格与布尔代数
离散数学第6章 格与布尔代数

6-1 格的概念
5)下面证明 a∧b=aa∨b=b 若a∧b=a 则 a∨b=(a∧b)∨b=b 反之,若a∨b=b 则 a∧b=a∧(a∨b)=a
b用a∨b代替(∵两式中b是相互独立的) ∴a∨(a∧(a∨b))=a 即 a∨a=a. (2)格的等价定理:〈A,∨,∧〉代数系统,∨.∧满足交换性, 结合性,吸收性,则A上存在偏序关系≤,使〈A,≤〉是一个格
从格可引出代数系统〈A,∨,∧〉; 而从满足三个条件的〈A,∨,∧〉也可导出格〈A,≤〉 证明见书:(格中⑻⑼⑾三个性质很重要,决定了格)
(11) 要证 a≤a∨(a∧b) 第一式显然成立
a∨(a∧b)≤a
a≤a
a∧b≤a
∴a∨(a∧b) ≤a
∴a=a∨(a∧b)
6-1 格的概念
6、格的等价原理:格〈A,≤〉 (1)引理6-1.1:〈A,∨,∧〉代数系统,若∨, ∧满足吸收性,
则∨, ∧满足幂等性 证:a,b∈A. a∨(a∧b)=a a∧(a∨b)=a.
第六章 格与布尔代数
格论是近代数学的一个重要分支,由它所引出的布尔 代数在计算机科学中有很多直接应用。
格的概念 分配格 有补格 布尔代数 布尔表达式
6-1 格的概念
1、回忆偏序集〈A,≤〉,≤偏序关系:满足自反性,反对称性, 传递性。有限集合上的偏序集可用哈斯图来表示:
COV (A) {a,c, b,c, c, d, d,e, d, f }
∧也易求得 ∴ A,∨,∧〉是格〈A,|〉 诱导的代数系统
6-1 格的概念
09-格与布尔代数-8.2

第三节 子布尔代数、积布尔代数、布尔代数同态
定义:给定布尔代数<B, , *, ’ , 0, 1>,≠T B
2015年6月6日星期六
若T对 、* 和 ’ 是封闭的,且:0, 1 T
称<T, , *, ’ , 0, 1>是<B, , *, ’ , 0, 1>的子布尔代 数 显然:<{0, 1}, , *, ’ , 0, 1>和<B, , *, ’ , 0, 1> 都是<B, , *, ’ , 0, 1>的(平凡)子布尔代数
则:<f(B),∨,∧, , f(0), f(1)>是布尔代数 (证明参见教材P170 —— 利用布尔代数的定义证明)
布尔代数同态
结论:
2015年6月6日星期六
若 f 是从布尔代数<B, , *, ’ , 0, 1>到格<S,∨,∧>的 格同态映射,且f是满射的,
则:<S,∨,∧>是布尔代数
并且可以用基本公式来定义布尔代数
布尔代数的定义 从这4个定律,可以推出所有布尔代数的公式
有兴趣的同学可以参阅 R. L. 古德斯坦因 著的
对于a, b B , 有 定义:设<B, , *, ’ >是一个代数结构,其中:
2015年6月6日星期六
和 * 是B上的二元运算,’ 是B上的一元运算,且 0, 1 B
例9.15:设Bn是由0和1形成的n元组集合,且
2015年6月6日星期六
a = <a1, a2, …, an>,b = <b1, b2, …, bn> 0n = <0, 0, …, 0> , 1n = <1, 1, …, 1> 对任意 a, b Bn,定义: a b = < a1∨b1, a2∨b2 , …, an∨bn > a * b = < a1∧b1, a2∧b2 , …, an∧bn > a’ = < a1, a2, …, an> < Bn,∨,∧, , F, T>是布尔代数(开关代数)
格和布尔代数

分三步: 1) 证明’≤’是L上的偏序关系 2)证明 a,bL, {a,b}的下确界存在, 且 a∧b = glb(a,b)。 3)a,bL, {a,b}的上确界存在,且 lub(a,b) a∨b 具体证法见后面
