中考数学第20讲 多边形与平行四边形(含答案)
2021年全国中考数学真题分类汇编--四边形:多边形与平行四边形(答案版 )

2021全国中考真题分类汇编(四边形)----多边形与平行四边形一、选择题1. (2021•湖南省常德市)一个多边形的内角和是1800°,则这个多边形是( )边形.A. 9B. 10C. 11D. 12 【答案】D【解析】【分析】根据n 边形的内角和是(n ﹣2)×180 ,根据多边形的内角和为1800 ,就得到一个关于n 的方程,从而求出边数.【详解】根据题意得:(n ﹣2)×180=1800,解得:n =12.故选:D .2. (2021•株洲市)如图所示,在正六边形内,以为边作正五边形,则( )A.B. C. D.【答案】B 3. (2021•江苏省连云港)正五边形的内角和是( )A.B. C. D.【答案】D【解析】【分析】n 边形的内角和是 ,把多边形的边数代入公式,就得到多边形的内角︒︒︒︒ABCDEF AB ABGHI FAI ∠=10︒12︒14︒15︒360︒540︒720︒900︒()2180n -⋅︒和.详解】(7﹣2)×180°=900°.故选D .4. (2021•江苏省南京市)下列长度的三条线段与长度为5的线段能组成四边形的是( )A. 1,1,1B. 1,1,8C. 1,2,2D. 2,2,2 【答案】D【解析】【分析】若四条线段能组成四边形,则三条较短边的和必大于最长边,由此即可完成.【详解】A 、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误; B 、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误; C 、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误; D 、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确; 故选:D .5. (2021•江苏省扬州) 如图,点A 、B 、C 、D 、E 在同一平面内,连接、、、、,若,则( )A.B. C. D.【答案】D【解析】 【分析】连接BD ,根据三角形内角和求出∠CBD +∠CDB ,再利用四边形内角和减去∠CBD 和∠CDB 的和,即可得到结果.【详解】解:连接BD ,∵∠BCD =100°,∴∠CBD +∠CDB =180°-100°=80°,∴∠A +∠ABC +∠E +∠CDE =360°-∠CBD -∠CDB =360°-80°=280°,【AB BC CD DE EA 100BCD ∠=︒A B D E ∠+∠+∠+∠=220︒240︒260︒280︒故选D .6. (2021•四川省眉山市)正八边形中,每个内角与每个外角的度数之比为( )A .1:3B .1:2C .2:1D .3:1【分析】此题要结合多边形的内角与外角的关系来寻求等量关系,构建方程求出每个外角.多边形外角和是固定的360°.【解答】解:这个八边形的内角和为:(8﹣2)×180°=1080°;这个八边形的每个内角的度数为:1080°÷8=135°;这个八边形的每个外角的度数为:360°÷8=45°;∴这个八边形每个内角与每个外角的度数之比为:135:45=3:1.故选:D .7. (2021•四川省自贡市) 如图,AC 是正五边形ABCDE 的对角线,的度数是( )A. 72°B. 36°C. 74°D. 88°【答案】A【解析】 【分析】根据正五边形的性质可得,,根据等腰三角形的性质可得,利用角的和差即可求解.ACD∠108B BCD ∠=∠=︒AB BC =36BCA BAC ∠=∠=︒【详解】解:∵ABCDE 是正五边形,∴,,∴,∴,故选:A .8. (2021•北京市)下列多边形中,内角和最大的是( )DA.B .C .D . 9. (2021•福建省)如图,点F 在正ABCDE 五边形的内部,△ABF 为等边三角形,则∠AFC 等于( )CA .108°B .120°C .126°D .132° 10. (2021•云南省)一个10边形的内角和等于( )CA .1800°B .1660°C .1440°D .1200° 11. (2021•山东省济宁市)如图,正五边形ABCDE 中,∠CAD 的度数为( )A .72°B .45°C .36°D .35°【分析】首先可根据五边形内角和公式求出每个内角的度数,然后求出∠CAB 和∠DAE ,108B BCD ∠=∠=︒AB BC =36BCA BAC ∠=∠=︒1083672ACD ∠=︒-︒=︒即可求出∠CAD.【解答】解:根据正多边形内角和公式可得,正五边形ABCDE的内角和=180°×(5﹣2)=540°,则∠BAE=∠B=∠E==108°,根据正五边形的性质,△ABC≌△AED,∴∠CAB=∠DAE=(180°﹣108°)=36°,∴∠CAD=108°﹣36°﹣36°=36°,故选:C.12.(2021•贵州省铜仁市)用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.工人师傅不能用下列哪种形状、大小完全相同的一种地砖在平整的地面上镶嵌()A. 等边三角形B. 正方形C. 正五边形D. 正六边形【答案】C13.(2021•襄阳市)正多边形的一个外角等于60°,这个多边形的边数是()A. 3B. 6C. 9D. 12【答案】B14.(2021•绥化市)已知一个多边形内角和是外角和的4倍,则这个多边形是()A. 八边形B. 九边形C. 十边形D. 十二边形【答案】C【解析】【分析】设这个多边形的边数为n,然后根据内角和与外角和公式列方程求解即可.【详解】设这个多边形的边数为n,则(n-2)×180°=4×360°,解得:n=10,故选C.15. (2021•河北省)如图,点O为正六边形ABCDEF对角线FD上一点,S△AFO=8,S△CDO =2,则S正六边边ABCDEF的值是( )A.20B.30C.40D.随点O位置而变化【分析】正六边形ABCDEF的面积=S矩形AFDC+S△EFD+S△ABC,由正六边形每个边相等,每个角相等可得FD=AF,过E作FD垂线,垂足为M,利用解直角三角形可得△FED 的高,即可求出正六边形的面积.【解答】解:设正六边形ABCDEF的边长为x,过E作FD的垂线,垂足为M,连接AC,∵∠FED=120°,FE=ED,∴∠EFD=∠FDE,∴∠EDF=(180°﹣∠FED)=30°,∵正六边形ABCDEF的每个角为120°.∴∠CDF=120°﹣∠EDF=90°.同理∠AFD=∠FAC=∠ACD=90°,∴四边形AFDC为矩形,∵S△AFO=FO×AF,S△CDO=OD×CD,在正六边形ABCDEF中,AF=CD,∴S△AFO+S△CDO=FO×AF+OD×CD=(FO +OD )×AF=FD ×AF=10,∴FD ×AF =20,DM =cos30°DE =x ,DF =2DM =x , EM =sin30°DE =,∴S 正六边形ABCDEF =S 矩形AFDC +S △EFD +S △ABC=AF ×FD +2S △EFD=x •x +2×x •x=x 2+x 2 =20+10=30,故选:B .16.(2021•株洲市) 如图所示,四边形是平行四边形,点在线段的延长线上,若,则( )A. B. C. D.ABCD E BC 132DCE ∠=︒A ∠=38︒48︒58︒66︒【答案】B17.(2021•山东省泰安市)如图,在平行四边形ABCD中,E是BD的中点,则下列四个结论:①AM=CN;②若MD=AM,∠A=90°,则BM=CM;③若MD=2AM,则S△MNC=S△BNE;④若AB=MN,则△MFN与△DFC全等.其中正确结论的个数为( )A.1个B.2个C.3个D.4个【分析】根据平行四边形的性质,证明△MDB≌△NBD,从而判断①正确;若MD=AM,∠A=90°,则平行四边形ABCD为矩形,通过证明△BAM≌△CDM可以判断②;过点M作MG⊥BC,交BC于G,过点E作EH⊥BC,交BC于H,通过三角形面积公式可以判断③;若AB=MN则四边形MNCD是等腰梯形,通过证明△MNC≌△DCN和△MFN≌△DFC即可判断④.【解答】解:①∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵E是BD的中点,∴BE=DE,在△MDB和△NBD中,,∴△MDB≌△NBD(ASA),∴DM=BN,∴AM=CN,故①正确;②若MD=AM,∠A=90°,则平行四边形ABCD为矩形,∴∠D=∠A=90°,在△BAM和△CDM中,,∴△BAM≌△CDM(SAS),∴BM=CM,故②正确;③过点M作MG⊥BC,交BC于G,过点E作EH⊥BC,交BC于H,由①可知四边形MBCD是平行四边形,E为BD中点,∴MG=2EH,又∵MD=2AM,BN=MD,AM=NC,∴S△ANC=NC•MG=•BN•2EH=BN•EH=S△BNE,故③正确;④∵AB=MN,AB=DC,∴MN=DC,∴四边形MNCD是等腰梯形,∴∠MNC=∠DCN,在△MNC和△DCN中,,∴△MNC≌△DCN(SAS),∴∠NMC=∠CDN,在△MFN和△DFC中,,∴△MFN≌△DFC(AAS),故④正确.∴正确的个数是4个,故选:D.18.(2021•陕西省)在菱形ABCD中,∠ABC=60°,连接AC、BD,则( )A.B.C.D.【分析】由菱形的性质可得AO=CO,BO=DO,AC⊥BD,∠ABD=∠ABC=30°,由锐角三角函数可求解.【解答】解:设AC与BD交于点O,∵四边形ABCD是菱形,∴AO=CO,BO=DO,∠ABD=,∵tan∠ABD=,∴,故选:D.19.(2021•河北省)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )A.甲、乙、丙都是B.只有甲、乙才是C.只有甲、丙才是D.只有乙、丙才是【分析】方案甲,连接AC,由平行四边形的性质得OB=OD,OA=OC,则NO=OM,得四边形ANCM为平行四边形,方案甲正确;方案乙:证△ABN≌△CDM(AAS),得AN=CM,再由AN∥CM,得四边形ANCM为平行四边形,方案乙正确;方案丙:证△ABN≌△CDM(ASA),得AN=CM,∠ANB=∠CMD,则∠ANM=∠CMN,证出AN∥CM,得四边形ANCM为平行四边形,方案丙正确.【解答】解:方案甲中,连接AC,如图所示:∵四边形ABCD是平行四边形,O为BD的中点,∴OB=OD,OA=OC,∵BN=NO,OM=MD,∴NO=OM,∴四边形ANCM为平行四边形,方案甲正确;方案乙中:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABN=∠CDM,∵AN⊥B,CM⊥BD,∴AN∥CM,∠ANB=∠CMD,在△ABN和△CDM中,,∴△ABN≌△CDM(AAS),∴AN=CM,又∵AN∥CM,∴四边形ANCM为平行四边形,方案乙正确;方案丙中:∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,AB=CD,AB∥CD,∴∠ABN=∠CDM,∵AN平分∠BAD,CM平分∠BCD,∴∠BAN=∠DCM,在△ABN和△CDM中,,∴△ABN≌△CDM(ASA),∴AN=CM,∠ANB=∠CMD,∴∠ANM=∠CMN,∴AN∥CM,∴四边形ANCM为平行四边形,方案丙正确;故选:A.20.(2021•泸州市)如图,在平行四边形ABCD中,AE平分∠BAD且交BC于点E,∠D=58°,则∠AEC的大小是()A. 61°B. 109°C. 119°D. 122°【答案】C【解析】 【分析】根据四边形ABCD 是平行四边形,得到对边平行,再利用平行的性质求出,根据角平分线的性质得:AE 平分∠BAD 求,再根据平行线的性质得,即可得到答案.【详解】解:∵四边形ABCD 是平行四边形∴,∴∵AE 平分∠BAD∴ ∵∴故选C .21. (2021•四川省南充市)如图,点O 是▱ABCD 对角线的交点,EF 过点O 分别交AD ,BC 于点E ,F ,下列结论成立的是( )A .OE =OFB .AE =BFC .∠DOC =∠OCD D .∠CFE =∠DEF【分析】证△AOE ≌△COF (ASA ),得OE =OF ,AE =CF ,∠CFE =∠AEF ,进而得出结论.【解答】解:∵▱ABCD 的对角线AC ,BD 交于点O ,∴AO =CO ,BO =DO ,AD ∥BC ,180122BAD D ∠=︒-∠=︒DAE ∠AEC ∠//AB CD //AD BC 180********BAD D ∠=︒-∠=︒-︒=︒111226122DAE BAD ∠=∠=⨯︒=︒//AD BC 180********AEC DAE ∠=︒-∠=︒-︒=︒∴∠EAO =∠FCO ,在△AOE 和△COF 中,,∴△AOE ≌△COF (ASA ),∴OE =OF ,AE =CF ,∠CFE =∠AEF ,又∵∠DOC =∠BOA ,∴选项A 正确,选项B 、C 、D 不正确,故选:A .22. (2021•天津市)如图,的顶点A ,B ,C 的坐标分别是,则顶点D 的坐标是( )A.B. C. D.【答案】C【解析】 【分析】根据平行四边形性质以及点的平移性质计算即可.【详解】解:∵四边形ABCD 平行四边形,点B 的坐标为(-2,-2),点C 的坐标为(2,-2),∴点B 到点C 为水平向右移动4个单位长度,∴A 到D 也应向右移动4个单位长度,∵点A 的坐标为(0,1),则点D 的坐标为(4,1),故选:C .23. (2021•湖北省恩施州)如图,在▱ABCD 中,AB =13,AD =5,AC ⊥BC ,则▱ABCD ABCD Y ()()()2,0,1,2,2,2---()4,1-()4,2-()4,1()2,1是的面积为( )A.30B.60C.65D.【分析】根据平行四边形的性质以及勾股定理求出四边形ABCD的底边BC和其对角线AC的值,然后根据平行四边形的面积计算公式求解.【解答】解:∵四边形ABCD为平行四边形,∴BC=AD=5.∵AC⊥BC,∴△ACB是直角三角形.∴AC===12.∴S▱ABCD=BC•AC=5×12=60.故选:B.24.(2021•湖北省荆门市)如图,将一副三角板在平行四边形ABCD中作如下摆放,设∠1=30°,那么∠2=( )A.55°B.65°C.75°D.85°【分析】根据等腰直角三角形的性质求出∠FHE=45°,求出∠NHB=∠FHE=45°,根据三角形内角和定理求出∠HNB=105°,根据平行四边形的性质得出CD∥AB,根据平行线的性质得出∠2+∠HNB=180°,带哦求出答案即可.【解答】解:延长EH交AB于N,∵△EFH 是等腰直角三角形,∴∠FHE =45°,∴∠NHB =∠FHE =45°,∵∠1=30°,∴∠HNB =180°﹣∠1﹣∠NHB =105°,∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠2+∠HNB =180°,∴∠2=75°,故选:C .25.(2021•山东省威海市) 如图,在平行四边形ABCD 中,AD-3,CD=2.连接AC ,过点B 作BE ∥AC ,交DC 的延长线于点E ,连接AE ,交BC 于点F .若∠AFC=2∠D ,则四边形ABEC 的面积为( )B.C. 6D.【答案】B【解析】 【分析】先证明四边形ABEC 为矩形,再求出AC ,即可求出四边形ABEC 的面积.【详解】解:∵四边形ABCD 平行四边形,∴AB ∥CD ,AB =CD =2,BC =AD =3,∠D =∠ABC ,∵,是//BE AC∴四边形ABEC 为平行四边形,∵,∴,∵∠AFC =∠ABF +∠BAF ,∴∠ABF =∠BAF ,∴AF =BF ,∴2AF =2BF ,即BC =AE ,∴平行四边形ABEC 是矩形,∴∠BAC =90°,∴,∴矩形ABEC 的面积为故选:B26.(2021•浙江省衢州卷)如图,在中,,,,点D ,E ,F 分别是AB ,BC ,CA 的中点,连结DE ,EF ,则四边形ADEF 的周长为( )A. 6B. 9C. 12D. 15【答案】B27.(2021•贵州省贵阳市)如图,在▱ABCD 中,∠ABC 的平分线交AD 于点E ,∠BCD 的平分线交AD 于点F ,若AB =3,AD =4,则EF 的长是( )2AFC D ∠=∠2AFC ABC ∠=∠AC ===AB AC =g ABC V 4AB =5AC =6BC =A .1B .2C .2.5D .3【分析】根据平行四边形的性质证明DF =CD ,AE =AB ,进而可得AF 和ED 的长,然后可得答案.【解答】解:∵四边形ABCD 是平行四边形,∴AD ∥CB ,AB =CD =3,AD =BC =5,∴∠DFC =∠FCB ,又∵CF 平分∠BCD ,∴∠DCF =∠FCB ,∴∠DFC =∠DCF ,∴DF =DC =3,同理可证:AE =AB =3,∵AD =4,∴AF =5﹣4=1,DE =4﹣3=1,∴EF =4﹣1﹣1=2.故选:B .28.(2021•湖南省娄底市)如图,点在矩形的对角线所在的直线上,,则四边形是( )A. 平行四边形B. 矩形C. 菱形D. 正方形 【答案】A【解析】【分析】利用三角形全等的性质得,对应边相等及对应角相等,得出一组对边平行且相等,即可判断出形状. ,E F ABCD BD BE DFAECF【详解】解:由题意:,,又,,,,四边形为平行四边形,故选:A .二.填空题1. (2021•湖北省黄冈市)正五边形的一个内角是 108 度.【分析】因为n 边形的内角和是(n ﹣2)•180°,因而代入公式就可以求出内角和,再用内角和除以内角的个数就是一个内角的度数.【解答】解:(5﹣2)•180=540°,540÷4=108°.2. (2021•陕西省)正九边形一个内角的度数为 140° .【分析】先根据多边形内角和定理:180°•(n ﹣2)求出该多边形的内角和,再求出每一个内角的度数.【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数==140°.故答案为:140°.3. (2021•上海市)六个带角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积_________.//,AD BC ADB CBD ∴∠=∠ FDA EBC ∴∠=∠,AD BC BE DF == ()ADF CBE SAS ∴V V ≌AF EC ∴=,//AFD CEB AF EC ∴∠=∠∴∴AECF 30°【解析】【分析】由六个带角的直角三角板拼成一个正六边形,直角三角板的最短边为1,可以得到中间正六边形的边长为1,做辅助线以后,得到△ABC 、△CDE、△AEF 为以1为边长的等腰三角形,△ACE 为等边三角形,再根据等腰三角形与等边三角形的性质求出边长,求出面积之和即可.【详解】解:如图所示,连接AC 、AE 、CE ,作BG ⊥AC 、DI ⊥CE、FH ⊥AE ,AI ⊥CE ,在正六边形ABCDEF 中,∵直角三角板的最短边为1,∴正六边形ABCDEF 为1,∴△ABC 、△CDE 、△AEF 为以1为边长的等腰三角形,△ACE 为等边三角形, ∵∠ABC =∠CDE =∠EFA =120︒,AB =BC = CD =DE = EF =FA =1,∴∠BAG =∠BCG =∠DCE =∠DEC =∠FAE =∠FEA =30︒,∴BG =DI = FH =, ∴由勾股定理得:AG =CG = CI = EI = EH = AH ∴AC =AE =,∴由勾股定理得:AI=, ∴S = 30°1232111332222⨯+=4. (2021•新疆) 四边形的外角和等于_______.【答案】360°.5. (2021•浙江省湖州市)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(A ,B ,C,D ,E 是正五边形的五个顶点),则图中∠A 的度数是 度.【答案】36【解析】首先根据正五边形的内角和计算公式,求出每个内角的度数为108°,即∠ABC =∠BAE =108°,那么等腰△ABC 的底角∠BAC =36°,同理可求得∠DAE =36°,故∠CAD =∠BAE ﹣∠BAC ﹣∠EAD =108°﹣36°﹣36°=36°.其实正五角星的五个角是36°,可以作为一个常识直接记住.6. (2021•江苏省盐城市)若一个多边形的每个外角均为40°,则这个多边形的边数为 9 .【分析】一个多边形的外角和为360°,而每个外角为40°,进而求出外角的个数,即为多边形的边数.【解答】解:360°÷40°=9,故答案为:9.7. (2021•广西玉林市)如图、在正六边形中,连接线,,,,,与交于点,与交于点为,与交于点,分别延长,于点,设.有以下结论:①;②;③重心、内心及外心均是点;④四边形绕点逆时针旋转与四边形重合.则所有正确结论的序号是______.ABCDEF AD AE AC DF DB AC BD M AE DF N MN AD O AB DC G 3AB =MN AD ⊥MN =DAG △的M FACD O 30°ABDE【答案】①②③8. (2021•浙江省衢州卷)如图,在正五边形ABCDE 中,连结AC ,BD 交于点F ,则的度数为________.【答案】9. (2021•江苏省扬州)如图,在中,点E 在上,且平分,若,,则的面积为________.【答案】50【解析】【分析】过点E 作EF ⊥BC ,垂足为F ,利用直角三角形的性质求出EF ,再根据平行线的性质和角平分线的定义得到∠BCE =∠BEC ,可得BE =BC =10,最后利用平行四边形的面积公式计算即可.【详解】解:过点E 作EF ⊥BC ,垂足为F ,∵∠EBC =30°,BE =10,AFB∠72︒ABCD Y AD EC BED ∠30EBC ∠=︒10BE =ABCDY∴EF =BE =5, ∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DEC =∠BCE ,又EC 平分∠BED ,即∠BEC =∠DEC ,∴∠BCE =∠BEC ,∴BE =BC =10,∴四边形ABCD 的面积===50,故答案为:50.10.(2021•山东省临沂市)在平面直角坐标系中,平行四边形ABCD 的对称中心是坐标原点,顶点A 、B 的坐标分别是(﹣1,1)、(2,1),将平行四边形ABCD 沿x 轴向右平移3个单位长度,则顶点C 的对应点C 1的坐标是 (4,﹣1) .【分析】由题意A ,C 关于原点对称,求出点C 的坐标,再利用平移的性质求出点C 1的坐标可得结论.【解答】解:∵平行四边形ABCD 的对称中心是坐标原点,∴点A ,点C 关于原点对称,∵A (﹣1,1),∴C (1,﹣1),∴将平行四边形ABCD 沿x 轴向右平移3个单位长度,则顶点C 的对应点C 1的坐标是(4,﹣1),故答案为:(4,﹣1).11.(2021•山东省菏泽市)如图,在Rt △ABC 中,∠C =30°,D 、E 分别为AC 、BC 的中点,DE =2,过点B 作BF ∥AC ,交DE 的延长线于点F ,则四边形ABFD 的面积为 8 .12BC EF ⨯105⨯【分析】由三角形的中位线定理证得DE∥AB,AB=2DE=4,进而证得四边形ABFD是平行四边形,在Rt△ABC中,根据勾股定理求出BC=4,得到BE=2,根据平行四边形的面积公式即可求出四边形ABFD的面积.【解答】解:∵D、E分别为AC、BC的中点,∵DE是△ABC的中位线,∴DE∥AB,DE=AB,∴AB=2DE,DF∥AB,又∵BF∥AC,∴BF∥AD,∴四边形ABFD是平行四边形,∵AB⊥BE,∴S平行四边形ABFD=AB•BE,∵DE=2,∴AB=2×2=4,在Rt△ABC中,∵∠C=30°,∴AC=2AB=2×4=8,∴BC===4,∴BE=BC=2,∴S平行四边形ABFD=4×2=8,故答案为8.12. 6.(2021•浙江省丽水市)一个多边形过顶点剪去一个角后,所得多边形的内角和为720°,则原多边形的边数是__________.【答案】6或7【解析】【分析】求出新的多边形为6边形,则可推断原来的多边形可以是6边形,可以是7边形.【详解】解:由多边形内角和,可得(n-2)×180°=720°,∴n=6,∴新的多边形为6边形,∵过顶点剪去一个角,∴原来的多边形可以是6边形,也可以是7边形,故答案为6或7.13.(2021•青海省)如图,在▱ABCD中,对角线BD=8cm,AE⊥BD,垂足为E,且AE=3cm,BC=4cm,则AD与BC之间的距离为 6cm .【分析】设AB与CD之间的距离为h,由条件可知▱ABCD的面积是△ABD的面积的2倍,可求得▱ABCD的面积,再S四边形ABCD=BC•h,可求得h的长.【解答】解:∵四边形ABCD为平行四边形,∴AB=CD,AD=BC,在△ABD和△BCD中∴△ABD≌△BCD(SSS),∵AE⊥BD,AE=3cm,BD=8cm,∴S△ABD=BD•AE=×8×3=12(cm2),∴S四边形ABCD=2S△ABD=24cm2,设AD与BC之间的距离为h,∵BC=4cm,∴S四边形ABCD=AD•h=4h,∴4h=24,解得h=6cm,故答案为:6cm.14.(2021•浙江省嘉兴市)如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AH⊥BD于点H,若AB=2,BC=2,则AH的长为 .【分析】在Rt△ABC和Rt△OAB中,分别利用勾股定理可求出BC和OB的长,又AH⊥OB ,可利用等面积法求出AH 的长.【解答】解:如图,∵AB ⊥AC ,AB =2,BC =2, ∴AC ==2,在▱ABCD 中,OA =OC ,OB =OD ,∴OA =OC =,在Rt △OAB 中,OB ==,又AH ⊥BD ,∴OB •AH =OA •AB ,即=, 解得AH =. 故答案为:. 15.(2021•黑龙江省龙东地区)如图,在平行四边形中,对角线、相交于点O ,在不添加任何辅助线的情况下,请你添加一个条件______________,使平行四边形是矩形..【答案】【解析】【分析】根据矩形的判定方法即可得出答案.【详解】解:∵四边形ABCD 为平行四边形,∴当时,四边形ABCD 为矩形.故答案为:.三、解答题1.(2021•湖北省武汉市)如图,AB ∥CD ,∠B =∠D ,BC 的延长线分别交于点E ,F,求ABCD AC BDABCD 90ABC ∠=︒90ABC ∠=︒90ABC ∠=︒证:∠DEF=∠F.【分析】由平行线的性质得到∠DCF=∠B,进而推出∠DCF=∠D,根据平行线的判定得到AD∥BC,根据平行线的性质即可得到结论.【解答】证明:∵AB∥CD,∴∠DCF=∠B,∵∠B=∠D,∴∠DCF=∠D,∴AD∥BC,∴∠DEF=∠F.2.(2021•怀化市)已知:如图,四边形ABCD为平行四边形,点E、A、C、F在同一直线上,AE=CF.求证:(1)△ADE≌△CBF;(2)ED∥BF.【分析】(1)根据平行四边形的性质,可以得到DA=BC,DA∥BC,然后即可得到∠EAD =∠FCB,再根据SAS即可证明△ADE≌△CBF;(2)根据(1)中的结论和全等三角形的性质,可以得到∠E=∠F,从而可以得到ED∥BF.【解答】证明:(1)∵四边形ABCD为平行四边形,∴DA=BC,DA∥BC,∴∠DAC=∠BCA,∵∠DAC+∠EAD=180°,∠BCA+∠FCB=180°,∴∠EAD=∠FCB,在△ADE和△CBF中,,∴△ADE ≌△CBF (SAS );(2)由(1)知,△ADE ≌△CBF ,∴∠E =∠F ,∴ED ∥BF .3. 如(2021•岳阳市)图,在四边形中,,,垂足分别为点,.(1)请你只添加一个条件(不另加辅助线),使得四边形为平行四边形,你添加的条件是________;(2)添加了条件后,证明四边形为平行四边形.【答案】(1)(答案不唯一,符合题意即可);(2)见解析4. (2021•宿迁市)在①AE=CF ;②OE=OF ;③BE ∥DF 这三个条件中任选一个补充在下面横线上,并完成证明过程.已知,如图,四边形ABCD 是平行四边形,对角线AC 、BD 相交于点O ,点E 、F 在AC 上,(填写序号).求证:BE=DF .注:如果选择多个条件分别解答,按第一个解答计分.【答案】见解析【解析】ABCD AE BD ⊥CF BD ⊥EF AECF AECF //AFCE【分析】若选②,即OE=OF;根据平行四边形的性质可得BO=DO,然后即可根据SAS证明△BOE≌△DOF,进而可得结论;若选①,即AE=CF;根据平行四边形的性质得出OE=OF 后,同上面的思路解答即可;若选③,即BE∥DF,则∠BEO=∠DFO,再根据平行四边形的性质可证△BOE≌△DOF,于是可得结论.【详解】解:若选②,即OE=OF;证明:∵四边形ABCD是平行四边形,∴BO=DO,∵OE=OF,∠BOE=∠DOF,∴△BOE≌△DOF(SAS),∴BE=DF;若选①,即AE=CF;证明:∵四边形ABCD是平行四边形,∴BO=DO,AO=CO,∵AE=CF,∴OE=OF,又∠BOE=∠DOF,∴△BOE≌△DOF(SAS),∴BE=DF;若选③,即BE∥DF;证明:∵四边形ABCD是平行四边形,∴BO=DO,∵BE∥DF;∴∠BEO=∠DFO,又∠BOE=∠DOF,∴△BOE≌△DOF(AAS),∴BE =DF ;5. (2021•山东省聊城市) 如图,在四边形ABCD 中,AC 与BD 相交于点O ,且AO =CO ,点E 在BD 上,满足∠EAO =∠DCO .(1)求证:四边形AECD 是平行四边形;(2)若AB =BC ,CD =5,AC =8,求四边形AECD 的面积.【答案】(1)见解析;(2)24【解析】【分析】(1)根据题意可证明,得到OD =OE ,从而根据“对角线互相平分的四边形为平行四边形”证明即可;(2)根据AB =BC ,AO =CO ,可证明BD 为AC 的中垂线,从而推出四边形AECD 为菱形,然后根据条件求出DE 的长度,即可利用菱形的面积公式求解即可.【详解】(1)证明:在△AOE 和△COD 中,∴.∴OD =OE .又∵AO =CO ,∴四边形AECD 是平行四边形.(2)∵AB =BC ,AO =CO ,∴BO 为AC 的垂直平分线,.∴平行四边形 AECD 是菱形.∵AC =8,.AOE COD V V ≌EAO DCO AO COAOE COD ∠=∠⎧⎪=⎨⎪∠=∠⎩()AOE COD ASA V V ≌BO AC ⊥142CO AC ∴==在 Rt △COD 中,CD =5,,∴,, ∴四边形 AECD 的面积为24.6. (2021•湖南省永州市)如图,已知点A ,D ,C ,B 在同一条直线上,AD =BC ,AE =BF ,AE ∥BF .(1)求证:△AEC ≌△BFD .(2)判断四边形DECF 的形状,并证明.7.(2021•四川省广元市)如图,在平行四边形ABCD 中,E 为DC 边的中点,连接AE ,若AE 的延长线和BC 的延长线相交于点F .(1)求证:BC=CF ;(2)连接AC 和相交于点为G ,若△GEC 的面积为2,求平行四边形ABCD 的面积.【答案】(1)证明见解析;(2)24.【解析】【分析】(1)根据E 是边DC 的中点,可以得到,再根据四边形ABCD 是平行四边形,可以得到,再根据,即可得到,则答案可证;3OD ∴===26DE OD ==11682422AECD S DE AC ∴=⋅=⨯⨯=菱形BE DE CE =ADE ECF ∠∠=AED CEF ∠=∠ADE ECF V V ≌(2)先证明,根据相似三角形的性质得出,,进而得出,由得,则答案可解.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴,,∴,∵点E 为DC 的中点,∴,在和中∴,∴,∴;(2)∵四边形ABCD 是平行四边形,点E 为DC 的中点,∴,,∴,,∴,∵的面积为2, ∴,即, ∵ ∴, ∴, ∴,∴.CEG ABG V :V 8ABG S =V 12AG AB GC CE ==4BGC S =V ABC ABG BCG S S S =+V V V 12ABC S =△//B AD C AD BC =ADE ECF ∠∠=DE CE =ADE V ECF △ADE ECF DE CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ADE ECF ASA V V ≌AD CF =BC CF =//AB DC 2AB EC =GEC ABG ∠=∠GCE GAB ∠=∠CEG ABG V :V GEC V 221124ABG CEG S AB S CE ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭V V 4428ABG CEG S S ==⨯=V V CEG ABG V :V 12AG AB GC CE ==118422BGC ABG S S ==⨯=V V 8412ABC ABG BCG S S S =+=+=V V V 221224ABCD ABC S S ==⨯=Y V8. (2021•新疆)如图,在矩形ABCD 中,点E 在边BC 上,点F 在BC 的延长线上,且.求证:(1);(2)四边形AEFD 是平行四边形.【答案】(1)证明过程见解析;(2)证明过程见解析.9.(2021•浙江省绍兴市)问题:如图,在▱ABCD 中,AB =8,∠DAB ,∠ABC 的平分线AE ,F ,求EF 的长.答案:EF =2.探究:(1)把“问题”中的条件“AB =8”去掉,其余条件不变.①当点E 与点F 重合时,求AB 的长;②当点E 与点C 重合时,求EF 的长.(2)把“问题”中的条件“AB =8,AD =5”去掉,其余条件不变,D ,E ,F 相邻两点间的距离相等时,求的值.【分析】(1)①证∠DEA =∠DAE ,得DE =AD =5,同理BC =CF =5,即可求解; ②由题意得DE =DC =5,再由CF =BC =5,即可求解;(2)分三种情况,由(1)的结果结合点C ,D ,E ,F 相邻两点间的距离相等,分别求解即可.【解答】解:(1)①如图1所示:BE CF ABE DCF △≌△∵四边形ABCD是平行四边形,∴CD=AB=8,BC=AD=5,∴∠DEA=∠BAE,∵AE平分∠DAB,∴∠DAE=∠BAE,∴∠DEA=∠DAE,∴DE=AD=5,同理:BC=CF=5,∵点E与点F重合,∴AB=CD=DE+CF=10;②如图3所示:∵点E与点C重合,∴DE=DC=5,∵CF=BC=5,∴点F与点D重合,∴EF=DC=5;(2)分三种情况:①如图3所示:同(1)得:AD=DE,∵点C,D,E,F相邻两点间的距离相等,∴AD=DE=EF=CF,∴=;②如图4所示:同(1)得:AD=DE=CF,∵DF=FE=CE,∴=;③如图5所示:同(1)得:AD=DE=CF,∵DF=DC=CE,∴=2;综上所述,的值为或.。
中考数学《多边形和平行四边形》专题含解析

