福建省厦门市2019年质检数学卷及答案
数学分类汇编(12)三角函数的化简与求值(含答案)
(山东省德州市2019届高三期末联考数学(理科)试题)8.第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础设计的,会标是四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为,大正方形的面积为,直角三角形中较小的锐角为,则()A. B. C. D.【答案】D【解析】【分析】由图形可知三角形的直角边长度差为a,面积为6,列方程组求出直角边得出sinθ,代入所求即可得出答案.【详解】由题意可知小正方形的边长为a,大正方形边长为5a,直角三角形的面积为6,设直角三角形的直角边分别为x,y且x<y,则由对称性可得y=x+a,∴直角三角形的面积为S xy=6,联立方程组可得x=3a,y=4a,∴sinθ,tanθ=.∴===,故选:D.【点睛】本题考查了解直角三角形,三角恒等变换,属于基础题.(山东省潍坊市2019届高三上学期期末测试数学(理科)试题)3.若,则()A. B. C. D.【答案】C【解析】【分析】本道题化简式子,计算出,结合,即可.【详解】,得到,所以,故选C.【点睛】本道题考查了二倍角公式,难度较小.(山东省烟台市2018届高三下学期高考诊断性测试数学(文)试题)14.已知,则_______【答案】【解析】原式化为,,所以,,填。
(江西省新余市2019届高三上学期期末考试数学(理)试题)15.已知,则______.【答案】【解析】【分析】根据同角的三角函数的关系和二倍角公式即可求出.【详解】解:,,,,,故答案为:.【点睛】本题考查同角的三角函数关系式和二倍角公式的应用,属于基础题.(湖南省长沙市2019届上学期高三统一检测理科数学试题)15.在平面直角坐标系中,角的顶点在原点,始边与轴的非负半轴重合,终边过点,则__________.【答案】【解析】【分析】结合终边过点坐标,计算出,结合二倍角公式和余弦两角和公式,即可。
【详解】,所以【点睛】本道题考查了二倍角公式与余弦的两角和公式,难度中等。
2019年人教版九年级上册数学期末教学质量监测试卷及答案
九年级上册数学期末教学质量监测试卷(满分120分,时间120分钟)注意事项:1.答题前将姓名、座位号、准考证号填在答题卡指定的位置。
2.所有解答内容均需涂、写在答题卡上。
3.选择题须用2B 铅笔将答题卡相应题号对应选项涂黑,若需改动,须擦净另涂。
4.填空题、解答题在答题卡对应题号位置用0.5毫米黑色字迹笔书写。
一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A 、B 、C 、D 四个答案选项,其中只有一个是正确的,请根据正确选项的代号填涂答题卡对应位置,填涂正确记3分,不涂、错涂或多涂记0分。
1.下列图案中,不是中心对称图形的是( )(第1题图) 2.方程0252=-x 的根是( )A. 5±B.C.5D.-53.下列是随机事件的是( )A :在一分钟内,你步行可以走80千米。
B :一个普通的骰子,你掷出2次,其点数之和是18 。
C :两数之和是负数,则其中必有一数是负数。
D :一只小狗在如图的方砖上走来走去,最终停在阴影方砖上。
(第3题)4.在同一坐标系中,作22y x =、22y x =-、212y x =的图象,它们共同特点是 ( )A 、都是关于x 轴对称,抛物线开口向上B 、都是关于y 轴对称,抛物线开口向下C 、都是关于原点对称,抛物线的顶点都是原点D 、都是关于y 轴对称,抛物线的顶点都是原点5.已知:如图,点C 在⊙O 上,O 是圆心,若∠C=35°,则∠AOB 的度数为( )A 、 35°B 、 70°C 、 55°D 、 35°6.关于x 的一元二次方程,(),则( )A 、两根互为相反数 (B )两根互为倒数 (C )两根相等 (D )两根和为(第5题) 7.从小明、小刚两位男生和另外三位女生中抽一名男生和一名女生主持节目,恰好抽到小明的概率是()OCABA B CDA 、B 、C 、D 、8.二次函数c bx ax y ++=2中,ac b =2且x=0时,y=-4则( )A 、y 最大=-4B 、y 最小=-4C 、y 最大=-3D 、y 最小=-3 9.如图:⊙O 是△ABC 的外接圆,AD ⊥CB 于D ,AD=2㎝,AB=4㎝,AC=3㎝,则⊙O 的直径是( ) (第9题)A 、8㎝B 、6㎝C 、5㎝D 、4㎝ 10.所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有( ) A .2个 B .3个 C .4个 D .5个第10题图二、填空题(本大题共6个小题,每小题3分,共18分) 请将答案填在答题卡对应的横线上。
2019年福建省中考数学试题及答案
2019年福建省初中学业水平考试数 学(试卷满分:150分 考试时间:120分钟)一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1.计算22+(-1)0的结果是( )A .5B .4C .3D .22.北京故宫的占地面积约为720 000m 2,将720 000用科学记数法表示为( ) A .72×104 B .7.2×105 C .7.2×106 D .0.72×1063.下列图形中,一定既是轴对称图形又是中心对称图形的是( ) A .等边三角形 B .直角三角形 C .平行四边形 D .正方形4.右图是由一个长方体和一个球组成的几何体,它的主视图是( )A .B .C .D .5.已知正多边形的一个外角是36°,则该正多边形的边数为( ) A .12 B .10 C .8 D .66.如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是( ).A .甲的数学成绩高于班级平均分,且成绩比较稳定B .乙的数学成绩在班级平均分附近波动,且比丙好C .丙的数学成绩低于班级平均分,但成绩逐次提高D .就甲、乙、丙三个人而言,乙的数学成绩最不稳定 7.下列运算正确的是( ).A .a ·a 3=a 3B .(2a )3=6a 3C .a 6÷a 3=a 2D .(a 2)3-(-a 3)2=08.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ) A .x +2x +4x =34 685 B .x +2x +3x =34 685 C .x +2x +2x =34 685 D .x +12x +14x =34 685次数主视图9.如图,P A 、PB 是⊙O 的两条切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( ) A .55° B .70° C .110° D .125°10.若二次函数y =|a |x 2+bx +c 的图象过不同的五点A (m ,n ),B (0,y 1),C (3-m ,n ),D (2,y 2),E (2,y 3),则y 1, y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 3<y 1 二、填空题(每小题4分,共24分) 11.因式分解:x 2-9= .12.如图,数轴上A 、B 两点所表示的数分别是-4和2,点C 是线段AB 的中点,则点C 所表示的数是 . 13.某校征集校运会会徽图案,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100位学生, 其中60位学生喜欢甲图案,若该校共有学生2000人,根据所学的统计知识可以估计该校喜欢甲图案的学生 有 人.14.在平面直角坐标系xOy 中,□OABC 的三个顶点分别为O (0,0),A (3,0),B (4,2),则其第四个顶点C 的坐标 是 .15.如图,边长为2的正方形ABCD 的中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交 点,则图中阴影部分的面积为 .(结果保留π)16.如图,菱形ABCD 顶点A 在例函数y =3x (x >0)的图象上,函数y =kx (k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠DAB =30°,则k 的值为 .第15题图 第16题图三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分8分)解方程组:⎩⎪⎨⎪⎧x -y =52x +y =4.18.(本小题满分8分)如图,点E 、F 分别是矩形ABCD 的边 AB 、CD 上的一点,且DF =BE . 求证:AF =CE .A19.(本小题满分8分)先化简,再求值:(x -1)÷(x -2x -1x ),其中x =2+1已知△ABC为和点A',如图,(1)以点A'为一个顶点作△A'B'C',使得△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D,E,F分别是△ABC三边AB,BC,CA的中点,D',E',F'分别是你所作的△A'B'C'三边A'B',B'C',A'C'的中点,求证:△DEF∽△D'E'F'.AA'21.(本小题满分8分)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一个角度α得到△DEC,点A,B的对应点分别为D,E.(1)若点E恰好落在边AC上,如图1,求∠ADE的大小;(2)若α=60°,F为AC的中点,如图2,求证:四边形BEDF是平行四边形.图1 图2某工厂为贯彻落实“绿水青山就是金山银山”的发展理念,投资组建了日废水处理量为m吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元。
2019年福建省厦门市小升初数学考试真题及答案
2019年福建省厦门市小升初数学考试真题及答案一、仔细看题,准确计算.(32分)1.直接写出得数.(8分)5÷=×=﹣=0.75+=÷=0.36×=80%×=2.脱式计算.(能简算的要简算)(18分)÷9+×2.5÷×÷[﹣(1﹣)] 3.求未知数x(6分)x+20%x=36﹣2x=12=二、细心审题,恰当填空.(28分)4.=16÷=:2.5=%=(小数)5.某地某一天的最低气温是﹣5℃,最高气温12℃,这一天的最高气温与最低气温相差℃.6.厦门市地铁1号线全长约30.3千米,合米,改写成用“万”作单位的数是万米,精确到十分位约是万米.7.王芳骑自行车,3小时行了75千米,王芳骑自行车的速度是千米/时,她行1千米需小时.8.7只小鸟飞回6个鸟笼,至少有只小鸟要飞回同一个鸟笼.9.一件衣服打九折后售价180元,这件衣服降价元。
10.0.4:1.6的比值是.如果前项加上0.8,要使比值不变,后项应加上.11.把3平方米的纸片平均分成5份,每份占它的,每份的面积是平方米.12.如果3a=4b(a、b≠0),那么a:b=:;如果=27(y≠0),那么x和y成比例.13.在三角形ABC中,∠A:∠B:∠C=1:3:2,∠C=,这个三角形是三角形.14.如图所示,把底面直径6厘米、高10厘米的圆柱切成若干等份,拼成一个近似的长方体.这个长方体的表面积是平方厘米,体积是立方厘米.15.用铁皮做一个底面直径为8分米,高为6分米的圆柱形无盖水桶,至少要用平方分米的铁皮,这个水桶最多能装水升.16.把边长1厘米的正方形纸片,按规律排成长方形(1)4个正方形拼成的长方形周长是厘米.(2)用a个正方形拼成的长方形周长是厘米.17.如图所示,小华骑车到与他家相距5千米的书店买书,这是他离开家的距离与时间的示意图.可以看出:他在书店的时间是小时,他去时的速度是千米/时.三、反复比较,慎重选择(6分)18.一种饼干包装袋上标着:净重(150±5克),表示这种饼干标准的质量是150克,实际每袋最少不少于()克.A.160 B.155 C.150 D.14519.某村前年生产粮食500吨,去年粮食丰收,生产粮食600吨,去年粮食增产()A.一成B.四成C.二成D.十成20.一幢教学楼长40m,在平面图上用8cm的线段表示,这幅图的比例尺是()A.1:50 B.50:1 C.1:500 D.500:121.完成同一件工作,甲要用5小时,乙要用4小时,甲和乙工作效率的比是()A.5:4 B.4:5 C.5:9 D.不能确定22.图中正方形的面积()平行四边形的面积.A.大于B.等于C.小于D.无法判断23.最近一次数学测试,甲、乙两个同学的平均成绩为88分,甲、丙两个同学的平均成绩为90分,乙、丙两个同学的平均成绩为92分,他们三人的平均成绩是()分.A.88 B.90 C.92 D.94四、按要求填空,并画图.(6分)24.(1)在下面方格图(每个方格的边长表示1cm)中画一个直角三角形,其中两个锐角的顶点分别确定在(5,7)和(1,3)的位置上,那么直角的顶点位置可以是(,).(2)将这个三角形向右平移5格.(3)将平移后的这个三角形按1:2缩小后画在合适的位置.六、运用所学,解决问题(26分)25.如图所示,在本次体能测试中,成绩优的有90人,则共有多少人参加测试?26.爸爸将5000元存入银行,定期三年,年利率为4.15%,到期时爸爸能拿回多少钱?27.学校图书室购进300本故事书,比科技书的5倍少50本.购进科技书多少本?28.李老师带1000元去商场买篮球,买了15个,还剩40元钱,每个篮球多少元?29.学校要把一批树苗栽到科普基地,如果每行栽10棵,正好是18行,如果每行栽12棵,可以栽多少行?(用比例解)30.一个圆锥形沙堆,底面积28.26平方米,高3米.用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?31.在比例尺是1:12000000的地图上,量行济南到青岛的距离是4cm.在比例尺是1:8000000的地图上,济南到青岛的距离是多少厘米?32.图中圆的周长是12.56cm,圆的面积正好等于长方形的面积,求阴影部分的面积.参考答案:一、仔细看题,准确计算.(32分)1.【分析】根据整数、小数和分数加减乘除法运算的计算法则进行计算即可求解.【解答】解:5÷=×=﹣=0.75+=1 ÷=0.36×=0.2780%×=1【点评】考查了整数、小数和分数加减乘除法运算,关键是熟练掌握计算法则正确进行计算.2.【分析】(1)根据加法交换律进行简算;(2)根据乘法交换律和结合律进行简算;(3)根据乘法分配律进行简算;(4)根据除法的性质进行简算;(5)按照从左向右的顺序进行计算;(6)先算小括号里面的减法,再算中括号里面的减法,最后算除法.【解答】解:(1)6.28+3.5+3.72=6.28+3.72+3.5=10+3.5=13.5(2)2.5×3.2×125=2.5×(4×0.8)×125=(2.5×4)×(0.8×125)=10×100=1000(3)÷9+×=×+×=(+)×=×=(4)1000÷12.5÷8=1000÷(12.5×8)=1000÷100=10(5)2.5÷×=4×=7(6)÷[﹣(1﹣)]=÷[﹣]=÷=【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律进行简便计算.3.【分析】(1)先计算左边,依据等式的性质,方程两边同时除以1.2求解;(2)方程的两边同时加上2x,然后方程的两边同时减去2,再同时除以2求解;(3)根据比例的基本性质,变成 0.2x=0.75×16,然后等式的两边同时除以0.2求解.【解答】解:(1)x+20%x=1.2x=0.41.2x÷1.2=0.4÷1.2x=(2)36﹣2x=1236﹣2x+2x=12+2x12+2x﹣12=36﹣122x÷2=24÷2x=12(3)=0.2x=0.75×160.2x÷0.2=12÷0.2x=60【点评】此题考查了运用等式的性质解方程,即等式两边同加上或同减去、同乘上或同除以一个数(0除外),两边仍相等,同时注意“=”上下要对齐.二、细心审题,恰当填空.(28分)4.【分析】根据分数与除法的关系=4÷5,再根据商不变的性质被除数、除数都乘4就是16÷20;根据比与分数的关系=4:5,再根据比的基本性质比的前、后项都乘0.5就是2:2.5;4÷5=0.8;把0.8的小数点向右移动两位添上百分号就是80%.【解答】解:=16÷20=2:2.5=80%=0.8.故答案为:20,2,80,0.8.【点评】解答此题的关键是,根据小数、分数、百分数、除法、比之间的关系及商不变的性质、比的基本性质即可进行转化.5.【分析】这是一道有关温度的正负数的运算题目,最高气温与最低气温二者之差,即求这一天的温差,列式为12﹣(﹣5),计算即可.