高中数学-指数函数及其性质的应用练习
高中数学第三章习题课指数函数及其性质的应用课后习题北师大版必修第一册

第2课时 习题课 指数函数及其性质的应用A级必备知识基础练1.函数f(x)=(14)x−(12)x+1在区间[-2,2]上的最小值为( )A.1 4B.34C.1316D.132.若函数f(x)的定义域是[0,3],则函数g(x)=f(x+1)2x-2的定义域为( )A.[0,3]B.[-1,2]C.[0,1)∪(1,3]D.[-1,1)∪(1,2]3.(多选题)若指数函数y=a x在区间[-1,1]上的最大值和最小值的和为52,则a的值可能是( )A.2B.12C.3 D.134.方程4x+2x+1-3=0的解是 .5.若函数y=√a x-1的定义域是(-∞,0],则a的取值范围是 .6.函数y=(13)√x-2的定义域是 ,值域是 .7.已知定义域为R的偶函数f(x)在区间(-∞,0]上单调递减,且f(12)=2,则不等式f(2x)>2的解集为.8.已知函数f(x)=a x-1(x≥0)的图象经过点(2,12),其中a>0,且a≠1.(1)求a的值;(2)求函数y=f(x)+1(x≥0)的值域.B级关键能力提升练9.设函数f(x)={(12)x-7,x<0,若f(a)<1,则实数a的取值范围是( )√x,x≥0,A.(-3,1)B.(-∞,-3)∪(1,+∞)C.(-∞,-3)D.(1,+∞)10.若函数f(x)={(12)x,x<1,a+(14)x,x≥1的值域为(a,+∞),则实数a的取值范围为( )A.[14,+∞)B.[14,12]C.[12,1]D.(14,1]11.(2021浙江高一期末)已知不等式32x-k·3x≥-1对任意实数x恒成立,则实数k的取值范围是 .12.设偶函数f(x)满足f(x)=2x-4(x≥0),则当x<0时,f(x)= ;当x∈R时,不等式f(x-2)>0的解集为 .13.解下列关于x的不等式:(1)123x-1≤2;(2)a x 2-3x +1<a x+6(a>0,且a ≠1).14.已知函数f (x )=1-2x 1+2x .(1)判断f (x )的奇偶性并证明;(2)当x ∈(1,+∞)时,求函数f (x )的值域.15.已知函数f(x)=a-12x+1(x∈R),(1)用定义证明:不论a为何实数,f(x)在(-∞,+∞)上为增函数;(2)若f(x)为奇函数,求a的值;(3)在(2)的条件下,求f(x)在区间[1,5]上的最小值.C级学科素养创新练16.已知函数f(x)=(12x-1+12)x3.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)证明:f(x)>0.第2课时 习题课 指数函数及其性质的应用1.B 令t=(12)x,t∈[14,4],∴g(t)=t2-t+1,对称轴为直线t=12∈[14,4],∴g(t)min=g(12)=34.故选B.2.D 函数f(x)的定义域是[0,3],则函数g(x)=f(x+1)2x-2中{0≤x+1≤3,2x-2≠0,解得-1≤x≤2,且x≠1,所以定义域为[-1,1)∪(1,2].故选D.3.AB 当a>1时,指数函数y=a x为增函数,所以在区间[-1,1]上的最大值y max=a,最小值y min=1a.所以a+1a =52,解得a=2,或a=12(舍去);当0<a<1时,指数函数y=a x为减函数,所以在区间[-1,1]上的最大值y max=1a,y min=a,所以a+1 a =52,解得a=2(舍去),或a=12.综上所述,a=2或者a=12.4.x=0 原方程可化为(2x)2+2×2x-3=0.设t=2x(t>0),则t2+2t-3=0,解得t=1或t=-3(舍去),即2x=1,解得x=0.5.(0,1) 由a x-1≥0,知a x≥1.又x≤0,所以0<a<1.6.{x|x≥2} {y|0<y≤1} 由x-2≥0得x≥2,所以定义域为{x|x≥2}.当x≥2时,√x-2≥0.又0<13<1,所以y=(13)√x-2的值域为{y|0<y≤1}.7.(-1,+∞) ∵f(x)是偶函数,且f(12)=2,又f(x)在(-∞,0]上单调递减,∴f(x)在区间[0,+∞)上单调递增.由f(2x)>2,且2x>0得2x>12,即2x>2-1,∴x>-1,即不等式f(2x)>2的解集是(-1,+∞).8.解(1)因为函数f(x)=a x-1(x≥0)的图象经过点(2,12),所以a2-1=a=12.(2)由(1)得f(x)=(12)x-1(x≥0),所以f(x)在区间[0,+∞)上为减函数,当x=0时,函数f(x)取最大值2,于是f(x)∈(0,2],故函数y=f(x)+1(x≥0)的值域为(1,3].9.A 当a<0时,f(a)<1,即(12)a-7<1⇔(12)a<8⇔2-a<23⇔-a<3⇔a>-3,∴-3<a<0.当a≥0时,f(a)<1,即√a<1⇔a<1,∴0≤a<1.综上,-3<a<1.故选A.10.B 当x<1时,f(x)=(12)x∈(12,+∞),当x≥1时,f(x)=a+(14)x∈(a,a+14].∵函数f(x)的值域为(a,+∞),∴{a+14≥12,a≤12,即a∈[14,12].故选B.11.(-∞,2] 令t=3x(t>0),则t2-kt≥-1,化简得k≤t+1t.因为t+1t≥2√t·1t=2,当且仅当t=1时,等号成立,所以k≤2.12.2-x-4 {x|x<0或x>4} 设x<0,则-x>0,∴f(-x)=2-x-4.又f(x)为偶函数,∴f(x)=f(-x)=2-x-4.于是f (x-2)>0可化为{x -2≥0,2x -2-4>0或{x -2<0,2-x +2-4>0,解得x>4或x<0.13.解(1)不等式123x-1≤2,即为21-3x ≤2,故1-3x ≤1,解得x ≥0,∴不等式的解集为{x|x ≥0}.(2)当a>1时,有x 2-3x+1<x+6,解得-1<x<5;当0<a<1时,有x 2-3x+1>x+6,解得x<-1或x>5.所以,当a>1时,不等式的解集为{x|-1<x<5};当0<a<1时,不等式的解集为{x|x<-1或x>5}.14.解(1)函数f (x )是奇函数,证明如下:∵对任意x ∈R ,2x +1>1恒成立,且f (-x )=1-2-x 1+2-x =2x -2-x ·2x 2x +2-x ·2x =2x -12x +1=-f (x ),∴f (x )是奇函数.(2)令2x =t ,则f (x )可化为g (t )=1-tt +1=-1+2t +1,∵x ∈(1,+∞),∴t>2,∴t+1>3.∴0<2t +1<23,∴-1<g (t )<-13,∴f (x )的值域是(-1,-13).15.(1)证明f (x )的定义域为R ,任取x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=a-12x 1+1-a+12x 2+1=2x 1-2x 2(1+2x 1)(1+2x 2).∵x 1<x 2,∴2x 1−2x 2<0,(1+2x 1)(1+2x 2)>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴不论a 为何实数,f (x )在(-∞,+∞)上为增函数.(2)解∵f (x )为奇函数,且x ∈R ,∴f (0)=0,即a-120+1=0,解得a=12.(3)解由(2)知,f (x )=12−12x +1,由(1)知,f (x )在(-∞,+∞)上为增函数,故f (x )在区间[1,5]上的最小值为f (1).∵f (1)=12−13=16,∴f (x )在区间[1,5]上的最小值为16.16.(1)解由题意得2x -1≠0,即x ≠0,∴f (x )的定义域为(-∞,0)∪(0,+∞).(2)解f (x )=2x +12(2x -1)·x 3,∴f (-x )=2-x +12(2-x -1)·(-x )3=-1+2x2(1-2x )·x 3=f (x ),∴f (x )为偶函数.(3)证明当x>0时,2x >1,x 3>0,∴2x -1>0,∴12x -1+12>0.∴f (x )>0.由偶函数的图象关于y 轴对称,知当x<0时,f (x )>0也成立.故对于x ∈(-∞,0)∪(0,+∞),恒有f (x )>0.。
指数函数与对数函数的应用题