多边形和平行四边形一、填空题1.如图,□ABCD中,∠B=50°,AB=5cm,BC=7cm,则∠D=度,□ABCD的周长为cm.2.如图:□ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为cm.3.如图,在□ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC的长为.二、选择题4.如图,已知□ABCD的两条对角线AC与BD交于平面直角坐标系的原点,点A的坐标为(﹣2,3),则点C的坐标为()A.(﹣3,2)B.(﹣2,﹣3)C.(3,﹣2)D.(2,﹣3)5.在四边形ABCD中,O是对角线交点,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC,AD=BC B.AB=DC,AD=BC C.AB∥DC,AD=BC D.OA=OC,OD=OB 6.如图,一个四边形花坛ABCD,被两条线段MN,EF分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S1,S2,S3,S4,若MN∥AB∥DC,EF∥DA∥CB,则有()A.S1=S4B.S1+S4=S2+S3C.S1S4=S2S3D.都不对7.如图,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()A.S△AFD=2S△EFB B.BF=DFC.四边形AECD是等腰梯形D.∠AEB=∠ADC三、解答题8.如图,在□ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.9.已知:□ABCD的对角线交于点O,点P是直线BD上任意一点(异于B、O、D三点),过P点作平行于AC的直线,交直线AD于E,交直线AB于F.(1)若点P在线段BD上(如图所示),试说明:AC=PE+PF;(2)若点P在BD或DB的延长线上,试探究AC、PE、PF满足的等量关系式(只写出结论,不作证明).10.如图,ABCD是矩形纸片,翻折∠B,∠D,使BC,AD恰好落在AC上.设F,H分别是B,D落在AC上的两点,E,G分别是折痕CE,AG与AB,CD的交点.(1)求证:四边形AECG是平行四边形;(2)若AB=4cm,BC=3cm,求线段EF的长.11.如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒1cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD.(1)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;(2)当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动.过Q作直线QN,使QN∥PM.设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD 所得图形的面积为Scm2.①求S关于t的函数关系式;②(附加题)求S的最大值.12.我们给出如下定义:如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.(1)如图2,已知平行四边形ABCD,请你在图2中画出一个只有一对等高点的四边形ABCE(要求:画出必要的辅助线);(2)已知P是四边形ABCD对角线BD上任意一点(不与B、D点重合),请分别探究图3、图4中S1,S2,S3,S4四者之间的等量关系(S1,S2,S3,S4分别表示△ABP,△CBP,△CDP,△ADP的面积):①如图3,当四边形ABCD只有一对等高点A、C时,你得到的一个结论是;②如图4,当四边形ABCD没有等高点时,你得到的一个结论是.13.四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图1,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD 的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点.(尺规作图,保留作图痕迹,不要求写作法)(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.试说明点P是四边形ABCD的准等距点.(4)试研究四边形的准等距点个数的情况.(说出相应四边形的特征及此时准等距点的个数,不必证明)14.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).多边形和平行四边形参考答案与试题解析一、填空题1.如图,□ABCD中,∠B=50°,AB=5cm,BC=7cm,则∠D=50度,□ABCD的周长为24cm.【考点】平行四边形的性质.【分析】根据平行边形性质中对角、对边相等可知,∠B=∠D=50°,平行四边形的周长=2(AB+BC).【解答】解:①∵四边形ABCD是平行四边形,∴∠D=∠B∵∠B=50°∴∠D=50°②∵四边形ABCD是平行四边形,∴AD=BC,AB=CD∵AB=5cm,BC=7cm∴□ABCD的周长为:2(AB+BC)=24cm.故答案为50、24.【点评】本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.2.如图:□ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为8cm.【考点】平行四边形的性质.【分析】平行四边形的周长为相邻两边之和的2倍,即2(AB+BC)=28,则AB+BC=14cm,而△ABC的周长=AB+BC+AC=22,所以AC=22﹣14=8cm.【解答】解:∵□ABCD的周长是28 cm∴AB+AD=14cm∵△ABC的周长是22cm∴AC=22﹣(AB+AC)=8cm故答案为8.【点评】在应用平行四边形的性质解题时,要根据具体问题,有选择地使用,避免混淆性质,以致错用性质.3.如图,在□ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC的长为2.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质.【专题】计算题.【分析】作EF∥AB,交AD于F,可证ABEF、CDFE为平行四边形,又AE平分∠BAD,可进一步证明AB=BE,ABEF为菱形,则AF=AB=3,DF=5﹣3=2,则EC=2.【解答】解:过点E作EF∥AB,交AD于F∵在□ABCD,EF∥AB∴AB=EF,AF=BE∵∠FAE=∠BAE∴△AFE≌△ABE∴AB=BE=EF=AF∴ABEF为菱形∴EC=AD﹣AB=2.故答案为:2.【点评】此题综合性较强,考查了平行四边形的判定及性质、菱形的判定、角平分线的定义等知识点.二、选择题(共4小题,每小题4分,满分16分)4.如图,已知□ABCD的两条对角线AC与BD交于平面直角坐标系的原点,点A的坐标为(﹣2,3),则点C的坐标为()A.(﹣3,2)B.(﹣2,﹣3)C.(3,﹣2)D.(2,﹣3)【考点】平行四边形的性质;坐标与图形性质.【分析】根据平行四边形是中心对称的特点可知,点A与点C关于原点对称,所以C的坐标为(2,﹣3).【解答】解:∵在平行四边形ABCD中,A点与C点关于原点对称∴C点坐标为(2,﹣3).故选D.【点评】主要考查了平行四边形的性质和坐标与图形的关系.要会根据平行四边形的性质得到点A与点C关于原点对称的特点,是解题的关键.5.在四边形ABCD中,O是对角线交点,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC,AD=BC B.AB=DC,AD=BC C.AB∥DC,AD=BC D.OA=OC,OD=OB【考点】平行四边形的判定.【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.不能判定四边形ABCD是平行四边形的是C【解答】解:A、根据一组对边平行且相等的四边形是平行四边形,可以判定,故正确;B、根据平行四边形的定义即可判定,故正确;C、一组对边平行,另一组对边相等的四边形,等腰梯形满足条件.故该选项错误.D、根据对角线互相平分的四边形是平行四边形可以判定.故正确.故选C.【点评】此题主要考查对平行四边形的判定掌握的熟练程度.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.6.如图,一个四边形花坛ABCD,被两条线段MN,EF分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S1,S2,S3,S4,若MN∥AB∥DC,EF∥DA∥CB,则有()A.S1=S4B.S1+S4=S2+S3C.S1S4=S2S3D.都不对【考点】平行四边形的性质.【专题】应用题;压轴题.【分析】由于在平行四边形中,已给出条件MN∥AB∥DC,EF∥DA∥CB,因此,MN、EF把一个平行四边形分割成四个小平行四边形,所以红、紫四边形的高相等,由此可证明S1S4=S2S3.【解答】解:设红、紫四边形的高相等为h1,黄、白四边形的高相等,高为h2,则S1=DE•h1,S2=AF•h2,S3=EC•h1,S4=FB•h2,因为DE=AF,EC=FB,故A错误;S1+S4=DE•h1+FB•h2=AF•h1+FB•h2,S2+S3=AF•h2+EC•h1=AF•h2+FB•h1,故B错误;S1S4=DE•h1•FB•h2=AF•h1•FB•h2,S2S3=AF•h2•EC•h1=AF•h2•FB•h1,所以S1S4=S2S3,故C正确;故选:C.【点评】本题考查的是平行四变形的性质,平行四边形两组对边分别平行且相等,同时充分利用等量相加减原理解题,否则容易从直观上判断B是正确的.7.如图,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()A.S△AFD=2S△EFB B.BF=DFC.四边形AECD是等腰梯形D.∠AEB=∠ADC【考点】平行四边形的性质;相似三角形的判定与性质.【专题】压轴题.【分析】本题要综合分析,但主要依据都是平行四边形的性质.【解答】解:A、∵AD∥BC∴△AFD∽△EFB∴====4S△EFB;故S△AFDB、由A中的相似比可知,BF=DF,正确.C、由∠AEC=∠DCE可知正确.D、利用等腰三角形和平行的性质即可证明.故选:A.【点评】解决本题的关键是利用相似求得各对应线段的比例关系.三、解答题8.如图,在□ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【专题】证明题;探究型.【分析】(1)由已知条件可得△AED,△CFB是正三角形,可得∠AEC=∠BFC=60°,∠EAF=∠FCE=120°,所以四边形AFCE是平行四边形.(2)上述结论还成立,可以证明△ADE≌△CBF,可得∠AEC=∠BFC,∠EAF=∠FCE,所以四边形AFCE是平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°.∴∠ADE=∠CBF=60°.∵AE=AD,CF=CB,∴△AED,△CFB是正三角形.∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.∴四边形AFCE是平行四边形.(2)解:上述结论还成立.证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=AB.∴∠ADE=∠CBF.∵AE=AD,CF=CB,∴∠AED=∠ADE,∠CFB=∠CBF.∴∠AED=∠CFB.又∵AD=BC,在△ADE和△CBF中.,∴△ADE≌△CBF(AAS).∴∠AED=∠BFC,∠EAD=∠FCB.又∵∠DAB=∠BCD,∴∠EAF=∠FCE.∴四边形EAFC是平行四边形.【点评】本题考查了等边三角形的性质及平行四边形的判定.多种知识综合运用是解题中经常要遇到的.9.已知:□ABCD的对角线交于点O,点P是直线BD上任意一点(异于B、O、D三点),过P点作平行于AC的直线,交直线AD于E,交直线AB于F.(1)若点P在线段BD上(如图所示),试说明:AC=PE+PF;(2)若点P在BD或DB的延长线上,试探究AC、PE、PF满足的等量关系式(只写出结论,不作证明).【考点】平行线分线段成比例;平行四边形的判定与性质.【专题】证明题;探究型.【分析】(1)先判定四边形AFGC是平行四边形,再根据平行四边形的对边相等的性质知AC=FG;然后由被平行线所截的线段对应成比例(==)求出PE与PG的数量关系,解答到此,来证明AC=PE+PF的问题就迎刃而解了.(2)推理类同于(1).【解答】证明:(1)延长FP交DC于点G,∵AB∥CD,AC∥FG,∴四边形AFGC是平行四边形,∴AC=FG(平行四边形的对边相等),∵EG∥AC,∴==(被平行线所截的线段对应成比例);又∵OA=OC,∴PE=PG,∴AC=FG=PF+PG=PE+PF;(2)若点P在BD延长线上,AC=PF﹣PE.如下图所示若点P在DB延长线上,AC=PE﹣PF.如下图所示..【点评】本题主要考查了平行四边形的判定与性质.10.如图,ABCD是矩形纸片,翻折∠B,∠D,使BC,AD恰好落在AC上.设F,H分别是B,D落在AC上的两点,E,G分别是折痕CE,AG与AB,CD的交点.(1)求证:四边形AECG是平行四边形;(2)若AB=4cm,BC=3cm,求线段EF的长.【考点】翻折变换(折叠问题);解一元二次方程﹣公式法;勾股定理;平行四边形的判定;相似三角形的判定与性质.【专题】几何综合题.【分析】(1)根据:两组对边分别平行的四边形是平行四边形,证明AG∥CE,AE∥CG 即可;(2)解法1:在Rt△AEF中,运用勾股定理可将EF的长求出;解法2,通过△AEF∽△ACB,可将线段EF的长求出.【解答】(1)证明:在矩形ABCD中,∵AD∥BC,∴∠DAC=∠BCA.由题意,得∠GAH=∠DAC,∠ECF=∠BCA.∴∠GAH=∠ECF,∴AG∥CE.又∵AE∥CG,∴四边形AECG是平行四边形.(2)解法1:在Rt△ABC中,∵AB=4,BC=3,∴AC=5.∵CF=CB=3,∴AF=2.在Rt△AEF中,设EF=x,则AE=4﹣x.根据勾股定理,得AE2=AF2+EF2,即(4﹣x)2=22+x2.解得x=,即线段EF长为cm.解法2:∵∠AFE=∠B=90°,∠FAE=∠BAC,∴△AEF∽△ACB,∴.∴,解得,即线段EF长为cm.【点评】本题考查图形的折叠变化,关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.11.如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒1cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD.(1)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;(2)当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动.过Q作直线QN,使QN∥PM.设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD 所得图形的面积为Scm2.①求S关于t的函数关系式;②(附加题)求S的最大值.【考点】二次函数综合题;平行四边形的性质.【专题】压轴题.【分析】(1)在三角形AEP中,AP=2,∠A=60°,利用三角函数可求出AE和PE,即可求出面积;(2)①此题应分情况讨论,因为两个动点运动速度不同,所以有点P与点Q都在AB 上运动、点P在BC上运动点Q仍在AB上运动、点P和点Q都在BC上运动三种情况,在每种情况下可利用三角函数分别求出我们所需要的值,进而求解.②在①的基础上,首先①求出函数关系式之后,根据t的取值范围不同函数最大值也不同.【解答】解:(1)当点P运动2秒时,AP=2cm,由∠A=60°,知AE=1,PE=.(2分)=;∴S△APE(2)①当0≤t<6时,点P与点Q都在AB上运动,如图所示:设PM与AD交于点G,QN与AD交于点F,则AQ=t,AF=,QF=t,AP=t+2,AG=1+,PG=+t.∴此时两平行线截平行四边形ABCD的面积为S=t+;②当6≤t<8时,点P在BC上运动,点Q仍在AB上运动.如图所示:设PM与DC交于点G,QN与AD交于点F,则AQ=t,AF=,DF=4﹣,QF=t,BP=t﹣6,CP=10﹣t,PG=(10﹣t),而BD=4,故此时两平行线截平行四边形ABCD的面积为S=﹣t2+10t﹣34,③当8≤t≤10时,点P和点Q都在BC上运动.如图所示:设PM与DC交于点G,QN与DC交于点F,则CQ=20﹣2t,QF=(20﹣2t),CP=10﹣t,PG=(10﹣t).∴此时两平行线截平行四边形ABCD的面积为S=.(14分)故S关于t的函数关系式为;②(附加题)当0≤t<6时,S的最大值为,(1分)当6≤t<8时,S的最大值为6,(舍去),(2分)当8≤t≤10时,S的最大值为6,(3分)所以当t=8时,S有最大值为6.(如正确作出函数图象并根据图象得出最大值,同样给4分)【点评】此题解答需数形结合,把函数知识和几何知识紧密联系在一起,难易程度适中.12.我们给出如下定义:如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.(1)如图2,已知平行四边形ABCD,请你在图2中画出一个只有一对等高点的四边形ABCE(要求:画出必要的辅助线);(2)已知P是四边形ABCD对角线BD上任意一点(不与B、D点重合),请分别探究图3、图4中S1,S2,S3,S4四者之间的等量关系(S1,S2,S3,S4分别表示△ABP,△CBP,△CDP,△ADP的面积):①如图3,当四边形ABCD只有一对等高点A、C时,你得到的一个结论是S1+S4=S2+S3,S1+S3=S2+S4或S1×S3=S2×S4或;②如图4,当四边形ABCD没有等高点时,你得到的一个结论是S1×S3=S2×S4或.【考点】作图—应用与设计作图.【专题】压轴题;新定义;开放型.【分析】(1)在BD上任选一点E(不与B、D重合),连接AE、CE即可;(2)根据等底等高,可得结论:①S1+S4=S2+S3,S1+S3=S2+S4或S1×S3=S2×S4或等.②S1×S3=S2×S4或等.【解答】解:(1)比如:(2)①S1+S4=S2+S3,S1+S3=S2+S4或S1×S3=S2×S4或等.②∵分别作△ABD与△BCD的高,h1,h2,则=,=,∴S1×S3=S2×S4或等.【点评】此题主要考查学生的阅读理解能力和对等底等高知识的灵活应用.13.四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图1,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD 的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点.(尺规作图,保留作图痕迹,不要求写作法)(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.试说明点P是四边形ABCD的准等距点.(4)试研究四边形的准等距点个数的情况.(说出相应四边形的特征及此时准等距点的个数,不必证明)【考点】作图—复杂作图;全等三角形的判定.【专题】压轴题;新定义.【分析】(1)根据菱形的对角线互相垂直平分,根据线段垂直平分线的性质,则只需要在其中一条对角线上找到和对角线的交点不重合的点即可;(2)根据到线段两个端点距离相等的点在线段的垂直平分线上,则可作对角线BD的垂直平分线和另一条对角线所在的直线的交点即为所求作;(3)只需说明PD=PB即可.根据已知的条件可以根据AAS证明△DCF≌△BCE,则∠CDB=∠CBD,进而得到∠PDB=∠PBD,证明结论即可;(4)根据上述确定准等距点的方法:即作其中一条对角线的垂直平分线和另一条对角线所在的直线的交点.所以分析讨论的时候,主要是根据两条对角线的位置关系进行分析讨论.【解答】解:(1)如图2,点P即为所画点;(1分)(2)如图3,点P即为所作点(作法不唯一);(2分)(3)连接DB.在△DCF与△BCE中,∠DCF=∠BCE,∠CDF=∠CBE,CF=CE.∴△DCF≌△BCE(AAS),∴CD=CB,∴∠CDB=∠CBD,∴∠PDB=∠PBD,∴PD=PB,∵PA≠PC,∴点P是四边形ABCD的准等距点.(4)①当四边形的对角线互相垂直且任何一条对角线不平分另一对角线或者对角线互相平分且不垂直时,准等距点的个数为0个;②当四边形的对角线不互相垂直,又不互相平分,且有一条对角线的中垂线经过另一对角线的中点时,准等距点的个数为1个;③当四边形的对角线既不互相垂直又不互相平分,且任何一条对角线的中垂线都不经过另一条对角线的中点时,准等距点的个数为2个;④四边形的对角线互相垂直且至少有一条对角线平分另一对角线时,准等距点有无数个.(7分)【点评】关键是熟悉菱形的性质,能够根据线段垂直平分线的性质的逆定理进行分析作图,能够根据找准等距点的方和四边形中两条对角线的位置关系判断准等距点的个数.14.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).【考点】平行四边形的性质;全等三角形的判定与性质.【专题】压轴题;探究型.【分析】连接BE,根据边角边可证△PAM和△EBM全等,可得EB和PA既平行又相等,而PA和CD既平行且相等,所以DE和BC平行相等,又因为BC⊥AC,所以DE也和AC 垂直.以下几种情况虽然图象有所变化,但是证明方法一致.【解答】解:(1)DE∥BC,DE=BC,DE⊥AC.(2)如图4,如图5.(3)方法一:如图6,连接BE,∵PM=ME,AM=MB,∠PMA=∠EMB,∴△PMA≌△EMB.∵PA=BE,∠MPA=∠MEB,∴PA∥BE.∵平行四边形PADC,∴PA∥DC,PA=DC.∴BE∥DC,BE=DC,∴四边形DEBC是平行四边形.∴DE∥BC,DE=BC.∵∠ACB=90°,∴BC⊥AC,∴DE⊥AC.方法二:如图7,连接BE,PB,AE,∵PM=ME,AM=MB,∴四边形PAEB是平行四边形.∴PA∥BE,PA=BE,余下部分同方法一:方法三:如图8,连接PD,交AC于N,连接MN,∵平行四边形PADC,∴AN=NC,PN=ND.∵AM=BM,AN=NC,∴MN∥BC,MN=BC.又∵PN=ND,PM=ME,∴MN∥DE,MN=DE.∴DE∥BC,DE=BC.∵∠ACB=90°,∴BC⊥AC.∴DE⊥AC.(4)如图9,DE∥BC,DE=BC.【点评】此题主要考查了平行四边形的性质和判定,以及全等的应用,难易程度适中.。
专题17 多边形与平行四边形(共27题)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题17多边形与平行四边形(27题)一、单选题1.(2023·湖南·统考中考真题)如图,在四边形ABCD 中,BC ∥AD ,添加下列条件,不能判定四边形ABCD 是平行四边形的是()A .AB =CDB .AB ∥CDC .∠A =∠CD .BC =AD【答案】A 【分析】依据平行四边形的判定,依次分析判断即可得出结果.【详解】解:A 、当BC ∥AD ,AB =CD 时,不能判定四边形ABCD 是平行四边形,故此选项符合题意;B 、当AB ∥CD ,BC ∥AD 时,依据两组对边分别平行的四边形是平行四边形,能判定四边形ABCD 是平行四边形,故此选项不合题意;C 、当BC ∥AD ,∠A =∠C 时,可推出AB ∥DC ,依据两组对边分别平行的四边形是平行四边形,能判定四边形ABCD 是平行四边形,故此选项不合题意;D 、当BC ∥AD ,BC =AD 时,依据一组对边平行且相等的四边形是平行四边形,能判定四边形ABCD 是平行四边形,故此选项不合题意;故选:A .【点睛】此题考查了平行四边形的判定,解决问题的关键要熟记平行四边形的判定方法.2.(2023·湖南永州·统考中考真题)下列多边形中,内角和等于360︒的是()A .B .C .D .【答案】B【分析】根据n 边形内角和公式()2180n -⋅︒分别求解后,即可得到答案【详解】解:A .三角形内角和是180︒,故选项不符合题意;B .四边形内角和为()42180360-⨯︒=︒,故选项符合题意;C .五边形内角和为()52180540-⨯︒=︒,故选项不符合题意;D .六边形内角和为()62180720-⨯︒=︒,故选项不符合题意.故选:B .【点睛】此题考查了n 边形内角和,熟记n 边形内角和公式()2180n -⋅︒是解题的关键.3.(2023·湖南·统考中考真题)如图,在四边形ABCD 中,AB CD ∥,若添加一个条件,使四边形ABCD 为平形四边形,则下列正确的是()A .AD BC=B .ABD BDC ∠=∠C .AB AD =D .A C∠=∠【答案】D 【分析】根据平行四边形的判定定理逐项分析判断即可求解.【详解】解:A .根据AB CD ∥,AD BC =,不能判断四边形ABCD 为平形四边形,故该选项不正确,不符合题意;B .∵AB CD ∥,∴ABD BDC ∠=∠,不能判断四边形ABCD 为平形四边形,故该选项不正确,不符合题意;C .根据AB CD ∥,AB AD =,不能判断四边形ABCD 为平形四边形,故该选项不正确,不符合题意;D .∵AB CD ∥,∴180ABC C ∠+∠=︒,∵A C∠=∠∴180ABC A ∠+∠=︒,∴AD BC∥∴四边形ABCD 为平形四边形,故该选项正确,符合题意;故选:D .【点睛】本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.4.(2023·内蒙古通辽·统考中考真题)如图,用平移方法说明平行四边形的面积公式S ah =时,若ABE 平移到DCF ,4a =,3h =,则ABE 的平移距离为()A .3B .4C .5D .12【答案】B 【分析】根据平移的方向可得,ABE 平移到DCF ,则点A 与点D 重合,故ABE 的平移距离为AD 的长.【详解】解:用平移方法说明平行四边形的面积公式S ah =时,将ABE 平移到DCF ,故平移后点A 与点D 重合,则ABE 的平移距离为4AD a ==,故选:B .【点睛】本题考查了平移的性质,熟练掌握平移的性质是解题的关键.5.(2023·四川泸州·统考中考真题)如图,ABCD Y 的对角线AC ,BD 相交于点O ,ADC ∠的平分线与边AB 相交于点P ,E 是PD 中点,若4=AD ,6CD =,则EO 的长为()A .1B .2C .3D .4【答案】A 【分析】根据平行四边形的性质、平行线的性质、角平分线的定义以及等腰三角形的判定可得4AP AD ==,进而可得2BP =,再根据三角形的中位线解答即可.【详解】解:∵四边形ABCD 是平行四边形,6CD =,∴AB CD ,6AB CD ==,DO BO =,∴CDP APD ∠=∠,∵PD 平分ADC ∠,∴ADP CDP ∠=∠,∴ADP APD ∠=∠,∴4AP AD ==,∴642BP AB AP =-=-=,∵E 是PD 中点,∴112OE BP ==;A .AC BD=B .【答案】B 【分析】根据平行四边形的性质逐项分析判断即可求解.【详解】∵四边形ABCD A.AC BD =,不一定成立,故该选项不正确,不符合题意;B.OA OC =,故该选项正确,符合题意;A .60︒B 【答案】D 【分析】先计算正五边形的内角,再计算正五边形的中心角,作差即可.【详解】∵180BAE ∠=︒∴180BAE COD ∠-∠=【点睛】本题考查了正五边形的外角,内角,中心角的计算,熟练掌握计算公式是解题的关键.二、填空题8.(2023·云南·统考中考真题)五边形的内角和是________度.【答案】540【分析】根据n 边形内角和为()2180n -⨯︒求解即可.【详解】五边形的内角和是()52180540-⨯︒=︒.故答案为:540.【点睛】本题考查求多边形的内角和.掌握n 边形内角和为()2180n -⨯︒是解题关键.9.(2023·新疆·统考中考真题)若正多边形的一个内角等于144︒,则这个正多边形的边数是______.【答案】10【分析】本题需先根据已知条件设出正多边形的边数,再根据正多边形的计算公式得出结果即可.【详解】解:设这个正多边形是正n 边形,根据题意得:()2180144n n -⨯︒÷=︒,解得:10n =.故答案为:10.【点睛】本题主要考查了正多边形的内角,在解题时要根据正多边形的内角公式列出式子是本题的关键.10.(2023·上海·统考中考真题)如果一个正多边形的中心角是20︒,那么这个正多边形的边数为________.【答案】18【分析】根据正n 边形的中心角的度数为360n ︒÷进行计算即可得到答案.【详解】根据正n 边形的中心角的度数为360n ︒÷,则3602018n =÷=,故这个正多边形的边数为18,故答案为:18.【点睛】本题考查的是正多边形内角和中心角的知识,掌握中心角的计算公式是解题的关键.11.(2023·江苏扬州·统考中考真题)如果一个正多边形的一个外角是60°,那么这个正多边形的边数是_____.【答案】6【答案】14【分析】由平行四边形的性质推出似三角形的性质求解即可.【详解】解:如图,由题意得∴DF BC ∥,DE AC ∥∴ ∽ADF ABC ,BDE △∴13DF AD BC AB ==,DE AC =∵69AC BC ==,,∴3DF =,4DE =,∵四边形DECF 平行四边形,∴平行四边形DECF 纸片的周长是故答案为:14.【点睛】本题考查了平行四边形的性质,相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题.13.(2023·湖南·统考中考真题)如图,在平行四边形点E ,则DE 的长为_____________【答案】2【分析】根据平行四边形的性质可得AD BC ∥,则AEB CBE ∠=∠,再由角平分线的定义可得ABE CBE ∠=∠,从而求得AEB ABE ∠=∠,则AE AB =,从而求得结果.【详解】解:∵四边形ABCD 是平行四边形,∴AD BC ∥,∴AEB CBE ∠=∠,∵B ∠的平分线BE 交AD 于点E ,∴ABE CBE ∠=∠,∴AEB ABE ∠=∠,∴AE AB =,∵3AB =,5BC =,∴===53=2DE AD AE BC AB ---,故答案为:2.【点睛】本题考查平行四边形的性质、角平分线的定义、等腰三角形的判定,掌握平行四边形的性质是解题的关键.14.(2023·重庆·统考中考真题)如图,在正五边形ABCDE 中,连接AC ,则∠BAC 的度数为_____.【答案】36°【分析】首先利用多边形的内角和公式求得正五边形的内角和,再求得每个内角的度数,利用等腰三角形的性质可得∠BAC 的度数.【详解】正五边形内角和:(5﹣2)×180°=3×180°=540°∴5401085B ︒︒∠==,【答案】10【分析】由平行四边形的性质可得DC 可得()AAS DOF BOE ≌△△可得DF 【详解】解:∵ABCD 中,∴,DC AB DC AB =∥,∴,OFD OEB ODF EBO ∠=∠∠=∠,∵OD OB =,∴()AAS DOF BOE ≌△△,∴DF EB =,FC AE =17.(2023·山东·统考中考真题)已知一个多边形的内角和为540°,则这个多边形是______边形.【答案】5【详解】设这个多边形是n 边形,由题意得,(n -2)×180°=540°,解之得,n =5.18.(2023·甘肃兰州·统考中考真题)如图,在ABCD Y 中,BD CD =,AE BD ⊥于点E ,若70C ∠=︒,则BAE ∠=______︒.【答案】50【分析】证明70DBC C ∠=∠=︒,18027040BDC ∠=︒-⨯︒=︒,由AB CD ∥,可得40ABE BDC ∠=∠=︒,结合AE BD ⊥,可得904050BAE ∠=︒-︒=︒.【详解】解:∵BD CD =,70C ∠=︒,∴70DBC C ∠=∠=︒,18027040BDC ∠=︒-⨯︒=︒,∵ABCD Y ,∴AB CD ∥,∴40ABE BDC ∠=∠=︒,∵AE BD ⊥,∴904050BAE ∠=︒-︒=︒;故答案为:50【点睛】本题考查的是等腰三角形的性质,平行四边形的性质,三角形的内角和定理的应用,熟记基本几何图形的性质是解本题的关键.19.(2023·吉林长春·统考中考真题)如图,将正五边形纸片ABCDE 折叠,使点B 与点E 重合,折痕为AM ,展开后,再将纸片折叠,使边AB 落在线段AM 上,点B 的对应点为点B ',折痕为AF ,则AFB '∠的大小为__________度.【答案】45【分析】根据题意求得正五边形的每一个内角为在AFB 'V 中,根据三角形内角和定理即可求解.【详解】解:∵正五边形的每一个内角为将正五边形纸片ABCDE 折叠,使点则111085422BAM BAE ∠=∠=⨯︒=∵将纸片折叠,使边AB 落在线段∴11542722FAB BAM '∠=∠=⨯︒=在AFB 'V 中,180AFB B '∠=︒-∠故答案为:45.【点睛】本题考查了折叠的性质,正多边形的内角和的应用,熟练掌握折叠的性质是解题的关键.20.(2023·重庆·统考中考真题)若七边形的内角中有一个角为【答案】800︒/800度【分析】根据多边形的内角和公式【详解】解:∵七边形的内角中有一个角为∴其余六个内角之和为(1807︒⨯-故答案为:800︒.【点睛】本题考查了多边形的内角和,熟记多边形的内角和公式是解题关键.三、解答题21.(2023·四川自贡·统考中考真题)在平行四边形ABCD 中,点E 、F 分别在边AD 和BC 上,且DE BF =.求证:AF CE =.【答案】见解析【分析】平行四边形的性质得到,AD BC AD BC = ,进而推出AE CF =,得到四边形AECF 是平行四边形,即可得到AF EC =.【详解】解: 四边形ABCD 是平行四边形,∴,AD BC AD BC = ,BE DF =,AE CF ∴=,∴,AE CF AE CF=∥∴四边形AECF 是平行四边形,AF CE ∴=.【点睛】本题考查平行四边形的判定和性质.熟练掌握平行四边形的判定方法,是解题的关键.22.(2023·湖南·统考中考真题)如图所示,在ABC 中,点D 、E 分别为AB AC 、的中点,点H 在线段CE 上,连接BH ,点G 、F 分别为BH CH 、的中点.(1)求证:四边形DEFG 为平行四边形(2)32DG BH BD EF ⊥==,,,求线段BG 的长度.【答案】(1)见解析(2)5【分析】(1)由三角形中位线定理得到1,2DE BC DE BC =∥,1,2GF BC GF BC =∥,得到,GF DE GF DE =∥,即可证明四边形DEFG 为平行四边形;(2)由四边形DEFG 为平行四边形得到2DG EF ==,由DG BH ⊥得到90DGB ∠=︒,由勾股定理即可得(1)求证:四边形AECF是平行四边形.(2)若ABE的面积等于2,求【答案】(1)见解析(2)1【分析】(1)根据平行四边形对角线互相平分可得可证明四边形AECF是平行四边形;(2)根据等底等高的三角形面积相等可得11121222CFO CEF AEF S S S ===⨯= .【详解】(1)证明: 四边形ABCD 是平行四边形,∴OA OC =,OB OD =,BE FD =,∴OB BE OD FD -=-,∴OE OF =,又 OA OC =,∴四边形AECF 是平行四边形.(2)解: 2ABE S = ,BE EF =,∴2AEF ABE S S == ,四边形AECF 是平行四边形,∴11121222CFO CEF AEF S S S ===⨯= .【点睛】本题考查平行四边形的判定与性质,解题的关键是掌握平行四边形的对角线互相平分.24.(2023·山东·统考中考真题)如图,在ABCD Y 中,AE 平分BAD ∠,交BC 于点E ;CF 平分BCD ∠,交AD 于点F .求证:AE CF =.【答案】证明见解析【分析】由平行四边形的性质得B D ∠=∠,AB CD =,AD BC ∥,由平行线的性质和角平分线的性质得出BAE DCF ∠=∠,可证BAE DCF ≌△△,即可得出AE CF =.【详解】证明:∵四边形ABCD 是平行四边形,∴B D ∠=∠,AB CD =,BAD DCB ∠=∠,AD BC ∥,∵AE 平分BAD ∠,CF 平分BCD ∠,∴BAE DAE BCF DCF ∠=∠=∠=∠,在BAE 和DCF 中,已知:如图,四边形ABCD 求证:OE OF =.证明:∵四边形ABCD ∴DC AB ∥.∴ECO ∠=①.∵EF 垂直平分AC ,∴②.又EOC ∠=___________∴()COE AOF ASA ∆≅∆【分析】根据线段垂直平分线的画法作图,再推理证明即可并得到结论.【详解】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠.∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.【点睛】此题考查了平行四边形的性质,作线段的垂直平分线,全等三角形的判定和性质,熟练掌握平行四边形的性质及线段垂直平分线的作图方法是解题的关键.26.(2023·四川南充·统考中考真题)如图,在ABCD Y 中,点E ,F 在对角线AC 上,CBE ADF ∠=∠.求证:(1)AE CF =;(2)BE DF ∥.【答案】见解析【分析】(1)根据平行四边形的性质推出相应的线段和相应的角度相等,再利用已知条件求证ABE CDF ∠=∠,最后证明()ASA ABE CDF ≌△△即可求出答案.(2)根据三角形全等证明角度相等,再利用邻补角定义推出BEF EFD ∠=∠即可证明两直线平行.【详解】(1)证明: 四边形ABCD 为平行四边形,AB CD ∴∥,AB CD =,ABC ADC ∠=∠,BAE FCD \Ð=Ð.CBE ADF ∠=∠Q ,ABC ADC ∠=∠,ABE CDF ∴∠=∠.()ASA ABE CDF ∴ ≌.AE CF ∴=.(2)证明:由(1)得()ASA ABE CDF ≌△△,AEB CFD ∴∠=∠.180AEB BEF ∠+∠=︒Q ,180CFD EFD ∠+∠=︒,BEF EFD ∴∠=∠.BE DF ∴∥.【点睛】本题考查了平行四边形的性质,邻补角定义,三角形全等,平行线的判定,解题的关键在于熟练掌握平行四边形的性质.27.(2023·四川广安·统考中考真题)如图,在四边形ABCD 中,AC 与BD 交于点,O BE AC ⊥,DF AC ⊥,垂足分别为点E F 、,且,AF CE BAC DCA =∠=∠.求证:四边形ABCD 是平行四边形.【答案】见详解【分析】先证明()≌ASA AEB CFD ,再证明,AB CD AB CD =∥,再由平行四边形的判定即可得出结论.【详解】证明:BE AC ⊥ ,DF AC ⊥,90AEB CFD ∴∠=∠=︒,,,,AF CE AE AF EF CF CE EF ==-=- ,AE CF ∴=又BAC DCA ∠=∠ ,(ASA)∴≌,AEB CFD∴=,AB CD∠=∠,∵BAC ACD∴∥,AB CD四边形ABCD是平行四边形.【点睛】本题考查了平行四边形的判定、全等三角形的判定与性质等知识,熟练掌握平行四边形的判定,证明三角形全等是解题的关键.。
中考数学复习《多边形与平行四边形》