【解答】解:12﹣(﹣5)=12+5=17(℃)答:这一天最高气温与最低气温相差17℃.故答案为:17.【点评】本题考查零上温度与零下温度之差的题目,列式容易出错.6.【分析】高级单位千米化低级单位米乘进率1000;即30.3千米合30300米;改写成用“万”作单位的数,就是在万位数的右下角点上小数点,然后把小数末尾的0去掉,再在数的后面写上“万”字;精确到十分位即把百分位上的数进行“四舍五入”.【解答】解:30.3千米=30300米30300米=3.03万米3.03万米≈3.0万米即厦门市地铁1号线全长约30.3千米,合30300米,改写成用“万”作单位的数是3.03万米,精确到十分位约是3.0万米.故答案为:30300,3.03,3.0.【点评】此题考查的知识点有:长度的单位换算、整数的改写、求近似数.7.【分析】首先根据路程÷时间=速度,用王芳骑自行车行的路程除以用的时间,求出王芳骑自行车的速度是多少千米/时;然后用时间除以路程,也就是用王芳骑75千米用的时间除以75,求出她行1千米需多少小时即可.【解答】解:75÷3=25(千米/时)3÷75=0.04(小时)答:王芳骑自行车的速度是25千米/时,她行1千米需0.04小时.故答案为:25、0.04.【点评】此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握,解答此题的关键是弄清楚题中的各个量之间的数量关系.8.【分析】7只小鸟飞进6个笼子,7÷6=1(只)…1(只),即当每个笼子里平均飞进1只时,还有一只在笼外,根据抽屉原理可知,至少有1+1=2只小鸟在同一个笼子里.【解答】解:5÷4=1(只)…1(只)1+1=2(只)答:至少有 2只小鸟要飞回同一个鸟笼.故答案为:2.【点评】把多于mn(m乘n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体.9.【分析】打九折是指现价是原价的90%,把原价看成单位“1”,它的90%对应的数量是180元,由此用除法求出原价,进而求出降低的价格.【解答】解:180÷90%=200(元)200﹣180=20(元)答:这件衣服降价20元.故答案为:20.【点评】本题关键是理解打折的含义:打几折现价就是原价的百分之几十.10.【分析】比的基本性质,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;用比的前项除以后项求出比值,如果前项加上0.8,可知比的前项由0.4变成1.2,相当于前项乘3;根据比的性质,要使比值不变,后项也应该乘3,由1.6变成4.8,相当于后项应加上4.8﹣1.6=3.2;据此进行解答.【解答】解:0.4:1.6=0.4÷1.6=0.25(0.4+0.8)÷0.4×1.6﹣1.6=1.2÷0.4×1.6﹣1.6=4×1.6﹣1.6=4.8﹣1.6=3.2答:0.4:1.6的比值是 0.25.如果前项加上0.8,要使比值不变,后项应加上 3.2.故答案为:0.25,3.2.【点评】此题考查了求比值、比的性质的运用,比的前项和后项同时乘或除以相同的数(0除外),比值才不变.11.【分析】把这张纸片的面积看作单位“1”,把它平均分成5份,每份是这张纸片的;求每份的面积,用这张纸片的总面积除以平均分成的份数.【解答】解:1÷3÷5=0.6(平方米)答:每份占它的,每份的面积是0.6平方米.故答案为:,0.6.【点评】解决此题关键是弄清求的是“分率”还是“具体的数量”,求分率:平均分的是单位“1”;求具体的数量:平均分的是具体的数量,要注意:分率不能带单位名称,而具体的数量要带单位名称.12.【分析】(1)根据比例的基本性质解答即可;(2)判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:(1)3a=4b(a、b≠0)a:b=4:3(2)如果=27(y≠0),比值一定,那么x和y成反比例;故答案为:4、3,反.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.13.【分析】根据比例设∠A、∠B、∠C分别为k、3k、2k,然后根据三角形的内角和等于180°,列式求出∠C,作出判断即可.【解答】解:设∠A、∠B、∠C分别为k、3k、2k,则k+2k+3k=180°解得k=30°即∠A=30°所以,∠C=2×30°=60°∠b=3×30°=90°这个三角形是直角三角形.故答案为:60°,直角.【点评】本题考查了三角形内角和定理,利用“设k法”用k表示出∠A、∠B、∠C可以使运算更加简便.14.【分析】把圆柱切成若干等分,拼成一个近似的长方体.这个近似长方体的长等于圆柱的底面周长的一半,宽等于圆柱的底面半径,高等于圆柱的高,体积不变等于圆柱的体积,然后根据长方体的表面积公式:S=2(ab+ah+bh),体积公式:V=abh,列式解答即可.【解答】解:长方体的长:3.14×6÷2=9.42(厘米);长方体的宽:6÷2=3(厘米);表面积是:(9.42×3+9.42×10+3×10)×2=(28.26+94.2+30)×2=152.46×2=304.92(平方厘米);体积:9.42×3×10=28.26×6=282.6(立方厘米).答:这个长方体的表面积是304.92平方厘米,体积是282.6立方厘米.故答案为:304.92,282.6.【点评】本题重点考查了圆柱体的体积推导公式的过程中的一些知识点:长方体的长等于圆柱的底面周长的一半,宽等于圆柱的底面半径,高等于圆柱的高.15.【分析】由题意可知:做这个水桶需要的铁皮面积就等于水桶的表面积减去上盖的面积,即水桶的侧面积加上下底的面积即可,水桶的底面直径和高已知,利用圆柱的侧面积S=πdh和圆的面积S=πr2的计算方法即可求解;再利用圆柱的体积V=Sh,即可求出这个水桶的容积.【解答】解:3.14×8×6+3.14×(8÷2)2=3.14×48+3.14×16=3.14×64=200.96(平方分米)3.14×(8÷2)2×6=3.14×16×6=3.14×96=301.44(立方分米)301.44立方分米=301.44升答:至少要用200.96平方分米的铁皮,这个水桶最多能装水301.44升.故答案为:200.96,301.44.【点评】此题主要考查圆柱的表面积和体积的计算方法在实际生活中的应用.16.【分析】根据题意,按规律拼成的长方形的长:正方形的个数×正方形的边长,长方形的宽还是原来正方形的边长,即1厘米.再根据长方形的周长公式计算即可.【解答】解:由题意可知,按规律拼成的长方形的长:正方形的个数×正方形的边长,长方形的宽还是原来正方形的边长.(1)用4个正方形拼成的长方形,长=4×1=4(厘米),宽=1(厘米).周长=(长+宽)×2=(4+1)×2=10(厘米);(2)用a个正方形拼成的长方形,长=a×1=a(厘米),宽=1(厘米)用m个正方形拼成的长方形的周长周长=(长+宽)×2=(a+1)×2=2a+2(厘米).故答案为:10,2a+2.【点评】根据题意,可以求出按规律拼成长方形的长和宽,再根据长方形的周长公式计算即可.17.【分析】观察此图,可知横轴表示时间,单位小时,把1小时平均分成4份,每份是小时;纵轴表示路程;小华的行程分三个阶段,第一个阶段是从家骑车到相距5千米远的书店,用了小时;第二个阶段是在书店买书,用了1小时;第三个阶段是从书店回家,用1小时,根据速度=路程÷时间,求得小华去时速度即可.【解答】解:(1)从图中看出,小华在书店买书是从小时到1小时用去的时间为:1﹣=1(小时),答:他在书店买书用去1小时;(2)5÷=10(千米/小时)答:他去时的速度是 10千米/时.故答案为:1,4.【点评】此题考查了利用折线统计图表示行走时间和行走路程的关系的方法,解决关键是会分析不同的行程状况.三、反复比较,慎重选择18.【分析】净重(150±5克),表示这种饼干标准的质量是150克,实际每袋最多不多于150+5克,最少不少于150﹣5克.【解答】解:净重(150±5克),表示最少不少于:150﹣5=145(克).故选:D.【点评】此题首先要知道以谁为标准,规定超出标准的为正,低于标准的为负,由此用正负数解答问题.19.【分析】几成就是十分之几、百分之几十,把前年粮食生产总量看做单位“1”,求出去年比前年粮食增产百分之几,然后把百分数化为成数即可.【解答】解:(600﹣500)÷500,=100÷500,=20%,20%即二成,故选:C.【点评】本题重点要理解成数的意义及成数与分数、百分数之间的互化.20.【分析】图上距离和实际距离已知,依据“图上距离:实际距离=比例尺”即可求得这幅图的比例尺.【解答】解:因为40米=4000厘米则8厘米:4000厘米=1:500答:这幅图的比例尺是1:500.故选:C.【点评】此题主要考查比例尺的意义,解答时要注意单位的换算.21.【分析】把这件工作的工作量看成单位“1”,甲的工作效率是,乙的工作效率是,用甲的工作效率比上乙的工作效率,再化简即可求解.【解答】解::=(×20):(×20)=4:5答:甲和乙工作效率的比是4:5.故选:B.【点评】解决本题也可以根据工作量一定,工作效率和工作时间的反比例关系求解,甲乙的工作时间比是5:4,那么工作效率比就是4:5.22.【分析】因为正方形和平行四边形等底等高,则正方形的面积就等于平行四边形的面积,据此解答即可.【解答】解:因为正方形和平行四边形等底等高,则正方形的面积就等于平行四边形的面积.故选:B.【点评】此题主要考查正方形和平行四边形的面积的计算方法的灵活应用.23.【分析】根据“平均数×数量=总数”分别求出甲、乙的成绩和,甲、丙的成绩和,乙、丙的成绩和,把三个的数相加,就是三个人总分的2倍;然后再分别除以2和3就是他们三人的平均成绩.【解答】解:(88×2+90×2+92×2)÷2÷3=540÷6=90(分)答:他们三人的平均成绩是90分.故选:B.【点评】解答此题应根据平均数、数量和总数三者之间的关系进行解答.四、按要求填空,并画图.24.【分析】(1)根据数对表示位置的方法是:第一个数字表示列,第二个数字表示行,由此即可确定两个锐角的顶点的位置,根据直角三角形的两条直角边互相垂直的性质,即可求得直角顶点的位置,从而画出这个直角三角形;(2)根据图形平移的方法,先把这个三角形的三个顶点分别向右平移5格,再把它们依次连接起来,即可得出平移后的三角形2;(3)根据图形放大与缩小的方法,先数出原来三角形的两条直角边,把它们分别除以2,即可得出缩小后的直角三角形的两条直角边,由此即可画出缩小后的三角形3.【解答】解:(1)根据数对表示位置的方法,可在平面图中标出三角形的两个锐角的顶点如图所示,则直角顶点的位置可以是:(5,3),由此即可画出这个直角三角形1;(2)先把这个三角形的三个顶点分别向右平移5格,再把它们依次连接起来,即可得出平移后的三角形2;(3)原直角三角形的两条直角边分别是4厘米,按照1:2缩小后,两条直角边的长度是4÷2=2厘米,由此即可画出这个缩小后的三角形3,如图所示:故答案为:(1)5;3.【点评】此题考查了数对表示位置的方法,图形的平移,放大与缩小的方法的灵活应用.六、运用所学,解决问题(26分)25.【分析】由题意可知:用90除以45%,即可求出参加测试的总人数.【解答】解:90÷45%=200(人)答:有200人参加测试.【点评】本题主要考查扇形统计图的应用,关键根据百分数的意义做题.26.【分析】此题属于存款利息问题,时间是3年,年利率为4.15%,本金是5000元,把以上数据代入关系式“本息=本金+本金×利率×时间”,列式解答即可.【解答】解:5000+5000×4.15%×3=5000+5000×0.0415×3=5000+622.5=5622.5(元)答:到期能取回本息5622.5元.【点评】解答此类问题,关键的是熟练掌握关系式“利息=本金×利率×时间”、“本息=本金+本金×利率×时间”.27.【分析】学校图书室购进300本故事书,比科技书的5倍少50本,也就是购进的300本故事书加上50本就是科技书的5倍,然后再除以5即可.【解答】解:(300+50)÷5=350÷5=70(本)答:购进科技书70本.【点评】本题关键是明确它们之间的倍数关系,然后再列式解答.28.【分析】根据减法的意义可知:15个篮球共花了1000﹣40元,根据除法的意义可知:每个篮球的价格是(1000﹣40)÷15元.【解答】解:(1000﹣40)÷15=960÷15=64(元)答:每个篮球64元.【点评】此题利用基本关系式:总价÷数量=单价解决问题.29.【分析】根据总棵数不变可知,每行栽的棵数和行数乘积一定,即成反比例关系,设需要栽x行,用原来每行的棵数×原来的行数=现在每行的棵数×现在的行数,据此可列方程12x=10×18解答即可.【解答】解:设需要栽x行,12x=10×1812x=180x=15答:可以栽15行.【点评】解答此题的关键是,先判断题中的两种相关联的量成何比例,然后找准对应量,列式解答即可.30.【分析】要求能铺多少米,首先根据圆锥的体积公式:v=sh,求出沙堆的体积,把这堆沙铺在长方形的路面上就相当于一个长方体,只是形状改变了,但沙的体积没有变,因此,用沙的体积除以长方体的长再除以高就是所铺的长度.由此列式解答.【解答】解:2厘米=0.02米,×28.26×3÷(10×0.02)=28.26÷0.2=141.3(米);答:能铺141.3米.【点评】此题属于圆锥和长方体的体积的实际应用,解答时首先明确沙堆原来的形状是圆锥形,铺在长方形的路面上,体积不变,所以根据圆锥的体积公式求出沙的体积,用体积除以长方体的底面积问题就得到解决.31.【分析】先求两地间的实际距离,根据“图上距离÷比例尺=实际距离”,代入数值,计算出两地间的实际距离,进而根据“实际距离×比例尺=图上距离”解答即可.【解答】解:4÷=48000000(厘米)48000000×=6(厘米)答:在比例尺是1:8000000的地图上,济南到青岛的距离是6厘米.【点评】此题有计算公式可用,根据图上距离、比例尺和实际距离三者的关系,进行分析解答即可得出结论.32.【分析】由圆的周长为12.56cm,求出圆的半径:12.56÷3.14÷2=2(厘米);阴影的面积=圆的面积﹣圆的面积=圆的面积.据此解答.【解答】解:12.56÷3.14÷2=2(厘米)3.14×2×2﹣3.14×2×2÷4=12.56﹣3.14=9.42(平方厘米)答:阴影部分的面积是9.42平方厘米.【点评】组合图形的面积一般都是将它转化到已知的规则图形中进行计算.本题关键是得到圆的半径,进而算出圆的面积.祝福语祝你考试成功!。
2019-2020厦门市八上数学质检参考答案