1) 证明’≤’是L上的偏序关系 自反性:aL 由等幂律 a∧a=a, a≤a 反对称性:a,bL, 若a≤b, b≤a 则 a∧b=a, b∧a=b a = a∧b = b∧a = b 传递性:a,b,cL, 若 a≤b,b≤c 则a∧b=a, b∧c=b a∧c=(a∧b)∧c = a∧(b∧c)= a∧b=a a≤c
2、格的对偶原理
① 集合S的偏序关系≤的逆关系≥也是偏序关 系,若AS, 其中 ≤的glb(A) 对应于 ≥的lub(A), ≤的lub(A) 对应于 ≥的glb(A), 所以,若<S,≤>是格,则<S,≥>也是格, 称这两个格互为对偶。
2、格的对偶原理
② 因为<S,≤>的交是<S,≥>的并, <S,≤>的并是<S,≥>的交,
一般格只满足分配不等式: a∨(b∧c)≤(a∨b)∧(a∨c)
一、定义
设<L,∧,∨>是格,若a,b,cL,有: (1) a∧(b∨c)=(a∧b)∨(a∧c), (2) a∨(b∧c)=(a∨b)∧(a∨c), 则称 <L,∧,∨> 为分配格。
注:(1)(2)是互相等价的,由对偶原理,从一式可推
2)证明 a,bL, {a,b}的下确界存在, 且 a∧b=glb(a,b)。
a) 因为 (a∧b)∧a =(a∧a)∧b=a∧b a∧b≤a 同理a∧b≤b a∧b 是a,b的下界。
离散数学第五章格与布尔代数2

§2.布尔代数
•布尔代数的定义 •布尔代数的性质 •布尔代数中的宏运算 •有限布尔代数的原子表示 •布尔函数与布尔表达式 •布尔环与布尔代数
2021/5/22
1
离散数学
§2. 布尔代数
定义1.布尔代数(Boolean algebra) 有补的分配格(B,≼, , , , 0, 1) 称为布尔代数。
(S, ,, , , 0, 1) 是布尔代数
这里:S={0,1},00, 01, 11,其运算表如下:
2021/5/22
3
x
离散数学
x y xy 00 0 01 0 10 0
11 1
xy 0 1 1
1
xx
01 10
表2
通过变元代换,显见表2与表1是完全相同的。即,令
h:S 2X , h (0)= , h (1)= X (这里:X={a})
16
离散数学
[证].布尔代数中的对偶原理实质上来源于两个二元运 算 和 所具有的结合律、交换律、幂等律、吸收律、 分配律的对称性,半序关系≼和其逆关系≽的对称性; 最小元0和最大元1的对称性;以及任何元素x与其补元 x的对称性。
注:•布尔代数(B, ≽ , , , ,1 , 0)称为原布尔代数 (B , ≼ , , , , 0 , 1)的对偶布尔代数。实际上,它们互为对偶;
P Q = (P1 Q1, P2 Q2, , Pn Qn)
P = (P1 , P2 , , Pn) 即n元命题代数的序关系、运算、最小元和最大元的定 义都归结为一元命题代数(ℙ, ≼ , , , , F, T) 。
仿例5我们易证:
(ℙn, ≼ , , , , F, T)≅ (2X, ,, , , , X ) 这里:X={a1, a2, , an},即 n元命题代数与n元集合代数是同构的。
格与布尔代数

例7.12 设B={0,1},B n=BxBx…xB,B n中的元 素a=<a1,a2,…,an>,b=<b1,b2,…,bn>, 其中ai与bi取0或1,<0,0,…,0>表示为0n, <1,1,…,1>表示为1n,定义*, ⊕ 与┐运算
如下:
a*b=<a1*b1,a2*b2,…,an*bn>,a⊕b<a1⊕b1, a2⊕b2,…, an⊕bn>, ┐a=<┐a1, ┐a2,…,┐an >,可验证:<Bn,*,⊕,┐,0n,1n>符合条件 (H1)至(H4),故可构成布尔代数。
3、分配格的判定 定理7.7 格L是分配格,当且仅当L中不含有与钻 石格或五角格同构的子格。 推论7.1 (1)小于五元的格都是分配格;(2) 任意一条链都是分配格。 证明P130
例7.7 图7.4中哪个是分配格,哪个不是?