证明:∵BD垂直平分AC, ∴AB=BC,AD=DC.
在△ADB与△CDB中,
∴△ADB≌△CDB(SSS). ∴∠BCD=∠BAD. ∵∠BCD=∠ADF,∴∠BAD=∠ADF, ∴AB∥FD. ∵BD⊥AC,AF⊥AC,∴AF∥BD. ∴四边形ABDF是平行四边形.
考题再现
1. (2015广州)下列命题中,真命题的个数有 ( B )
(5)面积:①计算公式:S□=底×高=ah.
②平行四边形的对角线将四边形分成4个面积相等的三角形.
4. 平行四边形的判定 (1)定义法:两组对边分别平行的四边形是平行四边形. (2)两组对角分别相等的四边形是平行四边形. (3)两组对边分别相等的四边形是平行四边形. (4)对角线互相平分的四边形是平行四边形. (5)一组对边平行且相等的四边形是平行四边形. 5. 三角形中位线定理 (1)三角形的中位线:连接三角形两边的中点,所得线段叫 做该三角形的中位线. (2)三角形中位线定理:三角形的中位线平行于第三边并且 等于第三边的一半.
中考考点精讲精练
考点1 多边形的内角和与外角和
考点精讲
【例1】(2016临沂)一个正多边形的内角和为540°,则这
个正多边形的每一个外角等于
()
A. 108°
B. 90°
C. 72° D. 60°
思路点拨:首先设此多边形为n边形,根据题意,得180·
(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,
5. (2016梅州)如图1-4-6-6,平行
四边形ABCD中,BD⊥AD,∠A=45°, E,F分别是AB,CD上的点,且BE=DF, 连接EF交BD于点O. (1)求证:BO=DO; (2)若EF⊥AB,延长EF交AD的延长线于点G,当FG=1时,求 AE的长.
2022-2023 数学浙教版新中考 考点21多边形与平行四边形(解析版)