2019—2020学年(上)厦门市初二年质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11.(1)8a 3;(2)15a 3+6ab 2. 12. 4x . 13. 40°. (未写单位不扣分)14.36. 15.∠MPN =2∠BCP . 16. 2a +b .三、解答题(本大题有9小题,共86分)17.(本题满分12分) (1)(本小题满分6分)解:(y +2)(y —2)+(2y —4)(y +3)=y 2—4+2y 2+6y —4y —12 ………………………4分 =3y 2+2y —16. ……………………6分 (2)(本小题满分6分) 解:2a 2x 2+4a 2xy +2a 2y 2=2a 2(x 2+2xy +y 2) ………………………4分 =2a 2(x +y ) 2. ………………………6分18.(本题满分7分)证明:∵ AB ∥DE ,∴ ∠B =∠DEF . ………………2分 ∵ AB =DE ,∠A =∠D ,∴ △ABC ≌△DEF . ………………5分∴ BC =EF . ………………6分 ∴ BC -CE =EF -CE .∴ BE =CF . ………………7分19. (本题满分7分)解:1m 2-49÷1m 2-7m+1=1 (m +7)(m —7) ÷1m (m -7)+1 ……………………………2分=1(m +7)(m —7)·m (m -7)+1 ……………………………3分AB DCE F=mm +7 +1 ……………………………5分=m +m +7 m +7=2m +7 m +7 . ……………………………6分当m =2时,原式=2×2+7 2+7 =119. ……………………………7分20. (本题满分8分) 解:(1)(本小题满分6分)如图即为所求. …………………6分 (2)(本小题满分2分)对称点P ′在△ABC 外. …………………8分21. (本题满分8分)(1)(本小题满分5分) 证明:解法一∵ BD ⊥AC ,D 是边AC 的中点, ∴ BD 是边AC 的垂直平分线.∴ BA= BC . ………………………3分 ∵ AB =AC , ∴ AB =AC= BC .∴ △ABC 是等边三角形. ………………………5分解法二∵ BD ⊥AC ,D 是边AC 的中点, ∴ ∠BDA =∠BDC =90°,AD =CD . 又∵ BD =BD , ∴ △BAD ≌△BCD .∴ BA= BC . ………………………3分 ∵ AB =AC ,∴ AB =AC= BC .∴ △ABC 是等边三角形. ……………………5分 (2)(本小题满分3分)如图点E 即为所求. ………………………8分AB CDEAB CDAB C · · ·22.(本题满分9分) 解:(1)(本小题满分4分)设甲厂2017年日均生产该产品x 件(x >0),则甲厂2018年日均生产该产品(2x +2)件,由题意得99x =2002x +2.………………2分 解得x =99. ………………3分经检验,x =99是原方程的解,且符合题意.答:甲厂2017年日均生产该产品99件. ………………4分 (2)(本小题满分5分)设甲厂2017年日均生产该产品x 件(x >0),则甲厂2018年日均生产该产品(2x +2)件, 乙厂日均生产该产品(3x +4)件.由m :n =14:25可设m =14k ,n =25k (k >0).所以甲厂生产m 件产品所用时间t 甲=14k 2x +2,t 乙=25k3x +4. (5)t 甲-t 乙=14k 2x +2-25k3x +4………………7分=(3-4x )k ( x +1)(3x +4). 因为2017年的年产量过万件, 所以x >10000365.所以3-4x <0. 所以t 甲-t 乙<0.即t 甲<t 乙.答:甲厂先完成任务. ………………9分23.(本题满分10分)解:(1)(本小题满分1分) 算式:62×11,34×11,54×11.共同特征:三个算式均是一个两位数与11相乘. ………………1分 (2)(本小题满分4分)62×11=682,34×11=374,54×11=594.规律:一个两位数与11相乘,将这个两位数的十位和个位分别作为积的百位和个位,将这个两位数的数位上数字之和作为积的十位. ……………5分 (3)(本小题满分3分)规律:(10a +b )×11=100a +10(a +b )+b . (其中1≤a ≤9,0≤b ≤9,且a +b ≤9,a ,b 为整数)证明:(10a +b )×11=(10a +b )×10+(10a +b ) =100a +10b +10a +b=100a +10(a +b )+b . ………………8分 (4)(本小题满分2分)18×22,15×55. ………………10分24.(本题满分11分)解:(1)(本小题满分5分) ∵ △ABC 是等边三角形,∴ ∠A =∠B =∠C =60°. ……………1分设∠A =12∠B +α.可得α=30°,不符合定义. ……………2分 所以∠A 不是∠B 的差角.同理可知,△ABC 中任意一个角都不是其他角的差角. ……………3分 所以△ABC 不是“差角三角形”. ……………4分 (2)(本小题满分6分) ∵ 在△ABC 中,∠C =90°, ∴ ∠A =90°-∠B . ①设∠C =12∠A +α.即90°=12(90°-∠B )+α,所以α=12∠B +45°.因为50°≤∠B ≤70°,可得α>25°.不符合定义,所以∠C 不是∠A 的差角. ②设∠C =12∠B +α.即90°=12∠B +α,所以α=90°-12∠B .因为50°≤∠B ≤70°,可得α>25°.不符合定义,所以∠C 不是∠B 的差角. ③设∠A =12∠B +α.即90°-∠B =12∠B +α,所以α=90°-32∠B .因为50°≤∠B ≤70°,可得-15°≤α≤15°.由0°<α≤15°,可得50°≤∠B <60°. 即当50°≤∠B <60°时,△ABC 是差角三角形,且∠A 是∠B 的差角. ④设∠A =12∠C +α.即90°-∠B =45°+α,所以α=45°-∠B . 因为50°≤∠B ≤70°,可得α<0°.不符合定义,所以∠A 不是∠C 的差角. ⑤设∠B =12∠A +α.即∠B =12(90°-∠B )+α,所以α=32∠B -45°.因为50°≤∠B ≤70°,可得α>30°.不符合定义,所以∠B 不是∠A 的差角.⑥设∠B =12∠C +α.即∠B =45°+α,所以α=∠B -45°. 因为50°≤∠B ≤70°,可得5°≤α≤25°.符合定义,所以△ABC 是差角三角形,且∠B 是∠C 的差角. 综上,△ABC 是差角三角形.∠B 是∠C 的差角;当50°≤∠B <60°时,∠A 是∠B 的差角.(本小题的评分要求见评分量表)25. (本题满分14分)(1)(本小题满分3分)证明:∵ ∠ABC =∠CDA =90°, ∵ BC =CD ,AC=AC ,∴ Rt △ABC ≌Rt △ADC . ………………………2分 ∴ AB =AD . ………………………3分(2)(本小题满分4分) 证明:∵ AE =BE +DE , 又∵ AE =AD +DE ,∴ AD =BE . ……………………………4分 ∵ AB =AD ,∴ AB =BE . ……………………………5分 ∴ ∠BAD =∠BEA . ∵ ∠ABC =90°,∴ ∠BAD =180°—∠BAC2 =45°. ……………………………6分∵ 由(1)得△ABC ≌△ADC , ∴ ∠BAC =∠DAC .∴ ∠BAC =45°2 =22.5°. ……………………………7分(3)(本小题满分7分)解法一:解:当MO +PO 的值最小时,点O 与点E 可以重合,理由如下: ∵ ME ∥AB ,∴ ∠ABC =∠MEC =90°,∠2=∠3. ∵ MP ⊥DC , ∴ ∠MPC =90°.∴ ∠MPC =∠ADC =90°. ∴ PM ∥AD . ∴ ∠1=∠4.由(1)得,Rt △ABC ≌Rt △ADC , ∴ ∠1=∠2 ,∴ ∠3=∠4.即MC 平分∠PME .BE D CA654321QPACDEBM又∵MP⊥CP,ME⊥CE,∴PC=EC.连接PB,连接PE,延长ME交PD的延长线于点Q.设∠1=α,则∠2=α.在Rt△ABE中,∠5=90°—2α.在Rt△CDE中,∠ECD=90°—∠5=2α.∵PC=EC,……………………8分∴∠6=∠EPC=12 ∠ECD=α.∴∠PED=∠5+∠6=90°—α.∵ME∥AB,∴∠QED=∠BAD=2α.当∠PED=∠QED时,∵∠PDE=∠QDE,DE=DE,∴△PDE≌△QDE.∴PD=DQ.即点P与点Q关于直线AE成轴对称,也即点M、点E、点P关于直线AE的对称点Q,这三点共线,也即MO+PO的值最小时,点O与点E重合.因为当∠PED=∠QED时,90°—α=2α,也即α=30°.所以,当∠ABD=60°时,MO+PO取最小值时的点O与点E重合. ……………11分此时MO+PO的最小值即为ME+PE.∵PC=EC,∠PCB=∠ECD,CB=CD,∴△PCB≌△ECD.∴∠CBP=∠CDE=90°.∴∠CBP+∠ABC=180°.∴A,B,P三点共线. ……………………13分当∠ABD=60°时,在△PEA中,∠P AE=∠PEA=60°.∴∠EP A=60°.∴△PEA为等边三角形.∵EB⊥AP,∴AP=2AB=2a.∴EP=AE=2a.∵∠1=∠3=30°,∴EM=AE=2a.∴MO+PO的最小值为4a.……………………14分。
2018—2019学年(上)厦门市九年级质量检测数学试卷
2018—2019学年(上)厦门市九年级质量检测数学(试卷满分:150分考试时间:120分钟)准考证号姓名座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.计算-5+6,结果正确的是A .1B .-1C .11D .-11 2.如图1,在△ABC 中,∠C =90°,则下列结论正确的是 A . AB =AC +BC B .AB =AC ·BC C .AB 2=AC 2+BC 2 D .AC 2=AB 2+BC 2 3.抛物线y =2(x -1)2-6的对称轴是A .x =-6B .x =-1C .x =12 D .x =14.要使分式1x -1有意义,x 的取值范围是A .x ≠0B .x ≠1C .x >-1D .x >1 5.下列事件是随机事件的是A .画一个三角形,其内角和是360°B .投掷一枚正六面体骰子,朝上一面的点数小于7 C.射击运动员射击一次,命中靶心D .在只装了红球的不透明袋子里,摸出黑球6.图2,图3分别是某厂六台机床十月份第一天和第二天生 产零件数的统计图.与第一天相比,第二天六台机床生 产零件数的平均数与方差的变化情况是 A .平均数变大,方差不变 B .平均数变小,方差不变 C .平均数不变,方差变小 D .平均数不变,方差变大7.地面上一个小球被推开后笔直滑行,滑行的距离s 与时间t 的函数关系如图4中的部分抛 物线所示(其中P 是该抛物线的顶点),则下列说法正确的是A .小球滑行6秒停止B .小球滑行12秒停止C .小球滑行6秒回到起点D .小球滑行12秒回到起点8.在平面直角坐标系xOy 中,已知A (2,0),B (1,-1),将线段OA 绕点O 逆时针旋转, 设旋转角为α(0°<α<135°).记点A 的对应点为A 1,若点A 1与点B 的距离为6,则 α为A .30°B .45°C .60°D .90°9.点C ,D 在线段AB 上,若点C 是线段AD 的中点,2BD >AD ,则下列结论正确的是 A .CD <AD -BD B .AB >2BD C .BD >AD D .BC >AD 10.已知二次函数y =ax 2+bx +c (a >0)的图象经过(0,1),(4,0).当该二次函数的自 变量分别取x 1,x 2(0<x 1<x 2<4)时,对应的函数值为y 1,y 2,且y 1=y 2.设该函数图象 的对称轴是x =m ,则m 的取值范围是A .0<m <1B .1<m ≤2C .2<m <4D .0<m <4 二、填空题(本大题有6小题,每小题4分,共24分)11.投掷一枚质地均匀的正六面体骰子,投掷一次,朝上一面的点数为 奇数的概率是 .12.已知x =2是方程x 2+ax -2=0的根,则a = . 13.如图5,已知AB 是⊙O 的直径,AB =2,C ,D 是圆周上的点, 且∠CDB =30°,则BC 的长为 .14.我们把三边长的比为3∶4∶5的三角形称为完全三角形.记命题A :“完全三角形是直角三角形”.若命题B 是命题A 的逆命题,请写出命题B :;并写出一个例子(该例子能判断命题B 是错误的): . 15.已知AB 是⊙O 的弦,P 为AB 的中点,连接OA ,OP ,将△OP A 绕点O 逆时针旋转到△OQB . 设⊙O 的半径为1,∠AOQ =135°,则AQ 的长为 .16.若抛物线y =x 2+bx (b >2)上存在关于直线y =x 成轴对称的两个点,则b 的取值范围 是 . 三、解答题(本大题有9小题,共86分) 17.(本题满分8分) 解方程x 2-3x +1=0.18.(本题满分8分)化简并求值:(1-2x +1)÷x 2-12x +2,其中x =2-1.19.(本题满分8分)已知二次函数y =(x -1)2+n ,当x =2时y =2.求该二次函数的解析式,并在平面直角坐标系中画出该函数的图象.20.(本题满分8分)如图6,已知四边形ABCD 为矩形.(1)请用直尺和圆规在边AD 上作点E ,使得EB =EC ; (保留作图痕迹)(2)在(1)的条件下,若AB =4,AD =6,求EB 的长.21.(本题满分8分)如图7,在△ABC 中,∠C =60°,AB =4.以AB 为直径画⊙O ,交边AC 于点D ,︵AD 的长为4π3.求证:BC 是⊙O 的切线.22.(本题满分10分) 已知动点P 在边长为1的正方形ABCD 的内部,点P 到边AD ,AB 的距离分别为m ,n . (1)以A 为原点,以边AB 所在直线为x 轴,建立平面直角坐标系,如图8所示.当点P在对角线AC 上,且m =14时,求点P 的坐标;(2)如图9,当m ,n 满足什么条件时,点P 在△DAB 的内部?请说明理由.23.(本题满分10分)小李的活鱼批发店以44元/公斤的价格从港口买进一批2000公斤的某品种活鱼,在运 输过程中,有部分鱼未能存活.小李对运到的鱼进行随机抽查,结果如表一.由于市场调 节,该品种活鱼的售价与日销售量之间有一定的变化规律,表二是近一段时间该批发店的销售记录.(1)请估计运到的2000公斤鱼中活鱼的总重量;(直接写出答案) (2)按此市场调节的规律,① 若该品种活鱼的售价定为52.5元/公斤,请估计日销售量,并说明理由; ② 考虑到该批发店的储存条件,小李打算8天内卖完这批鱼(只能卖活鱼),且售价保持不变,求该批发店每日卖鱼可能达到的最大利润,并说明理由.24.(本题满分12分)已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点 A ,B (不与P ,Q 重合),连接AP ,BP . 若∠APQ =∠BPQ , (1)如图10,当∠APQ =45°,AP =1,BP =22时,求⊙O 的半径;(2)如图11,连接AB ,交PQ 于点M ,点N 在线段PM 上(不与P ,M 重合),连接ON ,OP ,若∠NOP +2∠OPN =90°,探究直线AB 与ON 的位置关系,并证明.25.(本题满分14分)在平面直角坐标系xOy 中,点A (0,2),B (p ,q )在直线l 上,抛物线m 经过点 B ,C (p +4,q ),且它的顶点N 在直线l 上. (1)若B (-2,1),① 请在图12的平面直角坐标系中画出直线l 与抛物线m 的示意图;② 设抛物线m 上的点Q 的横坐标为e (-2≤e ≤0),过点Q 作x 轴的垂线,与直线l 交于点H .若QH =d ,当d 随 e 的增大而增大时,求e 的取值范围;(2)抛物线m 与y 轴交于点F ,当抛物线m 与x 轴有唯一 交点时,判断△NOF 的形状并说明理由.N BO AP QM B O A P Q 表一表二 图10 图112018—2019学年(上)厦门市九年级质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11.12. 12. -1. 13.1. 14.直角三角形是完全三角形;如:等腰直角三角形,或三边分别为5,12,13的三角形,或三边比为5∶12∶13的三角形等. 15.102. 16.b >3.三、解答题(本大题有9小题,共86分) 17.(本题满分8分)解:a =1,b =-3,c =1. △=b 2-4ac=5>0. ……………………………4分 方程有两个不相等的实数根x =-b ±b 2-4ac 2a=3±52. ……………………………6分 即x 1=3+52,x 2=3−52. ……………………………8分18.(本题满分8分)解:(1-2x +1)÷x 2-12x +2=(x +1-2x +1)·2x+2x 2-1 ……………………………2分=x -1x +1·2(x +1)(x+1)(x -1)……………………………5分=2x +1……………………………6分 当x =2-1时,原式=22= 2 …………………………8分19.(本题满分8分)解:因为当x =2时,y =2. 所以 (2−1)2 +n =2. 解得n =1.所以二次函数的解析式为:y =(x −1)2 +1…………………4分列表得:如图:…………………8分20.(本题满分8分)(1)(本小题满分3分)解:如图,点E 即为所求.…………………3分 (2)(本小题满分5分)解法一:解:连接EB ,EC , 由(1)得,EB =EC . ∵ 四边形ABCD 是矩形,∴ ∠A =∠D =90°,AB =DC .∴ △ABE ≌△DCE . …………………6分∴ AE =ED =12AD =3. …………………7分EDCBAl在Rt △ABE 中,EB =AB 2+AE 2. ∴ EB =5. …………………8分解法二:如图,设线段BC 的中垂线l 交BC 于点F , ∴ ∠BFE =90°,BF =12BC .∵ 四边形ABCD 是矩形,∴ ∠A =∠ABF =90°,AD =BC .在四边形ABFE 中,∠A =∠ABF =∠BFE =90°, ∴ 四边形ABFE 是矩形. …………………6分 ∴ EF =AB =4. …………………7分 在Rt △BFE 中,EB =EF 2+BF 2.∴ EB =5. …………………8分21.(本题满分8分)证明:如图,连接OD , ∵ AB 是直径且AB =4, ∴ r =2.