指数函数及其性质的应用

合集下载

指数函数的特点与应用

指数函数的特点与应用

指数函数的特点与应用指数函数是数学中一种重要的函数形式,其特点与应用广泛存在于各个学科和领域。

本文将通过详细的探讨,介绍指数函数的特点及其在实际应用中的作用。

一、指数函数的定义和基本性质指数函数可以表示为f(x) = a^x,其中a是一个正数且不等于1。

指数函数的定义域为实数集,值域为大于0的实数集。

1.1 基本性质1、指数函数必须满足正整数指数对应的值为正数且不等于0,即a^m > 0 (m为正整数)。

2、指数函数的底数a可以为任意正实数,不同的底数形成不同的指数函数。

3、指数函数具有自然增长性质,即当x增大时,函数值也随之增大。

反之,当x减小时,函数值也减小。

二、指数函数的特点2.1 高速增长和衰减由于指数函数具有自然增长的特点,其增长速度比其他函数(如线性函数、多项式函数等)更快。

当x趋近正无穷时,指数函数会呈现出高速增长的趋势。

相反,当x趋近负无穷时,指数函数会迅速衰减至0。

2.2 曲线在x轴和y轴的特殊位置对于指数函数y = a^x,当x=0时,函数值为1,即通过点(0,1),曲线与y轴相交;当y=0时,函数值无解,曲线不与x轴相交。