考点21多边形与平行四边形考点总结1.n 边形以及四边形的性质:(1)n 边形的内角和为(n -2)×180°(n ≥3),外角和为360°,对角线条数为n (n -3)2.(2)四边形的内角和为360°,外角和为360°,对角线条数为 2 .(3)正多边形的定义:各边相等、各内角也相等的多边形叫做正多边形.2.平行四边形的性质及判定:(1)性质:①平行四边形的两组对边分别平行且相等.②平行四边形的对角相等,邻角互补.③平行四边形的对角线互相平分.④平行四边形是中心对称图形.(2)判定:①定义:两组对边分别平行的四边形是平行四边形.②一组对边平行且相等的四边形是平行四边形.③两组对边分别相等的四边形是平行四边形.④两组对角分别相等的四边形是平行四边形.⑤对角线互相平分的四边形是平行四边形.3.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.4.在两条平行线中,一条直线上任意一点到另一条直线的距离,叫做两条平行线之间的距离.夹在两条平行线间的平行线段相等.真题演练一、单选题1.(2021·浙江衢州·中考真题)如图,在ABC 中,4AB =,5AC =,6BC =,点D ,E ,F 分别是AB ,BC ,CA 的中点,连结DE ,EF ,则四边形ADEF 的周长为( )A .6B .9C .12D .15【答案】B【分析】 根据中点的定义可得AD 、AF 的长,根据三角形中位线的性质可得DE 、EF 的长,即可求出四边形ADEF 的周长.【详解】∵4AB =,5AC =,6BC =,点D ,E ,F 分别是AB ,BC ,CA 的中点,∵AD =12AB =2,AF =1522AC =,DE 、EF 为∵ABC 的中位线, ∵EF =12AB =2,DE ==1522AC =, ∵四边形ADEF 的周长=2+2+5522+=9, 故选:B .2.(2021·浙江·中考真题)如图,已知在ABC 中,90ABC ∠<︒,,AB BC BE ≠是AC 边上的中线.按下列步骤作图:①分别以点,B C 为圆心,大于线段BC 长度一半的长为半径作弧,相交于点,M N ;①过点,M N 作直线MN ,分别交BC ,BE 于点,D O ;①连结,CO DE .则下列结论错误的是( )A .OB OC =B .BOD COD ∠=∠C .//DE ABD .DB DE =【答案】D【分析】 首先根据题意可知道MN 为线段BC 的中垂线,然后结合中垂线与中线的性质逐项分析即可.【详解】由题意可知,MN 为线段BC 的中垂线,∵O 为中垂线MN 上一点,∵OB =OC ,故A 正确;∵OB =OC ,∵∵OBC =∵OCB ,∵MN ∵BC ,∵∵ODB =∵ODC ,∵∵BOD =∵COD ,故B 正确;∵D 为BC 边的中点,BE 为AC 边上的中线,∵DE 为∵ABC 的中位线,∵DE ∵AB ,故C 正确;由题意可知DB =DC ,假设DB =DE 成立,则DB =DE =DC ,∵BEC =90°,而题干中只给出BE 是中线,无法保证BE 一定与AC 垂直,∵DB 不一定与DE 相等,故D 错误;故选:D .3.(2021·浙江宁波·中考真题)如图是一个由5张纸片拼成的ABCD ,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为1S ,另两张直角三角形纸片的面积都为2S ,中间一张矩形纸片EFGH 的面积为3S ,FH 与GE 相交于点O .当,,,AEO BFO CGO DHO 的面积相等时,下列结论一定成立的是( )A .12S SB .13S S =C .AB AD = D .EH GH =【答案】A【分析】 根据∵AED 和∵BCG 是等腰直角三角形,四边形ABCD 是平行四边形,四边形HEFG是矩形可得出AE =DE =BG =CG =a , HE =GF ,GH =EF ,点O 是矩形HEFG 的中心,设AE =DE =BG =CG =a , HE =GF = b ,GH =EF = c ,过点O 作OP ∵EF 于点P ,OQ ∵GF 于点Q ,可得出OP ,OQ 分别是∵FHE 和∵EGF 的中位线,从而可表示OP ,OQ 的长,再分别计算出1S ,2S ,3S 进行判断即可【详解】解:由题意得,∵AED 和∵BCG 是等腰直角三角形,∵45ADE DAE BCG GBC ∠=∠=∠=∠=︒∵四边形ABCD 是平行四边形,∵AD =BC ,CD =AB ,∵ADC =∵ABC ,∵BAD =∵DCB∵∵HDC =∵FBA ,∵DCH =∵BAF ,∵∵AED ∵∵CGB ,∵CDH ∵ABF∵AE =DE =BG =CG∵四边形HEFG 是矩形∵GH =EF ,HE =GF设AE =DE =BG =CG =a , HE =GF = b ,GH =EF = c过点O 作OP ∵EF 于点P ,OQ ∵GF 于点Q ,∵OP //HE ,OQ //EF∵点O 是矩形HEFG 的对角线交点,即HF 和E G 的中点,∵OP ,OQ 分别是∵FHE 和∵EGF 的中位线, ∵1122OP HE b ==,1122OQ EF c == ∵1111()()2224BOF S BF OQ a b c a b c ∆==-⨯=- 11112224AOE S AE OP a b ab ∆==⨯= ∵BOF AOE S S ∆∆=∵11()44a b c ab -=,即ac bc ab -= 而211122AED S S AE DE a ∆===,222211111()()()()22222AFB S S AF BF a c a b a ab ac bc a ab ab a ∆===+-=-+-=-+= 所以,12S S ,故选项A 符合题意,2223=()()S HE EF a b a c a bc ab ac a ab ab a =-+=--+=+-=∵13S S ≠,故选项B 不符合题意, 而AB AD =于EH GH =都不一定成立,故,C D 都不符合题意, 故选:A 4.(2021·浙江宁波·中考真题)如图,在ABC 中,45,60,B C AD BC ∠=︒∠=︒⊥于点D ,BD =E ,F 分别为AB ,BC 的中点,则EF 的长为( )A B C .1 D 【答案】C【分析】根据条件可知∵ABD 为等腰直角三角形,则BD =AD ,∵ADC 是30°、60°的直角三角形,可求出AC 长,再根据中位线定理可知EF =2AC 。
中考数学 真题精选 专题试卷 多边形与平行四边形(含答案解析) (含答案解析)

多边形与平行四边形一.选择题1.(,广东)下列所述图形中,既是中心对称图形,又是轴对称图形的是A.矩形B.平行四边形C.正五边形D.正三角形答案:A.分析:平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合。
60,则这个正多边形是2.(,湖北孝感)已知一个正多边形的每个外角等于A.正五边形B.正六边形C.正七边形D.正八边形考点:多边形内角与外角..分析:多边形的外角和等于360°,因为所给多边形的每个外角均相等,故又可表示成60°n,列方程可求解.解答:设所求正n边形边数为n,则60°•n=360°,解得n=6.故正多边形的边数是6.故选B.点评:本题考查根据多边形的外角和求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.3.(•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB 的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④ D.④⑤考点:三角形中位线定理;平行线之间的距离.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.解答:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选B.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.4.(•山西)如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC 的周长是()A.8 B.10 C.12 D.14考点:三角形中位线定理.分析:首先根据点D、E分别是边AB,BC的中点,可得DE是三角形BC的中位线,然后根据三角形中位线定理,可得DE=AC,最后根据三角形周长的含义,判断出△ABC的周长和△DBE的周长的关系,再结合△DBE的周长是6,即可求出△ABC的周长是多少.解答:解:∵点D、E分别是边AB,BC的中点,∴DE是三角形BC的中位线,AB=2BD,BC=2BE,∴DE∥BC且DE=AC,又∵AB=2BD,BC=2BE,∴AB+BC+AC=2(BD+BE+DE),即△ABC的周长是△DBE的周长的2倍,∵△DBE的周长是6,∴△ABC的周长是:6×2=12.故选:C.点评:(1)此题主要考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.(2)此题还考查了三角形的周长和含义的求法,要熟练掌握.5.(•铁岭)如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.EF=AB C.S△ABD=S△ACD D.AD平分∠BAC考点:三角形中位线定理.分析:根据三角形中位线定理逐项分析即可.解答:解:A、∵点D、E、F分别为△ABC各边中点,∴DE=AC,DF=AB,∵AC≠AB,∴DE≠DF,故该选项错误;B、由A选项的思路可知,B选项错误、C、∵S△ABD=BD•h,S△ACD=CD•h,BD=CD,∴S△ABD=S△ACD,故该选项正确;D、∵BD=CD,AB≠AC,∴AD不平分∠BAC,故选C.点评:本题考查了三角形中位线定理的运用,解题的根据是熟记其定理:三角形的中位线平行于第三边,并且等于第三边的一半.6.(•安顺)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2考点:平行四边形的性质;相似三角形的判定与性质.专题:几何图形问题.分析:根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.解答:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.点评:此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.7.(•衢州)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm考点:平行四边形的性质.分析:由平行四边形的性质得出BC=AD=12cm,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.解答:∵四边形ABCD是平行四边形,∴BC=AD=12cm,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8cm,∴CE=BC﹣BE=4cm;故答案为:C.点评:本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.8.(•玉林)如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是在14,则DM等于()A.1 B. 2 C. 3 D. 4考点:平行四边形的性质.分析:根据BM是∠ABC的平分线和AB∥CD,求出BC=MC=2,根据▱ABCD的周长是14,求出CD=5,得到DM的长.解答:解:∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD﹣MC=3,故选:C.点评:本题考查的是平行四边形的性质和角平分线的定义,根据平行四边形的对边相等求出BC+CD 是解题的关键,注意等腰三角形的性质的正确运用.9.(•绥化)如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A.1个B.2个C.3个D.4个考点:平行四边形的性质;等腰三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形.分析:由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB≠OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.解答:解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选C.点评:本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键.10.(•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B. 6 C.8 D.10考点:平行四边形的性质;等腰三角形的判定与性质;勾股定理;作图—基本作图.专题:计算题.分析:由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.解答:解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.点评:本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.11.(•本溪)如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm考点:平行四边形的性质.分析:根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,得出方程x+x+2=10,求出方程的解即可.解答:解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,∵▱ABCD的周长为20cm,∴x+x+2=10,解得:x=4,即AB=4cm,故选D.点评:本题考查了平行四边形的在,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB=BE,题目比较好,难度适中.12.(•福建)如图,在▱ABCD中,O是对角线AC,BD的交点,下列结论错误的是()A.AB∥CD B.AB=CD C.AC=BD D.OA=OC考点:平行四边形的性质.分析:根据平行四边形的性质推出即可.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,OA=OC,但是AC和BD不一定相等,故选C.点评:本题考查了平行四边形的性质的应用,能熟记平行四边形的性质是解此题的关键,注意:平行四边形的对边相等且平行,平行四边形的对角线互相平分.13.(•营口)▱ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD是()A.61° B.63° C.65° D.67°考点:平行四边形的性质.分析:由平行四边形的性质可知:AD∥BC,进而可得∠DAC=∠BCA,再根据三角形外角和定理即可求出∠COD的度数.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA=42°,∴∠COD=∠CBD+∠BCA=65°,故选C.点评:本题考查了平行四边形的性质以及三角形的外角和定理,题目比较简单,解题的关键是灵活运用平行四边形的性质,将四边形的问题转化为三角形问题.14.(•巴彦淖尔)如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1,S2.若S=3,则S1+S2的值为()A.24 B.12 C.6 D.3考点:平行四边形的性质;三角形中位线定理.分析:过P作PQ平行于DC,由DC与AB平行,得到PQ平行于AB,可得出四边形PQCD与ABQP都为平行四边形,进而确定出△PDC与△PCQ面积相等,△PQB与△ABP面积相等,再由EF为△BPC的中位线,利用中位线定理得到EF为BC的一半,且EF平行于BC,得出△PEF与△PBC 相似,相似比为1:2,面积之比为1:4,求出△PBC的面积,而△PBC面积=△CPQ面积+△PBQ 面积,即为△PDC面积+△PAB面积,即为平行四边形面积的一半,即可求出所求的面积.解答:解:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=12.故选:B.点评:此题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.15.(•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7 B.4或10 C.5或9 D.6或8考点:平行四边形的性质;勾股定理;正方形的性质.专题:分类讨论.分析:设AE的长为x,根据正方形的性质可得BE=14﹣x,根据勾股定理得到关于x的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为x,根据正方形的性质可得BE=14﹣x,在△ABE中,根据勾股定理可得x2+(14﹣x)2=102,解得x1=6,x2=8.故AE的长为6或8.故选:D.点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.16.(•常州)如图,▱ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是()A.AO=OD B.AO⊥OD C.AO=OC D.AO⊥AB考点:平行四边形的性质.分析:根据平行四边形的性质:对边平行且相等,对角线互相平分进行判断即可.解答:解:对角线不一定相等,A错误;对角线不一定互相垂直,B错误;对角线互相平分,C正确;对角线与边不一定垂直,D错误.故选:C.点评:本题考查度数平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.17.(•淄博)如图,在平行四边形ABCD中,∠B=60°,将△ABC沿对角线AC折叠,点B的对应点落在点E处,且点B,A,E在一条直线上,CE交AD于点F,则图中等边三角形共有()A.4个B.3个C.2个D.1个考点:平行四边形的性质;等边三角形的判定;翻折变换(折叠问题).分析:根据折叠的性质可得∠E=∠B=60°,进而可证明△BEC是等边三角形,再根据平行四边形的性质可得:AD∥BC,所以可得∠EAF=60°,进而可证明△EFA是等边三角形,由等边三角形的性质可得∠EFA=∠DFC=60°,又因为∠D=∠B=60°,进而可证明△DFC是等边三角形,问题得解.解答:解:∵将△ABC沿对角线AC折叠,点B的对应点落在点E处,∴∠E=∠B=60°,∴△BEC是等边三角形,∵四边形ABCD是平行四边形,∴AD∥BC,∠D=∠B=60°,∴∠B=∠EAF=60°,∴△EFA是等边三角形,∵∠EFA=∠DFC=60°,∠D=∠B=60°,∴△DFC是等边三角形,∴图中等边三角形共有3个,故选B.点评:本题考查了平行四边形的性质、折叠的性质以及等边三角形的判定和性质,解题的关键是熟记等边三角形的各种判定方法特别是经常用到的判定方法:三个角都相等的三角形是等边三角形.18.(•连云港)已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形考点:平行四边形的判定;矩形的判定;正方形的判定.分析:由平行四边形的判定方法得出A不正确、B正确;由矩形和正方形的判定方法得出C、D不正确.解答:解:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选:B.点评:本题考查了平行四边形的判定、矩形的判定、正方形的判定;熟练掌握平行四边形、矩形、正方形的判定方法是解决问题的关键.19.(•绵阳)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6 B.12 C.20 D.24考点:平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.分析:根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.解答:解:在Rt△BCE中,由勾股定理,得CE===5.∵BE=DE=3,AE=CE=5,∴四边形ABCD是平行四边形.四边形ABCD的面积为BC•BD=4×(3+3)=24,故选:D.点评:本题考查了平行四边形的判定与性质,利用了勾股定理得出CE的长,又利用对角线互相平分的四边形是平行四边形,最后利用了平行四边形的面积公式.二.填空题1. (广东)正五边形的外角和等于(度).【答案】360.【解析】n边形的外角和都等于360度。
2022中考数学试题分类多边形与平行四边形(含解析)