f
f
f
d e
e d
b
c
d
b
c c
e b
a
(a)L1
a
(b)L2
图7.4 格的示意图
7.1 格的基本概念
7.1.1 格的定义 1、格定义7.1 设<A,≤>是一个偏序集,对于 Ɐa,b∈A,子集{a,b}在A中都有一个最大下界(也 称为下确界,记为inf{a,b})和一个最小上界(也称 为上确界,记为sup{a,b}),则称<A,≤>为 格。
2、诱导的代数系统 定义7.2 设<A,≤>是一个格,如果在A上定义两 个二元运算,使得对Ɐa,b∈A,a∧b等于a和b的最 大下界,a∨b等于a和b的最小上界。则称<A,∧, ∨ >为由格<A,≤>所诱导的代数系统。
⊕0 1 00 0 10 1
x ┐x
01 10
可验证<B,*,⊕ ,┐,0,1>是布尔格,也称为 二值布尔代数。
离散数学结构 第十三章 格与布尔代数

第十三章格与布尔代数13.1 格的定义与性质一、格作为偏序集的定义1.格的定义定义13.1设<S,>是偏序集,如果x,y S,{x,y}都有最小上界和最大下界,则称S 关于偏序作成一个格。
由于最小上界和最大下界的唯一性,可以把求{x,y}的最小上界和最大下界看成x与y的二元运算∨和∧,即求x∨y和x∧y分别表示x与y的最小上界和最大下界。
这里要说明一点,本章中出现的∨和∧符号只代表格中的运算,而不再有其它的含义。
2.格的实例例13.1设n是正整数,S n是n的正因子的集合。
D为整除关系,则偏序集<S n,D>构成格。
x,y∈S n,x∨y是lcm(x,y),即x与y的最小公倍数。
x∧y是gcd(x,y),即x与y的最大公约数。
图13.1给出了格<S8,D>,<S6,D>和<S30,D>.图13.1例13.2 判断下列偏序集是否构成格,并说明理由。
(1) <P(B),>,其中P(B)是集合B的幂集。
(2) <Z,≤>,其中Z是整数集,≤为小于或等于关系。
(3) 偏序集的哈斯图分别在图13.2中给出。
二.格的性质1.对偶原理定义13.2设f是含有格中元素以及符号=,,,∨和∧的命题。
令f*是将f中的替换成,替换成,∨替换成∧,∧替换成∨所得到的命题。
称f*为f的对偶命题。
例如,在格中令f是(a∨b)∧c c, 则f*是(a∧b)∨c c .格的对偶原理设f是含有格中元素以及符号=,,,∨和∧等的命题。
若f对一切格为真,则f的对偶命题f*也对一切格为真。
例如,对一切格L都有a,b∈L,a∧b a那么对一切格L都有a,b∈L,a∨b a许多格的性质都是互为对偶命题的。
有了格的对偶原理,在证明格的性质时,只须证明其中的一个命题就可以了。
2. 运算性质定理13.1设<L,>是格,则运算∨和∧适合交换律、结合律、幂等律和吸收律,即(1) a,b ∈L 有a∨b=b∨a, a∧b=b∧a(2) a,b,c∈L 有(a∨b)∨c=a∨(b∨c), (a∧b)∧c=a∧(b∧c)(3) a∈L 有a∨a=a, a∧a=a(4) a,b∈L 有a∨(a∧b)=a, a∧(a∨b)=a证(1)a∨b和b∨a分别是{a,b}和{b,a}的最小上界。
第六章 格代数

格是一种特殊的代数系统,特殊在:在代数系统中 引入了次序关系,让一个代数系统的载体具有序结构。 1847年由英国数学家G.Boole创立的布尔代数, 最初的设想是利用代数学的方法研究人类的思维规 律。经过后继者的研究,使得它与许多数学分支发 生了联系,如集合论、数理逻辑、代数系统、图论 与组合学。而到上世纪30年代突然发现它与工程技 术又有着意想不到的联系,1950年苏联的 M.A.aBрИЛoB发表了“继电器接点网络原理”,把 基于布尔代数的演算系统发展成为接点网络实用中 的通用理论。目前布尔代数已成为计算机科学的最 重要基础理论之一。
再证a≤b a∨b=b 设a≤b,而b≤b从而a∨b≤b∨b(=b) 而b≤a∨b,故a∨b=b(由≤的反对称性) 反之,设a∨b=b,而a≤a∨b 从而a≤b.