指数函数与对数函数的应用题指数函数与对数函数是高中数学中的重要内容,它们在实际问题中有着广泛的应用。
本文将通过几个应用题的分析来探讨指数函数与对数函数的实际运用。
应用题一:物质的放射性衰变物质的放射性衰变是指由于放射性核的不稳定性,使核发生自发性变化的过程。
假设某种物质的衰变速率符合指数函数规律,即每个单位时间内剩余的物质量与当前的物质量成比例关系,如何求解衰变物质的半衰期?解析:设物质的初始质量为P0,经过时间t后的质量为P(t),假设衰变常数为k。
由指数函数的性质可得:P(t) = P0 * e^(kt)当t = T (半衰期) 时,物质的质量减少了一半,即:P0 / 2 = P0 * e^(kT)化简后可得:e^(kT) = 1/2由此可以得到半衰期T的解。
应用题二:质量-时间关系某物质在一定条件下的质量随时间的变化满足指数函数的规律。
已知该物质在开始时间时的质量为M0,经过3小时后,质量降低为M0的1/4,求解质量随时间变化的指数函数关系。
解析:设物质的质量随时间t的变化满足指数函数:M(t) = M0 * e^(kt)已知M(3) = M0 * (1/4),带入上述指数函数公式得:M0 * e^(3k) = M0 * (1/4)化简可得:e^(3k) = 1/4由此可以求得k的解,进而得到质量随时间变化的指数函数关系。
应用题三:货币贬值问题某国货币贬值的速度与该国的物价水平及其他因素有关。
假设某国的年物价水平p以指数函数形式增长,即p = p0 * e^(kt),其中p0是初始物价水平,k是贬值系数。
求解该国货币的贬值率。
解析:货币贬值率是指货币购买力下降的速度,可以用物价水平的增长率来近似表示。
设t时刻物价水平为p(t),t+1时刻物价水平为p(t+1),则贬值率为:贬值率 = (p(t+1) - p(t)) / p(t)将p(t) = p0 * e^(kt),p(t+1) = p0 * e^((k+k')t+1)带入上述公式,化简可得贬值率的解。
人教A版高中数学必修一第二章基本初等函数 2.1.3 指数函数性质及应用精选习题

指数函数性质及应用1.若2x +1<1,则x 的取值范围是( ) A .(-1,1) B .(-1,+∞) C .(0,1)∪(1,+∞) D .(-∞,-1) 2.下列判断正确的是( )A .1.72.5>1.73B .0.82<0.83C .0.9-0.3<1 D .1.90.3>0.92.53.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域是( ) A .[9,81] B .[3,9] C .[1,9] D .[1,+∞)4.函数y =(12)1-x 的单调递增区间为( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)5.若函数f (x )=12x +1,则该函数在(-∞,+∞)上( )A .单调递减且无最小值B .单调递减且有最小值C .单调递增且无最大值D .单调递增且有最大值6.若1>n >m >0,则指数函数①y =m x ,②y =n x 的图象为()7.已知函数f (x )=⎩⎪⎨⎪⎧a x,(x <0)(a -3)x +4a ,(x ≥0),满足对任意的x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是( )A .(0,14]B .(0,1)C . [14,1) D .(0,3)8.函数f (x )=4x +12x 的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称9.设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则y 1,y 2,y 3的大小关系为________.10.若函数f (x )=(13)ax 2-(a +2)x +3在区间[-1,+∞)上单调递增,则a 的取值范围是____________.11.函数f (x )=⎩⎪⎨⎪⎧-x +3a ,x <0,a x , x ≥0(a >0且a ≠1)是R 上的减函数,则a 的取值范围是________.12.已知函数f (x )=12x +1+a 是奇函数,则a =_____.13.函数y =2x2+4x +2的值域为 ,增区间为 . 14.已知函数f (x )=13x +1+a 为奇函数,则常数a =______.15.已知指数函数f (x )=(2a -1)x 是R 上的减函数,则实数a 的取值范围是 .16.已知a =20.2,b =0.40.2,c =0.40.6,则a ,b ,c 的大小关系是____________.17.不等式0.52x >4x -1的解集为____________.(用区间表示)18.已知函数f (x )=(a -2)a x (a >0,且a ≠1),若对任意x 1,x 2∈R ,f (x 1)-f (x 2)x 1-x 2>0,则a 的取值范围是______________.19.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)=________.20.比较下列各组数的大小.(1)2.30.6和2.31.2; (2)(35)0..5和(35)0..8;(3)1.91.5和31.5; (4)3.10.6和0.63.1;21.比较大小:a =1.50.6,b =0.60.2,c =0.61.5.22.已知函数f (x )=(12)x 2-2x ,求f (x )的值域和单调区间.23.已知函数y =2-x 2+4x -1,求其单调区间及值域.24.已知函数f (x )=2x -b2x +a是定义在R 上的奇函数.(1)求a 、b 的值;(2)判断并证明函数f (x )的单调性; (3)求函数f (x )在R 上的值域.25.已知函数f (x )=2x -12x .(1)判断函数f (x )的奇偶性; (2)证明:f (x )为R 上的增函数;(3)若对于任意m ∈[-2,2],不等式f (m 2-3m )+f (m -k )<0恒成立,求k 的取值范围.26.设函数f (x )=1-22x +1,(1)证明:f (x )为奇函数. (2)求f (x )的值域.27.求函数f (x )=4-2x 2+2x -2的值域和单调区间.28.已知函数f (x )=3x,f (a +2)=81,g (x )=1-a x1+a x.(1)求g (x )的解析式并判断g (x )的奇偶性;(2)用定义证明:函数g (x )在R 上是单调递减函数; (3)求函数g (x )的值域.29.已知函数f (x )=(13)ax 2-4x +3..(1)若f (x )有最大值3,求a 的值;(2)若f (x )在(-∞,1)上单调递增,求a 的取值范围.30.已知函数y =a 2x +2a x -1(a >0且a ≠1)在[-1,1]上有最大值14,试求a 的值.。
指数函数练习题及答案

指数函数练习题及答案指数函数是高中数学中的重要内容,它在数学和科学领域中有着广泛的应用。
本文将通过一些练习题来帮助读者更好地理解指数函数的概念和运算规则,并提供相应的答案。
1. 求解指数方程:2^x = 16解:将16写成2的幂次形式,即16 = 2^4,所以原方程可以写成2^x = 2^4。
根据指数函数的性质,当底数相同时,指数相等,所以可以得到x = 4。
2. 简化指数表达式:(2^3)^4解:根据指数函数的性质,指数的乘法规则,可以将指数表达式简化为2^(3*4),即2^12。
3. 求解指数方程:3^(2x+1) = 9解:将9写成3的幂次形式,即9 = 3^2,所以原方程可以写成3^(2x+1) =3^2。
根据指数函数的性质,当底数相同时,指数相等,所以可以得到2x+1 = 2。
解方程得到x = 1/2。
4. 求解指数方程:e^x = 10解:将10写成自然对数的底数e的幂次形式,即10 = e^ln(10),所以原方程可以写成e^x = e^ln(10)。
根据指数函数的性质,当底数相同时,指数相等,所以可以得到x = ln(10)。
5. 求解指数方程:10^(2x-1) = 100解:将100写成10的幂次形式,即100 = 10^2,所以原方程可以写成10^(2x-1) = 10^2。
根据指数函数的性质,当底数相同时,指数相等,所以可以得到2x-1 = 2。