2.3 渐近线指数函数图像在y轴右侧有一条水平渐近线y = 0,在x轴上无渐近线。

它们是由于指数函数的特殊性质所导致的。

三、指数函数的应用3.1 经济增长模型在经济领域中,指数函数广泛应用于经济增长模型的描述。

例如,Solow模型中的资本积累和技术进步对应的增长模型,往往采用指数函数形式来表达。

3.2 科学与工程领域在科学与工程领域,指数函数常用于描述物理量之间的变化关系。

比如,放射性衰变、电子元件的增长过程、细菌繁殖等现象可以通过指数函数来进行描述和分析。

3.3 金融领域在金融领域,指数函数被广泛应用于利率计算、股票指数的增长预测、复利计算等方面。

指数函数的特性使其能够快速计算复利的效果,为个人和机构做出金融决策提供了重要的工具。

3.4 生态学生态学中的种群增长模型常使用指数函数。

指数函数知识点总结

指数函数知识点总结

指数函数知识点总结指数函数是数学中非常重要的一个概念,广泛应用于自然科学、工程技术和经济学等领域。

它具有许多独特的特性和性质,对于我们理解和应用数学具有重要的意义。

本文将对指数函数的定义、性质及其应用进行总结。

一、指数函数的定义和性质指数函数定义为以自然数e为底数的幂函数,即f(x)=a^x,其中a为底数,x为指数。

其中,底数a是正数且不等于1的任何实数。

指数函数的图像呈现出递增或递减的特点,取决于底数a的大小。

1. 当底数a大于1时,指数函数呈现递增的特性。

以a=2为例,f(x)=2^x的图像在坐标系中逐渐上升,呈现出指数增长的趋势。

指数函数在此情况下,也被称为增长函数。

2. 当底数a小于1且大于0时,指数函数呈现递减的特性。

以a=0.5为例,f(x)=0.5^x的图像在坐标系中逐渐下降,呈现出指数衰减的趋势。

指数函数在此情况下,也被称为衰减函数。

3. 当底数a等于1时,指数函数的值始终为1,即f(x)=1^x=1。

在此情况下,指数函数的图像为一条水平线,没有任何变化。

指数函数具有很多独特的性质,其中一些重要的性质如下:1. 指数函数的定义域为实数集。

任何实数都可以作为指数函数的自变量。

2. 指数函数的值域为正实数集。

由于底数a为正数,指数函数的幂结果始终大于0。

3. 当指数函数的底数a大于1时,映射为一对一。

即不同的指数x 对应不同的函数值f(x)。

4. 指数函数的图像都通过点(0,1)。

这是因为任何数的零次幂都等于1。

5. 指数函数具有对称轴的性质。

即f(x)=a^x的图像关于y轴对称。

二、指数函数的应用指数函数在自然科学、工程技术和经济学等领域应用广泛,主要体现在以下几个方面:1. 人口增长模型:指数函数可以用来描述人口的增长趋势。

如果一个国家的人口增长率呈现出指数增长,即人口每年以固定比例增加,那么可以使用指数函数来建立人口增长模型,预测未来的人口数量。

2. 金融利率计算:指数函数在金融学中有广泛的应用。

2.1.4 指数函数的性质及其应用

2.1.4 指数函数的性质及其应用

【变式与拓展】
5-1 1.已知 a= 2 ,函数 f(x)=ax,若实数 m,n 满足 f(m)>
m<n f(n),则 m,n 的大小关系为________.
5-1 解析:a= 2 ∈(0,1),函数 f(x)=ax 在 R 上递减,由 f(m)
>f(n),得 m<n.
题型 2 指数函数的最值问题
1-2x 2-x-1 1-2x 2x (3)解:∵f(-x)= -x = x = x 2 +1 2 +1 2 +1 2x 2x-1 =- x =-f(x),∴f(x)为奇函数. 2 +1 (4)证明:设 x1<x2,则 2 x1 < 2 x2 , 2 x1 +1>0, 2 x2 +1>0, 2 x1 1 2 x2 1 f(x1)-f(x2)= x1 x1 2 1 2 1 2(2 x1 2 x2 ) = x1 <0, 即 f(x1)<f(x2). x2 (2 1)(2 1) 2x-1 因此 y= x 在(-∞,+∞)上是增函数. 2 +1
【例 2】 函数 f(x)=ax(a>0,且 a≠1)在区间[1,2]上的最大 a 值比最小值大2,求 a 的值.
思维突破:结合函数的单调性,对 a 进行分类讨论.
解:(1)若 a>1,则 f(x)在[1,2]上递增. 3 a ∴a -a=2,即 a=2或 a=0(舍去).
2
(2)若 0<a<1,则 f(x)在[1,2]上递减. 1 a ∴a-a =2,即 a=2或 a=0(舍去).
下 图象的________ 方.
(2)若 1>a>b>0,当 x>0 时,函数 y=ax 图象在函数 y= 上 bx 图象的________ 方;当 x<0 时,函数 y=ax 图象在函数 y= 下 bx 图象的________ 方.

人教A版必修一2.1.2.2指数函数及其性质的应用

人教A版必修一2.1.2.2指数函数及其性质的应用
第2课时 指数函数及其性质的应用
指数函数的图象和性质
规律方法:比较幂值大小的方法: (1)单调法:比较同底数幂大小,构造指数函数,利用指数函数的单调性比较大小. 要注意:明确所给的两个值是哪个指数函数的两个函数值;明确指数函数的底数与1的 大小关系. (2)中间量法:比较不同底数幂的大小,常借助于中间值1进行比较,判断指数幂 和1的大小.
类型三:指数函数性质的综合运用
思路点拨:利用指数函Байду номын сангаас的单调性,结合图象求解.
规律方法:解指数不等式问题,需注意三点: (1)形如ax>ay的不等式,借助y=ax的单调性求解,如果a的取值不确定,需分a>1与 0<a<1两种情况讨论; (2)形如ax>b的不等式,注意将b化为以a为底的指数幂的形式,再借助y=ax的单调 性求解; (3)形如ax>bx的形式,利用图象求解.