2022中考数学试题分类多边形与平行四边形(含解析)多边形与平行四边形1.(2022衡阳,第9题3分)下列命题是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直的四边形是正方形考点:命题与定理.专题:计算题.分析:根据平行线四边形的判定方法对A进行判定;根据矩形的判定方法,对角线相等的平行四边形是矩形,则可对B进行判定;根据菱形的判定方法,对角线互相垂直的平行四边形是菱形,则可对C进行判定;根据正方形的判定方法,对角线互相垂直的矩形是正方形,则可对对D进行判定.解答:解:A、对角线互相平分的四边形是平行四边形,所以A选项为真命题;B、对角线相等的平行四边形是矩形,所以B选项为假命题;C、对角线互相垂直的平行四边形是菱形,所以C选项为假命题;D、对角线互相垂直的矩形是正方形,所以D选项为假命题.故选A.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.(2022宜昌,第8题3分)下列图形具有稳定性的是()A.正方形B.矩形C.平行四边形D.直角三角形考点:三角形的稳定性;多边形..分析:根据三角形具有稳定性,四边形具有不稳定性进行判断.解答:解:直角三角形具有稳定性.故选:D.点评:此题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键.4.(2022江苏常州第5题2分)如图,□ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是AOBDA.AO=ODB.AO⊥ODC.AO=OCD.AO⊥AB5.(2022江苏连云港第5题3分)已知四边形ABCD,下列说法正确的是A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形CC.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形【思路分析】平行四边形的判定,分别有两组对边分别平行,两组分别相等,一组对边平行且相等,或对角线互相平分的四边形是平行四边形,所以B选项是正确的【答案】B【点评】本题考查平行四边形及特殊的平行四边形的判定.6、(2022年陕西省,9,3分)在ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7B.4或10C.5或9D.6或8考点:平行四边形的性质;勾股定理;正方形的性质..专题:分类讨论.分析:设AE的长为某,根据正方形的性质可得BE=14﹣某,根据勾股定理得到关于某的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为某,根据正方形的性质可得BE=14﹣某,222在△ABE中,根据勾股定理可得某+(14﹣某)=10,解得某1=6,某2=8.故AE的长为6或8.故选:D.点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.7.(2022山东莱芜,第9题3分)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27B.35C.44D.54考点:多边形内角与外角..分析:设出题中所给的两个未知数,利用内角和公式列出相应等式,根据边数为整数求解即可,再进一步代入多边形的对角线计算方法,即可解答.解答:解:设这个内角度数为某,边数为n,∴(n﹣2)某180°﹣某=1510,180n=1870+某,∵n为正整数,∴n=11,∴=44,故选:C.点评:此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.8.(2022怀化,第6题4分)一个多边形的内角和是360°,这个多边形是()A.三角形B.四边形C.六边形D.不能确定考点:多边形内角与外角.分析:本题根据多边形的内角和定理和多边形的内角和等于360°,列出方程,解出即可.解答:解:设这个多边形的边数为n,则有(n﹣2)180°=360°,解得:n=4,故这个多边形是四边形.故选:B.点评:本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.9.(2022娄底,第5题3分)下列命题中错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直C.同旁内角互补D.矩形的对角线相等考点:命题与定理.分析:根据平行四边形的性质对A进行判断;根据菱形的性质对B进行判断;根据平行线的性质对C进行判断;根据矩形的性质对D进行判断.解答:解:A、平行四边形的对角线互相平分,所以A选项为真命题;B、菱形的对角线互相垂直,所以B选项为真命题;C、两直线平行,同旁内角互补,所以C选项为假命题;D、矩形的对角线相等,所以D选项为真命题.故选C.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.10.(2022长沙,第5题3分)下列命题中,为真命题的是()A.六边形的内角和为360度B.多边形的外角和与边数有关C.矩形的对角线互相垂直D.三角形两边的和大于第三边考点:命题与定理.分析:根据六边形的内角和、多边形的外角和、矩形的性质和三角形三边关系判断即可.解答:解:A、六边形的内角和为720°,错误;B、多边形的外角和与边数无关,都等于360°,错误;C、矩形的对角线相等,错误;D、三角形的两边之和大于第三边,正确;故选D.点评:本题考查命题的真假性,是易错题.注意对六边形的内角和、多边形的外角和、矩形的性质和三角形三边关系的准确掌握11.(2022本溪,第8题3分)如图,ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cmB.8cmC.6cmD.4cm考点:平行四边形的性质..分析:根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=某cm,则AD=BC=(某+2)cm,得出方程某+某+2=10,求出方程的解即可.解答:解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=某cm,则AD=BC=(某+2)cm,∵ABCD的周长为20cm,∴某+某+2=10,解得:某=4,即AB=4cm,故选D.点评:本题考查了平行四边形的在,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB=BE,题目比较好,难度适中.12.(2022营口,第4题3分)ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD是()A.61°B.63°C.65°D.67°考点:平行四边形的性质.分析:由平行四边形的性质可知:AD∥BC,进而可得∠DAC=∠BCA,再根据三角形外角和定理即可求出∠COD的度数.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA=42°,∴∠COD=∠CBD+∠BCA=65°,故选C.点评:本题考查了平行四边形的性质以及三角形的外角和定理,题目比较简单,解题的关键是灵活运用平行四边形的性质,将四边形的问题转化为三角形问题.13.(2022年浙江衢州第4题3分)如图,在YABCD中,已知AD12cm,AB8cm,AE平分BAD交BC于点E,则CE的长等于【】A.8cmB.6cmC.4cmD.2cm【答案】C.【考点】平行线分线段成比例的性质.【分析】∵四边形ABCD是平行四边形,∴AD//BC,ADBC.∴DAEAEB.又∵AE平分BAD,∴DAEEAB.∴EABAEB.∴ABBE.∵AD12cm,AB8cm,∴BC12cm,BE8cm.∴CEBCCE4cm.故选C.5.(2022江苏连云港第5题3分)已知四边形ABCD,下列说法正确的是A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形【思路分析】平行四边形的判定,分别有两组对边分别平行,两组分别相等,一组对边平行且相等,或对角线互相平分的四边形是平行四边形,所以B选项是正确的【答案】B【点评】本题考查平行四边形及特殊的平行四边形的判定.6、(2022年陕西省,9,3分)在ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7B.4或10C.5或9D.6或8考点:平行四边形的性质;勾股定理;正方形的性质..专题:分类讨论.分析:设AE的长为某,根据正方形的性质可得BE=14﹣某,根据勾股定理得到关于某的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为某,根据正方形的性质可得BE=14﹣某,222在△ABE中,根据勾股定理可得某+(14﹣某)=10,解得某1=6,某2=8.故AE的长为6或8.故选:D.点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.7.(2022山东莱芜,第9题3分)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27B.35C.44D.54考点:多边形内角与外角..分析:设出题中所给的两个未知数,利用内角和公式列出相应等式,根据边数为整数求解即可,再进一步代入多边形的对角线计算方法,即可解答.解答:解:设这个内角度数为某,边数为n,∴(n﹣2)某180°﹣某=1510,180n=1870+某,∵n为正整数,∴n=11,∴=44,故选:C.点评:此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.3.(2022江苏镇江,第8题,2分)如图,ABCD中,E为AD的中点,BE,CD的延长线相交于点F,若△DEF的面积为1,则ABCD的面积等于4.考点:平行四边形的性质;全等三角形的判定与性质..分析:通过△ABE≌△DFE求得△ABE的面积为1,通过△FBC∽△FED,求得四边形BCDE的面积为3,然后根据ABCD的面积=四边形BCDE的面积+△ABE的面积即可求得.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,∵AB∥CD,∴∠A=∠EDF,在△ABE和△DFE中,,∴△ABE≌△DFE(SAS),∵△DEF的面积为1,∴△ABE的面积为1,∵AD∥BC,∴△FBC∽△FED,∴=()2∵AE=ED=AD.∴ED=BC,∴=,∴四边形BCDE的面积为3,∴ABCD的面积=四边形BCDE的面积+△ABE的面积=4.故答案为4.点评:本题考查了平行四边形的性质,三角形全等的判定和性质,三角形相似的判定和性质,熟练掌握三角形全等的性质和三角形相似的性质是解题的关键.24.(2022营口,第14题3分)圆内接正六边形的边心距为2,则这个正六边形的面积为24cm.考点:正多边形和圆.分析:根据正六边形的特点,通过中心作边的垂线,连接半径,结合解直角三角形的有关知识解决.解答:解:如图,连接OA、OB;过点O作OG⊥AB于点G.在Rt△AOG中,OG=2,∠AOG=30°,∵OG=OAco30°,∴OA===4,∴这个正六边形的面积为6某某4某2=24cm.2故答案为:24.点评:此题主要考查正多边形的计算问题,根据题意画出图形,再根据正多边形的性质即锐角三角函数的定义解答即可.5.(2022江苏连云港第5题3分)已知四边形ABCD,下列说法正确的是A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形【思路分析】平行四边形的判定,分别有两组对边分别平行,两组分别相等,一组对边平行且相等,或对角线互相平分的四边形是平行四边形,所以B选项是正确的【答案】B【点评】本题考查平行四边形及特殊的平行四边形的判定.6、(2022年陕西省,9,3分)在ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7B.4或10C.5或9D.6或8考点:平行四边形的性质;勾股定理;正方形的性质..专题:分类讨论.分析:设AE的长为某,根据正方形的性质可得BE=14﹣某,根据勾股定理得到关于某的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为某,根据正方形的性质可得BE=14﹣某,222在△ABE中,根据勾股定理可得某+(14﹣某)=10,解得某1=6,某2=8.故AE的长为6或8.故选:D.点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.7.(2022山东莱芜,第9题3分)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27B.35C.44D.54考点:多边形内角与外角..分析:设出题中所给的两个未知数,利用内角和公式列出相应等式,根据边数为整数求解即可,再进一步代入多边形的对角线计算方法,即可解答.解答:解:设这个内角度数为某,边数为n,∴(n﹣2)某180°﹣某=1510,180n=1870+某,∵n为正整数,∴n=11,∴=44,故选:C.点评:此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.14.(2022湖北,第17题3分)在ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为55°或35°.考点:平行四边形的性质.分析:首先求出∠ADB的度数,再利用三角形内角和定理以及等腰三角形的性质,得出∠A的度数.解答:解:情形一:当E点在线段AD上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠ADB=90°﹣20°=70°,∵AD=BD,∴∠A=∠ABD==55°.情形二:当E点在AD的延长线上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠BDE=70°,∵AD=BD,∴∠A=∠ABD=∠BDE=70°=35°.故答案为:55°或35°.点评:此题主要考查了平行四边形的性质以及等腰三角形的性质等知识,得出∠ADB的度数是解题关键.解答:解:(1)如图①,过A作AE⊥BC,∴四边形AECD为矩形,∴EC=AD=8,BE=BC﹣EC=12﹣8=4,在Rt△ABE中,∠ABE=60°,BE=4,∴AB=2BE=8,AE=则S△BMC=BCAE=24;=4,故答案为:24;(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′,∴△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,∵AD∥BC,AE⊥BC,∠ABC=60°,∴过点A作AE⊥BC,则CE=AD=8,∴BE=4,AE=BEtan60°=4,∴CC′=2CD=2AE=8,∵BC=12,∴BC′==4,∴△BNC周长的最小值为4+12;(3)如图③所示,存在点P,使得co∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,则PB=PC,圆心O在PN上,∵AD∥BC,∴圆O与AD相切于点P,∵PQ=DC=4>6,∴PQ>BQ,∴∠BPC<90°,圆心O在弦BC的上方,在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,∴∠BPC=∠BMC≥∠BP′C,∴∠BPC最大,co∠BPC的值最小,连接OB,则∠BON=2∠BPN=∠BPC,∵OB=OP=4﹣OQ,222在Rt△BOQ中,根据勾股定理得:OQ+6=(4﹣OQ),解得:OQ=∴OB=,,=,∴co∠BPC=co∠BOQ=则此时co∠BPC的值为.点评:此题属于四边形综合题,涉及的知识有:勾股定理,矩形的判定与性质,对称的性质,圆的切线的判定与性质,以及锐角三角函数定义,熟练掌握定理及性质是解本题的关键.3、(2022年四川省广元市中考,5,3分)一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5B.6C.7D.8考点:多边形内角与外角..分析:多边形的外角和是360°,则内角和是2某360=720°.设这个多边形是n边形,内角和是(n﹣2)180°,这样就得到一个关于n的方程组,从而求出边数n的值.解答:解:设这个多边形是n边形,根据题意,得(n﹣2)某180°=2某360,解得:n=6.即这个多边形为六边形.故选:B.点评:本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.4、(2022年四川省广元市中考,18,7分)求证:平行四边形的对角线互相平分(要求:根据题意先画出图形并写出已知、求证,再写出证明过程).考点:平行四边形的性质;全等三角形的判定与性质..专题:证明题.分析:首先根据题意画出图形,再写出命题的已知和求证,最后通过证明三角形全等即可证明命题是正确的.解答:已知:平行四边形ABCD的对角线AC,BD相交于点O,求证:OA=OC,OB=OD证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠1=∠2,在△AOD和△COB中,∴△AOD≌△COB(AAS),∴OA=OC,OB=OD.点评:此题主要考查了平行四边形的性质以及全等三角形的判定和性质,解题的关键是熟记平行四边形的各种性质以及全等三角形的各种判定的各种方法.5、(2022年浙江省义乌市中考,24,14分)在平面直角坐标系中,O为原点,四边形OABC的顶点A在某轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点。
【精编版】2020年部分省市中考数学试题分类汇编多边形与平行四边形(含详解答案)doc初中数学