解方程得到x = 3/2。
通过以上的练习题,我们可以看到指数函数在解方程中的应用。
指数函数的特点是底数不同,函数的性质也会有所不同。
在实际问题中,指数函数可以用来描述物质的衰减、增长和变化等现象,具有很强的实用性。
除了以上的练习题,我们还可以通过绘制指数函数的图像来更好地理解其特点。
以y = 2^x为例,我们可以绘制出其图像,发现随着x的增大,y的值呈指数级增长,这是因为指数函数的增长率是逐渐加大的。
总结起来,指数函数是高中数学中的重要内容,通过练习题和图像的分析,我们可以更好地理解指数函数的概念和运算规则。
2022版数学人教A版必修1基础训练:指数函数及其性质第2课时含解析

第二章 基本初等函数(Ⅰ)2.1 指数函数2.1.2 指数函数及其性质第2课时 指数函数的性质及其应用基础过关练题组一 指数型函数的单调性及其应用1.(2020福建厦门双十中学高一月考)已知a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系是 ( )A.a >b >cB.c >a >bC.b >a >cD.c >b >a2.若函数f (x )={(3-a )x -3,x ≤7,a x -6,x >7在定义域上单调递增,则实数a 的取值范围是( )A.94,3B.94,3C.(1,3)D.(2,3)3.(2020广东普宁华美实验学校开学考试)设x >0,且1<b x <a x ,则 ( )A.0<b <a <1B.0<a <b <1C.1<b <aD.1<a <b4.(2020陕西西安电子科技大学附属中学高一月考)已知函数f (x )=a |2x -4|(a >0,a ≠1),且满足f (1)=19,则f (x )的单调递减区间是 ( ) A.(-∞,2] B.[2,+∞) C.[-2,+∞) D.(-∞,-2]5.(2020浙江杭州高级中学高一上期末)函数f (x )=(14)-|x |+1的单调增区间为 ;奇偶性为 (填奇函数、偶函数或者非奇非偶函数).6.已知函数f (x )是定义在R 上的偶函数,当x ≥0时, f (x )=e -x (e 为自然对数的底数). (1)求函数f (x )在R 上的解析式,并作出函数f (x )的大致图象; (2)根据图象写出函数f (x )的单调区间和值域.7.(1)判断f(x)=(13)x2-2x的单调性,并求其值域;(2)求函数y=a x2+2x-3(a>0,且a≠1)的单调区间.题组二指数型方程与指数型不等式8.方程4x-3·2x+2=0的解构成的集合为()A.{0}B.{1}C.{0,1}D.{1,2}9.(2020山东日照第一中学高一月考)已知集合A={x|x2-2x-3<0},集合B={x|2x+1>1},则∁B A= ()A.[3,+∞)B.(3,+∞)C.(-∞,-1]∪[3,+∞)D.(-∞,-1)∪(3,+∞)10.已知关于x的不等式(13)x-4>3-2x,则该不等式的解集为()A.{x|x≥4}B.{x|x>-4}C.{x|x≤-4}D.{x|-4<x≤1}11.已知函数f(x)=2x+b的图象过点(2,8).(1)求实数b的值;(2)求不等式f(x)>√323的解集.能力提升练一、选择题1.(2020河北保定一中高一月考,)若关于x的不等式a2x≥a3-x(0<a<1)的解集为A,则函数y=3x+1,x∈A的最大值为()A.1B.3C.6D.92.(2020湖南株洲二中高一月考,)对于函数f(x)定义域中任意的x1,x2(x1≠x2),当f(x)=2-x时,下列结论中错误的是()A.f(x1+x2)=f(x1)f(x2)B.f(x1·x2)=f(x1)+f(x2)C.(x1-x2)[f(x1)-f(x2)]<0D.f(x1+x22)<f(x1)+f(x2)23.(2020湖南衡阳第四中学高一月考,)函数f(x)=x|x|·2x的图象大致是()4.(2020安徽安庆高一上期末教学质量调研监测,)某数学课外兴趣小组对函数f (x )=2|x -1|的图象与性质进行了探究,得到下列四条结论:①该函数的值域为(0,+∞);②该函数在区间[0,+∞)上单调递增;③该函数的图象关于直线x =1对称;④该函数的图象与直线y =-a 2(a ∈R )不可能有交点.则其中正确结论的个数为( )A .1B .2C .3D .45.(2020河北石家庄高一期末,)已知函数f (x )=m x -m (m >0,且m ≠1)的图象经过第一、二、四象限,则a =|f (√2)|,b =|f (438)|,c =|f (0)|的大小关系为 ( )A.c <b <aB.c <a <bC.a <b <cD.b <a <c二、填空题6.(2020江西临川第二中学高一月考,)如果函数y =a 2x +2a x -1(a >0,且a ≠1)在[-1,1]上的最大值是14,那么a 的值为 . 7.(2020山东烟台高一上期末,)已知函数f (x )=3|x +a |(a ∈R )满足f (x )=f (2-x ),则实数a 的值为 ;若f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于 .8.(2020合肥第六中学高一开学考试,)若关于x 的不等式2x +1-2-x -a >0的解集包含区间(0,1),则a 的取值范围为 . 9.(2020黑龙江大庆实验中学高一上月考,)已知函数f (x )=b ·a x (其中a ,b 为常数,a >0,且a ≠1)的图象经过点A (1,6),B (2,18).若不等式(2a )x +(1b )x-m ≥0在x ∈(-∞,1]上恒成立,则实数m 的最大值为 . 三、解答题10.(2020山东泰安一中高一上期中,)已知函数f (x )=a +22x -1.(1)求f(x)的定义域;(2)若f(x)为奇函数,求a的值,并求f(x)的值域.11.(2020甘肃兰州五十一中高一期中,)已知函数f(x)=(13)ax2-4x+3.(1)若a=-1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值;(3)若f(x)的值域是(0,+∞),求a的取值范围.12.(2020河南郑州高一段考,)为了检验某种溶液的挥发性,在容积为1升的容器中注入该溶液,然后在挥发的过程中测量剩余溶液的体积.已知溶液注入过程中,其体积y(升)与时间t(分钟)成正比,且恰在2分钟注满;注入完成后,y与t的关系为y=(15)t30-a(a为常数),如图.(1)求溶液的体积y与时间t之间的函数关系式;(2)当容器中的溶液少于0.008升时,试验结束,则从注入溶液开始,至少需要经过多少分钟,才能结束试验?13.(2019河南郑州高一上期末,)设函数f(x)=2kx2+x(k∈R且k为常数)为奇函数,函数g(x)=a f(x)+1(a>0,且a≠1).(1)求k的值;(2)求函数g(x)在[-2,1]上的最大值和最小值;(3)当a=2时,g(x)≤-2mt+3对所有的x∈[-1,0]及m∈[-1,1]恒成立,求实数t的取值范围.14.()设函数f(x)=a x-(k-1)a-x(a>0,且a≠1)是定义域为R的奇函数.(1)求实数k的值;(2)若f(1)<0,求使不等式f(x2+tx)+f(4-x)<0恒成立的实数t的取值范围;(3)若f(1)=3,g(x)=a2x+a-2x-2mf(x),且g(x)在[1,+∞)上的最小值为-2,求实数m的值.2答案全解全析第二章 基本初等函数(Ⅰ)2.1 指数函数2.1.2 指数函数及其性质第2课时 指数函数的性质及其应用基础过关练1.B2.B3.C4.B 8.C 9.A 10.B1.B 因为1=0.80>0.80.7>0.80.9,1.20.8>1.20=1,即1>a >b ,c >1, 所以c >a >b ,故选B . 2.B 由函数f (x )={(3-a )x -3,x ≤7,a x -6,x >7在定义域上单调递增,可得{3-a >0,a >1,(3-a )×7-3≤a 7-6,解得94≤a <3. 所以实数a 的取值范围是94,3 . 3.C ∵x >0,且b x>1,∴b >1,同理可得a >1,又a x>b x>1,∴a xb x=(ab)x>1,∴a b >1,即a >b ,∴a >b >1,故选C .4.B 由f (1)=19,得a 2=19,所以a =13或a =-13(舍),即f (x )=13|2x -4|.