#
15
(11)定理6-1.7 a≤c a∨(b∧c) ≤(a∨b) ∧c Proof:设a≤c 则 a∨c=c Def6-2.2 而 a∨(b∧c)≤ (a∨b)∧(a∨c) 故 a∨(b∧c)≤ (a∨b)∧c 反之,设 a∨(b∧c)≤ (a∨b)∧c, 而 a≤ a∨(b∧c), (a∨b)∧c ≤c 故 a ≤c(由≤的传递性) # (12)推论 (a∧b)∨(a∧c) ≤a∧(b∨(a∧c)) a∨(b∧(a∨c)) ≤(a∨b) ∧(a∨c) Proof:在(11)中因a∧c≤a可得第一式(以a∧c代替a,a 代c);因a≤a∨c可得第二式(以a代a,以a∨c代c). #
13
(9) 定理6-1.5 a∨(b∧c) ≤(a∨b) ∧(a∨c) (a∧b)∨(a∧c) ≤ a∧(b∨c)(分配不等式) Proof:a≤a∨b a≤a∨c 故a∧a≤(a∨b) ∧(a∨c) 而a= a∧a 故a ≤(a∨b) ∧(a∨c) 另外 b∧c≤b, b≤a∨b故b∧c≤a∨b(传递性) b∧c≤c, c≤a∨c故b∧c≤a∨c(传递性) 故b∧c =(b∧c) ∧(b∧c)≤(a∨b)∧(a∨c) 从而 a∨(b∧c)≤ (a∨b)∧(a∨c)
地六章-格和布尔代数(1)

定义6.7 集合 L 中的偏序关系 R 与其逆关系 R1,称为互 相对偶的两个关系。 对任意 x, y∈L,xR1y yRx。 6.1.1 节例 6.4 中的 关系即为蕴涵关系 的逆关系。 因此,对任意 P, Q∈S, (P Q) (Q P)
【例6.7】设 n 是一个正整数,Sn 是 n 的所有因数的集合, 两个正整数的最大公因数 ,最小公倍数 可看作是 Sn 上两个代数运算,于是,(Sn, , ) 是一个格。
定理6.1 关于格的两种定义(以对应一个代数格;任意一个代 数格也都可以对应一个偏序格。
定义中没有要求 , 运算满足等幂律,实际上由 , 满足吸收律即可推出它们一定满足等幂律。任取 L 中元素
a,由 , 满足吸收律知
a(aa)=a
a(aa)=a
故
aa=a(a(aa))
aa=a(a(aa))
又由 , 满足吸收律知,上面两式的等式右端都等于 a。
因此,
aa=a
aa=a
即定义 6.3 中的 , 运算亦满足等幂律。
【例6.4】设 S 是所有的命题集合,定义 “” 关系如下: A B 当且仅当 B 蕴涵 A
则 (S, ) 是一个格。对 A, B∈S, sup{A, B}=A∧B∈S inf{A, B}=A∨B∈S
定义6.2 若格 L 的一个子集 M≠Ф 对于运算 和 封闭, 则 M 称作子格。
例如:a 是格 L 的一个固定元素,则使 X≥a(或 X≤a) 的 L 中元素 X 的集合,显然是一个子格。若 a≥b,则使 a≥X≥b 的 L 中元素 X 的集合是一个子格,这样的子格 叫作一个闭区间(商),记作 M(a,b)。
例如,S6={1, 2, 3, 6}, S24={1, 2, 3, 4, 6, 8, 12, 24}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴f 是 A1 到 A2 的格同态。
定理2:设f是由格<A1, ≤1>到格<A2, ≤2>的格同态,
第六章
1、格的基本概念
2、分配格 3、有补格
格与布尔代数
4、布尔代数
5、布尔表达式
非本次期末考试内容
§1 格的基本概念
定义1:设<A,≤>是一个偏序集,若A中任意两个 元素都有最大下界和最小上界,则称 <A,≤>为格。
36
12 4 2 3 1 12 6 3 1 2 3
24
不是格
2
6
格
格
图、三个偏序集哈斯图
就得到另一个命题P’,把P’称为P的对偶命题。
则P’对任意格也是真命题。(其中“≥”是“≤”的逆关系) 在<A,≤>中任何两个元素的∨的结果值必然等于 若<A,≤>是格,可证明<A,≥>也是一个格, 这两个元素在<A,≥>中∧的结果值; 任何两个元素的∧的结果值必然等于这两个元素在 且它们的哈斯图是上下颠倒的。 30 <A,≥>中∨的结果值;反之亦然。 1
5
< S6 , D >
< S8 , D >
1 < S30 , D >
1
2 4 6 3 5 7
1
2
3
6
4
7
5
这两个图是偏序关系,但不是格。
定义2:格代数 设<A,≤>是一个格,若在A上定义两个二元运算∨和 ∧,使得对于a,bA, a∨b等于a和b的最小上界,a∧b等于a和b的最大下界, 则称<A,∨,∧>为由格<A, ≤>所诱导的代数系统。
注:
同构的两个格的哈斯图是一样的,只是各结点的标记不同而已。