【精编版】2020年部分省市中考数学试题分类汇编多边形与平行四边形(含详解答案)doc 初中数学多边形与平行四边形一、选择题1. (2018年四川眉山市).如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,那么∠ABC 的度数为〔 〕A .90°B .60°C .45°D .30°【答案】C2.〔2018福建龙岩〕以下图形中,单独选用一种图形不能进行平面镶嵌的图形是〔 〕A. 正三角形B. 正方形C. 正五边形D. 正六边形 【答案】C 3.〔2018年北京顺义〕假设一个正多边形的一个内角是120°,那么那个正多边形的边数是A .9B .8C .6D .4 【答案】C4. 〔2018年台湾省〕 图(十)为一个平行四边形ABCD ,其中H 、G 两点分不在BC 、 CD 上,AH ⊥BC ,AG ⊥CD ,且AH 、AC 、AG 将∠BAD 分成 ∠1、∠2、∠3、∠4四个角。
假设AH =5,AG =6,那么以下关系何者 正确? (A) ∠1=∠2 (B) ∠3=∠4 (C) BH =GD (D) HC =CG 【关键词】平行四边形【答案】A二、填空题1.〔2018年福建福州〕14.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,假设AC=14,BD=8,AB=10,那么△OAB 的周长为 . 【答案】212.〔2018年福建宁德〕如图,在□ABCD 中,AE =EB ,AF =2, 那么FC 等于_____. 【答案43.(2018年山东滨州)如图,平行四边形ABCD 中, ∠ABC=60°,E 、F 分不在CD 、BC 的延长线上,AE ∥BD,EF ⊥BC,DF=2,那么EF 的长为ABC EFAB CD G H 123 4图(十)FEDC BA【答案】4.〔2018年福建宁德〕如图,在△ABC 中,点E 、F 分不为AB 、AC 的中点.假设EF 的长为2,那么BC 的长为___________. 【答案】4三、解答题1. (2018年福建晋江)如图,请在以下四个关系中,选出两个恰...当.的关系作为条件,推出四边形ABCD 是平行四边形,并予以证明.〔写出一种即可〕关系:①AD ∥BC ,②CD AB =,③C A ∠=∠,④︒=∠+∠180C B .:在四边形ABCD 中, , ; 求证:四边形ABCD 是平行四边形.解::①③,①④,②④,③④均可,其余均不能够. 〔解法一〕:在四边形ABCD 中,①AD ∥BC ,③C A ∠=∠.……………………〔2分〕 求证:四边形ABCD 是平行四边形. 证明:∵ AD ∥BC∴︒=∠+∠180B A ,︒=∠+∠180D C ………………………………………〔5分〕 ∵C A ∠=∠,∴D B ∠=∠∴四边形ABCD 是平行四边形…………………………………………………〔8分〕 〔解法二〕:在四边形ABCD 中,①AD ∥BC ,④︒=∠+∠180C B .………………〔2分〕ABCD第4题图FA E BCD求证:四边形ABCD 是平行四边形.证明:∵︒=∠+∠180C B ,∴AB ∥CD ……………………………………………………………………〔5分〕 又∵AD ∥BC∴四边形ABCD 是平行四边形.…………………………………………………〔8分〕 〔解法三〕:在四边形ABCD 中,②CD AB =,④︒=∠+∠180C B .………………〔2分〕 求证:四边形ABCD 是平行四边形.证明:∵︒=∠+∠180C B ,∴AB ∥CD ……………………………………………………………………〔5分〕 又∵CD AB =∴四边形ABCD 是平行四边形.…………………………………………………〔8分〕 〔解法四〕:在四边形ABCD 中,③C A ∠=∠,④︒=∠+∠180C B .………………〔2分〕 求证:四边形ABCD 是平行四边形.证明:∵︒=∠+∠180C B ,∴AB ∥CD ……………………………………………………………………〔4分〕 ∴︒=∠+∠180D A ………………………………………………………………〔6分〕 又∵C A ∠=∠ ∴D B ∠=∠∴四边形ABCD 是平行四边形.…………………………………………………〔8分〕2. (2018年浙江衢州):如图,E ,F 分不是ABCD 的边AD ,BC 的中点.求证:AF =CE .证明:方法1:∵ 四边形ABCD 是平行四边形,且E ,F 分不是AD ,BC 的中点,∴ AE= CF . ……2分又 ∵ 四边形ABCD 是平行四边形,∴ AD ∥BC ,即AE ∥CF .∴ 四边形AFCE 是平行四边形. ……3分 ∴ AF =CE .……1分方法2:A D EB CA D EBC (第19题)∵ 四边形ABCD 是平行四边形,且E ,F 分不是AD ,BC 的中点, ∴ BF =DE . ……2分又 ∵ 四边形ABCD 是平行四边形, ∴ ∠B =∠D ,AB =CD . ∴ △ABF ≌△CDE . ……3分∴ AF =CE .……1分3.〔2018浙江省嘉兴〕如图,在□ABCD 中,点E 在AB 上,点F 在CD 上且AE =CF .〔1〕求证:DE =BF ;〔2〕连结BD ,并写出图中所有的全等三角形.〔不要求证明〕 【关键词】平行四边形的判定与性质、全等三角形 【答案】〔1〕在□ABCD 中,AB //CD ,AB =CD .∵AE =CF ,∴BE =DF ,且BE //DF . ∴四边形BFDE 是平行四边形. ∴BF DE . …5分 〔2〕连结BD ,如图, 图中有三对全等三角形: △ADE ≌△CBF , △BDE ≌△DBF ,△ABD ≌△CDB . …3分4. (2018年山东滨州)如图,四边形ABCD 中,E 、F 、G 、H 分不是AB 、BC 、CD 、DA 的中点. (1)请判定四边形EFGH 的形状?并讲明什么缘故.(2)假设使四边形EFGH 为正方形,那么四边形ABCD 的对角线应具有如何样的性质?解:(1) 四边形EFGH 为平行四边形,连接AC ∵E 、F 分不是AB 、BC 的中点,EF ∥AC ,EF=21AC. 同理HG ∥AC ,HG=21AC. ∴EF ∥HG, EF=HG.∴四边形EFGH 是平行四边形(2) 四边形ABCD 的对角线垂直且相等.5.〔2018年江苏泰州〕如图,四边形ABCD 是矩形,∠EDC =∠CAB ,∠DEC =90°.BD EF 〔第3题〕AB CD(1)求证:AC ∥DE ;(2)过点B 作BF ⊥AC 于点F ,连结EF ,试判定四边形BCEF 的形状,并讲明理由.【答案】⑴在矩形ABCD 中,AC ∥DE ,∴∠DCA =∠CAB ,∵∠EDC =∠CAB , ∴∠DCA =∠EDC ,∴AC ∥DE ; ⑵四边形BCEF 是平行四边形.理由:由∠DEC =90°,BF ⊥AC ,可得∠AFB =∠DEC =90°, 又∠EDC =∠CAB ,AB=CD ,∴△DEC ≌△AFB ,∴DE =AF ,由⑴得AC ∥DE , ∴四边形AFED 是平行四边形,∴AD ∥EF 且AD =EF , ∵在矩形ABCD 中,AD ∥BC 且AD =BC , ∴EF ∥BC 且EF =BC ,∴四边形BCEF 是平行四边形.【关键词】矩形的性质 平行四边形的判定 全等三角形的判定6.〔2018年福建晋江〕如图,请在以下四个关系中,选出两个恰当....的关系作为条件,推出四边形ABCD 是平行四边形,并予以证明.〔写出一种即可〕关系:①AD ∥BC ,②CD AB =,③C A ∠=∠,④︒=∠+∠180C B . :在四边形ABCD 中, , ; 求证:四边形ABCD 是. 【关键词】平行四边形的判定【答案】:①③,①④,②④,③④均可,其余均不能够. 〔解法一〕:在四边形ABCD 中,①AD ∥BC ,③C A ∠=∠.……………………〔2分〕 求证:四边形ABCD 是平行四边形. 证明:∵ AD ∥BC∴︒=∠+∠180B A ,︒=∠+∠180D C ∵C A ∠=∠,∴D B ∠=∠ ∴四边形ABCD 是平行四边形 〔解法二〕:在四边形ABCD 中,①AD ∥BC ,④︒=∠+∠180C B .求证:四边形ABCD 是平行四边形.证明:∵︒=∠+∠180C B , ∴AB ∥CD 又∵AD ∥BC∴四边形ABCD 是平行四边形. 〔解法三〕:在四边形ABCD 中,②CD AB =,④︒=∠+∠180C B . 求证:四边形ABCD 是平行四边形. 证明:∵︒=∠+∠180C B , ∴AB ∥CD 又 ∵CD AB =∴四边形ABCD 是平行四边形. 〔解法四〕:在四边形ABCD 中,③C A ∠=∠,④︒=∠+∠180C B . 求证:四边形ABCD 是平行四边形.证明:∵︒=∠+∠180C B , ∴AB ∥CD∴︒=∠+∠180D A 又∵C A ∠=∠ ∴D B ∠=∠∴四边形ABCD 是平行四边形. 7.〔2018年贵州毕节地区〕如图,: ABCD 中,BCD ∠的平分线CE 交边AD 于E ,ABC ∠的平分线BG 交CE 于F,交AD 于G .求证:AE DG =.【关键词】平行四边形、角平分线【答案】证明:∵ 四边形ABCD 是平行四边形〔〕,AD BC ∴∥,AB CD =〔平行四边形的对边平行,对边相等〕GBC BGA ∴∠=∠,BCE CED ∠=∠〔两直线平行,内错角相等〕 又∵ BG 平分ABC ∠,CE 平分BCD ∠〔〕ABG GBC ∴∠=∠,BCE ECD ∠=∠〔角平分线定义〕 ABG GBA ∴∠=∠,ECD CED ∠=∠.AB AG ∴=,CE DE =〔在同一个三角形中,等角对等边〕 AG DE ∴=AG EG DE EG ∴-=-,即AE DG =. 分7.〔2018年重庆市潼南县〕如图,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一点,连结AG ,点E 、F 分不在AG 上,连接BE 、DF ,∠1=∠2 , ∠3=∠4. 〔1〕证明:△AB E ≌△DAF ; A B CE FG〔2〕假设∠AGB =30°,求EF 的长.【关键词】全等三角形 【答案】解:〔1〕∵四边形ABCD 是正方形∴AB=AD在△ABE 和△DAF 中⎪⎩⎪⎨⎧∠=∠=∠=∠3412DA AB ∴△ABE ≌△DAF -----------------------4分〔2〕∵四边形ABCD 是正方形∴∠1+∠4=900∵∠3=∠4∴∠1+∠3=900∴∠AFD=900----------------------------6分 在正方形ABCD 中, AD ∥BC∴∠1=∠AGB=300在Rt △ADF 中,∠AFD=900AD=2∴AF=3 DF =1----------------------------------------8分 由(1)得△ABE ≌△ADF ∴AE=DF=1∴EF=AF-AE=13- -----------------------------------------10分8.〔2018年江苏宿迁〕如图,在□ABCD 中,点E 、F 是对角线AC 上两点,且AE =CF .求证:∠EBF =∠FDE .【关键词】平行四边形 【答案】证明:连接BD 交AC 于O 点 …… 1分∵四边形ABCD 是平行四边形∴OA=OC ,OB=OD ………………3分 又∵AE=CF ∴OE=OF∴四边形BEDF 是平行四边形 …… 6分 ∴∠EBF=∠EDF …………… 8分9.〔2018年浙江宁波〕如图1,有一张菱形纸片ABCD ,8=AC ,6=BD .〔1〕请沿着AC 剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四边形,在图2中用实数画出你所拼成的平行四边形;假设沿着BD 剪开, 请在图3中用实线画出拼成的平行四边形;并直截了当写出这两个平行四边 形的周长。
中考数学备考专题复习 多边形与平行四边形(含解析)

多边形与平行四边形一、单选题(共12题;共24分)1、下列说法正确的是()A、同位角相等B、过一点有且只有一条直线与已知直线平行C、过一点有且只有一条直线与已知直线垂直D、只用一种图形进行镶嵌,三角形、四边形、六边形都可以镶嵌2、下列正多边形中,绕其中心旋转72°后,能和自身重合的是()A、正方形B、正五边形C、正六边形D、正八边形3、下列图形中,不能镶嵌成平面图案的是 ( )A、正三角形B、正四边形C、正五边形D、正六边形4、梯形ABCD中,AD∥BC,AB=CD=AD=2,∠B=60°,则下底BC的长是( )A 、B 、C 、D 、5、如图,在梯形ABCD中,AD//BC,∠B=70°∠C=40°,DE//AB交BC于点E.若AD=3,BC=10,则CD的长是()A、7B、10C、13D、14 6、如图,AB∥CD∥EF,BC∥AD,AC为∠BAD的平分线,图中与∠AOE相等(不含∠AOE)的角有()A、2个B、3个C、4个D、5个7、正六边形的边心距为,这个正六边形的面积为()A、2B、4C、6D、128、把边长相等的正五边形ABGHI和正六边形ABCDEF的AB边重合,按照如图的方式叠合在一起,连接EB,交HI于点K,则∠BKI的大小为()A、90°B、84°C、72°D、88°9、(2015•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A、4B、61C、8D、1010、(2015•德阳)如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A、150°B、160°C、130°D、60°11、(2016•义乌)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A、①,②B、①,④C、③,④D、②,③12、如图,在平面直角坐标系中,以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形第四个顶点坐标的是()A、(3,-1)B、(-1,-1)C、(1,1)D、(-2,-1)二、填空题(共5题;共5分)13、(2015•烟台)正多边形的一个外角是72°,则这个多边形的内角和的度数是________.14、现有一个正六边形的纸片,该纸片的边长为20cm,张萌想用一张圆形纸片将该正六边形纸片完全覆盖住,则圆形纸片的直径不能小于________ cm.15、如图,已知四边形ABCD中,∠C=72°,∠D=81°.沿EF折叠四边形,使点A、B分别落在四边形内部的点A′、B′处,则∠1+∠2=________°.16、如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=________17、如图,在图(1)中,A1、B1、C1分别是△ABC的边BC、CA、AB的中点,在图(2)中,A2、B2、C2分别是△A1B1C1的边B1C1、C1A1、A1B1的中点,…,按此规律,则第n个图形中平行四边形的个数共有________个三、综合题(共5题;共63分)18、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.19、(2016•滨州)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.20、(2016•安徽)如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.21、(2016•丽水)如图,矩形ABCD中,点E为BC上一点,F为DE的中点,且∠BFC=90°.(1)当E为BC中点时,求证:△BCF≌△DEC;(2)当BE=2EC时,求的值;(3)设CE=1,BE=n,作点C关于DE的对称点C′,连结FC′,AF,若点C′到AF的距离是,求n的值.22、(2016•江西)如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;(2)如图2,求证:∠OAB=∠OAE′.(3)图1、图2中的“叠弦角”的度数分别为________,________;(4)图n中,“叠弦三角形”________等边三角形(填“是”或“不是”)3(5)图n中,“叠弦角”的度数为________(用含n的式子表示)答案解析部分一、单选题【答案】C【考点】垂线,同位角、内错角、同旁内角,平面镶嵌(密铺)【解析】【分析】A、只有一条直线截2条平行线得到的同位角才相等,故错误,不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,故错误,不符合题意;C、过直线上或直线外一点均有且只有一条直线与已知直线垂直,正确,符合题意;D、只用一种图形进行镶嵌,三角形、四边形都可以镶嵌,六边形不一定能组成镶嵌,故错误,不符合题意;故选C.【答案】B【考点】正多边形的定义【解析】【解答】解:A、正方形的最小旋转角度为90°,故本选项错误;B、正五边形的最小旋转角度为=72°,故本选项正确;C、正六边形的最小旋转角度为=60°,故本选项错误;D、正八边形的最小旋转角度为=45°,故本选项错误;故选B.【分析】求出各个选项图形的最小旋转角度,即可做出判断.【答案】C【考点】平面镶嵌(密铺)【解析】【解答】∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∴只用上面正多边形,不能进行平面镶嵌的是正五边形.故选C.【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.考查了平面镶嵌(密铺),用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.【答案】B【考点】等边三角形的判定与性质,平行四边形的判定与性质,等腰梯形的判定【解析】【分析】画出草图分析,作AE∥CD于E点,则AECD是平行四边形,△ABE是等边三角形,据此易求BC的长.【解答】如图所示:作AE∥CD于E点,∵AD∥BC,AE∥CD,∴四边形AECD是平行四边形,∴AE=CD=2,EC=AD=2又AB=CD,∠B=60°,∴△ABE是等边三角形,BE=2,∴BC=4.故选B.【点评】此题考查了梯形中常作的辅助线:平移腰,把梯形转化为平行四边形和三角形求解,体现了数学的化归思想.【答案】A【考点】三角形内角和定理,等腰三角形的判定与性质,平行四边形的判定与性质,梯形【解析】【解答】∵DE//AB,∠B=70°,∴∠DEC=∠B=70°.又∵∠C=40°,∴∠CDE=70°.∴CD=CE.∵AD//BC,DE//AB,∴四边形ABED是平行四边形.∴BE=AD=3.∴CD=CE=BC-BE=BC-AD=10-3=7.故选A.【分析】根据平行线的性质,得∠DEC=∠B=70°,根据三角形的内角和定理,得∠CDE=70°,再根据等角对等边,得CD=CE.根据两组对边分别平行,知四边形ABED是平行四边形,则BE=AD=3,从而求解.【答案】D【考点】角平分线的定义,对顶角、邻补角,平行线的性质,平行四边形的性质,平行四边形的判定【解析】【解答】由AB∥CD∥EF,根据两直线平行,同位角相等,内错角相等,可得:∠AOE=∠OAB=∠ACD,又由AC平分∠BAD与BC∥AD,可得:∠DAC=∠ACB,又由对顶角相等,可得5与∠AOE(∠AOE除外)相等的角有5个。
中考数学复习·多边形与四边形(平行四边形、矩形、菱形、正方形、梯形等)名校名师全解全练精品课件

上一页
下一页
宇轩图书
中考典例精析
首页
【点拨】平行四边形的对角线互相平分,本题(2)问可以画出草图借 助图形的变化求点D的坐标. 3 【解答】(1)(2, ) (2)设点 D 的坐标为(x,y),当 AB 为一条对角 2
3 x+1 y+4 3 线时,AB 的中点坐标为(1, ),则 = 1, = ,解得 x=1,y= 2 2 2 2 -1,此时点 D 的坐标为(1,-1).当 AC 为一条对角线时,AC 的中点坐 x+3 y+1 标为(0,3),则 =0 , =3,解得 x=-3,y=5,此时点 D 的坐标 2 2 5 x-1 为(-3,5)当 BC 为一条对角线时,BC 的中点坐标为(2, ),则 = 2, 2 2 y+2 5 = ,解得 x=5,y=3,此时点 D 的坐标为(5,3). 2 2
宇轩图书
考点知识精讲
温馨提示:
首页
能密铺的图形在一个拼接点处的特点:几个图形的内角拼接在一起
时,其和等于360°,并使相等的边互相重合.
上一页
下一页
宇轩图书
考点知识精讲
考点三 平行四边形的定义、性质与判定 1.定义:两组对边 分别平行 的四边形是平行四边形. 2.性质:(1)平行四边形的对边 平行且相等 ; (2)平行四边形的对角 相等 ,邻角 互补 (3)平行四边形的对角线 互相平分 ; ;
目录
第五章 四边形 第20讲 多边形与平行四边形
考点知识精讲
中考典例精析
举一反三
考点训练
宇轩图书
考点知识精讲
考点一 多边形
首页
1.多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次 相接所组成的封闭图形叫做多边形. 多边形的对角线是连接多边形 不相邻 的两个顶点的线段. 注意:从 n 边形的一个顶点出发可以引出(n -3) 条对角线,共有 n(n-3)/2 条对角线,把多边形分成了(n-2)个三角形.
2021年九年级中考数学 一轮复习:多边形与平行四边形(含答案)

2021中考数学一轮复习:多边形与平行四边形一、选择题1. 如图,将▱ABCD沿对角线AC折叠,使点B落在点B′处.若∠1=∠2=44°,则∠B为()A. 66°B. 104°C. 114°D. 124°2. 如图,足球图片正中的黑色正五边形的内角和是A.180°B.360°C.540°D.720°3. 如图,在ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为A.12 B.15 C.18 D.214. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8C.8或9 D.7或8或95. 若多边形的一个顶点处的所有对角线把多边形分成了11个三角形,则经过这一点的对角线的条数是()A.8 B.9 C.10 D.116. 若在n边形内部任意取一点P,将点P与各顶点连接起来,可以把n边形分成n个三角形,利用这个事实,可以探索到n边形的内角和为()A.180°×n B.180°×n-180°C.180°×n+180°D.180°×n-360°7. (2020自贡)如图,在平行四边形ABCD中,AD=2,AB,∠B是锐角,AE⊥BC于点E,F是AB的中点,连结DF、EF.若∠EFD=90°,则AE长为()A.2 B.C.D.8. (2020•遂宁)如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则的值为()A.B.C.D.二、填空题9. 如图,在四边形ABCD中,AD=BC,在不添加任何辅助线的情况下,请你添加一个条件,使四边形ABCD是平行四边形.10. 若一个多边形的内角和与外角和之和是900°,则该多边形的边数是________ __.11. 如图,在四边形ABCD中,若∠A+∠B+∠C=260°,则∠D的度数为________.12. 如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为__________.13.(2020·牡丹江)如图,在四边形ABCD中,AD//BC,在不添加任何辅助线的情况下,请你添加一个条件__________________,使四边形ABCD是平行四边形(填一个即可).14. 如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为________.15. 如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的大小为________.16. 如图,ABCD的对角线AC、BD相交于点O,点E是AB的中点,△BEO 的周长是8,则△BCD的周长为__________.A BC三、解答题 17. (2020·淮安)如图,在□ABCD 中,点E 、F 分别在BC 、AD 上,AC 与EF 相交于点O ,且AO=CO .(1)求证∶△AOF ≌△COE ;(2)连接AE 、CF ,则四边形AECF_______________(填"是"或"不是")平行四边形.18. 如图,在四边形ABCD 中,E 为AB 上一点,ADE ∆和BCE ∆都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,证明四边形PQMN 为平行四边形且PQ PN =.QEP NMDCBA19. (2020·扬州)如图,▱ABCD的对角线AC 、BD 相交于点O ,过点O 作EF ⊥AC ,分别交AB 、DC 于点E 、F ,连接AF 、CE .(1)若OE =32,求EF 的长;(2)判新四边形AECF 的形状,并说明理由.20. (2020·贵阳)(10分)如图,四边形ABCD 是矩形,E 是BC 边上一点,点F在BC 的延长线上,且CF =BE .(1)求证:四边形AEFD 是平行四边形;(2)连接ED ,若∠AED =90°,AB =4,BE =2,求四边形AEFD 的面积.21. 如图①,在平行四边形ABCD 中,连接BD ,AD =6cm ,BD =8cm ,∠DBC=90°,现将△AEF 沿BD 的方向匀速平移,速度为2cm/s ,同时,点G 从点D 出发,沿DC 的方向匀速移动,速度为2cm/s.当△AEF 停止移动时,点G 也停止运动,连接AD ,AG ,EG ,过点E 作EH ⊥CD 于点H ,如图②所示,设△AEF 的移动时间为t (s)(0<t <4). (1)当t =1时,求EH 的长度; (2)若EG ⊥AG ,求证:EG 2=AE ·HG ; (3)设△AGD 的面积为y (cm 2),当t 为何值时,y 可取得最大值,并求y 的最大值.2021中考数学 一轮复习:多边形与平行四边形-答案一、选择题1. 【答案】C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎨⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.2. 【答案】C【解析】黑色正五边形的内角和为:(5–2)×180°=540°, 故选C .3. 【答案】C【解析】由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,∴AD=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE是等边三角形,∴△ADE的周长为6×3=18,故选C.4. 【答案】D[解析] 设内角和为1080°的多边形的边数为n,则(n-2)×180°=1080°,解得n=8.则原多边形的边数为7或8或9.故选D.5. 【答案】C[解析] 设多边形有n条边,则n-2=11,解得n=13.故这个多边形是十三边形.故经过这一点的对角线的条数是13-3=10.6. 【答案】D7. 【答案】B【解析】本题考查了平行四边形、全等三角形、勾股定理、一元二次方程等知识.解:如图,延长EF交DA的延长线于Q,连接DE,设BE=x.∵四边形ABCD是平行四边形,∴DQ∥BC,∴∠Q=∠BEF,∵AF=FB,∠AFQ=∠BFE,∴△QFA≌△EFB(AAS),∴AQ=BE=x,∵∠EFD=90°,∴DF⊥QE,∴DQ=DE=x+2,∵AE⊥BC,BC∥AD,∴AE⊥AD,∴∠AEB=∠EAD=90°,∵AE2=DE2﹣AD2=AB2﹣BE2,∴(x+2)2﹣4=6﹣x2,整理得:2x2+4x﹣6=0,解得x=1或﹣3(舍弃),∴BE=1,∴AE,因此本题选B.8. 【答案】由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AFB=∠FBC=∠DFG,∠ABF=∠G,∵BE平分∠ABC,∴∠ABF=∠CBG,∴∠ABF=∠AFB=∠DFG=∠G,∴AB=CD=2k,DF=DG=k,∴CG=CD+DG=3k,∵AB∥DG,∴△ABE∽△CGE,∴===,故选:C.二、填空题9. 【答案】答案不唯一,如AD∥BC或AB=CD或∠A+∠B=180°等10. 【答案】5【解析】∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,∴多边形的内角和是900﹣360=540°,∴多边形的边数是:540°÷180°+2=3+2=5.故答案为:5.11. 【答案】100°12. 【答案】50°【解析】在平行四边形ABCD中,AB∥CD,AD∥BC,∴∠FBA =∠C=40°,∵FD⊥AD,∴∠ADF=90°,∵AD∥BC,∴∠F=∠ADF=90°,∴∠BEF=180°-90°-40°=50°.13. 【答案】AD=BC【解析】当添加条件AD=BC时,根据一组对边平行且相等的四边形是平行四边形,可得四边形ABCD是平行四边形.14. 【答案】110°【解析】∵四边形ABCD是平行四边形,∴CD∥AB,∴∠CAB=∠1=20°,∵BE ⊥AB交对角线AC于点E,∴∠ABE=90°,∴∠2=∠CAB+∠ABE=20°+90°=110°.15. 【答案】36°【解析】∵在▱ABCD中,∠D=∠B=52°,∴∠AEF=∠DAE +∠D=20°+52°=72°,∴∠AED=180°-∠AEF=108°,由折叠的性质得,∠AED′=∠AED=108°,∴∠FED′=∠AED′-∠AEF=108°-72°=36°.16. 【答案】16【解析】∵ABCD 的对角线AC 、BD 相交于点O ,∴BO=DO=12BD ,BD=2OB ,∴O 为BD 中点,∵点E 是AB 的中点,∴AB=2BE ,BC=2OE ,∵四边形ABCD 是平行四边形,∴AB=CD ,∴CD=2BE . ∵△BEO 的周长为8,∴OB+OE+BE=8,∴BD+BC+CD=2OB+2OE+2BE=2(OB+OE+BE)=16, ∴△BCD 的周长是16,故答案为16.三、解答题17. 【答案】(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠FAO=∠ECO , 在△AOF 和△COE 中 FAO ECO AO COAOF COE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOF 和△COE (ASA ). (2)由(1)△AOF 和△COE , ∴OF=OE , 又∵OA=OC ,∴四边形AEOF 为平行四边形.18. 【答案】如图,连结AC 、BD .∵PQ 为ABC ∆的中位线∴PQ AC ∥且12PQ AC =同理MN AC ∥且12MN AC =∴MN PQ ∥且MN PQ =∴四边形PQMN 为平行四边形. 在AEC ∆和DEB ∆中AE DE =,EC EB =,60AED CEB ∠=︒=∠ 即AEC DEB ∠=∠ ∴AEC DEB ∆∆≌ ∴AC BD =∴1122PQ AC BD PN ===.QEP NMD CBA19. 【答案】解:(1)∵四边形ABCD 是平行四边形,∴AO =CO ,AB ∥DC ,∴∠OAE =∠OCF ,∵EF ⊥AC ,∴∠AOE =∠COF =90°,在△AEO 和△CFO 中,∠OAE =∠OCF ,AO =CO ,∠AOE =∠COF ,∴△AEO ≌△CFO ,∴OE =OF ,又OE =32,∴OE =OF =32,∴EF = OE +OF =3;(2)四边形AECF 是菱形,证明:由(1)得OE =OF ,又∵AO =CO ,∴四边形AECF 是平行四边形,∵EF ⊥AC ,∴四边形AECF 是菱形.解:(1)证明:∵∠四边形ABCD 是矩形,∴AD ∥BC ,AD =BC ,∵BE =CF ,∴BE+EC =EC+EF ,即BC =EF ,∴AD =EF ,∴四边形AEFD 是平行四边形;(2)解:连接DE ,如图,∵四边形ABCD 是矩形,∴∠B =90°,在R t △ABE 中,AE 2, ∵AD ∥BC ,∴∠AEB =∠EAD ,∵∠B =∠AED =90°,∴△ABE ∽△DEA , ∴AE :AD =BE :AE ,∴AD 10,∴四边形AEFD 的面积=AB×AD=2×10=20.21. 【答案】(1)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,又∠DBC =90°, ∴∠ADB =90°,又AD =6cm ,BD =8cm ,由勾股定理得,AB =AD 2+BD 2=10cm , 当t =1时,EB =2cm , 则DE =8-2=6cm , ∵EH ⊥CD ,∠DBC =90°, ∴△DEH ∽△DCB , ∴DE DC =EH BC ,即610=EH 6, 解得EH =3.6cm ;(2)∵∠CDB =∠AEF , ∴AE ∥CD ,∴∠AEG =∠EGH ,又EG ⊥AG ,EH ⊥CD , ∴△AGE ∽△EHG , ∴EG HG =AE EG , ∴EG 2=AE ·HG ;(3)由(1)得,△DEH ∽△DCB ,∴DE CD =EHBC ,即8-2t 10=EH 6,解得,EH =24-6t5,∴y =12×DG ×EH =-6t 2+24t 5=-65t 2+245t =-65(t -2)2+245,∴当t =2时,y 的最大值为245.。
(完整版)2019年中考数学专题复习第二十讲多边形与平行四边形(含详细参考答案)