高中数学指数对数函数的性质及应用实例

高中数学指数对数函数的性质及应用实例

高中数学指数对数函数的性质及应用实例一、指数函数的性质指数函数是高中数学中非常重要的一个函数,它具有以下几个性质:1. 定义域和值域:指数函数的定义域为实数集,值域为正实数集。

2. 单调性:对于指数函数y=a^x,当底数a>1时,函数是递增的;当0<a<1时,函数是递减的。

3. 奇偶性:指数函数y=a^x是奇函数还是偶函数,取决于底数a的奇偶性。

4. 渐近线:当底数a>1时,指数函数的图像在x轴上有一条水平渐近线y=0;当0<a<1时,指数函数的图像在y轴上有一条垂直渐近线x=0。

5. 过点(0,1):对于任何正数a,指数函数都过点(0,1)。

6. 指数函数的性质与变换:指数函数y=a^x的图像在平面上的平移、伸缩、翻转等变换中,保持指数函数的性质不变。

例如,考虑指数函数y=2^x和y=0.5^x。

我们可以通过绘制函数图像来验证上述性质。

二、对数函数的性质对数函数是指数函数的反函数,它也具有一些重要的性质:1. 定义域和值域:对数函数的定义域为正实数集,值域为实数集。

2. 单调性:对于对数函数y=loga(x),当底数a>1时,函数是递增的;当0<a<1时,函数是递减的。

3. 奇偶性:对数函数y=loga(x)是奇函数还是偶函数,取决于底数a的奇偶性。

4. 渐近线:对数函数y=loga(x)的图像在x轴上有一条水平渐近线y=0。

5. 过点(1,0):对于任何正数a,对数函数都过点(1,0)。

6. 对数函数的性质与变换:对数函数y=loga(x)的图像在平面上的平移、伸缩、翻转等变换中,保持对数函数的性质不变。

例如,考虑对数函数y=log2(x)和y=log0.5(x)。

我们可以通过绘制函数图像来验证上述性质。

三、指数对数函数的应用实例指数对数函数在实际问题中有广泛的应用,下面举两个例子来说明:例1:财务利润问题某公司的年利润以10%的速度递增。

指数函数的图像与性质的应用

指数函数的图像与性质的应用

第2课时 指数函数的图像与性质的应用学习目标 1.进一步熟练掌握指数函数的图像、性质.2.能够利用指数函数的图像和性质比较大小、解不等式. 导语我们已经学习了指数函数的图像与性质,今天就探讨一下,利用这些知识去解决一些常见问题.一、指数函数图像的辨识例1 (1)已知函数f (x )=ax +b 的图像如图所示,则函数g (x )=a x +b 的图像可能是( )答案 B解析 由f (x )=ax +b 的图像可得f (0)=b <-1,f (1)=a +b >0, 所以a >1,b <-1,故函数g (x )=a x +b 为增函数,相对y =a x 向下平移大于1个单位,故B 符合.(2) (多选)已知实数a ,b 满足⎝⎛⎭⎫12a =⎝⎛⎭⎫13b ,给出下面几种关系,则其中可能成立的是( ) A .0<a <b B .0<b <a C .a <b <0 D .b =a答案 BCD解析 在同一坐标系中作出函数y =⎝⎛⎭⎫12x与函数y =⎝⎛⎭⎫13x 的图像,如图所示,若⎝⎛⎭⎫12a =⎝⎛⎭⎫13b>1,则a <b <0; 若⎝⎛⎭⎫12a =⎝⎛⎭⎫13b <1,则0<b <a ; 若⎝⎛⎭⎫12a =⎝⎛⎭⎫13b =1,则b =a =0.反思感悟 与指数函数相关的图像问题(1)熟记当底数a >1和0<a <1时,图像的大体形状. (2)注意图像平移问题:对于横坐标x 满足“左加右减”. (3)注意利用函数性质研究图像问题.