设∠AOD =n °, ∵ ︵AD 的长为4π3,∴ nπr 180=4π3.解得n =120 .即∠AOD =120° . ……………………………3分 在⊙O 中,DO =AO , ∴ ∠A =∠ADO .∴ ∠A =12(180°-∠AOD )= 30°. ……………………………5分∵ ∠C =60°,∴ ∠ABC =180°-∠A -∠C =90°. …………………………6分 即AB ⊥BC . ……………………………7分 又∵ AB 为直径,∴ BC 是⊙O 的切线. ……………………………8分 22.(本题满分10分)解(1)(本小题满分5分) 解法一:如图,过点P 作PF ⊥y 轴于F ,FEDCBAl∵ 点P 到边AD 的距离为m . ∴ PF =m =14.∴ 点P 的横坐标为14. …………………1分由题得,C (1,1),可得直线AC 的解析式为:y =x . …………………3分 当x =14时,y =14 . …………………4分所以P (14,14). …………………5分解法二:如图,过点P 作PE ⊥x 轴于E ,作PF ⊥y 轴于F , ∵ 点P 到边AD ,AB 的距离分别为m ,n , ∴ PE =n ,PF =m . ∴ P (m ,n ). …………………1分 ∵ 四边形ABCD 是正方形,∴ AC 平分∠DAB . …………………2分 ∵ 点P 在对角线AC 上,∴ m =n =14. …………………4分∴ P (14,14). …………………5分(2)(本小题满分5分)解法一:如图,以A 为原点,以边AB 所在直线为x 轴,建立平面直角坐标系. 则由(1)得P (m ,n ).若点P 在△DAB 的内部,点P 需满足的条件是:①在x 轴上方,且在直线BD 的下方; ②在y 轴右侧,且在直线BD 的左侧.由①,设直线BD 的解析式为:y =kx +b , 把点B (1,0),D (0,1)分别代入,可得直线BD 的解析式为:y =-x+1. ……………6分 当x =m 时,y =-m+1.由点P 在直线BD 的下方,可得n <-m+1. ……………7分 由点P 在x 轴上方,可得n >0 ……………8分 即0<n <-m+1.EF同理,由②可得0<m <-n+1. ……………9分所以m ,n 需满足的条件是:0<n <-m+1且0<m <-n+1. ……………10分解法二:如图,过点P 作PE ⊥AB 轴于E ,作PF ⊥AD 轴于F , ∵ 点P 到边AD ,AB 的距离分别为m ,n , ∴ PE =n ,PF =m .在正方形ABCD 中,∠ADB =12∠ADC =45°,∠A =90°.∴ ∠A =∠PEA =∠PF A =90°. ∴ 四边形PEAF 为矩形.∴ PE =F A =n . ……………6分 若点P 在△DAB 的内部,则延长FP 交对角线BD 于点M .在Rt △DFM 中,∠DMF =90°-∠FDM =45°. ∴ ∠DMF =∠FDM . ∴ DF =FM . ∵ PF <FM ,∴ PF <DF ……………7分 ∴ PE+ PF =F A+ PF <F A+ DF .即m+ n <1. ……………8分 又∵ m >0, n >0,∴ m ,n 需满足的条件是m+n <1且m >0且n >0. ……………10分23.(本题满分10分) 解:(1)(本小题满分2分)估计运到的2000公斤鱼中活鱼的总重量为1760公斤.……………2分 (2)①(本小题满分3分)根据表二的销售记录可知,活鱼的售价每增加1元,其日销售量就减少40公斤,所以按此变化规律可以估计当活鱼的售价定为52.5元/公斤时,日销售量为300公斤.……………………5分②(本小题满分5分)解法一:由(2)①,若活鱼售价在50元/公斤的基础上,售价增加x 元/公斤,则可估计日销售量在400公斤的基础上减少40x 公斤,设批发店每日卖鱼的最大利润为w ,由题得w =(50+x -2000×441760) (400-40x ) ……………………7分=-40x 2+400x=-40(x -5)2+1000.· PEFM由“在8天内卖完这批活鱼”,可得8 (400-40x )≤1760,解得x ≤4.5. 根据实际意义,有400-40x ≥0;解得x ≤10. 所以x ≤4.5. ……………………9分因为-40<0,所以当x <5时,w 随x 的增大而增大,所以售价定为54.5元/公斤,每日卖鱼可能达到的最大利润为990元.……………………10分解法二:设这8天活鱼的售价为x 元/公斤,日销售量为y 公斤,根据活鱼的售价与日销售量之间的变化规律,不妨设y =kx +b .由表二可知,当x =50时,y =400;当x =51时,y =360,所以⎩⎨⎧50k +b =40051k +b =360,解得⎩⎨⎧k =-40b =2400,可得y =-40x +2400.设批发店每日卖鱼的最大利润为w ,由题得w =(x -2000×441760) (-40x +2400) ……………………7分=-40x 2+4400x -120000 =-40(x -55)2+1000.由“在8天内卖完这批活鱼”,可得8 (-40x +2400)≤1760,解得x ≤54.5. 根据实际意义,有-40x +2400≥0;解得x ≤60. 所以x ≤54.5. ……………………9分因为-40<0,所以当x <55时,w 随x 的增大而增大,所以售价定为54.5元/公斤,每日卖鱼可能达到的最大利润为990元.……………………10分24.(本题满分12分)(1)(本小题满分6分) 解:连接AB . 在⊙O 中, ∵ ∠APQ =∠BPQ =45°,∴ ∠APB =∠APQ +∠BPQ =90°.…………1分 ∴ AB 是⊙O 的直径. ………………3分 ∴ 在Rt △APB 中,AB =AP 2+BP 2 ∴ AB =3. ………………5分 ∴ ⊙O 的半径是32. ………………6分(2)(本小题满分6分) 解:AB ∥ON .证明:连接OA ,OB ,OQ , 在⊙O 中,∵ ︵AQ =︵AQ ,︵BQ =︵BQ ,∴ ∠AOQ =2∠APQ ,∠BOQ =2∠BPQ . 又∵ ∠APQ =∠BPQ ,∴ ∠AOQ =∠BOQ . ……………7分 在△AOB 中,OA =OB ,∠AOQ =∠BOQ ,∴ OC ⊥AB ,即∠OCA =90°. ………………………8分 连接OQ ,交AB 于点C , 在⊙O 中,OP =OQ .∴ ∠OPN =∠OQP .延长PO 交⊙O 于点R ,则有2∠OPN =∠QOR . ∵ ∠NOP +2∠OPN =90°,又∵ ∠NOP +∠NOQ +∠QOR =180°,∴ ∠NOQ =90°. ………………………11分 ∴ ∠NOQ +∠OCA =180°.∴ AB ∥ON . ………………………12分25.(本题满分14分)(1)①(本小题满分3分)解:如图即为所求…………………………3分②(本小题满分4分)Q解:由①可求得,直线l :y =12x +2,抛物线m :y =-14x 2+2.……………5分因为点Q 在抛物线m 上,过点Q 且与x 轴垂直的直线与l 交于点H ,所以可设点Q 的坐标为(e ,-14e 2+2),点H 的坐标为(e ,1e +2),其中(-2≤e ≤0).当-2≤e ≤0时,点Q 总在点H 的正上方,可得 d =-14e 2+2-(12e +2) ……………6分=-14e 2-12e=-14(e +1)2+14.因为-14<0,所以当d 随e 的增大而增大时,e 的取值范围是-2≤e ≤-1.……………7分 (2)(本小题满分7分)解法一:因为B (p ,q ),C (p +4,q )在抛物线m 上, 所以抛物线m 的对称轴为x =p +2. 又因为抛物线m 与x 轴只有一个交点, 可设顶点N (p +2,0).设抛物线的解析式为y =a (x -p -2)2. 当x =0时,y F =a (p+2)2. 可得F (0,a (p+2)2). …………………9分 把B (p ,q )代入y =a (x -p -2)2,可得q =a (p -p -2)2. 化简可得q =4a ①. 设直线l 的解析式为y =kx +2, 分别把B (p ,q ),N (p +2,0)代入y =kx +2,可得 q =kp +2 ②,及0=k (p +2)+2 ③ .由①,②,③可得a =12+p.所以F (0,p +2). 又因为N (p +2,0), …………………13分 所以ON=OF ,且∠NOF =90°.所以△NOF 为等腰直角三角形.…………………14分解法二:因为直线过点A (0,2), 不妨设直线l :y =kx +2, 因为B (p ,q ),C (p +4,q )在抛物线m 上,所以抛物线m 的对称轴为x =p +2.又因为抛物线的顶点N 在直线l :y =kx +2上, 可得N (p +2,k (p +2)+2).所以抛物线m :y =a (x -p -2)2+k (p +2)+2. 当x =0时,y =a (p +2)2+k (p +2)+2.即点F 的坐标是(0,a (p +2)2+k (p +2)+2). …………………9分 因为直线l ,抛物线m 经过点B (p ,q ),可得⎩⎨⎧kp +2=q 4a +k (p +2)+2=q, 可得k =-2a .因为抛物线m 与x 轴有唯一交点,可知关于x 的方程kx +2=a (x -p -2)2+k (p +2)+2中,△=0. 结合k =-2a ,可得k (p +2)=-2. 可得N (p +2,0),F (0, p +2). …………………13分 所以ON=OF ,且∠NOF =90°.所以△NOF 是等腰直角三角形. …………………14分。
福建省厦门市质检数学卷含含
2019 年厦门市初中毕业班教学质量检测数学试题一、选择题 (本大题有 10 小题,每小题 4 分,共 40 分)A1.计算(-1)3,结果正确的是A.-3B.-1BC2.如图,在△ ABC 中,∠C=90°,则等于ABC BA. sinAB. sinBC. tanAD. tanB3.在平面直角坐标系中,若点 A 在第一象限,则点 A 关于原点的中心对称点在A.第一象限B.第二象限C.第三象限D.第四象限4.若n 是有理数,则 n 的值可以是A.-1AFE5.如图, AD、CE 是△ABC 的高,过点 A 作 AF∥BC,则下列线段的长可表示图中两条平行线之间的距离的是A. ABB. ADC. CED. AC B CD6.命题:直角三角形的一条直角边与以另一条直角边为直径的圆相切 . 符合该命题的图形是A B C D7.若方程 (x-m)( x-a )=0( m≠0的) 根是 x1=x2=m,则下列结论正确的是A. a=m 且 a 是该方程的根B. a=0 且 a 是该方程的根C.a=m 但 a 不是该方程的根D.a=0 但 a 不是该方程的根8.一个不透明盒子里装有 a 只白球 b 只黑球、 c 只红球,这些球仅颜色不同 .从中随机摸出一1只球,若 P(摸出白球 )= ,则下列结论正确的是31A. a=1B. a=3C. a= b =cD. a= (b+c )29.已知菱形 ABCD 与线段 AE,且 AE 与 AB 重合. 现将线段 AE 绕点 A 逆时针旋转 180°,在旋转过程中,若不考虑点 E 与点 B 重合的情形,点 E 还有三次落在菱形 ABCD 的边上,设∠B= ,则下列结论正确的是° < <60° B. =60°° < <90°° < <180°厦门市质检(一)数学卷第1页共5页10.已知二次函数 y=-3x2+2 x+1 的图象经过点 A( ,y1),B(b,y2),C(c,y3),其中 a、b、 c1均大于 0. 记点 A、B、C 到该二次函数的对称轴的距离分别为 d A、d B、d C. 若 d A< < d B < d C,2则下列结论正确的是A.当 a≤x≤b 时,y 随着 x 的增大而增大B.当 a≤x≤c 时,y 随着 x 的增大而增大C.当 b≤x≤c 时,y 随着 x 的增大而减小D.当 a≤x≤c 时,y 随着 x 的增大而减小二、填空题 (本大题有 6 小题,每小题 4 分,共 24 分)yAD11.计算:-a+3 a=________.12.不等式 2x-3≥0的解集是 ________.O x 13.如图,在平面直角坐标系中,若□ABCD 的顶点 A、B、C 的坐BC标分别是 (2,3),(1,-1),(7,-1),则点 D 的坐标是 ________.14.某服装店为调动营业员的积极性,决定实行目标管理,根据每月销售目标完成情况发放奖金. 该店统计了每位营业员前半年的月均销售额,并算出所得数据的平均数、众数、中位数,分别为 22、15、18(单位:万元 ). 若想让一半左右的营业员都能达到月销售目标,则月销售额定为 ________万元较为合适 .k15.在平面直角坐标系 xOy 中,直线 y=x 与双曲线 y= (k>0,x>0)交于点 A. 过点 A 作 AC⊥xx轴于点 C,过该双曲线上另一点 B 作 BD⊥x 轴于点 D,作 BE⊥AC 于点 E,连接 AB. 若OD=3OC,则 tan∠ABE=________.DA16.如图,在矩形 ABCD 中,AB >BC,以点 B 为圆心, AB 的长为M半径的圆分别交 CD 边于点 M,交 BC 边的延长线于点 E. 若DM=CE ,AE 的长为 2 ,则 CE 的长为 ________.三、解答题 (本大题有 9 小题,共 86 分)B CE 17.(本题满分 8 分)解方程组xx y2 y4118. (本题满分 8 分)已知点 B、C、D、E 在一条直线上, AB∥FC,AB=FC ,BC=DE . 求证: AD∥FE.A FB DEC厦门市质检(一)数学卷第2页共5页19.(本题满分 8 分)22 4 2 22a 2a a化简并求值: ( -1)÷,其中 a=2 2a a20.(本题满分 8 分)在正方形 ABCD 中,E 是 CD 边上的点,过点 E 作 EF⊥BD 于 F.(1)尺规作图:在图中求作点 E,使得 EF=EC ;A D(保留作图痕迹,不写作法 )(2)在(1)的条件下连接 FC,求∠ BCF 的度数 .B C21.(本题满分 8 分)某路段上有 A、B 两处相距近 200m 且未设红绿灯的斑马线 . 为使交通高峰期该路段车辆与行人的通行更有序,交通部门打算在汽车平均停留时间较长的一处斑马线上放置移动红绿灯 .图 1,图 2 分别是交通高峰期来往车辆在 A、B 斑马线前停留时间的抽样统计图 .停停停停停停1312 12 12101087321O 2 4 6 8 10 12 O 2 4 6 8 10停停停停/s 停停停停/s停1 停2根据统计图解决下列问题:(1)若某日交通高峰期共有 350 辆车经过 A 斑马线,请估计其中停留时间为 10s~12s 的车辆数,以及这些停留时间为 10s~12s 的车辆的平均停留时间; (直接写出答案 )(2)移动红绿灯放置在哪一处斑马线上较为合适 ?请说明理由 .厦门市质检(一)数学卷第3页共5页22.(本题满分 10 分)如图,已知△ ABC 及其外接圆,∠ C=90°,AC=10.(1)若该圆的半径为 5 2 ,求∠ A 的度数;(2)点 M 在 AB 边上且 AM>BM,连接 CM 并延长交该圆于点 D,连接 DB,过点 C 作 CE 垂直 DB 的延长线于 E. 若 BE=3,CE=4,试判断 AB 与 CD 是否互相垂直,并说明理由 .CA B23.(本题满分 10 分)在四边形 ABCD 中,AB∥CD,∠ABC =60°,AB=BC =4,CD =3.(1)如图 1,连接 BD,求△BCD 的面积;(2)如图 2,M 是 CD 边上一点,将线段 BM 绕点 B 逆时针旋转 60°,可得线段 BN,过点 N 作NQ⊥BC,垂足为 Q,设 NQ=n,BQ=m,求 n 关于 m 的函数解析式 (自变量 m 的取值范围只需直接写出 )NA AD DMB BC Q C停2停1厦门市质检(一)数学卷第4页共5页24.(本题满分 12 分)某村启动“贫攻坚”项目,根据当地的地理条件,要在一座高为 1000m 的山上种植一种经济作物. 农业技术人员在种植前进行了主要相关因素的调查统计,结果如下:①这座山的山脚下温度约为 22℃,山高 h(单位: m)每增加 100m,温度 T(单位:℃ )下降约℃;②该作物的种成活率 P 受温度 T 影响,且在 19℃时达到最大 . 大致如表一:温度 T(℃) 21 20 19 18种植成活率 p 90% 92% 94% 96% 98% 96% 94% 92%③该作物在这座山上的种植量 w 受山高 h 影响,大致如图停停停w/停AB16001400CD1000E548F200GO 200 300 500 800 900停停h/m(1)求 T 关于 h 的函数解析式,并求 T 的最小值;(2)若要求该作物种植成活率 p 不低于 92%,根据上述统计结果,山高 h 为多少米时该作物的成活量最大 ?