)
A. 50°
B.40°
C. 30°
D.20°
6. (2018?黔南州) 如图在 ?ABCD 中,已知 AC=4cm,若△ACD 的周长为 13cm,
则 ?ABCD 的周长为( )
A. 26cm
B.24cm
C. 20cm
D.18cm
7. (2018?泸州) 如图, ?ABCD 的对角线 AC ,BD 相交于点 O,E 是 AB 中点,
12. ( 2018?山西) 图 1 是我国古代建筑中的一种窗格, 其中冰裂纹图案象征着坚
冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图 2 是从图 1
冰裂纹窗格图案中提取的由五条线段组成的图形,则∠
1+∠ 2+∠ 3+∠ 4+∠ 5=
度.
13. (2018?抚顺)将两张三角形纸片如图摆放,量得∠
2019 年中考数学专题复习
第五章 四边形
第二十讲 多边形与平行四边形
【基础知识回顾】
一、 多边形:
1、定义:在平面内,由若干条不在同一直线上的线段
相连组成
的
图形叫做多边形,各边相等、
也相等的多边形叫做正
多边形
2、多边形的内外角和:
n(n ≥ 3的) 内角和是
外角和是
正 n 边形的每个外角的度
数是
,每个内角的度数是
则∠ 5=
.
1+∠2+∠ 3+∠4=220°,
14. (2018?十堰) 如图,已知 ?ABCD 的对角线 AC ,BD 交于点 O,且 AC=8, BD=10, AB=5 ,则 △OCD 的周长为 .
15. (2018?株洲) 如图,在平行四边形 ABCD 中,连接 BD,且 BD=CD ,过点
(完整版)2019年中考数学专题复习第二十讲多边形与平行四边形(含详细参考答案)

2019 年中考数学专题复习第五章四边形第二十讲多边形与平行四边形【基础知识回顾】一、多边形:1、定义:在平面内,由若干条不在同一直线上的线段相连组成的图形叫做多边形,各边相等、也相等的多边形叫做正多边形2、多边形的内外角和:n(n≥3)的内角和是外角和是正n 边形的每个外角的度数是,每个内角的度数是。
3、多边形的对角线:多边形的对角线是连接多边形的两个顶点的线段,从n 边形的一个顶点出发有条对角线,将多边形分成个三角形,一个n 边形共有条对边线【名师提醒:1、三角形是边数最少的多边形2、所有的正多边形都是轴对称图形,正n 边形共有条对称轴,边数为数的正多边形也是中心对称图形】二、平面图形的密铺:1、定义:用、完全相同的一种或几种平面图形进行拼接,彼此之间、地铺成一起,这就是平面图形的密铺,又称作平面图形的。
2、密铺的方法:⑴用同一种正多边形密铺,可以用、或⑵用两种正多边形密铺,组合方式有:和、和、和等几种【名师提醒:能密铺的图形在一个拼接处的特点:几个图形的内角拼接在一起时,其和等于并使相等的边互相平合】三、平行四边形1、定义:两组对边分别的四边形是平行四边形,平行四边形ABCD 可表示为2、平行四边形的特质:⑴平行四边形的两组对边分别⑵平行四边形的两组对角分别⑶平行四边形的对角线【名师提醒:1、平行四边形是对称图形,对称中心是过对角线交点的任一直线被一组对边截得的线段该直线将原平行四边形分成全等的两个部分】3、平行四边形的判定:⑴用定义判定⑵两组对边分别的四边形是平行四边形⑶一组对边的四边形是平行四边形⑷两组对角分别的四边形是平行四边形⑸对角线的四边形是平行四边形【名师提醒:特别的:一组对边平行,另一组对边相等的四边形和一组对边相等、一组对角相等的四边形都不能保证是平行四边形】4、平行四边形的面积:计算公式×同底(等底)同高(等高)的平行四边形面积【名师提醒:夹在两平行线间的平行线段两平行线之间的距离处处】【重点考点例析】考点一:多边形内角和、外角和公式例1 (2018•铜仁市)如果一个多边形的内角和是外角和的3 倍,则这个多边形的边数是()A.8 B.9C.10 D.11【思路分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:A.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.考点二:平行四边形的性质例2 (2018•青岛)已知:如图,平行四边形ABCD,对角线AC 与BD 相交于点E,点G 为AD 的中点,连接CG,CG 的延长线交BA 的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF 的形状,并证明你的结论.【思路分析】(1)只要证明AB=CD,AF=CD 即可解决问题;(2)结论:四边形ACDF 是矩形.根据对角线相等的平行四边形是矩形判断即可;【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.(2)解:结论:四边形ACDF 是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF 是平行四边形,∵四边形ABCD 是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG 是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF 是矩形.【点评】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.考点三:平行四边形的判定例3 (2018•东营)如图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于点F,AB=BF.添加一个条件使四边形ABCD 是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BFC.∠A=∠C D.∠F=∠CDF【思路分析】正确选项是D.想办法证明CD=AB,CD∥AB 即可解决问题;【解答】解:正确选项是D.理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,∴△CDE≌△BFE,CD∥AF,∴CD=BF,∵BF=AB,∴CD=AB,∴四边形ABCD 是平行四边形.故选:D.【点评】本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.【备考真题过关】一、选择题1.(2018•北京)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°2.(2018•乌鲁木齐)一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5C.6 D.73.(2018•济宁)如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P 的度数是()A.50°B.55°C.60°D.65°4.(2018•台州)正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°5.(2018•宁波)如图,在▱ABCD 中,对角线AC 与BD 相交于点O,E 是边CD 的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1 的度数为()A.50°B.40°C.30°D.20°6.(2018•黔南州)如图在▱ABCD 中,已知AC=4cm,若△ACD 的周长为13cm,则▱ABCD 的周长为()A.26cm B.24cmC.20cm D.18cm7.(2018•泸州)如图,▱ABCD 的对角线AC,BD 相交于点O,E 是AB 中点,且AE+EO=4,则▱ABCD 的周长为()A.20 B.16C.12 D.88.(2018•玉林)在四边形ABCD 中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD 为平行四边形的选法共有()A.3 种B.4 种C.5 种D.6 种9.(2018•呼和浩特)顺次连接平面上A、B、C、D 四点得到一个四边形,从①AB∥CD②BC=AD③∠A=∠C④∠B=∠D 四个条件中任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况共有()A.5 种B.4 种C.3 种D.1 种10.(2018•眉山)如图,在▱ABCD 中,CD=2AD,BE⊥AD 于点E,F 为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()DEBCA.1 个B.2 个C.3 个二、填空题11.(2018•宿迁)若一个多边形的内角和是其外角和的3 倍,则这个多边形的边数是.12. (2018•山西)图1 是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2 是从图1 冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.13. (2018•抚顺)将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5= .14.(2018•十堰)如图,已知▱ABCD 的对角线AC,BD 交于点O,且AC=8,BD=10,AB=5,则△OCD 的周长为.215.(2018•株洲)如图,在平行四边形ABCD 中,连接BD,且BD=CD,过点A 作AM⊥BD 于点M,过点D 作DN⊥AB 于点N,且DN=3 ,在DB 的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP= .16.(2018•泰州)如图,▱ABCD 中,AC、BD 相交于点O,若AD=6,AC+BD=16,则△BOC 的周长为.17.(2018•无锡)如图,已知∠XOY=60°,点A 在边OX 上,OA=2.过点A 作AC⊥OY 于点C,以AC 为一边在∠XOY 内作等边三角形ABC,点P 是△ ABC 围成的区域(包括各边)内的一点,过点P 作PD∥OY 交OX 于点D,作PE∥OX 交OY 于点E.设OD=a,OE=b,则a+2b 的取值范围是.三、解答题18.(2018•岳阳)如图,在平行四边形ABCD 中,AE=CF,求证:四边形BFDE 是平行四边形.19.(2018•宿迁)如图,在▱ABCD 中,点E、F 分别在边CB、AD 的延长线上,且BE=DF,EF 分别与AB、CD 交于点G、H.求证:AG=CH.20.(2018•临安区)已知:如图,E、F 是平行四边形ABCD 的对角线AC 上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.21.(2018•福建)如图,▱ABCD 的对角线AC,BD 相交于点O,EF 过点O 且与AD,BC 分别相交于点E,F.求证:OE=OF.22.(2018•大庆)如图,在Rt△ABC 中,∠ACB=90°,D、E 分别是AB、AC 的中点,连接CD,过 E 作EF∥DC 交BC 的延长线于F.(1)证明:四边形CDEF 是平行四边形;(2)若四边形CDEF 的周长是25cm,AC 的长为5cm,求线段AB 的长度.23. (2018•永州)如图,在△ABC 中,∠ACB=90°,∠CAB=30°,以线段AB 为边向外作等边△ABD,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F.(1)求证:四边形BCFD 为平行四边形;(2)若AB=6,求平行四边形BCFD 的面积.2019 年中考数学专题复习第五章四边形第二十讲多边形与平行四边形参考答案【备考真题过关】一、选择题1.【思路分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和;根据一个外角得60°,可知对应内角为120°,很明显内角和是外角和的2 倍即720.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6-2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.2.【思路分析】根据内角和定理180°•(n-2)即可求得.【解答】解:∵多边形的内角和公式为(n-2)•180°,∴(n-2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选:C.【点评】本题主要考查了多边形的内角和定理即180°•(n-2),难度适中.3.【思路分析】先根据五边形内角和求得∠ECD+∠BCD,再根据角平分线求得∠PDC+∠PCD,最后根据三角形内角和求得∠P 的度数.【解答】解:如图,∵在五边形ABCDE 中,∠A+∠B+∠E=300°,∴∠ECD+∠BCD=240°,又∵DP、CP 分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP 中,∠P=180°-(∠PDC+∠PCD)=180°-120°=60°.故选:C.【点评】本题主要考查了多边形的内角和以及角平分线的定义,解题时注意:多边形内角和=(n-2)•180(n≥3 且n 为整数).4.【思路分析】利用正十边形的外角和是360 度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数;【解答】解:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°-36°=144°;故选:D.【点评】本题主要考查了多边形的内角与外角的关系.多边形的外角性质:多边形的外角和是360 度.多边形的内角与它的外角互为邻补角.5.【思路分析】直接利用三角形内角和定理得出∠BCA 的度数,再利用三角形中位线定理结合平行线的性质得出答案.【解答】解:∵∠ABC=60°,∠BAC=80°,∴∠BCA=180°-60°-80°=40°,∵对角线AC 与BD 相交于点O,E 是边CD 的中点,∴EO 是△DBC 的中位线,∴EO∥BC,∴∠1=∠ACB=40°.故选:B.【点评】此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO 是△DBC 的中位线是解题关键.6.【思路分析】根据三角形周长的定义得到AD+DC=9cm.然后由平行四边形的对边相等的性质来求平行四边形的周长.【解答】解:∵AC=4cm,若△ADC 的周长为13cm,∴AD+DC=13-4=9(cm).又∵四边形ABCD 是平行四边形,∴AB=CD,AD=BC,∴平行四边形的周长为2(AB+BC)=18cm.故选:D.【点评】本题考查了平行四边形的性质.此题利用了“平行四边形的对边相等”的性质.7.【思路分析】首先证明:1,由AE+EO=4,推出AB+BC=8 即可解决问题;OE= BC2【解答】解:∵四边形ABCD 是平行四边形,∴OA=OC,∵AE=EB,∴1OE= BC,2∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD 的周长=2×8=16,故选:B.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.【思路分析】根据平行四边形的判定方法中,①②、③④、①③、③④均可判定是平行四边形.【解答】解:根据平行四边形的判定,符合条件的有4 种,分别是:①②、③④、①③、③④.故选:B.【点评】本题考查了平行四边形的判定,平行四边形的判定方法共有五种,在四边形中如果有:1、四边形的两组对边分别平行;2、一组对边平行且相等;3、两组对边分别相等;4、对角线互相平分;5、两组对角分别相等.则四边形是平行四边形.本题利用了第1,2,3 种来判定.9.【思路分析】根据平行四边形的判定定理可得出答案.【解答】解;当①③时,四边形ABCD 为平行四边形;当①④时,四边形ABCD 为平行四边形;当③④时,四边形ABCD 为平行四边形;故选:C.【点评】此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.10.【思路分析】如图延长EF 交BC 的延长线于G,取AB 的中点H 连接FH.想办法证明EF=FG,BE⊥BG,四边形BCFH 是菱形即可解决问题;【解答】解:如图延长EF 交BC 的延长线于G,取AB 的中点H 连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S 四边形DEBC=S△EBG=2S△BEF,故③正确,∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH 是平行四边形,∵CF=BC,∴四边形BCFH 是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选:D.【点评】本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.二、填空题11.【思路分析】任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n 边形的内角和是(n-2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:设多边形的边数为n,根据题意,得(n-2)•180=3×360,解得n=8.则这个多边形的边数是8.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.12.【思路分析】根据多边形的外角和等于360°解答即可.【解答】解:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.【点评】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.13.【思路分析】直接利用三角形内角和定理得出∠6+∠7 的度数,进而得出答案.【解答】解:如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,2 2 2 ∴∠5=180°-(∠6+∠7)=40°. 故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确应用三角形内角和定理是解 题关键.14. 【思路分析】根据平行四边形的性质即可解决问题;【解答】解:∵四边形 ABCD 是平行四边形,∴AB=CD=5,OA=OC=4,OB=OD=5,∴△OCD 的周长=5+4+5=14,故答案为 14.【点评】本题考查平行四边形的性质、三角形的周长等知识,解题的关键是熟 练掌握平行四边形的性质,属于中考基础题.15. 【思路分析】根据 BD=CD ,AB=CD ,可得 BD=BA ,再根据AM ⊥BD ,DN ⊥AB ,即可得到 DN=AM=3 ,依据∠ABD=∠MAP+∠PAB ,∠ABD=∠P+∠BAP ,即可得到△APM 是等腰直角三角形,进而得到 AP= AM=6.【解答】解:∵BD=CD ,AB=CD ,∴BD=BA ,又∵AM ⊥BD ,DN ⊥AB ,∴DN=AM=3 ,又∵∠ABD=∠MAP+∠PAB ,∠ABD=∠P+∠BAP ,∴∠P=∠PAM ,∴△APM 是等腰直角三角形,2∴AP= AM=6,故答案为:6.【点评】本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM 是等腰直角三角形.16.【思路分析】根据平行四边形的性质,三角形周长的定义即可解决问题;【解答】解:∵四边形ABCD 是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC 的周长=BC+OB+OC=6+8=14,故答案为14.【点评】本题考查平行四边形的性质.三角形的周长等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【思路分析】作辅助线,构建30 度的直角三角形,先证明四边形EODP 是平行四边形,得EP=OD=a,在Rt△HEP 中,∠EPH=30°,可得EH 的长,计算a+2b=2OH,确认OH 最大和最小值的位置,可得结论.【解答】解:过P 作PH⊥OY 交于点H,∵PD∥OY,PE∥OX,∴四边形EODP 是平行四边形,∠HEP=∠XOY=60°,∴EP=OD=a,Rt △HEP 中,∠EPH=30°,∴ 1 1 EH= EP= a , 2 2 ∴a+2b=2( 1 a+b )=2(EH+EO )=2OH , 2 当 P 在 AC 边上时,H 与 C 重合,此时 OH 的最小值 1,即 a+2b 的 最小值是 2; 当 P 在点 B 时,OH 的最大值是:1+ 3 2 =OC= OA=1 2= 5 ,即(a+2b )的最大值是 5, 2∴2≤a+2b≤5.【点评】本题考查了等边三角形的性质、直角三角形 30 度角的性质、平行四边形的判定和性质,有难度,掌握确认 a+2b 的最值就是确认 OH 最值的范围.三、解答题18. 【思路分析】首先根据四边形 ABCD 是平行四边形,判断出 AB ∥CD ,且AB=CD ,然后根据 AE=CF ,判断出 BE=DF ,即可推得四边形 BFDE 是平行四边形.【解答】证明:∵四边形 ABCD 是平行四边形,∴AB ∥CD ,且 AB=CD ,又∵AE=CF ,∴BE=DF ,∴BE ∥DF 且 BE=DF ,∴四边形 BFDE 是平行四边形.【点评】此题主要考查了平行四边形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①判定定理 1:SSS--三条边分别对应相等的两个三角形全等.②判定定理 2:SAS--两边及其夹角分别对应相等的两个三角形全等.③ 判定定理 3:ASA--两角及其夹边分别对应相等的两个三角形全等.④判定定理⎨ ⎩4:AAS--两角及其中一个角的对边对应相等的两个三角形全等.⑤判定定理 5:HL--斜边与直角边对应相等的两个直角三角形全等.19. 【思路分析】利用平行四边形的性质得出 AF=EC ,再利用全等三角形的判定与性质得出答案.【解答】证明:∵四边形 ABCD 是平行四边形,∴AD=BC ,∠A=∠C ,AD ∥BC ,∴∠E=∠F ,∵BE=DF ,∴AF=EC ,⎧∠A =∠C 在△AGF 和△CHE 中⎪ AF =EC , ⎪∠F =∠E ∴△AGF ≌△CHE (ASA ),∴AG=CH .【点评】此题主要考查了平行线的性质以及全等三角形的判定与性质,正确掌握平行线的性质是解题关键.20. 【思路分析】(1)要证△ADF ≌△CBE ,因为 AE=CF ,则两边同时加上EF ,得到 AF=CE ,又因为 ABCD 是平行四边形,得出AD=CB ,∠DAF=∠BCE ,从而根据 SAS 推出两三角形全等;(2)由全等可得到∠DFA=∠BEC ,所以得到 DF ∥EB .【解答】证明:(1)∵AE=CF ,∴AE+EF=CF+FE ,即 AF=CE .又 ABCD 是平行四边形,∴AD=CB ,AD ∥BC .∴∠DAF=∠BCE.在△ADF 与△CBE中AF=CE∠DAF=∠BCEAD=CB,∴△ADF≌△CBE(SAS).(2)∵△ADF≌△CBE,∴∠DFA=∠BEC.∴DF∥EB.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.【思路分析】由四边形ABCD 是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【解答】证明:∵四边形ABCD 是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE 和△OCF 中,∠OAE=∠OCFOA=OC∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.22.【思路分析】(1)由三角形中位线定理推知ED∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE 为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE 的周长=AB+BC,故BC=25-AB,然后根据勾股定理即可求得;【解答】(1)证明:∵D、E 分别是AB、AC 的中点,F 是BC 延长线上的一点,∴ED 是Rt△ABC 的中位线,∴ED∥FC.BC=2DE,又EF∥DC,∴四边形CDEF 是平行四边形;(2)解:∵四边形CDEF 是平行四边形;∴DC=EF,∵DC 是Rt△ABC 斜边AB 上的中线,∴AB=2DC,∴四边形DCFE 的周长=AB+BC,∵四边形DCFE 的周长为25cm,AC 的长5cm,∴BC=25-AB,∵在Rt△ABC 中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25-AB)2+52,解得,AB=13cm,【点评】本题考查了三角形的中位线定理,直角三角形斜边中线的性质,平行四边形的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.23.【思路分析】(1)在Rt△ABC 中,E 为AB 的中点,则1 1CE= AB,BE= AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得2 2∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60 度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD 是平行四边形.(2)在Rt△ABC 中,求出BC,AC 即可解决问题;【解答】(1)证明:在△ABC 中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°.在等边△ABD 中,∠BAD=60°,∴∠BAD=∠ABC=60°.∵E 为AB 的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC.在△ABC 中,∠ACB=90°,E 为AB 的中点,3 3 3 3 ∴ 1 1 CE= AB ,BE= AB .2 2∴CE=AE ,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°.又∵△AEF ≌△BEC ,∴∠AFE=∠BCE=60°.又∵∠D=60°,∴∠AFE=∠D=60°.∴FC ∥BD .又∵∠BAD=∠ABC=60°,∴AD ∥BC ,即 FD ∥BC .∴四边形 BCFD 是平行四边形.(2)解:在 Rt △ABC 中,∵∠BAC=30°,AB=6, ∴ 1 BC= AB=3,AC= BC=3 , 2∴S 平行四边形 BCFD =3×3 =9 .【点评】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等 三角形解决问题,属于中考常考题型.。
2020年九年级中考数学考点难点突破: 平行四边形与多边形(含答案)