跟踪训练1 (1)函数y =2x -1的图像一定不经过第________象限;若函数y =⎝⎛⎭⎫12x +b 的图像不经过第一象限,则实数b 的取值范围是________. 答案 二、四 (-∞,-1]解析 当x <0时,2x <1,y <0,在第三象限, 当x >0时,2x >1,y >0,在第一象限, 且当x =0时,y =0,故y =2x -1的图像一定不经过第二、四象限. 若函数y =⎝⎛⎭⎫12x +b 的图像不经过第一象限, 当x ∈[0,+∞)时,y =⎝⎛⎭⎫12x +b ≤0, 又∵0<12<1,且x ∈[0,+∞),y =⎝⎛⎭⎫12x 是[0,+∞)上的减函数, ∴0<⎝⎛⎭⎫12x ≤1,∴⎝⎛⎭⎫12x +b ≤1+b ≤0, 解得b ≤-1.(2)已知直线y =2a 与函数y =|2x -2|的图像有两个公共点,求实数a 的取值范围.解 函数y =|2x -2|的图像如图中实线部分所示,要使直线y =2a 与该图像有两个公共点,则有0<2a <2,即0<a <1,故实数a 的取值范围为(0,1).二、利用指数函数性质比较大小 例2 比较下列各组数的大小. (1)1.52.5与1.53.2; (2)56311⎛⎫⎪⎝⎭与56833⎛⎫⎪⎝⎭; (3)1.50.3与0.81.2.解 (1)∵函数y =1.5x 在R 上是增函数,2.5<3.2, ∴1.52.5<1.53.2.(2)指数函数y =⎝⎛⎭⎫311x 与y =⎝⎛⎭⎫833x 的图像(如图),由图知56311⎛⎫⎪⎝⎭>56833⎛⎫ ⎪⎝⎭. (3)由指数函数的性质知1.50.3>1.50=1, 而0.81.2<0.80=1, ∴1.50.3>0.81.2.反思感悟 比较指数式大小的3种类型及处理方法跟踪训练2 比较下列各组数的大小: (1)0.8-0.1与1.250.2;(2)1.70.3与0.93.1;(3)a 0.5与a 0.6(a >0且a ≠1). 解 (1)∵0<0.8<1, ∴y =0.8x 在R 上是减函数. ∵-0.2<-0.1,∴0.8-0.2>0.8-0.1, 而0.8-0.2=⎝⎛⎭⎫45-0.2=1.250.2, 即0.8-0.1<1.250.2.(2)∵1.70.3>1.70=1,0.93.1<0.90=1, ∴1.70.3>0.93.1.(3)a 0.5与a 0.6可看作指数函数y =a x 的两个函数值. 当0<a <1时,函数y =a x 在R 上是减函数. ∵0.5<0.6,∴a 0.5>a 0.6.当a >1时,函数y =a x 在R 上是增函数. ∵0.5<0.6,∴a 0.5<a 0.6.综上所述,当0<a <1时,a 0.5>a 0.6; 当a >1时,a 0.5<a 0.6.三、利用指数函数性质解不等式 例3 (1)不等式4x <42-3x的解集是________.答案 ⎝⎛⎭⎫-∞,12 解析 ∵4x <42-3x ,∴x <2-3x ,∴x <12.(2)解关于x 的不等式:a 2x +1≤a x -5(a >0且a ≠1).解 ①当0<a <1时, ∵a 2x +1≤a x -5,∴2x +1≥x -5,解得x ≥-6. ②当a >1时,∵a 2x +1≤a x -5, ∴2x +1≤x -5,解得x ≤-6.综上所述,当0<a <1时,不等式的解集为{x |x ≥-6}; 当a >1时,不等式的解集为{x |x ≤-6}. 