请说明理由 .厦门市质检(一)数学卷第5页共5页25.(本题满分 14 分)在平面直角坐标系 xOy 中,已知点 A. 若对点 A 作如下变换;第一步:作点 A 关于 x 轴的对称点 A1;第二步:以 O 为位似中心,作线段 OA1 的位似图形OA2OA2,且相似比 =q,则称 A2 是点 A 的对称位似点 .OA1(1)若 A(2,3),q=2,直接写出点 A 的对称位似点的坐标;1 m(m k)(2)知直线 l:y =kx-2,抛物线 C: y =- x2+m x-2(m>0),点 N( ,2k-2)22 k在直线 l 上 .1①当 k= 时,判断 E(1,-1)是否为点 N 的对称位似点请说明理由;2②若直线 l 与抛物线 C 交于点 M (x1,y1)(x1≠0,) 且点 M 不是抛物线的顶点,则点 M 的对称位似点是否可能仍在抛物线 C 上?请说明理由 .厦门市质检(一)数学卷第6页共5页参考答案一、BACDB CADCC二、3 1≥ 13.(8,3) 15. 16. 4-22 3三、217.xy 3 118.略a 219. ,1-a 20. 2A D在正方形 ABCD 中,∠BCD =90°,BC=CDE ∠DBC =∠CDB =45°,∵EF=ECB CA D∴∠EFC=∠ECF又 EF⊥BDF∴∠BFC=∠BCF1∴∠BCF= (180°-45°=) °2 BEC21.(1)7 辆,11s.1(2)A: (1×10+3×12+5×10+7×8+9×7+11×1)=501B: (1×3+3×2+5×10+7×13+1×12)=40∵,故选 B.22.(1)当∠ C=90°时,AB 为外接圆的直径,∵AC =10, AB =10 2C ∴△ABC 为等 Rt△∴∠A=45°(2)记圆心为点 O,连接 OC、OD.∠E 90 BE 3 CE 4 BC 5 =°,=,=,则=A BOE∠CDE A =∠D厦门市质检(一)数学卷第7页共5页∴tan∠CDE = tan∠A=12CE 4 1∴ = = ,DE=8,BD=5DE DE 2∴BC=BD∴∠BOC=∠BOD∴AB ⊥CD23.(1)3 3(2)连接 AN ,易证:△ ABN ≌△CBMN则∠BAN =∠BCM =120°A连接 AC,则△ ABC 为正△∴N、A、C 三点共线D ∵NQ=n,BQ=m,∴CQ=4-m,B在 Rt△NQC 中,NQ=CQ·tan∠NCQQ CM1n=3 (4-m)=-3 m+4 3 ( ≤ m≤2)224.h 1(1)T=22-×=- h+22(0≤ h≤1000)100 200T 随 h 增大而减小,∴当 H=1000 时,T=17(2)由表中数据分析可知,当 19≤ T≤21 时,p 与 T 大致符合一次函数关系;不妨取(21,0.9)、(20,0.94),则 k= =- 20 211 251 1 87∴p1=- (T-=- T+ (19≤ T≤21)25 25 50当≤ T<19 时,p 与 T 大致符合一次函数关系;0. 94 不妨取(19 0.98) (18 0.94) k= ,、,,则=18 191 1 11∴p2= (T-= T+ (≤ T<19)25 25 50 1 25从坐标中观察可知,除点 E 外,其余点基本上在同一直线上,1600 1000不妨取 (200,1600)、(500,1000),则 k= =-2200 500w=-2(h-500)+1000=-2 h+2000 (0≤ h≤1000)因成活率需不低于 92%,故(≤ T≤)由(1)知,当温度 T 取:、19、时,相应的 h 的值分别是: 900、600、300厦门市质检(一)数学卷第8页共5页1 1 87 1当 300≤ h≤600 时, p1=- (- h+22)+ = h+25 200 50 5000 43 501 43 1 35成活量 y=w·p1=(-2 h+2000)( h+ ) =- h2- h+17205000 50 2500 25 1- <0,开口向下,对称轴在 y 轴的左侧2500∴当 300≤ h≤600 时,图象下降,成活量 y 随 h 增大而减小 .∴当 h =300 时,成活量 y 有最大值,此时成活率= 92%,种植量为 1400,成活量 y 最大值= 1400×92%=1288(株)1 1 11 1当 600< h≤900 时,p2= (- h+22)+ =- h+25 200 50 5000 11 101 11 1 13成活量 y=w·p2=(-2 h+2000)( - h+ )= h2- h+22005000 10 2500 512500>0,开口向上,对称轴 h=3250>900,图象下降,成活量 y 随 h 增大而减小1 87∴当 h=600 时,使用 p1=- T+ ,在这里成活率最小 .25 50 综上所述:当 h =300 时,成活量最大 .25.(1)(4,-6)、(-4, 6)(2)1 1①当 k= 时,2k-2=2×-2=-1,将 y=-1 代入 y=kx -2 得:x=22 2∴ N 的坐标为( 2,-1),其关于 x 轴对称点坐标是( 2,1)对于 E(1,-1),1 1∵≠,所构成的 Rt△直角边不成比例,1 2∴E(1,-1)不是 N(2,-1)的对称位似点②m(m k)直线 l:y= kx-2 过点 N( ,2k-2)2km(m k)2k-2=k -2,整理得: m2-mk-2k=02k(m-2k)( m+k)=0∴m=2k 或 m=-k1直线与抛物线相交于点 M,- x2+m x-2=kx-221kx=- x2+m x21∵x≠0,∴k=- x+m ,x=2(m -k)2厦门市质检(一)数学卷第9页共5页抛物线对称轴: x=m,且点 M 不是抛物线的顶点∴2(m-k) ≠m,m≠2k∴只有 m=-k 成立. 此时, x=2(m-k)=-4k,M 的坐标:(- 4k,-4k2-2)于是, M 关于 x 轴的对称点 M 1(-4k, 4k2+2)24k 2直线 OM1 的解析式: y= x4k24k 2 1若直线 OM 1 与抛物线有相交,x =- x2+k x- 24k 2整理得: k x2- x+4k=01 OM2当△= 1-16k2≥0,k2≤时,交点存在,不妨设为 M2,=q,16 OM1则 M 2 是点 M 的对称位似点∵m>0,且 m=-k,∴k<0,1∴-≤k<0.4厦门市质检(一)数学卷第10页共5页。
2019届高三上期末数学分类汇编(18)等差数列与等比数列(含答案)
(山东省德州市2019届高三期末联考数学(理科)试题)4.已知数列为等差数列,且成等比数列,则的前6项的和为()A. 15B.C. 6D. 3【答案】C【解析】【分析】利用成等比数列,得到方程2a1+5d=2,将其整体代入 {a n}前6项的和公式中即可求出结果.【详解】∵数列为等差数列,且成等比数列,∴,1,成等差数列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{a n}前6项的和为2a1+5d)=.故选:C.【点睛】本题考查等差数列前n项和的求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.(福建省宁德市2019届高三第一学期期末质量检测数学理科试题)3.等差数列中,,,则数列的前20项和等于()A. -10B. -20C. 10D. 20【答案】D【解析】【分析】本道题结合等差数列性质,计算公差,然后求和,即可。
【详解】,解得,所以,故选D。
【点睛】本道题考查了等差数列的性质,难度中等。
(江西省新余市2019届高三上学期期末考试数学(理)试题)5.在等差数列中,已知是函数的两个零点,则的前10项和等于( )A. -18B. 9C. 18D. 20【答案】D【解析】【分析】由韦达定理得,从而的前10项和,由此能求出结果.【详解】等差数列中,是函数的两个零点,,的前10项和.故选:D.【点睛】本题考查等差数列的前n项和公式,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.(湖南省长沙市2019届上学期高三统一检测理科数学试题)13.设等差数列的前项和为,且,则__________.【答案】【解析】分析:设等差数列{a n}的公差为d,由S13=52,可得13a1+d=52,化简再利用通项公式代入a4+a8+a9,即可得出.详解:设等差数列{a n}的公差为d,∵S13=52,∴13a1+d=52,化为:a1+6d=4.则a4+a8+a9=3a1+18d=3(a1+6d)=3×4=12.故填12.点睛:本题主要考查等差数列通项和前n项和,意在考查学生等差数列基础知识的掌握能力和基本的运算能力.(湖南省湘潭市2019届高三上学期第一次模拟检测数学(文)试题)3.已知数列是等比数列,其前项和为,,则()A. B. C. 2 D. 4【答案】A【解析】【分析】由题意,根据等比数列的通项公式和求和公式,求的公比,进而可求解,得到答案。
厦门市2019年中考数学试题含答案(word版)
2019年厦门市初中毕业及高中阶段各类学校招生考试数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,27小题,试卷共4页,另有答题卡. 2.答案一律写在答题卡上,否则不能得分.3.可直接用2B 铅笔画图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1. 反比例函数y =1x的图象是A . 线段B .直线C .抛物线D .双曲线2. 一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有A .1种B . 2种C . 3种D .6种3. 已知一个单项式的系数是2,次数是3,则这个单项式可以是 A . -2xy 2 B . 3x 2 C . 2xy 3 D . 2x 34. 如图1,△ABC 是锐角三角形,过点C 作CD ⊥AB ,垂足为D ,则点C 到直线AB 的距离是 A . 线段CA 的长 B .线段CD 的长 C . 线段AD 的长 D .线段AB 的长 5. 2—3可以表示为A .22÷25B .25÷22C .22×25D .(-2)×(-2)×(-2)6.如图2,在△ABC 中,∠C =90°,点D ,E 分别在边AC ,AB 上, 若∠B =∠ADE ,则下列结论正确的是A .∠A 和∠B 互为补角 B . ∠B 和∠ADE 互为补角C .∠A 和∠ADE 互为余角D .∠AED 和∠DEB 互为余角图27. 某商店举办促销活动,促销的方法是将原价x 元的衣服以(45x -10) 元出售,则下列说法中,能正确表达该商店促销方法的是A . 原价减去10元后再打8折B . 原价打8折后再减去10元C . 原价减去10元后再打2折D . 原价打2折后再减去10元8. 已知sin6°=a ,sin36°=b ,则sin 2 6°=A . a 2B . 2aC . b 2D . b9.如图3,某个函数的图象由线段AB 和BC 组成,其中点 A (0,43),B (1,12),C (2,53),则此函数的最小值是A .0B .12C .1D .53图310.如图4,在△ABC 中,AB =AC ,D 是边BC 的中点,一个圆过点A ,交边AB 于点E ,且与BC 相切于点D ,则该圆的圆心是 A .线段AE 的中垂线与线段AC 的中垂线的交点 B .线段AB 的中垂线与线段AC 的中垂线的交点 C .线段AE 的中垂线与线段BC 的中垂线的交点 D .线段AB 的中垂线与线段BC 的中垂线的交点图4二、填空题(本大题有6小题,每小题4分,共24分)11.不透明的袋子里装有1个红球、1个白球,这些球除颜色外无其他差别.从袋子中随机摸出一个球,则摸出红球的概率是 . 12.方程x 2+x =0的解是 .13.已知A ,B ,C 三地位置如图5所示,∠C =90°,A ,C 两地的距离是B ,C 两地的距离是3 km ,则A ,B 两地的距离是 km ;若A 地在C 地的正东方向,则B地在C 地的 方向.14.如图6,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是边AD 的中点, 图5若AC =10,DC =25,则BO = ,∠EBD 的大小约为 度 分.(参考数据:tan26°34′≈12)15.已知(39+813)×(40+913)=a +b ,若a 是整数,1<b <2,则a = . 图616.已知一组数据1,2,3,…,n (从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n 个数是n ).设这组数据的各数之和是s ,中位数是k ,则s = (用只含有k 的代数式表示). 三、解答题(本大题有11小题,共86分)17.(本题满分7分)计算:1-2+2×(-3)2 . 18.(本题满分7分)在平面直角坐标系中,已知点A (-3,1),B (-2,0)C (0,1),请在图7中画出△ABC ,并画出与△ABC关于原点O 对称的图形. 图7 19.(本题满分7分)计算:xx +1+x +2x +1.20.(本题满分7分)如图8,在△ABC 中,点D ,E 分别在边AB ,AC 上,若DE ∥BC , AD =3 ,AB =5,求DEBC的值.21.(本题满分7分)解不等式组⎩⎨⎧2x >2,x +2≤6+3x .22.(本题满分7分)某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示.若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?23.(本题满分7分)如图9,在△ABC 中,AB =AC ,点E ,F 分别是边AB ,AC 的中点,点D 在边BC 上. 若DE =DF ,AD =2,BC =6,求四边形AEDF 的周长.图924.(本题满分7分)已知实数a ,b 满足a -b =1,a 2-ab +2>0,当1≤x ≤2时,函数y =ax (a ≠0)的最大值与最小值之差是1,求a 的值.25.(本题满分7分)如图10,在平面直角坐标系中,点A (2,n ),B (m ,n )(m >2),D (p ,q )(q <n ),点B ,D 在直线y =12x +1上.四边形ABCD 的对角线AC ,BD 相交于点E ,且AB ∥CD ,CD =4,BE =DE ,△AEB 的面积是2.求证:四边形ABCD 是矩形.图1026.(本题满分11分)已知点A (-2,n )在抛物线y =x 2+bx +c 上. (1)若b =1,c =3,求n 的值; (2)若此抛物线经过点B (4,n ),且二次函数y =x 2+bx +c 的最小值是-4,请画出点P (x -1,x 2+bx +c )的纵坐标随横坐标变化的图象,并说明理由.27.(本题满分12分)已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC平分∠DCB,延长DA,CB相交于点E.(1)如图11,EB=AD,求证:△ABE是等腰直角三角形;(2)如图12,连接OE,过点E作直线EF,使得∠OEF=30°.当∠ACE≥30°时,判断直线EF与⊙O的位置关系,并说明理由.图112019年厦门市初中毕业及高中阶段各类学校招生考试数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11. 12 12. 0,-1 13. 5;正北14. 5,18,26 15. 1611 16. 2k 2-k三、解答题(本大题共9小题,共86分) 17.(本题满分7分)解: 1-2+2×(-3)2=-1+2×9=17. ……………………………7分 18.(本题满分7解:……………………………7分19.(本题满分7分) 解:xx +1+x +2x +1=2x +2x +1……………………………5分 =2 ……………………………7分 20.(本题满分7分)解:∵ DE ∥BC ,∴ △ADE ∽△ABC . ……………………………4 ∴ DE BC =ADAB . ……………………………6分 ∵ AD AB =35,∴ DE BC =35. ……………………………7分21.(本题满分7分)解:解不等式2x >2,得x >1. ……………………………3分解不等式x +2≤6+3x ,得x ≥-2. ……………………………6分不等式组⎩⎨⎧2x >2,x +2≤6+3x的解集是x >1. ……………………………7分22.