2020年九年级中考数学考点难点突破:平行四边形与多边形1.下列说法错误..的是()A. 对角线互相平分的四边形是平行四边形B. 两组对边分别相等的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 一组对边相等,另一组对边平行的四边形是平行四边形2. 如图,平行四边ABCD的周长是26 cm,对角线AC与BD交于点O,AC⊥AB,E 是BC中点,△AOD的周长比△AOB的周长多3 cm,则AE的长度为()第2题图A. 3 cmB. 4 cmC. 5 cmD. 8 cm3.如图,将▱ABCD沿对角线AC折叠,使点B落在点B′处.若∠1=∠2=44°,则∠B 为()A. 66°B. 104°C. 114°D. 124°第3题图第4题图4.已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是( )A . OE =12DC B . OA =OCC . ∠BOE =∠OBAD . ∠OBE =∠OCE5.由多边形的一个顶点出发的所有对角线把多边形分成8个三角形,那么这个多边形的边数是( )A . 8B . 9C . 10D . 116.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件________(写一个即可),使四边形ABCD是平行四边形.7.如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为________.第6题图第7题图8.如图,在▱ABCD中,∠B=80°,∠ADC的角平分线DE与BC交于点E,若BE=CE,则∠DAE=________度.9.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=____________.第8题图第9题图10.如图,在▱ABCD中,AB=213 cm,AD=4 cm,AC⊥BC,则△DBC比△ABC的周长长________cm.第10题图第12题图11.如果一个正多边形的每个外角都是30°,那么这个多边形的内角和为________.12.如图,正十二边形A1A2…A12,连接A3A7、A7A10,则∠A3A7A10=________°.13.如图,▱ABCD的对角线AC,BD交于点O,EF过点O且与BC,AD分别交于点E,F.试猜想线段AE,CF的关系,并说明理由.第13题图14.如图,AC是▱ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;(2)若AB=2,AC=23,求▱ABCD的面积.第14题图15.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.第15题图1. D2. B3. C4. D5. C6. AD∥BC(答案不唯一)7. 110°8. 509. 55°10. 411. 1800°12. 7513. 解:AE=CF且AE∥CF.理由如下:∵▱ABCD的对角线AC,BD交于点O,EF过点O且与BC,AD分别交于点E、F,∴∠AOF=∠COE,OA=OC,∵AF∥CE,∴∠AFO=∠CEO,∴△AOF≌△COE,∴OF=OE,又∵OA=OC,∴四边形AECF两条对角线互相平分,∴四边形AECF是平行四边形,故AE =CF 且AE ∥CF .14. 解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠BCA =∠DAC ,又∠BAC =∠DAC . ∴∠BCA =∠BAC , ∴AB =BC ;第14题解图(2)∵AB =BC , ∴▱ABCD 是菱形,如解图,连接BD 交AC 于点O ,则∠AOB =90°,∴AO =12AC =3,在Rt △AOB 中,BO =22-(3)2=1,∴BD =2,∴S ▱ABCD =12AC ·BD =12×23×2=2 3.15. 解:(1)证明:∵四边形ABCD 是菱形, ∴AB ∥CD ,AC ⊥BD , ∴AE ∥CD ,∠AOB =90°,又∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,又∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8.∴△ADE的周长为AD+AE+DE=5+5+8=18.。
中考数学专题复习_第二十讲__多边形与平行四边形(含详细参考答案)

第五章四边形第二十讲多边形与平行四边形【基础知识回顾】一、多边形:1、定义:在平面内,由若干条不在同一直线上的线段相连组成的图形叫做多边形,各边相等、也相等的多边形叫做正多边形2、多边形的内外角和:n(n≥3)的内角和是外角和是正n边形的每个外角的度数是,每个内角的度数是。
3、多边形的对角线:多边形的对角线是连接多边形的两个顶点的线段,从n边形的一个顶点出发有条对角线,将多边形分成个三角形,一个n边形共有条对边线【名师提醒:1、三角形是边数最少的多边形2、所有的正多边形都是轴对称图形,正n 边形共有条对称轴,边数为数的正多边形也是中心对称图形】二、平面图形的密铺:1、定义:用、完全相同的一种或几种平面图形进行拼接,彼此之间、地铺成一起,这就是平面图形的密铺,又称作平面图形的。
2、密铺的方法:⑴用同一种正多边形密铺,可以用、或⑵用两种正多边形密铺,组合方式有:和、和、和等几种【名师提醒:能密铺的图形在一个拼接处的特点:几个图形的内角拼接在一起时,其和等于并使相等的边互相平合】三、平行四边形1、定义:两组对边分别的四边形是平行四边形,平行四边形ABCD可表示为2、平行四边形的特质:⑴平行四边形的两组对边分别⑵平行四边形的两组对角分别⑶平行四边形的对角线【名师提醒:1、平行四边形是对称图形,对称中心是过对角线交点的任一直线被一组对边截得的线段该直线将原平行四边形分成全等的两个部分】3、平行四边形的判定:⑴用定义判定⑵两组对边分别的四边形是平行四边形⑶一组对边的四边形是平行四边形⑷两组对角分别的四边形是平行四边形⑸对角线的四边形是平行四边形【名师提醒:特别的:一组对边平行,另一组对边相等的四边形和一组对边相等、一组对角相等的四边形都不能保证是平行四边形】4、平行四边形的面积:计算公式×同底(等底)同高(等高)的平行四边形面积【名师提醒:夹在两平行线间的平行线段两平行线之间的距离处处】【重点考点例析】考点一:多边形内角和、外角和公式例1 (2013•梅州)若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.6思路分析:由于任何一个多边形的外角和为360°,由题意知此多边形的内角和小于360°.又根据多边形的内角和定理可知任何一个多边形的内角和必定是180°的整数倍,则此多边形的内角和等于180°.由此可以得出这个多边形的边数.解:设边数为n,根据题意得(n-2)•180°<360°解之得n<4.∵n为正整数,且n≥3,∴n=3.故选A.点评:本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,还需要懂得挖掘此题隐含着边数为正整数这个条件.本题既可用整式方程求解,也可用不等式确定范围后求解.对应训练1.(2013•长沙)下列多边形中,内角和与外角和相等的是()A.四边形B.五边形C.六边形D.八边形1.A考点二:平面图形的密铺例2 (2013•漳州)用下列一种多边形不能铺满地面的是()A.正方形B.正十边形C.正六边形D.等边三角形思路分析:根据平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能,即可得出答案.解:∵用一种正多边形镶嵌,只有正方形,正六边形,等边三角形三种正多边形能镶嵌成一个平面图案.∴不能铺满地面的是正十边形;故选B.点评:此题考查了平面镶嵌,用到的知识点是只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形.对应训练2.(2013•呼和浩特)只用下列图形中的一种,能够进行平面镶嵌的是()A.正十边形B.正八边形C.正六边形D.正五边形2.C考点三:平行四边形的性质例3 (2013•益阳)如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.AB=CD D.AC⊥BD思路分析:根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.解:∵在平行四边形ABCD 中,∴AB ∥CD ,∴∠1=∠2,故此选项正确,不合题意;∵四边形ABCD 是平行四边形,∴∠BAD=∠BCD ,AB=CD ,故B ,C 选项正确,不合题意;无法得出AC ⊥BD ,故此选项错误,符合题意.故选D .点评:此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.例4 (2013•泸州)如图,已知▱ABCD 中,F 是BC 边的中点,连接DF 并延长,交AB 的延长线于点E .求证:AB=BE .思路分析:根据平行四边形性质得出AB=DC ,AB ∥CD ,推出∠C=∠FBE ,∠CDF=∠E ,证△CDF ≌△BEF ,推出BE=DC 即可. 证明:∵F 是BC 边的中点,∴BF=CF ,∵四边形ABCD 是平行四边形,∴AB=DC ,AB ∥CD ,∴∠C=∠FBE ,∠CDF=∠E ,∵在△CDF 和△BEF 中C FBE CDF E CF BF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDF ≌△BEF (AAS ),∴BE=DC ,∵AB=DC ,∴AB=BE .点评:本题考查了平行四边形性质,全等三角形的性质和判定,平行线的性质的应用,关键是推出△CDF ≌△BEF对应训练3.(2013•黔西南州)已知▱ABCD 中,∠A+∠C=200°,则∠B 的度数是( )A .100°B .160°C .80°D .60°3.C4.(2013•长春)在△ABC 中,AB=AC ,点D 、E 、F 分别是AC 、BC 、BA 延长线上的点,四边形ADEF 为平行四边形.求证:AD=BF .4.证明:∵四边形ADEF 为平行四边形,∴AD=EF,AD∥EF,∴∠ACB=∠FEB,∵AB=AC,∴∠ACB=∠B,∴∠FEB=∠B,∴EF=BF,∴AD=BF.考点四:平行四边形的判定例5 (2013•荆门)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种思路分析:根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;故选:B.点评:此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.对应训练5.(2013•泸州)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC5.D【聚焦山东中考】1.(2013•烟台)一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或71.D2.(2013•泰安)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.B.C.4 D.82.B3.(2013•莱芜)正十二边形每个内角的度数为.3.150°4.(2013•菏泽)如图,▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为.4【备考真题过关】一、选择题1.(2013•资阳)一个正多边形的每个外角都等于36°,那么它是()A.正六边形B.正八边形C.正十边形D.正十1.C2.(2013•湛江)已知一个多边形的内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形2.B3.(2013•六盘水)下列图形中,单独选用一种图形不能进行平面镶嵌的是()A.正三角形B.正六边形C.正方形D.正五边形3.D4.(2013•襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18 B.28 C.36 D.464.C5.(2013•湘西州)如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD 延长线于点F,则△EDF与△BCF的周长之比是()A.1:2 B.1:3 C.1:4 D.1:55.A6.(2013•云南)如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.S▱ABCD=4S△AOB B.AC=BDC.AC⊥BD D.▱ABCD是轴对称图形6.A7.(2013•无锡)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于()A.3:4 B C D.7.D二、填空题8.(2013•无锡)六边形的外角和等于度.8.3609.(2013•遂宁)若一个多边形内角和等于1260°,则该多边形边数是.9.910.(2013•三明)如图,在四边形ABCD中,AB∥CD,请你添加一个条件,使得四边形ABCD成为平行四边形,你添加的条件是.10.答案不唯一,如:AB=CD或AD∥BC或∠A=∠C或∠B=∠D或∠A+∠B=180°或∠C+∠D=180°等11.(2013•乐山)如图,在四边形ABCD中,∠A=45°.直线l与边AB,AD分别相交于点M,N,则∠1+∠2= .11.225°12.(2013•江西)如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.12.25°13.(2013•安徽)如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2,若S=2,则S1+S2= .15.1三、解答题16.(2013•大连)如图,▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE=DF.16.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∵AE=CF ,∴DE=BF ,DE ∥BF ,∴四边形DEBF 是平行四边形,∴BE=DF .17.(2013•郴州)如图,已知BE ∥DF ,∠ADF=∠CBE ,AF=CE ,求证:四边形DEBF 是平行四边形.17.证明:∵BE ∥DF ,∴∠BEC=∠DFA ,在△ADF 和△CBE 中ADF CBE AFD CEB AF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△CBE (AAS ),∴BE=DF ,又∵BE ∥DF ,∴四边形DEBF 是平行四边形.18.(2013•广安)如图,在平行四边形ABCD 中,AE ∥CF ,求证:△ABE ≌△CDF .18.证明:∵四边形ABCD 是平行四边形,∴AE ∥CF ,AD=BC ,AB=CD ,∵AE ∥CF ,∴四边形AECF 是平行四边形,∴AE=CF ,AF=CF ,∴BE=DE ,在△ABE 和△CDF 中,AB CD BE DF AE CF =⎧⎪=⎨⎪=⎩,∴△ABE ≌△CDF (SSS ).19.(2013•鞍山)如图,E ,F 是四边形ABCD 的对角线AC 上两点,AF=CE ,DF=BE ,DF ∥BE .求证:(1)△AFD ≌△CEB ;(2)四边形ABCD 是平行四边形.19.证明:(1)∵DF ∥BE ,∴∠DFE=∠BEF .又∵AF=CE ,DF=BE ,∴△AFD ≌△CEB (SAS ).(2)由(1)知△AFD ≌△CEB ,∴∠DAC=∠BCA ,AD=BC ,∴AD ∥BC .∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形).20.(2013•台州)如图,在▱ABCD 中,点E ,F 分别在边DC ,AB 上,DE=BF ,把平行四边形沿直线EF 折叠,使得点B ,C 分别落在B′,C′处,线段EC′与线段AF 交于点G ,连接DG ,B′G .求证:(1)∠1=∠2;(2)DG=B′G .20.证明:(1)∵在平行四边形ABCD 中,DC ∥AB ,∴∠2=∠FEC ,由折叠得:∠1=∠FEC ,∴∠1=∠2;(2)∵∠1=∠2,∴EG=GF ,∵AB ∥DC ,∴∠DEG=∠EGF ,由折叠得:EC′∥B′F ,。
中考数学专题训练:多边形与平行四边形 (含答案)

7. 将一个 n 边形变成(n+2)边形,内角和将( )
A.减少 180°
B.增加 180°
C.减少 360°
D.增加 360°
8. 如图, ABCD 中,AB=2,AD=4,对角线 AC,BD 相交于点 O,且 E, F,G,H 分别是 AO,BO,CO,DO 的中点,则下列说法正确的是
2
5. 【答案】C 【解析】由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°, 又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,∴AD=6, 由折叠可得,∠E=∠D=∠B=60°, ∴∠DAE=60°,∴△ADE 是等边三角形, ∴△ADE 的周长为 6×3=18, 故选 C.
6. 【答案】B 【解析】∵四边形 ABCD 是平行四边形,∴OA=OC,OB=OD. 由 AC+BD=16 可得 OA+OB=8,又∵AB=CD=6,∴△ABO 的周长为 OA+ OB+AB=8+6=14.
5. 如图,在 ABCD 中,将△ADC 沿 AC 折叠后,点 D 恰好落在 DC 的延长线 上的点 E 处.若∠B=60°,AB=3,则△ADE 的周长为
A.12
B.15
C.18
D.21
6. 如图,▱ABCD 的对角线 AC、BD 相交于点 O,且 AC+BD=16,CD=6, 则△ABO 的周长是( ) A. 10 B. 14 C. 20 D. 22
2 1325+53=1378(次).
因此该班师生之间每周至少要通 1378 次电话.
[点评] 本题的数学模型实质上是 n 个人之间彼此握一次手,求握手总次数的问
题,其次数为 n+1(n-3)·n=1n(n-1).
2
2
三、解答题
16. 【答案】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第20讲多边形与平行四边形
【回顾与思考】
【例题经典】
一.利用平行四边形的性质求面积
例1.(2006年河南省)如图,在 ABCD中,E为CD的中点,连结AE并延长交BC的延长线于点F,求证:S△ABF=S ABCD.
【解析】∵四边形ABCD为平行四边形,∴AD∥BC.
∵E是DC的中点,∴DE=CE.
∴△AED≌△FEC.
∴S△AED =S△FEC.
∴S△ABF =S四边形ABCE+S△CEF =S四边形ABCE+S△AED =S ABCD
二.会根据条件选择适当方法判定平行四边形
例2.(2005年山东省)如图,在 ABCD中,对角线AC、BD相交于点O,E、F•是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.OE=OF B.DE=BF C.∠ADE=∠CBF D.∠ABE=∠CDF
【分析】虽然判别平行四边形可从“边、角、对角线”三个
角度来考虑,但此例图中已有对角线,所以最适当方法应是“对
角线互相平分的四边形为平行四边形”.
三.能利用平行四边形的性质进行计算
例3.(2005年西宁市)如图,在 ABCD中,已知对角线AC和BD相交于点O,△AOB•的周长为15,AB=6,那么对角线AC+BD=_______.
【分析】本例解题依据是:平行四边形的对角线互相平分,先
求出AO+BO=9,•再求得AC+BD=18.
基础训练
1.如图1,该多边形的内角和为_______度.
(1) (2) (3) 2.如图2,E、F是 ABCD对角线BD上的两点,请你添加一个适当的条件:__________,使四边形AECF是平行四边形.
3.(2006年长沙市)如图3,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是__________(添加一个条件即可).
4.(2006年扬州市) ABCD的对角线交于点O,下列结论错误的是()
A. ABCD是中心对称图形 B.△AOB≌△COD
C.△AOD≌△BOC D.△AOB与△BOC的面积相等
5.(2005年天津市)如图4,在 ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数共有()
A.7个 B.8个 C.9个 D.11个
6.(2006年广东省)如图5所示,在 ABCD中,对角线AC、BD交于点O,下列式子中一定成立的是()
A.AC⊥BD B.OA=OC C.AC=BD D.AO=OD
(4) (5) (6)
7.(2006年淄博市)如图6,在△MBN中,BM=6,点A,C,D分别在MB,NB,MN•上,•四边形ABCD为平行四边形,∠NDC=∠MDA,则 ABCD的周长是()
A.24 B.18 C.16 D.12
8.(2006年怀化市)如图7,AB=AC,AD⊥BC,AD=BC,若用剪刀沿AD剪开,•则最多能拼出不同形状的四边形个数是()
A.2个 B.3个 C.4个 D.5个
9.如图8, ABCD中,点E、F分别是AD、AB的中点,EF交AC于点G,那么AG:GC的值为(• )
A.1:2 B.1:3 C.1:4 D.2:3
(7) (8) (9) 10.(2006年南通市)如图9, ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为()
A.6m B.12cm C.4cm D.8cm
能力提升
11.如图,在
ABCD 中,E 、F 是对角线AC 上的两点,AE=CF ,求证:BE=DF .
12.(2006年德阳市)如图,已知点M 、N 分别是
ABCD 的边AB 、DC 的中点,•求证:•
∠DAN=∠BCM .
13.(2006年临安市)已知:如图,E 、F 是平行四边形ABCD•的对角线AC•上的两点,AE=CF .
求证:(1)△ADF ≌△CBE ;(2)EB ∥DF .
14.如图,DB ∥AC ,且DB=
1
2
AC ,E 是AC 的中点,求证:BC=DE .
应用与探究
15.(2006年江阴市)已知平行四边形ABCD 中,点E 、F 分别在边AB 、BC 上. (1)若AB=10,AB 与CD 间距离为8,AE=EB ,BF=FC ,求△DEF 的面积. (2)若△ADE 、△BEF 、△CDF 的面积分别为5、3、4,求△DEF 的面积.
答案与参考
例题经典
例2.B
考点精练
1.900 2.答案不唯一,如BE=DF等 3.答案不唯一,如AB=CD等 • 4.D 5.C 6.C 7.D 8.D 9.B 10.D
11.证△ABE≌△CDF(SAS),即可得到BE=•DF
12.证△BCM≌△DAN(SAS),即可得∠DAN=∠BCM
13.(1)根据(•SAS)•证△ADF•≌△CBE
(2)连接BF、DE、DB,•根据对角线互相平分的四边形是平行四边形.证四边形BEDF是平行四边形即可
14.证四边形BCED是平行四边形即可
15.(1)S△DEF =30 (2)S△DEF =68。