反思感悟 指数型不等式的解法(1)指数型不等式a f (x )>a g (x )(a >0且a ≠1)的解法: 当a >1时,f (x )>g (x ); 当0<a <1时,f (x )<g (x ).(2)如果不等式的形式不是同底指数式的形式,要首先进行变形将不等式两边的底数进行统一,此时常用到以下结论:1=a 0(a >0且a ≠1),a -x =⎝⎛⎭⎫1a x(a >0且a ≠1)等. 跟踪训练3 (1)已知不等式13≤3x <27,则x 的取值范围为( ) A .-12≤x <3B.12≤x <3 C .R D .-12≤x <13答案 A解析 由题意可得123-≤3x <33,再根据函数y =3x 在R 上是增函数,可得-12≤x <3.(2)已知(a 2+a +2)x >(a 2+a +2)1-x ,则x 的取值范围是________. 答案 ⎝⎛⎭⎫12,+∞ 解析 ∵a 2+a +2=⎝⎛⎭⎫a +122+74>1, ∴(a 2+a +2)x >(a 2+a +2)1-x ⇔x >1-x ⇔x >12.∴x ∈⎝⎛⎭⎫12,+∞.1.知识清单:(1)指数函数图像的应用. (2)利用指数函数性质比较大小. (3)利用指数函数性质解不等式.2.方法归纳:转化与化归、分类讨论、数形结合.3.常见误区:研究y =a f (x )型函数,易忽视讨论a >1还是0<a <1.1.(多选)下列判断正确的是( ) A .2.52.5>2.53 B .0.82<0.83 C .π2>3πD .0.90.3>0.90.5答案 CD解析 ∵y =πx 是增函数,且2>3, ∴π2>3π;∵y =0.9x 是减函数,且0.5>0.3, ∴0.90.3>0.90.5.故C ,D 正确.2.函数y =a x -1a(a >0且a ≠1)的图像可能是( )答案 D解析 当a >1时,y =a x -1a 为增函数,当x =0时,y =1-1a <1且y =1-1a >0,故A ,B 不符合.当0<a <1时,y =a x -1a 为减函数,当x =0时,y =1-1a <0,故C 不符合,D 符合.3.若a 3.1>a 3(a >0且a ≠1),则实数a 的取值范围是________.答案 (1,+∞)解析 因为3.1>3,且a 3.1>a 3, 所以函数y =a x 是增函数,所以a >1. 4.不等式225x >5x+1的解集是________.答案 ⎝⎛⎭⎫-∞,-12∪(1,+∞) 解析 由225x >5x +1得2x 2>x +1,解得x <-12或x >1.5.设0<a <1,则关于x 的不等式22232223x x x x a a >-++-的解集为________.答案 (1,+∞)解析 因为0<a <1,所以y =a x 在R 上是减函数, 又因为22232223x x x x aa>-++-,所以2x 2-3x +2<2x 2+2x -3,解得x >1.1.若2x +1<1,则x 的取值范围是( ) A .(-1,1)B .(-1,+∞)C .(0,1)∪(1,+∞)D .(-∞,-1)答案 D解析 ∵2x +1<1=20,且y =2x 是增函数, ∴x +1<0,∴x <-1.2.已知函数f (x )=(a 2-1)x ,若x >0时总有f (x )>1,则实数a 的取值范围是( ) A .1<|a |<2 B .|a |<2 C .|a |>1D .|a |> 2答案 D解析 由题意知a 2-1>1, 解得a 2>2, 即|a |> 2.3.