(本题满分7分)解:由题意得,甲应聘者的加权平均数是6×87+4×906+4=88.2. ……………………………3分乙应聘者的加权平均数是6×91+4×826+4=87.4. ……………………………6分∵88.2>87.4,∴甲应聘者被录取. ……………………………7分 23.(本题满分7分)解:∵AB =AC ,E ,F 分别是边AB ,AC 的中点,∴AE =AF =12AB . ……………………………1分又∵DE =DF ,AD =AD ,∴△AED ≌△AFD . ……………………………2分 ∴∠EAD =∠F AD .∴AD ⊥BC , ……………………………3分 且D 是BC 的中点.在R t △ABD 中,∵E 是斜边AB 的中点,∴DE =AE . ……………………………6分 同理,DF =AF .∴四边形AEDF 的周长是2AB . ∵BC =6,∴BD =3.又AD =2,∴AB =13.∴四边形AEDF 的周长是213. ……………………………7分 24.(本题满分7分)解1:由a -b =1,a 2-ab +2>0得,a >-2. ……………………………2分∵a ≠0,(1)当-2<a <0时, ……………………………3分 在1≤x ≤2范围内y 随x 的增大而增大, ∴ a2-a =1. ∴ a =-2 ……………………………4分 不合题意,舍去.(2)当a >0时, ……………………………5分 在1≤x ≤2范围内y 随x 的增大而减小,∴ a -a2=1.∴ a =2. ……………………………6分 综上所述a =2. ……………………………7分解2:(1)当a <0时, ……………………………1分 在1≤x ≤2范围内y 随x 的增大而增大, ∴ a2-a =1. ∴ a =-2. ……………………………2分 ∴ b =-3.而a 2-ab +2=0,不合题意,∴a ≠-2. ……………………………3分 (2)当a >0时, ……………………………4分 在1≤x ≤2范围内y 随x 的增大而减小, ∴ a -a2=1.∴ a =2. ……………………………5分 ∴ b =1. 而a 2-ab +2=4>0,符合题意,∴ a =2. ……………………………6分 综上所述, a =2. ……………………………7分25.(本题满分7分)解1:∵ AB ∥CD ,∴∠EAB =∠ECD ,∠EBA =∠EDC . ∵ BE =DE ,∴ △AEB ≌△CED . ……………………………1分 ∴ AB =CD =4.∵AB ∥CD ,∴四边形ABCD 是平行四边形. ……………………………2分 A (2,n ),B (m ,n )(m >2), ∴ AB ∥x 轴,且CD ∥x 轴.∵ m >2,∴m =6. ……………………………3分 ∴n =12×6+1=4.∴ B (6,4). ∵△AEB 的面积是2,∴△AEB 的高是1. ……………………………4分 ∴平行四边形ABCD 的高是2. ∵ q <n , ∴q =2.∴p =2, ……………………………5分 即D (2,2). ∵点A (2,n ),∴DA ∥y 轴. ……………………………6分∴AD ⊥CD ,即∠ADC =90°.∴四边形ABCD 是矩形. ……………………………7分解2:∵AB ∥CD ,∴∠EAB =∠ECD ,∠EBA =∠EDC . ∵ BE =DE ,∴ △AEB ≌△CED . ……………………………1分∴ AB =CD =4. ∵AB ∥CD ,∴四边形ABCD 是平行四边形. ……………………………2分 ∵A (2,n ),B (m ,n )(m >2), ∴ AB ∥x 轴,且CD ∥x 轴.∵ m >2,∴m =6. ……………………………3分 ∴n =12×6+1=4.∴ B (6,4).过点E 作EF ⊥AB ,垂足为F , ∵△AEB 的面积是2,∴EF =1. ……………………………4分 ∵ q <n ,∴点E 的纵坐标是3. ∴点E 的横坐标是4.∴点F 的横坐标是4. ……………………………5分 ∴点F 是线段AB 的中点.∴直线EF 是线段AB 的中垂线.∴EA =EB . ……………………………6分 ∵四边形ABCD 是平行四边形, ∴AE =EC ,BE =ED .∴AC =BD .∴四边形ABCD 是矩形. ……………………………7分 26.(本题满分11分)(1)解:∵ b =1,c =3,∴ y =x 2+x +3. ……………………………2分 ∵点A (-2,n )在抛物线y =x 2+x +3上,∴n =4-2+3 ……………………………3分 =5. ……………………………4分 (2)解:∵点A (-2,n ),B (4,n )在抛物线y =x 2+bx +c 上,∴⎩⎨⎧4-2b +c =n ,16+4b +c =n .∴b =-2.∴顶点的横坐标是-b2=1.即顶点为(1,-4). ∴-4=1-2+c .∴c =-3. ……………………………7分∴P (x -1,x 2-2x -3).∵将点(x ,x 2-2x -3)向左平移一个单位得点P (x -1,x 2-2x -3), ∴将点(x ,x 2-2x -3)的纵坐标随横坐标变化的函数的图象向左平移 一个单位后可得点P (x -1,x 2-2x -3)的纵坐标随横坐标变化的函 数的图象. ……………………………8分 设p =x -1,q =x 2-2x -3,则q =p 2-4.画出抛物线q =p 2-4的图象. ……………………………11分 27.(本题满分12分)(1)证明:∵四边形ABCD 内接于⊙O ,∠ADC =90°,∴∠ABC =90°.∴∠ABE =90°. ……………………………1分 ∵AC 平分∠DCB ,∴∠ACB =∠ACD . ……………………………2分 ∴AB =AD . ……………………………3分 ∵EB =AD ,∴EB =AB . ……………………………4分∴△ABE 是等腰直角三角形. ……………………………5分(2)直线EF 与⊙O 相离.证明:过O 作OG ⊥EF ,垂足为G . 在Rt △OEG 中, ∵∠OEG =30°,∴OE =2OG . ……………………………6分∵∠ADC =90°,∴AC 是直径. 设∠ACE =α,AC =2r . 由(1)得∠DCE =2α,又∠ADC =90°, ∴∠AEC =90°-2α. ∵α≥30°,∴(90°-2α)-α≤0. ……………………………8分 ∴∠AEC ≤∠ACE .∴AC ≤AE . ……………………………9分 在△AEO 中,∠EAO =90°+α, ∴∠EAO >∠AOE .∴EO >AE . ……………………………10分 ∴EO -AE >0.由AC ≤AE 得AE -AC ≥0. ∴EO -AC =EO +AE -AE -AC=(EO -AE )+(AE -AC )>0. ∴EO >AC . 即2OG ≥2r .∴OG >r . ……………………………11分 ∴直线EF 与⊙O 相离. ……………………………12分。
六年级下册数学试题-厦门市集美区2019年质量监测试卷(无答案)人教版
厦门市集美区2019年小学数学六年级质量监测试卷(测试时间:85分钟总分:100分)题序一二三四总分得分一、选择题。
(每题3分,共42分)1.一个八位数,最高位上是8,十万位上是7,千位上是6,其他数位都是0。
以下说法错误的是()。
A.这个数写作80706000B.这个数改写成以“万”作单位的数是8070C.这个数只读1个零D.这个数省略“万”后面的尾数约是8071万2.一年有四个季度,一季度有三个月,第()两个季度的天数一定相同。
A.一和二 B.二和三C.三和四D.二和四3.把改写成数值比例尺是()。
A.1∶30B.1∶900000C.1∶300000D.300000014.如右图,若∠1=20°,AO⊥CO,点B、O、D 在同一条直线上,则∠2是()。
A.70°B.110°C.120°D.160°5.用1和8两张数字卡片组成的两位数,一定是()。
A.奇数B.偶数C.质数D.合数6.给右图中的1个白色小方格涂上颜色,使涂色部分成为一个轴对称图形,有()种涂法。
A.3B.4C.5D.67.一根绳子,用去了52,还剩51米,用去的和剩下的比,哪段比较长?()。
A.用去的B.剩下的C.一样长D.无法判断8.观察左下图的几何体,从正面看到的图形是()。
306090千米9.小华上午8:00骑车从家去相距4千米的图书馆借书,去图书馆路上停了一会儿,到图书馆借完书后就返回,上午10:00回到家中。
下列四个折线图正确反映小华行程的是()。
A B C D 10.我们可以用很多种方式表达个数或数量,下面表达错误的是()。
11.一个拧紧瓶盖的瓶子里装有一些水(如右图),根据图中的数据,可以计算出瓶中水的体积占瓶子容积的()。
A.74B.75 C.32 D.14912.下列说法错误的是()。
A.如果甲在乙的东南方向,那么乙就一定在甲的西北方向B.零上2摄氏度与零下5摄氏度相差3摄氏度C.一个三角形三个内角的比是11:13:25,这个三角形一定是钝角三角形D.抛十次硬币,抛的每一次正面朝上的可能性都是50%3.王老师需要买50本笔记本,三家商店单价都是9元,甲商店打“八五折”销售,乙商店“买四送一”,丙商店“每满100元减20元”。
【精品真题】2019年福建省厦门市小升初数学试卷(人教版,含解析)
2019年福建省厦门市小升初数学试卷一、仔细看题,准确计算.(32分)1.直接写出得数.(8分)182﹣47=5÷= 2.4×0.5= 1.27﹣0.7=8.1÷0.03=×=﹣=0.77+0.33=0.75+=÷=1÷0.25=0.36×=13÷26=8.9a﹣a=80%×= 3.14×23=2.脱式计算.(能简算的要简算)(18分)6.28+3.5+3.72 2.5×3.2×125÷9+×1000÷12.5÷8 2.5÷×÷[﹣(1﹣)] 3.求未知数x(6分)x+20%x=36﹣2x=12=二、细心审题,恰当填空.(28分)4.=16÷=:2.5=%=(小数)5.某地某一天的最低气温是﹣5℃,最高气温12℃,这一天的最高气温与最低气温相差℃.6.厦门市地铁1号线全长约30.3千米,合米,改写成用“万”作单位的数是万米,精确到十分位约是万米.7.王芳骑自行车,3小时行了75千米,王芳骑自行车的速度是千米/时,她行1千米需小时.8.7只小鸟飞回6个鸟笼,至少有只小鸟要飞回同一个鸟笼.9.一件衣服打九折后售价180元,这件衣服降价元。
10.0.4:1.6的比值是.如果前项加上0.8,要使比值不变,后项应加上.11.把3平方米的纸片平均分成5份,每份占它的,每份的面积是平方米.12.如果3a=4b(a、b≠0),那么a:b=:;如果=27(y≠0),那么x和y成比例.13.在三角形ABC中,∠A:∠B:∠C=1:3:2,∠C=,这个三角形是三角形.14.如图所示,把底面直径6厘米、高10厘米的圆柱切成若干等份,拼成一个近似的长方体.这个长方体的表面积是平方厘米,体积是立方厘米.15.用铁皮做一个底面直径为8分米,高为6分米的圆柱形无盖水桶,至少要用平方分米的铁皮,这个水桶最多能装水升.16.把边长1厘米的正方形纸片,按规律排成长方形(1)4个正方形拼成的长方形周长是厘米.(2)用a个正方形拼成的长方形周长是厘米.17.如图所示,小华骑车到与他家相距5千米的书店买书,这是他离开家的距离与时间的示意图.可以看出:他在书店的时间是小时,他去时的速度是千米/时.三、反复比较,慎重选择(6分)18.一种饼干包装袋上标着:净重(150±5克),表示这种饼干标准的质量是150克,实际每袋最少不少于()克.A.160 B.155 C.150 D.14519.某村前年生产粮食500吨,去年粮食丰收,生产粮食600吨,去年粮食增产()A.一成B.四成C.二成D.十成20.一幢教学楼长40m,在平面图上用8cm的线段表示,这幅图的比例尺是()A.1:50 B.50:1 C.1:500 D.500:121.完成同一件工作,甲要用5小时,乙要用4小时,甲和乙工作效率的比是()A.5:4 B.4:5 C.5:9 D.不能确定22.图中正方形的面积()平行四边形的面积.A.大于B.等于C.小于D.无法判断23.最近一次数学测试,甲、乙两个同学的平均成绩为88分,甲、丙两个同学的平均成绩为90分,乙、丙两个同学的平均成绩为92分,他们三人的平均成绩是()分.A.88 B.90 C.92 D.94四、按要求填空,并画图.(6分)24.(1)在下面方格图(每个方格的边长表示1cm)中画一个直角三角形,其中两个锐角的顶点分别确定在(5,7)和(1,3)的位置上,那么直角的顶点位置可以是(,).(2)将这个三角形向右平移5格.(3)将平移后的这个三角形按1:2缩小后画在合适的位置.六、运用所学,解决问题(26分)25.如图所示,在本次体能测试中,成绩优的有90人,则共有多少人参加测试?26.爸爸将5000元存入银行,定期三年,年利率为4.15%,到期时爸爸能拿回多少钱?27.学校图书室购进300本故事书,比科技书的5倍少50本.购进科技书多少本?28.李老师带1000元去商场买篮球,买了15个,还剩40元钱,每个篮球多少元?29.学校要把一批树苗栽到科普基地,如果每行栽10棵,正好是18行,如果每行栽12棵,可以栽多少行?(用比例解)30.一个圆锥形沙堆,底面积28.26平方米,高3米.用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?31.在比例尺是1:12000000的地图上,量行济南到青岛的距离是4cm.在比例尺是1:8000000的地图上,济南到青岛的距离是多少厘米?32.图中圆的周长是12.56cm,圆的面积正好等于长方形的面积,求阴影部分的面积.参考答案与试题解析一、仔细看题,准确计算.(32分)1.【分析】根据整数、小数和分数加减乘除法运算的计算法则进行计算即可求解.【解答】解:182﹣47=1355÷= 2.4×0.5=1.2 1.27﹣0.7=0.578.1÷0.03=270×=﹣=0.77+0.33=1.10.75+=1÷=1÷0.25=40.36×=0.2713÷26=0.58.9a﹣a=7.9a80%×=1 3.14×23=25.12【点评】考查了整数、小数和分数加减乘除法运算,关键是熟练掌握计算法则正确进行计算.2.【分析】(1)根据加法交换律进行简算;(2)根据乘法交换律和结合律进行简算;(3)根据乘法分配律进行简算;(4)根据除法的性质进行简算;(5)按照从左向右的顺序进行计算;(6)先算小括号里面的减法,再算中括号里面的减法,最后算除法.【解答】解:(1)6.28+3.5+3.72=6.28+3.72+3.5=10+3.5=13.5(2)2.5×3.2×125=2.5×(4×0.8)×125=(2.5×4)×(0.8×125)=10×100=1000(3)÷9+×=×+×=(+)×=×=(4)1000÷12.5÷8=1000÷(12.5×8)=1000÷100=10(5)2.5÷×=4×=7(6)÷[﹣(1﹣)]=÷[﹣]=÷=【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律进行简便计算.3.【分析】(1)先计算左边,依据等式的性质,方程两边同时除以1.2求解;(2)方程的两边同时加上2x,然后方程的两边同时减去2,再同时除以2求解;(3)根据比例的基本性质,变成0.2x=0.75×16,然后等式的两边同时除以0.2求解.【解答】解:(1)x+20%x=1.2x=0.41.2x÷1.2=0.4÷1.2x=(2)36﹣2x=1236﹣2x+2x=12+2x12+2x﹣12=36﹣122x÷2=24÷2x=12(3)=0.2x=0.75×160.2x÷0.2=12÷0.2x=60【点评】此题考查了运用等式的性质解方程,即等式两边同加上或同减去、同乘上或同除以一个数(0除外),两边仍相等,同时注意“=”上下要对齐.二、细心审题,恰当填空.(28分)4.【分析】根据分数与除法的关系=4÷5,再根据商不变的性质被除数、除数都乘4就是16÷20;根据比与分数的关系=4:5,再根据比的基本性质比的前、后项都乘0.5就是2:2.5;4÷5=0.8;把0.8的小数点向右移动两位添上百分号就是80%.【解答】解:=16÷20=2:2.5=80%=0.8.故答案为:20,2,80,0.8.【点评】解答此题的关键是,根据小数、分数、百分数、除法、比之间的关系及商不变的性质、比的基本性质即可进行转化.5.【分析】这是一道有关温度的正负数的运算题目,最高气温与最低气温二者之差,即求这一天的温差,列式为12﹣(﹣5),计算即可.