例:设A1={a,b,c}, A2=P(A1), <A1,≤>(≤是小于等于) 和<A2, >(是子集关系)都是格,如下图所示。定义 f:A1A2,f(x)={y | y≤x,yA},证明f是格同态。
其中c ≤b ≤a, A2=P(A1)={Ø,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}} {a,b,c} a {a,b} b
由对偶原理,有a∧b≤a、a∧b≤b
(2) 如果a≤b且c≤d,则a∨c≤b∨d,a∧c≤b∧d
证明: ∵a≤b,由(1)得b≤b∨d,由传递性得:a≤b∨d ∵c≤d,由(1)得d≤b∨d,由传递性得: c≤b∨d ∴ b∨d是a和c的一个上界,而a∨c是a和c的最小上界, ∴ a∨c≤b∨d 同理可证:a∧c≤b∧d
格的基本性质:(除自反性、反对称性和传递性之外)
(5) a≤b
a∧b=配不等式: a∨(b∧c)≤(a∨b)∧(a∨c)、
(a∧b)∨(a∧c)≤a∧(b∨c)
(1)
a≤a∨b、b≤a∨b、a∧b≤a、a∧b≤b
∴a≤a∨b、b≤a∨b,
证明: ∵a∨b是a和b的最小上界
说明:
该定理可以作为格的另一个定义,即设<A,∨,∧> 是代数系统,其中∨,∧都是二元运算且满足交换律、 结合律和吸收律,则<A, ≤>是一个格。
定义:<A1, ≤1>和<A2, ≤2>是两个格,由它们诱导
的代数系统分别是<A1,∨1,∧1> <A2,∨2,∧2>, 如果存在一个从A1到A2的映射f,使得对a,bA, 有f(a∨1b)=f(a)∨2f(b),f(a∧1b)=f(a)∧2f(b), 则称f为由<A1,∨1,∧1>到<A2,∨2,∧2>的一个格同态; 称<f(A1), ≤2>是<A1, ≤1>的格同态象; 当f是双射时,称<A1, ≤1>和<A2, ≤2>是同构的。
1 1 但∵10∧15 = 5 B3,即∧运算在B3上不封闭,
∴< B3 , D >不是 < S30 , D >的子格。 例:B4 = {2,3,6} ,则 < B4, D >是偏序集, 不是格,更不是< S30 , D >的子格。 2
6
3
对偶原理:
设P是对任意格都为真的命题,如果在命题P中 把≤换成≥,∨换成∧,∧换成∨,
(3) 若b≤c,则aA,有a∨b≤a∨c,a∧b≤a∧c
(保序性)
(4) 交换律:a∨b = b∨a、a∧b = b∧a 结合律:a∨(b∨c) = (a∨b)∨c、 a∧(b∧c) = (a∧b)∧c 幂等律:a∨a = a、a∧a = a
吸收律:a∨(a∧b) = a、a∧(a∨b) = a
其次证明A中任意两个元素a,b都有最小上界和最大下界。 先证a∧b是a和b的最大下界 由 ≤的定义知:(a∧b)∧a=a∧b,(a∧b)∧b=a∧b ∴ a∧b ≤ a,a∧b ≤ b,即a∧b是a和b的下界 设c是a和b的任一下界,即c ≤ a,c ≤ b,于是有 c∧a=c,c∧b=c,而c∧(a∧b)=(c∧a)∧b=c∧b=c ∴ c ≤ a∧b,即证明了a∧b是a和b的最大下界 再证a∨b 是a和b的最小上界 a,bA,∵a∨(a∨b)=(a∨a)∨b=a∨b ∴a≤a∨b ∵b∨(a∨b)=a∨(b∨b)=a∨b ∴ b≤a∨b ∴ a∨b 是a和b的上界 设c是a和b的任一上界,即a≤c,b≤c,于是有 a∨c=c,b∨c=c,而(a∨b)∨c=a∨(b∨c)=a∨c=c ∴ a∨b≤c,即证明了a∨b是a和b的最小上界∴ <A, ≤>是格
例:判断<I+ ,D>、<P(S),>、<Sn ,D> 是否是格。
其中:I+ 是正整数,D是整除关系,Sn ={n的所有因子} 如:S6={1,2,3,6}、S8={1,2,4,8}、 S12={1,2,3,4,6,12}、 S30={1,2,3,5,6,10,15,30}
解:< I+ , D>是格 ∵整除关系是偏序关系,对a,bI, a、b的最小上界等于a、b的最小公倍数, a、b的最大上界等于a、b的最大公约数。
“运算∨和∧在B上封闭”。
(3) 对于格<A,≤>, BA且B≠Ø,则<B,≤> 一定是 偏序集,但不一定是格。
例:B1 = {1,2,3,6} , B2 = {5,10,15,30} , < B1, D >和< B2 , D >都是 < S30 , D >的子格。30 6 30 10 6 2 1 ∨ 1 2 3 6 1 1 2 3 6 3 10 5 15 2 < B1, D > 2 2 2 6 6 3 3 6 3 6 6 6 6 6 6 < B2, D > ∧ 1 2 3 6 1 1 1 1 1 2 1 2 1 2 3 1 1 3 3 61 1 2 3 6 5
二元运算且满足吸收律,则∨和∧都满足幂等律.