函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图像如图所示,a ,b ,c ,d 分别是下列四个数:54,3,13,411中的一个,则a ,b ,c ,d 的值分别是( )A.54,3,13,411B.3,54,411,13C.411,13,3,54D.13,411,54, 3 答案 C解析 直线x =1与函数图像的交点的纵坐标从上到下依次为c ,d ,a ,b ,而3>54>411>13,所以a ,b ,c ,d 的值分别是411,13,3,54.4.函数y =a x (a >0且a ≠1)在[0,1]上的最大值与最小值的和为3,则函数y =2ax -1在[0,1]上的最大值是( ) A .6 B .1 C .3 D.32答案 C解析 函数y =a x 在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a 0+a 1=3,解得a =2,因此函数y =2ax -1=4x -1在[0,1]上是增函数,当x =1时,y max =3. 5.在下列图像中,二次函数y =ax 2+bx 及指数函数y =⎝⎛⎭⎫b a x的图像只可能是( )答案 A解析 根据指数函数的定义,可知a ,b 同号且不相等,∴-b2a <0,可排除B ,D ;由选项C中二次函数的图像,可知a -b >0,a <0,∴ba >1,∴指数函数y =⎝⎛⎭⎫b a x 单调递增,故C 不正确,排除C ,故选A.6.函数f (x )=3x -3(1<x ≤5)的值域是________. 答案 ⎝⎛⎦⎤19,9 解析 因为1<x ≤5, 所以-2<x -3≤2.而函数y =3x 在(-2,2]上是增函数, 于是有19<f (x )≤32=9,即所求函数的值域为⎝⎛⎦⎤19,9.7.已知a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系是________.(用“>”连接) 答案 c >a >b解析 因为函数y =0.8x 是R 上的减函数, 所以a >b .又因为a =0.80.7<0.80=1,c =1.20.8>1.20=1, 所以c >a .故c >a >b .8.已知方程|2x -1|=a 有两个不等实根,则实数a 的取值范围是________. 答案 (0,1)解析 函数y =|2x -1|=⎩⎪⎨⎪⎧2x -1,x ≥0,-2x+1,x <0,其图像如图所示.方程|2x -1|=a 有两个不等实根等价于直线y =a 与y =|2x -1|的图像有两个交点,所以由图可知0<a <1.9.已知a-5x<a x -7(a >0且a ≠1),求x 的取值范围.解 当a >1时,∵a -5x <a x -7,∴-5x <x -7, 解得x >76;当0<a <1时,∵a -5x <a x -7,∴-5x >x -7, 解得x <76.综上所述,当a >1时,x 的取值范围是⎝⎛⎭⎫76,+∞; 当0<a <1时,x 的取值范围是⎝⎛⎭⎫-∞,76. 10.若函数f (x )=(k +3)a x +3-b (a >0且a ≠1)是指数函数. (1)求k ,b 的值;(2)求解不等式f (2x -7)>f (4x -3).解 (1)∵f (x )=(k +3)a x +3-b (a >0且a ≠1)是指数函数, ∴k +3=1且3-b =0,解得k =-2且b =3. (2)由(1)得f (x )=a x (a >0且a ≠1), 因为f (2x -7)>f (4x -3),所以a 2x -7>a 4x -3.