由于y =|2x -4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,y =a x (0<a <1)在R 上单调递减,所以f (x )在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B . 5.答案 [0,+∞);偶函数解析 设μ=-|x |+1,则y =14μ. 易知μ=-|x |+1的递减区间为[0,+∞),递增区间为(-∞,0).又y =14μ是减函数,∴y =14-|x |+1的递增区间是[0,+∞). 易知函数f (x )的定义域为R ,关于原点对称. 又f (-x )=14-|-x |+1=14-|x |+1=f (x ), ∴f (x )是偶函数.6.解析 (1)当x <0时,-x >0,所以f (-x )=e x ,因为f (x )是偶函数,所以当x <0时,f (x )=f (-x )=e x,所以f (x )={e x ,x <0,e -x ,x ≥0.作出大致图象如图所示.(2)由图象得,函数f (x )的单调递增区间是(-∞,0],单调递减区间是[0,+∞),值域是(0,1].7.解析 (1)令u =x 2-2x ,则u =x 2-2x =(x -1)2-1在(-∞,1]上单调递减,在[1,+∞)上单调递增.又0<13<1,所以y =(13)u在R 上单调递减.根据“同增异减”规律可得,f (x )=(13)x 2-2x在(-∞,1]上单调递增,在[1,+∞)上单调递减. 因为u =x 2-2x =(x -1)2-1≥-1,所以y =13u ,u ∈[-1,+∞),所以0<13u ≤13-1=3,由此可得函数f (x )的值域为(0,3].(2)令u =x 2+2x -3,则y =a u (a >0,且a ≠1),由u =x 2+2x -3=(x +1)2-4,得u =x 2+2x -3在(-∞,-1]上为减函数,在[-1,+∞)上为增函数. 当a >1时,y =a u 在R 上为增函数,此时函数y =a x 2+2x -3 的增区间为[-1,+∞),减区间为(-∞,-1];当0<a <1时,y =a u 在R 上为减函数,此时函数y =a x 2+2x -3 的增区间为(-∞,-1],减区间为[-1,+∞).8.C 令2x =t (t >0),则4x =(2x )2=t 2, 原方程可化为t 2-3t +2=0, 解得t =1或t =2.当t =1时,2x =1=20,解得x =0; 当t =2时,2x =2=21,解得x =1.因此原方程的解构成的集合为{0,1}, 故选C .9.A 因为A ={x |x 2-2x -3<0}={x |(x +1)(x -3)<0}=(-1,3),B ={x |2x +1>1}=(-1,+∞),所以∁B A =[3,+∞).故选A .10.B ∵3-2x=(13)2x,∴原不等式可化为(13)x -4>(13)2x.又函数y =(13)x在R 上是单调递减函数,∴x -4<2x ,解得x >-4.∴原不等式的解集为{x |x >-4}.故选B .方法指导解不等式a f (x )>a g (x )(a >0,且a ≠1)的依据是指数型函数的单调性,若底数不确定,需进行分类讨论.a f (x )>a g (x )⇔{f (x )>g (x ),a >1,f (x )<g (x ),0<a <1.11.解析 (1)∵函数f (x )=2x +b 的图象过点(2,8),∴22+b =8,即2+b =3,故b =1.(2)由(1)得,f (x )=2x +1,由f (x )>√323,得2x +1>253,∴x +1>53,即x >23,∴不等式f (x )>√323的解集为(23,+∞). 能力提升练1.D2.B3.B4.B5.C 一、选择题1.D ∵0<a <1且a 2x ≥a 3-x ,∴2x ≤3-x ,解得x ≤1,∴A ={x |x ≤1}.又函数y =3x +1,x ∈A 为增函数,∴当x =1时,y =3x +1取得最大值,为9.故选D .2.B 由已知得,f (x 1+x 2)=2-(x 1+x 2),f (x 1)·f (x 2)=2-x 1·2-x 2=2-(x 1+x 2),故A 正确;f (x 1·x 2)=2-(x 1·x 2)≠2-x 1+2-x 2=f (x 1)+f (x 2),故B 错误;因为f (x )=2-x=(12)x为减函数,所以有(x 1-x 2)[f (x 1)-f (x 2)]<0,故C 正确; 画出y =12x 的图象,如图,不妨设x 1<x 2,由图可知,fx 1+x 22<f (x 1)+f (x 2)2,故D 正确.故选B . 3.B f (x )=x |x |·2x ={2x,x >0,-2x ,x <0.∴当x >0时,其图象为y =2x (x >0)的图象;当x <0时,其图象与y =2x (x <0)的图象关于x 轴对称.故选B .4.B 函数f (x )的值域为[1,+∞),①错误;函数f (x )在区间(-∞,1)上单调递减,在[1,+∞)上单调递增,②错误;函数f (x )的图象关于直线x =1对称,③正确;因为y =-a 2≤0,所以函数f (x )的图象与直线y =-a 2(a ∈R )不可能有交点,④正确.所以正确结论的个数为2,故选B .5.C 因为f (x )=m x -m (m >0,且m ≠1)的图象经过第一、二、四象限,所以0<m <1,所以函数f (x )为减函数,易知f (1)=0,所以函数|f (x )|在(-∞,1)上单调递减,在(1,+∞)上单调递增,又因为1<√2=212<438=234<2,所以a <b <|f (2)|,又c =|f (0)|=1-m ,|f (2)|=m 2-m ,所以|f (2)|-|f (0)|=m 2-1<0,所以|f (2)|<|f (0)|=c ,所以a <b <c.故选C .二、填空题6.答案 3或13解析 设t =a x ,t >0,则y =t 2+2t -1,其图象的对称轴为直线t =-1.若a >1,则当x ∈[-1,1]时,t =a x ∈[1a,a], ∴当t =a 时,y max =a 2+2a -1=14,解得a =3或a =-5(舍去).若0<a <1,则当x ∈[-1,1]时,t =a x ∈[a ,1a], ∴当t =1a 时,y max =(1a)2+2×1a -1=14, 解得a =13或a =-15(舍去). 综上,a 的值为3或13. 7.答案 -1;1解析 由f (x )=f (2-x ),得f (x )的图象关于直线x =1对称,又f (x )=3|x +a |的图象关于直线x =-a 对称,∴-a =1,即a =-1.此时f (x )=3|x -1|,它的单调递增区间为[1,+∞),依题意得[m ,+∞)⊆[1,+∞),从而m ≥1, 因此m 的最小值为1.8.答案 (-∞,1]解析 不等式2x +1-2-x -a >0的解集包含区间(0,1),等价于对任意的x ∈(0,1),2x +1-2-x >a 恒成立.令2x =t ,则t ∈(1,2),问题转化为a <(2t -1t )min , 易知y =2t -1t在区间(1,2)上是单调递增函数, 所以y >2-1=1.故只需a ≤1即可.9.答案76 解析 由已知可得{ba =6,ba 2=18,解得{a =3,b =2,则不等式为(23)x +(12)x -m ≥0,设g (x )=(23)x +(12)x -m ,显然函数g (x )在(-∞,1]上单调递减,∴g (x )≥g (1)=23+12-m =76-m , 故76-m ≥0,解得m ≤76, ∴实数m 的最大值为76. 三、解答题10.解析 (1)由2x -1≠0,可得x ≠0,∴函数f (x )的定义域为{x |x ≠0}.(2)∵f (x )为奇函数,∴f (-x )=-f (x ),又f (-x )=a +22-x -1=a +2×2x 1-2x =a -2(2x -1)+22x -1=a -2-22x -1,-f (x )=-a -22x -1,∴a -2=-a ,解得a =1.因此f (x )=1+22x -1.当x >0时,2x -1>0,∴f (x )>1;当x <0时,-1<2x -1<0,∴f (x )<-1.∴f (x )的值域为(-∞,-1)∪(1,+∞).11.