证明:
a,bA, ∨,∧满足吸收律,则有 (1) a ∨(a∧b) = a,
(2) a ∧(a∨b) = a
由 b 的任意性,在(1)式中令 b = a∨b ,代入(2)得 a∨a = a 同理可证: a∧a = a
定理1:设<A,∨,∧>是代数系统,其中∨,∧都是二元
运算且满足交换律、结合律和吸收律,则A上存在
偏序关系≤,使<A, ≤>是一个格。
证明:在A上定义一个二元关系≤为:
对于a,bA,a≤b当且仅当 a∧b = a
首先证明≤是偏序关系 (1) a,b,cA,∵ ∨,∧满足吸收律∴ ∨,∧满足幂等律 即对aA,有a ∧a = a ∴ a ≤ a ∴ ≤自反 (2) 若a ≤b且b ≤ a,则a∧b=a且b∧a=b, 即有a=a∧b,b=a∧b,∴a=b,∴ ≤反对称 (3) 若a ≤b且b≤c,则a∧b=a且b∧c=b, a∧c= (a∧b)∧c=a∧(b∧c)=a∧b=a ∴ a≤c ∴≤传递 ∴ ≤是偏序关系
{a,c}
{b,c}
c
{a}
{b} {c} Ø
证明: <A1, ≤>诱导的代数系统是<A1, max, min>
<A2, >诱导的代数系统是<A2,∪,∩> x1,x2A1
f (x1∧1x2) = f (min{x1,x2}) = {y | y≤min{x1,x2}}
= {y | y≤x1} ∩{y | y≤x2} = f(x1) ∧2 f(x2) f (x1∨1x2) = f (max{x1,x2}) = {y | y≤max{x1,x2}} = {y | y≤x1} ∪ {y | y≤x2} = f(x1) ∨2 f(x2) 存在一个从A1到A2的映射f,使得对 x1,x2 A, 有f(x1∨1x2)=f(x1)∨2f(x2),f(x1∧1x2)=f(x1)∧2f(x2)
吸收律:a∨(a∧b) = a、a∧(a∨b) = a
证明:幂等律
∵ a≤a,∴ a是a的上界,而a∨a是a的最小上界,
∴a∨a≤a ,又 ∵ a≤a ∨a, 由反对称性得:a∨a = a 由对偶原理得,a∧a = a
证明:吸收律 ∵ a ≤a a ∧b ≤a ∴ a∨(a ∧ b)≤a∨a, a∨(a ∧ b)≤a 又∵a≤a ∨(a ∧ b), ∴ a∨(a ∧ b) = a 由对偶原理得, a∧(a∨b) = a 证明:结合律 ∵ b ≤(a ∨b) ∨c, c ≤(a ∨b) ∨c ∴ b∨c≤(a ∨b) ∨c,又∵a≤a ∨ b ≤(a ∨b) ∨c, ∴a∨( b∨c)≤(a ∨b) ∨c 同理可证(a∨ b)∨c≤a∨(b∨c) ,∴ a∨(b∨c) = (a∨b)∨c 由对偶原理得,a∧(b∧c) = (a∧b)∧c