①当a >1时,f (x )=a x 单调递增,则不等式等价于2x -7>4x -3,解得x <-2; ②当0<a <1时,f (x )=a x 单调递减,则不等式等价于2x -7<4x -3,解得x >-2. 综上,当a >1时,原不等式的解集为{x |x <-2}; 当0<a <1时,原不等式的解集为{x |x >-2}.11.已知函数f (x )=a -x (a >0且a ≠1),且f (-2)>f (-3),则a 的取值范围是( ) A .a >0 B .a >1 C .a <1 D .0<a <1答案 D解析 因为-2>-3,f (-2)>f (-3),又f (x )=a -x =⎝⎛⎭⎫1a x ,所以⎝⎛⎭⎫1a -2>⎝⎛⎭⎫1a -3,所以1a>1,所以0<a <1. 12.函数f (x )=⎩⎪⎨⎪⎧ -x +3a ,x <0,a x ,x ≥0(a >0且a ≠1)是R 上的减函数,则a 的取值范围是( ) A .(0,1) B.⎣⎡⎭⎫13,1C.⎝⎛⎦⎤0,13 D.⎝⎛⎦⎤0,23答案 B解析 由单调性定义,得f (x )为减函数应满足⎩⎪⎨⎪⎧ 0<a <1,3a ≥a 0,即13≤a <1.13.设y 1=40.9,y 2=80.48,y 3=⎝⎛⎭⎫12-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2答案 D解析 40.9=21.8,80.48=21.44,⎝⎛⎭⎫12-1.5=21.5,由于y =2x 在R 上是增函数,所以21.8>21.5>21.44,即y 1>y 3>y 2.14.设函数f (x )=⎩⎪⎨⎪⎧ 2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是() A .(-∞,-1] B .(0,+∞)C .(-1,0)D .(-∞,0)答案 D解析 函数f (x )的图像如图所示,观察图像可知会有⎩⎪⎨⎪⎧2x <0,2x <x +1, 解得x <0,所以满足f (x +1)<f (2x )的x 的取值范围是(-∞,0).15.设x <0,且1<b x <a x ,则( )A .0<b <a <1B .0<a <b <1C .1<b <aD .1<a <b答案 B解析 ∵1<b x <a x ,x <0,∴0<a <1,0<b <1.又当x =-1时,1b <1a, 即b >a ,∴0<a <b <1.16.已知函数f (x )=b ·a x (其中a ,b 为常量,且a >0,a ≠1)的图像经过点A (1,6),B (3,24).(1)求f (x );(2)若不等式⎝⎛⎭⎫1a x +⎝⎛⎭⎫1b x -m ≥0在x ∈(-∞,1]上恒成立,求实数m 的取值范围.解 (1)把A (1,6),B (3,24)代入f (x )=b ·a x ,得 ⎩⎪⎨⎪⎧ 6=ab ,24=b ·a 3,结合a >0且a ≠1, 解得⎩⎪⎨⎪⎧a =2,b =3.∴f (x )=3·2x .(2)要使⎝⎛⎭⎫12x +⎝⎛⎭⎫13x ≥m 在(-∞,1]上恒成立,只需保证函数y =⎝⎛⎭⎫12x +⎝⎛⎭⎫13x 在(-∞,1]上的最小值不小于m 即可.∵函数y =⎝⎛⎭⎫12x +⎝⎛⎭⎫13x 在(-∞,1]上为减函数,∴当x =1时,y =⎝⎛⎭⎫12x +⎝⎛⎭⎫13x 有最小值56. ∴只需m ≤56即可. ∴m 的取值范围为⎝⎛⎦⎤-∞,56.。