解析 (1)当a =-1时,f (x )=(13)-x 2-4x+3, 令g (x )=-x 2-4x +3,易知g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,又y =(13)x 在R 上单调递减, 所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令h (x )=ax 2-4x +3,y =(13)ℎ(x ),由于f (x )有最大值3,所以h (x )应有最小值-1,因此{a >0,ℎ(2a )=3a -4a =-1,解得a =1.即当f (x )有最大值3时,a 的值等于1.(3)由指数函数的性质知,要使y =f (x )的值域为(0,+∞),应使h (x )=ax 2-4x +3的值域为R .若a ≠0,则h (x )为二次函数,其值域不可能为R ,因此只能有a =0.故a 的取值范围是{0}.12.信息提取 溶液的体积y (升)与时间t (分钟)的关系与图象.数学建模 以检验溶液的挥发性为情境,构建溶液的体积与时间的函数关系.解析 (1)当0≤t ≤2时,设函数的解析式为y =kt (k ≠0),将点(2,1)的坐标代入,得k =12, 所以y =12t ; 当t >2时,函数的解析式为y =(15)t 30-a ,将点(2,1)的坐标代入,得a =115,所以y =(15)t 30-115. 综上,y ={12t ,0≤t ≤2,(15)t 30-115,t >2. (2)令(15)t 30-115<0.008=1125,解得t >92,所以至少需要经过92分钟后,试验才能结束.13.解析 (1)因为函数f (x )=2kx 2+x (k ∈R ,且k 为常数)为奇函数,且定义域为R , 所以f (-x )=-f (x ),即2kx 2-x =-2kx 2-x ,所以k =0.(2)由(1)知,f (x )=x ,则g (x )=a f (x )+1=a x +1(a >0,且a ≠1).当a >1时,g (x )在[-2,1]上是增函数,所以g (x )的最大值为g (1)=a +1,g (x )的最小值为g (-2)=1a 2+1;当0<a <1时,g (x )在[-2,1]上是减函数,所以g (x )的最大值为g (-2)=1a 2+1,g (x )的最小值为g (1)=a +1.(3)当a =2时,g (x )=2x +1,在[-1,0]上是增函数,则g (x )≤g (0)=2,所以-2mt +3≥2,即2mt -1≤0对所有的m ∈[-1,1]恒成立.令h (m )=2tm -1,m ∈[-1,1],则{ℎ(-1)≤0,ℎ(1)≤0,即{-2t -1≤0,2t -1≤0, 解得-12≤t ≤12, 故实数t 的取值范围是[-12,12]. 14.解析 (1)∵f (x )是定义域为R 的奇函数,∴f (0)=0,∴k =2.此时f (x )=a x -a -x ,为奇函数,∴k =2符合题意.(2)由(1)得f (x )=a x -a -x ,∵f (1)<0,∴a -1a<0,∴0<a <1, ∴f (x )在R 上为减函数.又∵f (x 2+tx )+f (4-x )<0在R 上恒成立,即f (x 2+tx )<f (x -4)在R 上恒成立,∴x 2+tx >x -4在R 上恒成立,∴x 2+(t -1)x +4>0在R 上恒成立,∴(t -1)2-4×1×4<0,解得-3<t <5,∴t 的取值范围为(-3,5).(3)∵f (1)=32,∴a =2a =-12舍去,∴g (x )=22x +2-2x -2m (2x -2-x ).令t =2x -2-x ,x ≥1,则h (t )=t 2-2mt +2,t ≥32.函数g (x )在[1,+∞)上的最小值为-2可转化为函数h (t )=t 2-2mt +2在区间[32,+∞)上的最小值为-2,当m ≤32时,h (t )在区间32,+∞上单调递增,∴h (t )min =h (32)=-2,解得m =2512,舍去;当m >32时,h (t )在区间32,m 上单调递减,在区间[m ,+∞)上单调递增,∴h (t )min =h (m )=-2,解得m =2(负值舍去).综上所述,m =2.。
高中数学:指数函数的图像和性质练习及答案

高中数学:指数函数的图像和性质练习及答案指数函数的图象与性质1.指数函数y=a x,y=b x,y=c x,y=d x在同一坐标系内的图象如图所示,则a、b、c、d的大小顺序是( )A.b<a<d<cB.a<b<d<cC.b<a<c<dD.b<c<a<d2.已知1>n>m>0,则指数函数①y=m x,②y=n x的图象为( )A.B.C.D.3.函数y=a x-(a>0,且a≠1)的图象可能是( )A.B.C.D.4.把函数y=f(x)的图象向左,向下分别平移2个单位,得到y=2x的图象,则f(x)的解析式是( ) A.f(x)=2x+2+2B.f(x)=2x+2-2C.f(x)=2x-2+2D.f(x)=2x-2-25.若关于x的方程|a x-1|=2a(a>0且a≠1)有两个不等实根,则a的取值范围是( )A.(0,1)∪(1,+∞)B.(0,1)C.(1,+∞)D.(0,)6.已知函数f(x)=|2x-1-1|.(1)作出函数y=f(x)的图象;(2)若a<c,且f(a)>f(c),求证:2a+2c<4.指数函数的定义域7.已知函数f(x)的定义域是(1,2),则函数f(2x)的定义域是( ) A.(0,1)B.(2,4)C.(,1)D.(1,2)8.函数y=的定义域是________.指数函数的值域9.函数y=的值域为________.10.当x∈[0,1]时,函数f(x)=3x+2的值域为________.指数函数的性质11.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( ) A.f(x)与g(x)均为偶函数B.f(x)为偶函数,g(x)为奇函数C.f(x)与g(x)均为奇函数D.f(x)为奇函数,g(x)为偶函数12.关于指数函数,有下列几个命题:①指数函数的定义域为(0,+∞);②指数函数的值域是不包括1的;③指数函数f(x)=2x和f(x)=()x关于y轴对称;④指数函数都是单调函数.其中正确的命题有________(填写正确命题的序号).13.指数函数f(x)=a x(a>0,a≠1)对于任意的x1、x2∈R,都有f(x1)f(x2)________f(x1+x2).(填“>”,“<”或“=”)指数幂的大小比较14.a=与b=()5的大小关系是( )A.a>bB.a<bC.a=bD.大小关系不定15.设<()b<()a<1,那么( )A.a a<a b<b aB.a a<b a<a bC.a b<a a<b aD.a b<b a<a a16.设函数f(x)定义在实数集上,且y=f(x+1)是偶函数,且当x≥1时,f(x)=3x-1,则有( ) A.f()<f()<f()B.f()<f()<f()C.f()<f()<f()D.f()<f()<f()指数方程的解法17.集合M={3,2a},N={a,b},若M∩N={2},则M∪N等于( )A.{0,1,2}B.{0,1,3}C.{0,2,3}D.{1,2,3}18.方程2m·3n-3n+1+2m=13的非负整数解(m,n)=________.19.若方程()x+()x-1+a=0有正数解,则实数a的取值范围是________.指数不等式的解法20.已知不等式为≤3x<27,则x的取值范围( )A.-≤x<3B.≤x<3C.RD.≤x<21.已知f(x)=a-x(a>0,且a≠1),且f(-2)>f(-3),则a的取值范围是( ) A.a>0B.a>1C.a<1D.0<a<122.不等式<2-2x的解集是________.指数函数的单调性23.函数y=的递减区间为( )A.(-∞,-3]B.[-3,+∞)C.(-∞,3]D.[3,+∞)24.若函数y=(1-2a)x是实数集R上的增函数,则实数a的取值范围为( ) A.(,+∞)B.(-∞,0)C.(-∞,)D.(-,)25.已知函数f(n)=是增函数,则实数a的取值范围是( )A.(0,1)B.(7,8)C.[7,8)D.(4,8)26.函数y=的递增区间是________.27.已知函数f(x)=.