种彩票准备发行1000万张,其中有1万张可以中奖,则买一张这种彩票的中奖概率是多少?买1000张的话是否一定会中奖?概率的正确理解:随机事件在一次实验中发生与否是随机的,但随机性中含有规律性:即随着实验次数的增加,该随机事件发生的频率会越来越接近于该事件发生的概率。
3.概率在实际问题中的应用:问题:某中学高一年级有12个班,要从中选2个班代表学校参加某项活动,由于某种原因,()10≤≤A P1班必须参加,另外再从2至12班中选一个班,有人提议用如下方法:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?例1.在做掷硬币的实验的时候,若连续掷了100次,结果100次都是正面朝上,对于这样的结果你会有什么看法?例2. 在一个不透明的袋子中有两种球,一种白球,一种红球,并且这两种球一种有99个,另一种只有1个,若一个人从中随机摸出1球,结果是红色的,那你认为袋中究竟哪种球会是99个?如果我们面临的是从多个可选答案中挑选正确答案的决策问题,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法。
如果我们的判断结论能够使得样本出现的可能性最大,那么判断正确的可能性也最大,这种判断问题的方法在统计学中被称为似然法。
练习:若某地气象局预报说,明天本地降水概率为70%,你认为下面两个解释哪一个能代表气象局的观点?(1)明天本地有70%的区域下雨,30%的区域不下雨;(2)明天本地有70%的机会下雨。
概率与公平性的关系:利用概率解释游戏规则的公平性,判断实际生活中的一些现象是否合理。
概率与决策的关系:在“风险与决策”中经常会用到统计中的极大似然法:在一次实验中,概率大的事件发生的可能性大。
概率与预报的关系:在对各种自然现象、灾害的研究过程中经常会用到概率的思想来进行预测。
3.1.3 概率的基本性质(第三课时)一、教学目标:1、知识与技能:(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;(2)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.2、过程与方法:通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类化与归纳的数学思想。
3、情感态度与价值观:通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习 数学的情趣。
二、重点与难点:概率的加法公式及其应用,事件的关系与运算。
三、学法与教学用具:1、讨论法,师生共同讨论,从而使加深学生对概率基本性质的理解和认识;2、教学用具:投灯片四、教学设想:1、 创设情境:(1)集合有相等、包含关系,如{1,3}={3,1},{2,4}С{2,3,4,5}等;(2)在掷骰子试验中,可以定义许多事件如:C 1={出现1点},C 2={出现2点},C 3={出现1点或2点},C 4={出现的点数为偶数}……师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗?2、 基本概念:(1)事件的包含、并事件、交事件、相等事件见课本P115;(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B).3、 例题分析:例1 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?事件A :命中环数大于7环; 事件B :命中环数为10环;事件C :命中环数小于6环; 事件D :命中环数为6、7、8、9、10环. 分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生。
解:A 与C 互斥(不可能同时发生),B 与C 互斥,C 与D 互斥,C 与D 是对立事件(至少一个发生).例2 抛掷一骰子,观察掷出的点数,设事件A 为“出现奇数点”,B 为“出现偶数点”,已知P(A)=21,P(B)=21,求出“出现奇数点或偶数点”. 分析:抛掷骰子,事件“出现奇数点”和“出现偶数点”是彼此互斥的,可用运用概率的加法公式求解.解:记“出现奇数点或偶数点”为事件C,则C=A ∪B,因为A 、B 是互斥事件,所以P(C)=P(A)+ P(B)=21+21=1 答:出现奇数点或偶数点的概率为1例3 如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A )的概率是41,取到方块(事件B )的概率是41,问: (1)取到红色牌(事件C )的概率是多少?(2)取到黑色牌(事件D )的概率是多少?分析:事件C 是事件A 与事件B 的并,且A 与B 互斥,因此可用互斥事件的概率和公式求解,事件C 与事件D 是对立事件,因此P(D)=1—P(C).解:(1)P(C)=P(A)+ P(B)=21(2)P(D)=1—P(C)=21 例4 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为31,得到黑球或黄球的概率是125,得到黄球或绿球的概率也是125,试求得到黑球、得到黄球、得到绿球的概率各是多少?分析:利用方程的思想及互斥事件、对立事件的概率公式求解.解:从袋中任取一球,记事件“摸到红球”、“摸到黑球”、“摸到黄球”、“摸到绿球”为A 、B 、C 、D ,则有P(B ∪C)=P(B)+P(C)=125;P(C ∪D)=P(C)+P(D)=125;P(B ∪C ∪D)=1-P(A)=1-31=32,解的P(B)=41,P(C)=61,P(D)=41 答:得到黑球、得到黄球、得到绿球的概率分别是41、61、41. 4、课堂小结:概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);3)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。