【解答】解:12﹣(﹣5)=12+5=17(℃)答:这一天最高气温与最低气温相差17℃.故答案为:17.【点评】本题考查零上温度与零下温度之差的题目,列式容易出错.6.【分析】高级单位千米化低级单位米乘进率1000;即30.3千米合30300米;改写成用“万”作单位的数,就是在万位数的右下角点上小数点,然后把小数末尾的0去掉,再在数的后面写上“万”字;精确到十分位即把百分位上的数进行“四舍五入”.【解答】解:30.3千米=30300米30300米=3.03万米3.03万米≈3.0万米即厦门市地铁1号线全长约30.3千米,合30300米,改写成用“万”作单位的数是3.03万米,精确到十分位约是3.0万米.故答案为:30300,3.03,3.0.【点评】此题考查的知识点有:长度的单位换算、整数的改写、求近似数.7.【分析】首先根据路程÷时间=速度,用王芳骑自行车行的路程除以用的时间,求出王芳骑自行车的速度是多少千米/时;然后用时间除以路程,也就是用王芳骑75千米用的时间除以75,求出她行1千米需多少小时即可.【解答】解:75÷3=25(千米/时)3÷75=0.04(小时)答:王芳骑自行车的速度是25千米/时,她行1千米需0.04小时.故答案为:25、0.04.【点评】此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握,解答此题的关键是弄清楚题中的各个量之间的数量关系.8.【分析】7只小鸟飞进6个笼子,7÷6=1(只)…1(只),即当每个笼子里平均飞进1只时,还有一只在笼外,根据抽屉原理可知,至少有1+1=2只小鸟在同一个笼子里.【解答】解:5÷4=1(只)…1(只)1+1=2(只)答:至少有2只小鸟要飞回同一个鸟笼.故答案为:2.【点评】把多于mn(m乘n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体.9.【分析】打九折是指现价是原价的90%,把原价看成单位“1”,它的90%对应的数量是180元,由此用除法求出原价,进而求出降低的价格.【解答】解:180÷90%=200(元)200﹣180=20(元)答:这件衣服降价20元.故答案为:20.【点评】本题关键是理解打折的含义:打几折现价就是原价的百分之几十.10.【分析】比的基本性质,即比的前项和后项同时乘一个数或除以一个数(0除外)比值不变;用比的前项除以后项求出比值,如果前项加上0.8,可知比的前项由0.4变成1.2,相当于前项乘3;根据比的性质,要使比值不变,后项也应该乘3,由1.6变成4.8,相当于后项应加上4.8﹣1.6=3.2;据此进行解答.【解答】解:0.4:1.6=0.4÷1.6=0.25(0.4+0.8)÷0.4×1.6﹣1.6=1.2÷0.4×1.6﹣1.6=4×1.6﹣1.6=4.8﹣1.6=3.2答:0.4:1.6的比值是0.25.如果前项加上0.8,要使比值不变,后项应加上3.2.故答案为:0.25,3.2.【点评】此题考查了求比值、比的性质的运用,比的前项和后项同时乘或除以相同的数(0除外),比值才不变.11.【分析】把这张纸片的面积看作单位“1”,把它平均分成5份,每份是这张纸片的;求每份的面积,用这张纸片的总面积除以平均分成的份数.【解答】解:1÷3÷5=0.6(平方米)答:每份占它的,每份的面积是0.6平方米.故答案为:,0.6.【点评】解决此题关键是弄清求的是“分率”还是“具体的数量”,求分率:平均分的是单位“1”;求具体的数量:平均分的是具体的数量,要注意:分率不能带单位名称,而具体的数量要带单位名称.12.【分析】(1)根据比例的基本性质解答即可;(2)判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:(1)3a=4b(a、b≠0)a:b=4:3(2)如果=27(y≠0),比值一定,那么x和y成反比例;故答案为:4、3,反.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.13.【分析】根据比例设∠A、∠B、∠C分别为k、3k、2k,然后根据三角形的内角和等于180°,列式求出∠C,作出判断即可.【解答】解:设∠A、∠B、∠C分别为k、3k、2k,则k+2k+3k=180°解得k=30°即∠A=30°所以,∠C=2×30°=60°∠b=3×30°=90°这个三角形是直角三角形.故答案为:60°,直角.【点评】本题考查了三角形内角和定理,利用“设k法”用k表示出∠A、∠B、∠C可以使运算更加简便.14.【分析】把圆柱切成若干等分,拼成一个近似的长方体.这个近似长方体的长等于圆柱的底面周长的一半,宽等于圆柱的底面半径,高等于圆柱的高,体积不变等于圆柱的体积,然后根据长方体的表面积公式:S=2(ab+ah+bh),体积公式:V=abh,列式解答即可.【解答】解:长方体的长:3.14×6÷2=9.42(厘米);长方体的宽:6÷2=3(厘米);表面积是:(9.42×3+9.42×10+3×10)×2=(28.26+94.2+30)×2=152.46×2=304.92(平方厘米);体积:9.42×3×10=28.26×6=282.6(立方厘米).答:这个长方体的表面积是304.92平方厘米,体积是282.6立方厘米.故答案为:304.92,282.6.【点评】本题重点考查了圆柱体的体积推导公式的过程中的一些知识点:长方体的长等于圆柱的底面周长的一半,宽等于圆柱的底面半径,高等于圆柱的高.15.【分析】由题意可知:做这个水桶需要的铁皮面积就等于水桶的表面积减去上盖的面积,即水桶的侧面积加上下底的面积即可,水桶的底面直径和高已知,利用圆柱的侧面积S=πdh和圆的面积S=πr2的计算方法即可求解;再利用圆柱的体积V=Sh,即可求出这个水桶的容积.【解答】解:3.14×8×6+3.14×(8÷2)2=3.14×48+3.14×16=3.14×64=200.96(平方分米)3.14×(8÷2)2×6=3.14×16×6=3.14×96=301.44(立方分米)301.44立方分米=301.44升答:至少要用200.96平方分米的铁皮,这个水桶最多能装水301.44升.故答案为:200.96,301.44.【点评】此题主要考查圆柱的表面积和体积的计算方法在实际生活中的应用.16.【分析】根据题意,按规律拼成的长方形的长:正方形的个数×正方形的边长,长方形的宽还是原来正方形的边长,即1厘米.再根据长方形的周长公式计算即可.【解答】解:由题意可知,按规律拼成的长方形的长:正方形的个数×正方形的边长,长方形的宽还是原来正方形的边长.(1)用4个正方形拼成的长方形,长=4×1=4(厘米),宽=1(厘米).周长=(长+宽)×2=(4+1)×2=10(厘米);(2)用a个正方形拼成的长方形,长=a×1=a(厘米),宽=1(厘米)用m个正方形拼成的长方形的周长周长=(长+宽)×2=(a+1)×2=2a+2(厘米).故答案为:10,2a+2.【点评】根据题意,可以求出按规律拼成长方形的长和宽,再根据长方形的周长公式计算即可.17.【分析】观察此图,可知横轴表示时间,单位小时,把1小时平均分成4份,每份是小时;纵轴表示路程;小华的行程分三个阶段,第一个阶段是从家骑车到相距5千米远的书店,用了小时;第二个阶段是在书店买书,用了1小时;第三个阶段是从书店回家,用1小时,根据速度=路程÷时间,求得小华去时速度即可.【解答】解:(1)从图中看出,小华在书店买书是从小时到1小时用去的时间为:1﹣=1(小时),答:他在书店买书用去1小时;(2)5÷=10(千米/小时)答:他去时的速度是10千米/时.故答案为:1,4.【点评】此题考查了利用折线统计图表示行走时间和行走路程的关系的方法,解决关键是会分析不同的行程状况.三、反复比较,慎重选择18.【分析】净重(150±5克),表示这种饼干标准的质量是150克,实际每袋最多不多于150+5克,最少不少于150﹣5克.【解答】解:净重(150±5克),表示最少不少于:150﹣5=145(克).故选:D.【点评】此题首先要知道以谁为标准,规定超出标准的为正,低于标准的为负,由此用正负数解答问题.19.【分析】几成就是十分之几、百分之几十,把前年粮食生产总量看做单位“1”,求出去年比前年粮食增产百分之几,然后把百分数化为成数即可.【解答】解:(600﹣500)÷500,=100÷500,=20%,20%即二成,故选:C.【点评】本题重点要理解成数的意义及成数与分数、百分数之间的互化.20.【分析】图上距离和实际距离已知,依据“图上距离:实际距离=比例尺”即可求得这幅图的比例尺.【解答】解:因为40米=4000厘米则8厘米:4000厘米=1:500答:这幅图的比例尺是1:500.故选:C.【点评】此题主要考查比例尺的意义,解答时要注意单位的换算.21.【分析】把这件工作的工作量看成单位“1”,甲的工作效率是,乙的工作效率是,用甲的工作效率比上乙的工作效率,再化简即可求解.【解答】解::=(×20):(×20)=4:5答:甲和乙工作效率的比是4:5.故选:B.【点评】解决本题也可以根据工作量一定,工作效率和工作时间的反比例关系求解,甲乙的工作时间比是5:4,那么工作效率比就是4:5.22.【分析】因为正方形和平行四边形等底等高,则正方形的面积就等于平行四边形的面积,据此解答即可.【解答】解:因为正方形和平行四边形等底等高,则正方形的面积就等于平行四边形的面积.故选:B.【点评】此题主要考查正方形和平行四边形的面积的计算方法的灵活应用.23.【分析】根据“平均数×数量=总数”分别求出甲、乙的成绩和,甲、丙的成绩和,乙、丙的成绩和,把三个的数相加,就是三个人总分的2倍;然后再分别除以2和3就是他们三人的平均成绩.【解答】解:(88×2+90×2+92×2)÷2÷3=540÷6=90(分)答:他们三人的平均成绩是90分.故选:B.【点评】解答此题应根据平均数、数量和总数三者之间的关系进行解答.四、按要求填空,并画图.24.【分析】(1)根据数对表示位置的方法是:第一个数字表示列,第二个数字表示行,由此即可确定两个锐角的顶点的位置,根据直角三角形的两条直角边互相垂直的性质,即可求得直角顶点的位置,从而画出这个直角三角形;(2)根据图形平移的方法,先把这个三角形的三个顶点分别向右平移5格,再把它们依次连接起来,即可得出平移后的三角形2;(3)根据图形放大与缩小的方法,先数出原来三角形的两条直角边,把它们分别除以2,即可得出缩小后的直角三角形的两条直角边,由此即可画出缩小后的三角形3.【解答】解:(1)根据数对表示位置的方法,可在平面图中标出三角形的两个锐角的顶点如图所示,则直角顶点的位置可以是:(5,3),由此即可画出这个直角三角形1;(2)先把这个三角形的三个顶点分别向右平移5格,再把它们依次连接起来,即可得出平移后的三角形2;(3)原直角三角形的两条直角边分别是4厘米,按照1:2缩小后,两条直角边的长度是4÷2=2厘米,由此即可画出这个缩小后的三角形3,如图所示:故答案为:(1)5;3.【点评】此题考查了数对表示位置的方法,图形的平移,放大与缩小的方法的灵活应用.六、运用所学,解决问题(26分)25.【分析】由题意可知:用90除以45%,即可求出参加测试的总人数.【解答】解:90÷45%=200(人)答:有200人参加测试.【点评】本题主要考查扇形统计图的应用,关键根据百分数的意义做题.26.【分析】此题属于存款利息问题,时间是3年,年利率为4.15%,本金是5000元,把以上数据代入关系式“本息=本金+本金×利率×时间”,列式解答即可.【解答】解:5000+5000×4.15%×3=5000+5000×0.0415×3=5000+622.5=5622.5(元)答:到期能取回本息5622.5元.【点评】解答此类问题,关键的是熟练掌握关系式“利息=本金×利率×时间”、“本息=本金+本金×利率×时间”.27.【分析】学校图书室购进300本故事书,比科技书的5倍少50本,也就是购进的300本故事书加上50本就是科技书的5倍,然后再除以5即可.【解答】解:(300+50)÷5=350÷5=70(本)答:购进科技书70本.【点评】本题关键是明确它们之间的倍数关系,然后再列式解答.28.【分析】根据减法的意义可知:15个篮球共花了1000﹣40元,根据除法的意义可知:每个篮球的价格是(1000﹣40)÷15元.【解答】解:(1000﹣40)÷15=960÷15=64(元)答:每个篮球64元.【点评】此题利用基本关系式:总价÷数量=单价解决问题.29.【分析】根据总棵数不变可知,每行栽的棵数和行数乘积一定,即成反比例关系,设需要栽x行,用原来每行的棵数×原来的行数=现在每行的棵数×现在的行数,据此可列方程12x=10×18解答即可.【解答】解:设需要栽x行,12x=10×1812x=180x=15答:可以栽15行.【点评】解答此题的关键是,先判断题中的两种相关联的量成何比例,然后找准对应量,列式解答即可.30.【分析】要求能铺多少米,首先根据圆锥的体积公式:v=sh,求出沙堆的体积,把这堆沙铺在长方形的路面上就相当于一个长方体,只是形状改变了,但沙的体积没有变,因此,用沙的体积除以长方体的长再除以高就是所铺的长度.由此列式解答.【解答】解:2厘米=0.02米,×28.26×3÷(10×0.02)=28.26÷0.2=141.3(米);答:能铺141.3米.【点评】此题属于圆锥和长方体的体积的实际应用,解答时首先明确沙堆原来的形状是圆锥形,铺在长方形的路面上,体积不变,所以根据圆锥的体积公式求出沙的体积,用体积除以长方体的底面积问题就得到解决.31.【分析】先求两地间的实际距离,根据“图上距离÷比例尺=实际距离”,代入数值,计算出两地间的实际距离,进而根据“实际距离×比例尺=图上距离”解答即可.【解答】解:4÷=48000000(厘米)48000000×=6(厘米)答:在比例尺是1:8000000的地图上,济南到青岛的距离是6厘米.【点评】此题有计算公式可用,根据图上距离、比例尺和实际距离三者的关系,进行分析解答即可得出结论.32.【分析】由圆的周长为12.56cm,求出圆的半径:12.56÷3.14÷2=2(厘米);阴影的面积=圆的面积﹣圆的面积=圆的面积.据此解答.【解答】解:12.56÷3.14÷2=2(厘米)3.14×2×2﹣3.14×2×2÷4=12.56﹣3.14=9.42(平方厘米)答:阴影部分的面积是9.42平方厘米.【点评】组合图形的面积一般都是将它转化到已知的规则图形中进行计算.本题关键是得到圆的半径,进而算出圆的面积.。
2019-2020学年福建省厦门市思明区双十中学九年级(下)第一次段考数学试卷