(1)若a=1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值.指数函数的最值28.已知函数y=ax(a>1)在区间[1,2]上的最大值与最小值之差为2,则实数a的值为( ) A.B.2C.3D.429.已知函数y=9x-2·3x-1,求该函数在区间x∈[-1,1]上的最大值和最小值.30.已知f(x)=9x-2·3x+4,x∈[-1,2].(1)设t=3x,x∈[-1,2],求t的最大值与最小值;(2)求f(x)的最大值与最小值.与指数函数相关的函数的奇偶性31.函数y=的图象( )A.关于原点对称B.关于直线y=-x对称C.关于y轴对称D.关于直线y=x对称32.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x-a-x+2(a>0,且a≠1).若g(2)=a,则f(2)等于( )A.2B.C.D.a233.函数f(x)=k·a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8),(1)求函数f(x)的解析式;(2)若函数g(x)=,试判断函数g(x)的奇偶性,并给出证明.答案1.指数函数y=a x,y=b x,y=c x,y=d x在同一坐标系内的图象如图所示,则a、b、c、d的大小顺序是( )A.b<a<d<cB.a<b<d<cC.b<a<c<dD.b<c<a<d【答案】A【解析】作直线x=1与各图象相交,交点的纵坐标即为底数,故从下到上依次增大.所以b<a<d<c.故选A.2.已知1>n>m>0,则指数函数①y=m x,②y=n x的图象为( )A.B.C.D.【答案】C【解析】由1>n>m>0可知①②应为两条递减指数函数曲线,故只可能是选项C或D,进而再判断①②与n和m的对应关系,不妨选择特殊点,令x=1,则①②对应的函数值分别为m和n,由m<n知选C.故选C.3.函数y=a x-(a>0,且a≠1)的图象可能是( )A.B.C.D.【答案】D【解析】当a>1时,y=a x-为增函数,且在y轴上的截距为0<1-<1,排除A,B.当0<a<1时,y=a x-为减函数,且在y轴上的截距为1-<0,故选D.4.把函数y=f(x)的图象向左,向下分别平移2个单位,得到y=2x的图象,则f(x)的解析式是( ) A.f(x)=2x+2+2B.f(x)=2x+2-2C.f(x)=2x-2+2D.f(x)=2x-2-2【答案】C【解析】y=2x向上,向右分别平移2个单位得f(x)的图象,所以f(x)=2x-2+2.5.若关于x的方程|a x-1|=2a(a>0且a≠1)有两个不等实根,则a的取值范围是( )A.(0,1)∪(1,+∞)B.(0,1)C.(1,+∞)D.(0,)【答案】D【解析】方程|a x-1|=2a(a>0且a≠1)有两个不相等的实数根转化为函数y=|a x-1|与y=2a有两个交点.①当0<a<1时,如图(1),∴0<2a<1,即0<a<.②当a>1时,如图(2),而y=2a>1不符合要求.综上,0<a<.6.已知函数f(x)=|2x-1-1|.(1)作出函数y=f(x)的图象;(2)若a<c,且f(a)>f(c),求证:2a+2c<4.【答案】(1)f(x)=其图象如图所示.(2)证明由图知,f(x)在(-∞,1]上是减函数,在[1,+∞)上是增函数,故结合条件知必有a<1.若c≤1,则2a<2,2c≤2,所以2a+2c<4;若c>1,则由f(a)>f(c),得1-2a-1>2c-1-1,即2c-1+2a-1<2,所以2a+2c<4.综上知,总有2a+2c<4.7.已知函数f(x)的定义域是(1,2),则函数f(2x)的定义域是( )A.(0,1)B.(2,4)C.(,1)D.(1,2)【答案】A【解析】根据题意可知1<2x<2,则0<x<1,所以函数f(2x)的定义域是(0,1).8.函数y=的定义域是________.【答案】(-∞,]【解析】要使函数y=有意义,则必须()3x-1-≥0,即()3x-1≥()3,∴3x-1≤3,解得x≤.∴函数y=的定义域是(-∞,].故答案为(-∞,].9.函数y=的值域为________.【答案】[0,4)【解析】∵2x>0,∴0≤16-2x<16,则0≤<4,故函数y=的值域为[0,4).10.当x∈[0,1]时,函数f(x)=3x+2的值域为________.【答案】[3,5]【解析】因为指数函数y=3x在区间[0,1]上是增函数,所以30≤3x≤31,即1≤3x≤3,于是1+2≤3x+2≤3+2,即3≤f(x)≤5.11.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( )A.f(x)与g(x)均为偶函数B.f(x)为偶函数,g(x)为奇函数C.f(x)与g(x)均为奇函数D.f(x)为奇函数,g(x)为偶函数【答案】B【解析】因为f(x),g(x)的定义域均为R,且f(-x)=3-x+3x=f(x),g(-x)=3-x-3x=-g(x),所以f(x)为偶函数,g(x)为奇函数,故选B.12.关于指数函数,有下列几个命题:①指数函数的定义域为(0,+∞);②指数函数的值域是不包括1的;③指数函数f(x)=2x和f(x)=()x关于y轴对称;④指数函数都是单调函数.其中正确的命题有________(填写正确命题的序号).【答案】③④【解析】①指数函数的定义域为R,故①错误;②指数函数的值域是(0,+∞),故②错误;③∵f(x)=()x=2-x,∴指数函数f(x)=2x和f(x)=()x关于y轴对称,故③正确;④当a>1时,y=ax是增函数;当0<a<1时,y=ax是减函数,所以指数函数都是单调函数,故④正确.故答案为③④.13.指数函数f(x)=a x(a>0,a≠1)对于任意的x1、x2∈R,都有f(x1)f(x2)________f(x1+x2).(填“>”,“<”或“=”)【答案】=【解析】∵对于指数函数f(x)=a x(a>0,a≠1),任意取x 1、x2∈R,有f(x1)f(x2)===f(x1+x2).故答案为=.14.a=与b=()5的大小关系是( )A.a>bB.a<bC.a=bD.大小关系不定【答案】A【解析】考察函数y=()x与y=()x知,前者是一个增函数,后者是一个减函数,∴>()0=1,()5<()0=1,∴>()5,即a>b,故选A.15.设<()b<()a<1,那么( )A.a a<a b<b aB.a a<b a<a bC.a b<a a<b aD.a b<b a<a a【答案】C【解析】∵<()b<()a<1,且y=()x在R上是减函数.∴0<a<b<1,∴指数函数y=a x在R上是减函数,∴a b<a a,∴幂函数y=x a在R上是增函数,∴a a<b a,∴a b<a a<b a,故选C.16.设函数f(x)定义在实数集上,且y=f(x+1)是偶函数,且当x≥1时,f(x)=3x-1,则有( ) A.f()<f()<f()B.f()<f()<f()C.f()<f()<f()D.f()<f()<f()【答案】B【解析】∵y=f(x+1)是偶函数,故函数的图象关于直线x=1对称,则f()=f(),f()=f(),又∵当x≥1时,f(x)=3x-1为增函数,且<<,故f()<f()<f(),即f()<f()<f(),故选B.17.集合M={3,2a},N={a,b},若M∩N={2},则M∪N等于( )A.{0,1,2}B.{0,1,3}C.{0,2,3}D.{1,2,3}【答案】D【解析】因为2是它们的公共元素,所以2a=2,a=1,b=2,因此M∪N={1,2,3},选D.18.方程2m·3n-3n+1+2m=13的非负整数解(m,n)=________.【答案】(3,0),(2,2)【解析】方程2m·3n-3n+1+2m=13变形为3n(2m-3)+2m=13.(*)∵m,n为非负整数,∴当m=0,1时,经验证无解,应舍去.当m=2时,(*)化为3n+22=13,解得n=2.此时方程的非负整数解为(2,2).当m=3时,(*)化为5·3n+23=13,即3n=1,解得n=0.当m≥4时,2m-3≥13,左边>右边,(*)无非负整数解.综上可知:方程2m·3n-3n+1+2m=13的非负整数解(m,n)=(3,0),(2,2).故答案为(3,0),(2,2).19.若方程()x+()x-1+a=0有正数解,则实数a的取值范围是________.