指数函数知识点

指数函数知识点

指数函数知识点指数函数是数学中常见的一类函数,具有很多重要的性质和应用。

在本篇文章中,我们将介绍指数函数的定义、性质以及其在实际问题中的应用。

一、指数函数的定义和性质指数函数是以底数为常数的指数幂的函数,通常用f(x) = a^x来表示,其中a是底数,x是指数。

指数函数具有以下几个重要的性质:1. 指数函数的定义域为实数集,即对于任意实数x,指数函数都有定义。

2. 当底数a大于1时,指数函数的图像呈现递增趋势;当0<a<1时,指数函数的图像呈现递减趋势。

3. 指数函数在x = 0处的函数值为1,即f(0) = 1。

4. 指数函数具有指数运算的性质,即a^m * a^n = a^(m+n),(a^m)^n = a^(mn),(ab)^n = a^n * b^n。

二、指数函数的应用指数函数在自然科学和经济学等领域中有广泛的应用。

下面我们将介绍指数函数在人口增长、物质衰变和金融投资等方面的应用。

1. 人口增长模型人口增长模型是指描述人口随时间变化规律的数学模型。

指数函数常常被用来描述人口增长模型,其中人口数量随着时间指数增长。

通过研究指数函数可以预测未来的人口增长趋势,为制定合理的人口政策提供参考。

2. 物质衰变模型物质衰变模型是指描述放射性物质衰变规律的数学模型。

指数函数被广泛应用于物质衰变模型中,其中物质的质量随时间指数减少。

通过研究指数函数可以计算物质的衰变速率以及剩余物质的数量,对放射性物质的安全使用和储存具有重要的意义。

3. 金融投资模型指数函数也广泛应用于金融领域的投资分析中。

例如,股票指数可以用指数函数描述,通过研究指数函数可以分析股票市场的涨跌趋势,为投资者制定合理的投资策略提供参考。

此外,指数函数还可以用于计算复利,在长期投资中具有重要的应用价值。

总结:指数函数作为数学中的重要概念,在自然科学和经济学中都具有广泛的应用。

通过研究指数函数的定义和性质,我们可以更好地理解指数函数在实际问题中的应用。

指数函数及其图像与性质的应用

指数函数及其图像与性质的应用
指数函数及其性质的
应用
学目标
1.巩固指数函数的图像与性质; 2.掌握指数函数的图像与性质的综合运用.
识梳理
一、指数函数的图像与性质
a (0,1)
y
a (1, )
y
图像
1 f(x)=ax O x
1 O
f(x)=ax x
定义域 值域 过定点 图像分布 x 0 时,
( , ) (0, )
O 1
x
1 O
2
x
A.
B.
C.
D.
题醉了
一、典型例题 1、指数函数图像的应用 【课堂练习】 函数 f(x)=2x -x 2 的图像大致是( A )
y y y y
O
x
O
x
O
x
O
x
A.
B.
C.
D.
题醉了
一、典型例题 1、指数函数图像的应用 说明 函数 f(x)=2x 与 g(x)=x 2 的图像大致是
3 2 1 –2 –1 O 3 y 2 1 –2 –1 O 1 2 x 1 2 x y 3 2 1 –1 O 3 y 2 1 –1 O 1 2 x 1 2 3x y
题醉了
一、典型例题 1、指数函数图像的应用 例题 2 函数 f(x)=ln|x-1| 的图像大致是(
y y y
B )
y
-1 O
x
O
1
x
2 3 1 B. f( ) f( ) f( ) 3 2 3 3 2 1 D. f( ) f( ) f( ) 2 3 3
题醉了
一、典型例题 1、指数函数图像的应用 【课堂练习】 若直线 y=2a 与函数 f(x)=|ax -1|+1(a>0,且 a 1) 的图 像有两个公共点,则 a 的取值范围是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
个人观点供参考,欢迎讨论
在R上是增函数 2
知识探究(一)底数a对图像有何影响 1.在第一象限“底大图高” 2.在第一象限,a>b>1时,“底越大增速越
快”
3
题型分析
题型一:比较大小
例1 比较下列各组数的大小
(1)
2
3 2
,5
3 2
,
(
1
)3
2
(2) 312,313,112
4 4 4
思想方法总结
4
题型二:解指数不等式
例2:解不等式
是(12, ) ,求f(x)的定义域.
6
题型三:定义域、值域问题 例5:求函数 y1x 1x 1 的值域?
4 2
思想方法总结
7
题型四:最值问题 例6:函数 f(x)ax(a0,a1)在区间[1,2]
a
上的最大值比最小值大 ,求a值。
2
8
题型五:图像变换
讨论下列函数与 y 3x 的关系 (1)y3x2, y3x2 5 (2)y3x, y3x3
3.3.2 指数函数及其性质
第二课时 指数函数性质的应用
1
知识回顾
图象(0, )
定义域 值域
过定点
函数值分 布情况
单调性
0<a<1
a>1
y
y
1
0
x
Hale Waihona Puke R10xR
(0, )
(0, )
(0,1)即当x=0时y=1
当x>0时0<y<1; 当x<0时y>1;
当x>0时y>1; 当x<0时0<y<1;
在R上是减函数
(1)22x12x5
(2)(1)2x1
2
(1)x5 2
(3)a2x1
(1)5x a
练习:解不等式 2x23x 1 0
4
思想方法总结
5
题型三:定义域、值域问题
例3 求下列函数的定义域和值域.
1
(1) y 23x
(2) y
1 2
x2
(3)
y
2
x
3
(4) fy(x) 12x
例4 已知函数 f(x)2x22x 的值域
相关文档
最新文档