【答案】(-3,0)【解析】令()x=t,∵方程有正根,∴t∈(0,1).方程转化为t2+2t+a=0,∴a=1-(t+1)2.∵t∈(0,1),∴a∈(-3,0).20.已知不等式为≤3x<27,则x的取值范围( )A.-≤x<3B.≤x<3C.RD.≤x<【答案】A【解析】由题意可得≤3x≤33,再根据函数y=3x在R上是增函数,可得-≤x<3,故选A.21.已知f(x)=a-x(a>0,且a≠1),且f(-2)>f(-3),则a的取值范围是( )A.a>0B.a>1C.a<1D.0<a<1【答案】D【解析】∵f(-2)=a2,f(-3)=a3.f(-2)>f(-3),即a2>a3,故0<a<1.选D.22.不等式<2-2x的解集是________.【答案】{x|x>3,或x<-1}【解析】原不等式化为<()2x,又y=()x为减函数,故x2-3>2x,解得{x|x>3,或x<-1}.23.函数y=的递减区间为( )A.(-∞,-3]B.[-3,+∞)C.(-∞,3]D.[3,+∞)【答案】B【解析】设u=(x+3)2,y=()u,∵u=(x+3)2在(-∞,-3]上递减,在[-3,+∞)上递增,而y=()u在R上递减,∴y=在[-3,+∞)上递减.24.若函数y=(1-2a)x是实数集R上的增函数,则实数a的取值范围为( )A.(,+∞)B.(-∞,0)C.(-∞,)D.(-,)【答案】B【解析】由题意知函数为指数函数,且为实数集R上的增函数,所以底数1-2a>1,解得a<0.25.已知函数f(n)=是增函数,则实数a的取值范围是( )A.(0,1)B.(7,8)C.[7,8)D.(4,8)【答案】D【解析】因为函数f(n)=是增函数,所以解得4<a<8.26.函数y=的递增区间是________.【答案】[2,+∞)【解析】函数y=的单调递增区间即为y=x2-4x+3的单调递增区间,∵y=x2-4x+3的单调递增区间为[2,+∞),故答案为[2,+∞).27.已知函数f(x)=.(1)若a=1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值.【答案】(1)a=1,得f(x)=,∵∈(0,1),∴f(x)的外层函数是一个递减的指数函数;令t=x2-4x+3,则其减区间为(-∞,2),增区间为(2,+∞).∴f(x)的增区间为(-∞,2),减区间为(2,+∞)(2)∵f(x)有最大值为3,∈(0,1),函数t=ax2-4x+3有最小值-1,∴函数t=ax2-4x+3在区间(-∞,)上是减函数,在区间(,+∞)上是增函数由此可得,a>0且f()==3,得-+3=-1,解之得a=1.综上所述,当f(x)有最大值3时,a的值为1.28.已知函数y=ax(a>1)在区间[1,2]上的最大值与最小值之差为2,则实数a的值为( ) A.B.2C.3D.4【答案】B【解析】y=a x(a>1)在[1,2]上是增函数,最大值为a2,最小值为a1,所以a2-a1=2,解得a=2或a=-1(舍).29.已知函数y=9x-2·3x-1,求该函数在区间x∈[-1,1]上的最大值和最小值.【答案】令3x=t,∵-1≤x≤1,∴≤t≤3,∴y=t2-2t-1=(t-1)2-2(其中≤t≤3).∴当t=1时(即x=0时),y取得最小值-2,当t=3时(即x=1时),y取得最大值2. 30.已知f(x)=9x-2·3x+4,x∈[-1,2].(1)设t=3x,x∈[-1,2],求t的最大值与最小值;(2)求f(x)的最大值与最小值.【答案】(1)∵t=3x在[-1,2]是单调增函数,∴t max=32=9,t min=3-1=.(2)令t=3x,∵x∈[-1,2],∴t∈[,9],原方程变为:f(x)=t2-2t+4,∴f(x)=(t-1)2+3,t∈[,9],∴当t=1时,此时x=0,f(x)min=3,当t=9时,此时x=2,f(x)max=67.题组10 与指数函数相关的函数的奇偶性31.函数y=的图象( )A.关于原点对称B.关于直线y=-x对称C.关于y轴对称D.关于直线y=x对称【答案】A【解析】设函数y=f(x)=,则此函数的定义域为R.f(-x)===-f(x),故函数是奇函数,故它的图象关于原点O对称,故选A.32.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x-a-x+2(a>0,且a≠1).若g(2)=a,则f(2)等于( )A.2B.C.D.a2【答案】B【解析】∵f(x)是奇函数,g(x)是偶函数,∴由f(x)+g(x)=ax-a-x+2,①得f(-x)+g(-x)=-f(x)+g(x)=a-x-ax+2,②①+②,得g(x)=2,①-②,得f(x)=ax-a-x.又g(2)=a,∴a=2,∴f(x)=2x-2-x,∴f(2)=22-2-2=.33.函数f(x)=k·a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8),(1)求函数f(x)的解析式;(2)若函数g(x)=,试判断函数g(x)的奇偶性,并给出证明.【答案】(1)由已知得∴k=1,a=,∴f(x)=2x.(2)函数g(x)为奇函数.证明:g(x)=,其定义域为R,又g(-x)===-=-g(x),∴函数g(x)为奇函数.。
指数函数的练习题

指数函数的练习题指数函数是高中数学中的重要内容,它在数学和实际生活中都有广泛的应用。
通过练习题的形式,我们可以更好地理解和掌握指数函数的相关概念和性质。
下面,我将给大家提供一些指数函数的练习题,希望能够对大家的学习有所帮助。
练习题一:简单指数函数计算1. 计算 $2^3$ 和 $(-3)^2$ 的值。
2. 计算 $10^{-2}$ 和 $\left(\frac{1}{2}\right)^{-3}$ 的值。
练习题二:指数函数的性质1. 如果 $a > 1$,那么 $a^x$ 是否是递增函数?为什么?2. 如果 $0 < a < 1$,那么 $a^x$ 是否是递增函数?为什么?3. 如果 $a > 1$,那么 $a^x$ 是否有上界?为什么?练习题三:指数函数的图像1. 画出函数 $y = 2^x$ 和 $y = \left(\frac{1}{2}\right)^x$ 的图像。
2. 画出函数 $y = 3^x$ 和 $y = \left(\frac{1}{3}\right)^x$ 的图像。
练习题四:指数函数的应用1. 假设某种细菌的数量每小时增加50%,现在有1000个细菌,经过多少小时后细菌的数量会达到5000个?2. 一笔投资每年以5%的利率复利计算,如果初始投资为10000元,经过多少年后投资会翻倍?练习题五:指数函数的方程1. 解方程 $2^x = 8$。
2. 解方程 $3^{2x-1} = \frac{1}{9}$。
通过以上的练习题,我们可以加深对指数函数的理解和运用。
在计算指数函数的值时,我们需要注意底数的正负以及指数的大小。
指数函数的性质也是我们需要掌握的重要内容,它们对于理解函数的增减性和图像的变化有着重要的影响。
通过绘制指数函数的图像,我们可以更直观地观察函数的特点和变化趋势。
指数函数在实际生活中也有广泛的应用。
在金融领域中,复利计算常常使用指数函数的概念。
高中数学:第二章 2.1.2 指数函数及其性质 (11)

第二章 2.1 指数函数素养培优提能一、选择题1.已知a =0.860.75,b =0.860.85,c =1.30.86,则a ,b ,c 的大小关系是( ) A .a >b >c B .b >a >c C .c >b >aD .c >a >b解析:选D ∵函数y =0.86x 在R 上是减函数, ∴0<0.860.85<0.860.75<1.又1.30.86>1,∴c >a >b .故选D .2.在下列图象中,二次函数y =ax 2+bx 及指数函数y =⎝ ⎛⎭⎪⎫b a x的图象只可能是( )解析:选A 根据指数函数可知a ,b 同号且不相等,∴-b2a <0,可排除B 、D ;由选项C 中的二次函数的图象,可知a -b >0,a <0,∴b a >1,∴指数函数y =⎝ ⎛⎭⎪⎫b a x单调递增,故C 不正确,排除C .故选A .3.定义运算*:a *b =⎩⎨⎧a ,a ≤b ,b ,a >b ,如1*2=1,则函数f (x )=|2x *2-x -1|的值域为( )A .[0,1]B .[0,1)C .[0,+∞)D .[1,+∞)解析:选B 新定义函数的运算结果是取a ,b 中的较小值,则2x*2-x =⎝⎛⎭⎪⎫12|x |∈(0,1],所以f (x )=|2x*2-x -1|=⎪⎪⎪⎪⎪⎪⎝⎛⎭⎪⎫12|x |-1∈[0,1).故选B . 4.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b %,则n 年后这批设备的价值为( )A .na (1-b %) 万元B .a (1-nb %) 万元C .a [1-(b %)n ] 万元D .a (1-b %)n 万元解析:选D 1年后价值为a (1-b %)万元,2年后价值为a (1-b %)2万元,…,n 年后价值为a (1-b %)n 万元,故选D .5.对于给定的正数k ,定义函数f k (x )=⎩⎨⎧f (x ),f (x )≤k ,k ,f (x )>k .若对于函数f (x )=2-x 2+x +2的定义域内的任意实数x ,恒有f k (x )=f (x ),则( )A .k 的最大值为2 2B .k 的最小值为22C .k 的最大值为1D .k 的最小值为1解析:选B 由题意,知k ≥f (x )max .函数f (x )=2-x 2+x +2的定义域为[-1,2].令t =-x 2+x +2,则t ∈⎣⎢⎡⎦⎥⎤0,32,2t ∈[1,22],所以f (x )max =22,因此k ≥2 2.故选B .二、填空题6.满足⎝ ⎛⎭⎪⎫14x -3>16的x 的取值范围是________.解析:⎝ ⎛⎭⎪⎫14x -3>16,即⎝ ⎛⎭⎪⎫14x -3>⎝ ⎛⎭⎪⎫14-2,由指数函数的单调性,得x -3<-2,即x <1.答案:(-∞,1)7.(2019·福建师大附中期末)设函数f (x )=2x ,对任意的x 1,x 2(x 1≠x 2),以下结论正确的是________(填序号).①f (x 1·x 2)=f (x 1)+f (x 2);②f (x 1+x 2)=f (x 1)·f (x 2); ③f (-x 1)=1f (x 1);④f (x 1)-1x 1<0(x 1≠0); ⑤f (x 1)+f (x 2)2>f ⎝⎛⎭⎪⎫x 1+x 22. 解析:2x 1·x 2=(2x 1)x 2≠2x 1+2x 2,①错误;根据指数式的运算性质可知同底数幂相乘,底数不变,指数相加,知②正确;根据2-x =12x ,知③正确;当x >0时,f (x )>1,当x <0时,0<f (x )<1,所以f (x 1)-1x 1>0,故④错误;因为函数f (x )=2x的图象是下凸的,结合图象可以判定两个自变量对应的函数值的平均值大于这两个自变量的平均值所对应的函数值,故⑤正确.综上,填②③⑤.答案:②③⑤8.已知实数a ,b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b,给出下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式为________(填序号).解析:画出函数y =⎝ ⎛⎭⎪⎫12x 和y =⎝ ⎛⎭⎪⎫13x的图象,如图所示,借助图象进行分析.由于实数a ,b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b,所以若a ,b 均为正数,则a >b >0;若a ,b 均为负数,则a <b <0;若a =b =0,则⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b=1,故③④不可能成立.答案:③④ 三、解答题9.已知f (x )=a a 2-1(a x-a -x )(a >0且a ≠1). (1)判断f (x )的奇偶性; (2)讨论f (x )的单调性.解:(1)函数f (x )的定义域为R ,关于原点对称. 又f (-x )=aa 2-1(a -x -a x )=-f (x ), 所以f (x )为奇函数.(2)当a >1时,a 2-1>0,y =a x 为增函数,y =a -x 为减函数, 从而y =a x -a -x 为增函数,所以f (x )为增函数.当0<a <1时,a 2-1<0,y =a x 为减函数,y =a -x 为增函数, 从而y =a x -a -x 为减函数,所以f (x )为增函数. 故当a >0,且a ≠1时,f (x )在定义域内单调递增. 10.设函数f (x )=3x ,且f (a +2)=18,函数g (x )=3ax -4x . (1)求g (x )的解析式;(2)若方程g (x )-b =0在[-2,2]内有两个不相等的实数根,求实数b 的取值范围.解:(1)∵f (x )=3x ,且f (a +2)=18, ∴3a +2=18,∴3a =2. ∵g (x )=3ax -4x =(3a )x -4x , ∴g (x )=2x -4x .(2)解法一:由(1)知,方程为2x -4x -b =0. 令t =2x ,x ∈[-2,2],则14≤t ≤4,且方程t -t 2-b =0在⎣⎢⎡⎦⎥⎤14,4上有两个不相等的实数根,即函数y =t -t 2=-⎝ ⎛⎭⎪⎫t -122+14的图象与函数y =b 的图象在⎣⎢⎡⎦⎥⎤14,4上有两个交点.作出大致图象,如图所示:由图知当b ∈⎣⎢⎡⎭⎪⎫316,14时,方程g (x )-b =0在[-2,2]内有两个不相等的实数根.故实数b 的取值范围为⎣⎢⎡⎭⎪⎫316,14.解法二:由(1)知方程为2x -4x -b =0.令t =2x,x ∈[-2,2],则14≤t ≤4,且方程t -t 2-b =0在⎣⎢⎡⎦⎥⎤14,4上有两个不相等的实数根,令h (t )=-t 2+t -b ,t ∈⎣⎢⎡⎦⎥⎤14,4,则⎩⎪⎨⎪⎧Δ=1-4b >0,h ⎝ ⎛⎭⎪⎫14≤0,h (4)≤0,解得316≤b <14.故实数b 的取值范围为⎣⎢⎡⎭⎪⎫316,14.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学-指数函数及其性质的应用练习
1.当x >0时,指数函数f (x )=(a -1)x <1恒成立,则实数a 的取值范围是( )
A .a >2
B .1<a <2
C .a >1
D .a ∈R 解析:∵x >0时,(a -1)x <1恒成立,∴0<a -1<1,∴1<a <2.
答案:B
2.若指数函数f (x )=(a +1)x 是R 上的减函数,则a 的取值范围为( )
A .a <2
B .a >2
C .-1<a <0
D .0<a <1 解析:由f (x )=(a +1)x 是R 上的减函数可得0<a +1<1,∴-1<a <0.
答案:C
3.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( )
A .f (x )与g (x )均为偶函数
B .f (x )为偶函数,g (x )为奇函数
C .f (x )与g (x )均为奇函数
D .f (x )为奇函数,g (x )为偶函数
解析:∵f (x )=3x +3-x ,
∴f (-x )=3-x +3x .
∴f (x )=f (-x ),
即f (x )是偶函数.
又∵g (x )=3x -3-x ,
∴g (-x )=3-x -3x .
∴g (x )=-g (-x ),
即函数g (x )是奇函数.
答案:B
4.已知a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系是________________. 解析:∵y =0.8x 是减函数,
∴0<b <a <1.
又∵c =1.20.8>1,∴c >a >b .
答案:c >a >b
5.设23-2x <0.5
3x -4,则x 的取值范围是________. 解析:∵0.53x -4=⎝ ⎛⎭
⎪⎫123x -4=24-3x ,∴由23-2x <24-3x ,得3-2x <4-3x ,∴x <1. 答案:(-∞,1)
6.已知22x ≤⎝ ⎛⎭
⎪⎫14x -2,求函数y =2x 的值域. 解:由22x ≤⎝ ⎛⎭
⎪⎫14x -2得22x ≤24-2x , ∴2x ≤4-2x .
解得x ≤1,∴0<2x ≤21
=2.
∴函数的值域是(0,2].。