2019-2020学年福建省厦门市思明区双十中学九年级(下)第一次段考数学试卷一、选择题(每题4分,共40分)1.(4分)下列实数为无理数的是()A.﹣5B.C.0D.2.(4分)如图,这是由5个大小相同的正方体搭成的几何体,该几何体的左视图()A.B.C.D.3.(4分)这段时间,一个叫“学习强国”的理论学习平台火了,很多人主动下载、积极打卡,兴起了一股全民学习的热潮.据不完全统计,截止4月2号,华为官方应用市场“学习强国APP”下载量已达8830万次,请将8830万用科学记数法表示为()A.0.883×109B.8.83×108C.8.83×107D.88.3×1064.(4分)下列运算正确的是()A.7a﹣a=6B.a2•a3=a5C.(a3)3=a6D.(ab)4=ab45.(4分)不等式组的解集在数轴上表示为()A.B.C.D.6.(4分)下列各式的运算或变形中,用到分配律的是()A.2×3=6B.(3)2=32•()2C.由x=得x=D.3+2=57.(4分)已知压强的计算公式是P=,我们知道,刀具在使用一段时间后,就好变钝,如果刀刃磨薄,刀具就会变得锋利.下列说法中,能正确解释刀具变得锋利这一现象的是()A.当压力一定时,压强随受力面积的减小而减小B.当压力一定时,压强随受力面积的减小而增大C.当受力面积一定时,压强随压力的增大而增大D.当受力面积一定时,压强随压力的增大面减小8.(4分)已知△ABC内接于⊙O,连接AO并延长交BC于点D,若∠B=62°,∠C=50°,则∠ADB的度数是()A.68°B.72°C.78°D.82°9.(4分)如图,正六边形ABCDEF的中心与坐标原点O重合,其中A(﹣2,0).将六边形ABCDEF绕原点O按顺时针方向旋转2018次,每次旋转60°,则旋转后点A的对应点A'的坐标是()A.(1,)B.(,1)C.(1,)D.(﹣1,)10.(4分)如图,在平面直角坐标系网格中,点Q,R,S,T都在格点上,过点P(1,2)的抛物线y=ax2+2ax+c (a<0)可能还经过()A.点Q B.点R C.点S D.点T二、填空题(每题4分,共16分)11.(4分)若分式有意义,则x应满足的条件是.12.(4分)分解因式:m2﹣2m=.13.(4分)若某几何体从某个方向观察得到的视图是正方形,则这个几何体可以是.14.(4分)已知a﹣b=1,则a2﹣b2﹣2b的值是.15.(4分)某工厂的产品每50件装为一箱,现质检部门对100箱产品进行质量检查,每箱中的次品数见表:次品数012345箱数5014201042该工厂规定:一箱产品的次品数达到或超过6%,则判定该箱为质量不合格的产品箱.若在这100箱中随机抽取一箱,抽到质量不合格的产品箱的概率为.16.(4分)如图,含30°的直角三角板ABC(其中∠ABC=90°)的三个顶点均在反比例函数y=的图象上,且斜边AC经过原点O,则直角三角板ABC的面积为.三、解管题17.(10分)计算(1)×+﹣;(2)[(2x﹣y)(2x+y)+(4x﹣y)2]÷2x.18.(10分)(1)解一元二次方程:x2﹣4x+1=0.(2)解分式方程:+3=.19.(6分)先化简,再求值:÷﹣,其中x=2+.20.(8分)如图,已知AB∥CF,D是AB上一点,DF交AC于点E,若AB=BD+CF,求证:△ADE≌△CFE.21.(8分)(1)已知关于x、y的二元一次方程组,则4x2﹣4xy+y2的值为.(2)若,且ab=4,求(a2+2)(b2+2)的值.22.(10分)实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x (时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=上(k>0)刻画(如图所示).(1)根据上述数学模型计算:喝酒后几时血液中的酒精含量达到最大值?最大值为多少?(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.23.(10分)阅读理解,并回答问题:若x1,x2是方程ax2+bx+c=0的两个实数根,则有ax2+bx+c=a(x﹣x1)(x﹣x2).即ax2+bx+c=ax2﹣a(x1+x2)x+ax1x2,于是b=﹣a(x1+x2),c=ax1x2.由此可得一元二次方程的根与系数关系:x1+x2=﹣,x1x2=.这就是我们众所周知的韦达定理.(1)已知m,n是方程x2﹣x﹣100=0的两个实数根,不解方程求m2+n2的值;(2)若x1,x2,x3,是关于x的方程x(x﹣2)2=t的三个实数根,且x1<x2<x3;①x1x2+x2x3+x3x1的值;②求x3﹣x1的最大值.24.(11分)如图,在△ABC中,∠BAC=90°,点F在BC边上,过A,B,F三点的⊙O交AC于另一点D,作直径AE,连结EF并延长交AC于点G,连结BE,BD,四边形BDGE是平行四边形.(1)求证:AB=BF.(2)当F为BC的中点,且AC=3时,求⊙O的直径长.25.(13分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.2019-2020学年福建省厦门市思明区双十中学九年级(下)第一次段考数学试卷参考答案与试题解析一、选择题(每题4分,共40分)1.【解答】解:A.﹣5是整数,属于有理数;B.是分数,属于有理数;C.0是整数,属于有理数;D.是无理数.故选:D.2.【解答】解:左视图有2列,每列小正方形数目分别为2,1.故选:A.3.【解答】解:将“8830万”用科学记数法表示为8.83×107.故选:C.4.【解答】解:A、7a﹣a=6a,此选项错误;B、a2•a3=a5,此选项正确;C、(a3)3=a9,此选项错误;D、(ab)4=a4b4,此选项错误;故选:B.5.【解答】解:解不等式x﹣1>0,得:x>1;解不等式﹣3x+6≥0,得:x≤2,所以不等式组的解集为:1<x≤2,数轴上表示为:,故选:C.6.【解答】解:2×3=6,利用的乘法的结合律,故选项A不符合题意;(3)2=32•()2,用的是积的乘方,故选项B不符合题意;由x=得x=,用到的是除法,故选项C不符合题意;3+2=5,用到的是乘法分配律,故选项D符合题意;故选:D.7.【解答】解:根据压强的计算公式是P=可知:当压力一定时,S越小,P的值越大,则压强随受力面积的减小而增大,故选:B.8.【解答】解:延长AD交⊙O于E,连接CE,则∠E=∠B=62°,∠ACE=90°,∴∠CAE=90°﹣62°=28°,∵∠ADB=∠CAE+∠ACB=78°,故选:C.9.【解答】解:连接OB、OC、OE、OF,作EH⊥OD于H,∵六边形ABCDEF是正六边形,∴∠AOF=∠FOE=∠EOD=∠DOC=∠COB=∠BOA=60°,∵将正六边形ABCDEF绕原点O顺时针旋转,每次旋转60°,∴点A旋转6次回到点A,2018÷6=336 (2)∴正六边形ABCDEF绕原点O顺时针旋转2018次,与点E重合,在Rt△EOH中,OH=OE=1,EH=OH=∴顶点A的坐标为(1,),故选:A.10.【解答】解:∵抛物线y=ax2+2ax+c(a<0)过点(1,2),∴a+2a+c=2,即3a+c=2,若抛物线y=ax2+2ax+c(a<0)过点Q(2,3),则4a+4a+c=5a+(3a+c)=3,得a=0.2与a<0矛盾,故选项A不符合题意,若抛物线y=ax2+2ax+c(a<0)过点R(﹣1,0),则a﹣2a+c=﹣4a+(3a+c)=0,得a=0.5与a<0矛盾,故选项B不符合题意,若抛物线y=ax2+2ax+c(a<0)过点S(﹣2,1),则4a﹣4a+c=﹣3a+(3a+c)=1,得a=1与a<0矛盾,故选项C不符合题意,若抛物线y=ax2+2ax+c(a<0)过点T(﹣4,﹣1),则16a﹣8a+c=5a+(3a+c)=﹣1,得a=﹣0.6,故选项D 符合题意,故选:D.二、填空题(每题4分,共16分)11.【解答】解:分式有意义,则x﹣2≠0,则x应满足的条件是:x≠2.故答案为:x≠2.12.【解答】解:m2﹣2m=m(m﹣2).13.【解答】解:主视图是正方形的几何体可以是正方体,故答案为:正方体(答案不唯一).14.【解答】:∵a﹣b=1,∴a=b+1,∴a2﹣b2﹣2b=(b+1)2﹣b2﹣2b=b2+2b+1﹣b2﹣2b=1.故答案为:1.15.【解答】解:50×6%=3(件),若在这100箱中随机抽取一箱,抽到质量不合格的产品箱概率为(10+4+2)÷100=0.16,故答案为0.16.16.【解答】解:如图,连接OB,∵含30°的直角三角板ABC(其中∠ABC=90°),OA=OC,∴OB=AC=OA,AB=AC=OA,∴OA=OB=AB,∴△OAB为等边三角形,∵点A,B在反比例函数y=的图象上,∴点A,B关于直线y=x对称,设点A(a,),则点B(,a),∵OA2=AB2,∴,化简得:,∴S△ABC=2S△OAB==.故答案为:.三、解管题17.【解答】解:(1)原式=+3﹣=2+3﹣=4;(2)原式=(4x2﹣y2+16x2﹣8xy+y2)÷2x=(20x2﹣8xy)÷2x=10x﹣4y.18.【解答】解:(1)x2﹣4x+1=0,x2﹣4x=﹣1,x2﹣4x+4=﹣1+4,(x﹣2)2=3,x﹣2=±,x1=2+,x2=2﹣;(2)方程两边都乘以x﹣2得:1+3(x﹣2)=﹣(1﹣x),解得:x=2,检验:当x=2时,x﹣2=0,所以x=2不是原方程的解,即原方程无解.19.【解答】解:÷﹣=×﹣=﹣=,当x=2+时,原式==.20.【解答】证明:∵AB=BD+CF,又∵AB=BD+AD,∴CF=AD∵AB∥CF,∴∠A=∠ACF,∠ADF=∠F在△ADE与△CFE中,∴△ADE≌△CFE(ASA).21.【解答】解:(1)将方程组中两方程相加得,2x﹣y=6,∴原式=(2x﹣y)2=62=36,故答案为:36;(2)由方程组得2(2a+b)﹣(3a+b)=2k﹣(2k﹣3),∴a+b=3,∵ab=4,∴原式=(ab)2+2a2+2b2+4=(ab)2+2(a2+b2)+4=(ab)2+2[(a+b)2﹣2ab]+4=42+2(32﹣2×4)+4=22.22.【解答】解:(1)y=﹣200x2+400x=﹣200(x﹣1)2+200,∴x=1时,血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);(2)不能驾车上班;理由:∵晚上20:00到第二天早上7:00,一共有11小时,∴将x=11代入y=,∵,∴第二天早上7:00不能驾车去上班.23.【解答】解:(1)∵m,n是方程x2﹣x﹣100=0的两个实数根∴m+n=1,mn=﹣100∴m2+n2=(m+n)2﹣2mn=12﹣2×(﹣100)=201;(2)①由题意得:x(x﹣2)2﹣t=(x﹣x1)(x﹣x2)(x﹣x3)∴x3﹣4x2+4x﹣t=x3﹣(x1+x2+x3)x2+(x1x2+x2x3+x3x1)x﹣x1x2x3∴x1+x2+x3=4,x1x2+x2x3+x3x1=4,x1x2x3=t∴x1x2+x2x3+x3x1的值为4;②∵x1+x2+x3=4∴x1+x3=4﹣x2∵x1x2+x2x3+x3x1=4∴x3x1=4﹣(x1+x3)x2∵x1x2x3=t∴x3x1=∵=﹣4x3x1∴=﹣4[4﹣(x1+x3)x2]=﹣3+8x2=﹣3+≤∴当x2=时,x3﹣x1的最大值为:=.∴x3﹣x1的最大值为.24.【解答】解:(1)连接AF,∵AE是⊙O的直径,∴AF⊥EG,∵四边形BDGE是平行四边形,∴BD∥EG,∴BD⊥AF,∵∠BAC=90°,∴BD是⊙O的直径,∴BD垂直平分AF,∴AB=BF;(2)∵当F为BC的中点,∴BF=BC,∵AB=BF,∴AB=BC,∵∠BAC=90°,∴∠C=30°,∴∠ABC=60°,AB=AC=,∵AB=BF,∴∠ABD=30°,∴BD=2,∴⊙O的直径长为2.25.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E、点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b,将B(3,0)、C(0,﹣1)代入y=kx+b,,解得:,∴线段BC所在直线的解析式为y=x﹣1.∵点E在△ABC内(含边界),∴,解得:≤t≤.(3)当x<或x>3时,y=﹣x2+x﹣1;当≤x≤3时,y=x2﹣x+1.假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.(方法一)①当m<或m>3时,点Q的坐标为(m,﹣m2+m﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,整理,得:5m2﹣28m+12=0,解得:m1=,m2=,∴点P的坐标为(,0)或(,0);②当≤m≤3时,点Q的坐标为(m,m2﹣m+1)(如图2),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,整理,得:11m2﹣28m+12=0,解得:m3=,m4=2,∴点P的坐标为(,0)或(1,0).(方法二)过点Q作QN⊥x轴于点N,画出简图,如图3所示.∵∠CPQ=90°,∴∠OPC+∠NPQ=90°.又∵∠OPC+∠OCP=90°,∴∠OCP=∠NPQ,∴tan∠OCP=tan∠NPQ,即=.①当m<或m>3时,点Q的坐标为(m,﹣m2+m﹣1),∴=,整理,得:5m2﹣28m+12=0,解得:m1=,m2=,∴点P的坐标为(,0)或(,0);②当≤m≤3时,点Q的坐标为(m,m2﹣m+1),∴=,整理,得:11m2﹣28m+12=0,解得:m3=,m4=2,∴点P的坐标为(,0)或(1,0).综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).。
2020年厦门市高二上期末市质检数学模拟试题及参考答案【解析】3
2019-2020学年度厦门市第一学期高二年级质量检测数学试题满分为150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.全部答案答在答题卡上,答在本试卷上无效。
一、选择题:本大题共8个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“∃x0∈R,2<或x02>x0”的否定是()A.∃x0∈R,2≥或x02≤x0B.∀x∈R,2x≥或x2≤xC.∀x∈R,2x≥且x2≤xD.∃x0∈R,2≥且x02≤x02.如图,M是三棱锥P﹣ABC的底面△ABC的重心,若(x、y、x∈R),则x+y+z的值为()A.B.C.D.13.有一种“三角形”能够像圆一样,当作轮子用.这种神奇的三角形,就是以19世纪德国工程师勒洛的名字命名的勒洛三角形.这种三角形常出现在制造业中(例如图1中的扫地机器人).三个等半径的圆两两互相经过圆心,三个圆相交的部分就是勒洛三角形,如图2所示.现从图2中的勒洛三角形内部随机取一点,则此点取自阴影部分的概率为()A.B.C.D.4.某一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,摄氏温度﹣504712151923273136/℃热饮杯数15615013212813011610489937654(如图所示),请根据结果预测,若某天的气温是3℃,大约能卖出的热饮杯数为()(单词提示:Linear 线性)A.143B.141C.138D.1345.如图,在三棱柱ABC﹣A1B1C1中,点P在平面A1B1C1内运动,使得二面角P﹣AB﹣C的平面角与二面角P﹣BC﹣A的平面角互余,则点P的轨迹是()A.一段圆弧B.椭圆的一部分C.抛物线D.双曲线的一支6.命题p:关于x的方程x|x|﹣2x+m=0(m∈R)有三个实数根;命题q:0<m<1;则命题p成立是命题q成立的()A..充分而不必要条件B..必要而不充分条件C..充要条件D.既不充分又不必要的条件7.设F1,F2是双曲线C:=1(a>0,b>0)的左,右焦点,O是坐标原点.过F2的一条直线与双曲线C和y轴分别交于A、B两点.若|OA|=|OF2|,|OB|=|OA|,则双曲线C的离心率为()A. B. C. D.8.《九章算术)是我国古代内容极为丰富的数学名著第九章“勾股”,讲述了“勾股定理及一些应用.直角三角形的两直角边与斜边的长分别称“勾”“股”“弦”,且“勾2+股2=弦2”.设F是椭圆=1(a>b>0)的左焦点,直线y=x交椭圆于A、B两点,若|AF|,|BF|恰好是Rt△ABF的”勾”“股”,则此椭圆的离心率为()A. B. C. D.二、多选题:本大题共2个小题,每小题5分,共10分。
2019-2020学年(上)厦门市初二数学质量检测卷及答案
2019-2020学年(上)厦门市初二质量检测数学注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡.2.答案必须写在答题卡上,否则不能得分.3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.计算1-2的结果是A.0B.21C.1D.22.下列长度的三条线段能组成三角形的是A.3,4,7B.3,4,8C.3,3,5D.3,3,73.分式2-x x 有意义,则x 满足的条件是A.2≠x B.0=x C.2=x D.2>x 4.如图1,在△ABC 中,AD 交边BC 于点D.设△ABC 的重心为M ,若点M 在线段AD 上,则下列结论正确的是A.∠BAD=∠CADB.AM=DMB. C.△ABD 的周长等于△ACD 的周长 D.△ABD 的面积等于△ACD 的面积5.已知正方形ABCD 边长为x ,长方形EFGH 的一边长为2,另一边的长为x ,则正方形ABCD 与长方形EFGH 的面积之和等于A.边长为1+x 的正方形的面积B.一边长为2,另一边的长为x +1的长方形面积C.一边长为x ,另一边的长为x +1的长方形面积D.一边长为x ,另一边的长为x +2的长方形面积6.从甲地到乙地有两条路:一条是全长750km 的普通公路,另一条是全长600km 高速公路.某客车从甲地出发去乙地,若走高速公路,则平均速度是走普通公路的平均速度的2倍,所需时间比走普通公路所需时间少5小时.设客车在普通公路上行驶的平均速度是x km/h ,则下列等式正确的是A.x x 27505600=+ B.x x 27505600=-C.x x 75052600=+ D.x x 75052600=-7.在△ABC 中,D,E 分别是边AB ,AC 上的点,且AD=CE ,∠DEC=∠C=70°,∠ADE=30°,则下列结论正确的是A.DE=CEB.BC=CEC.DB=DED.AE=DB8.在平面直角坐标系中,O 是坐标原点,点A (3,2),点P (m ,0)(m <6),若POA 是等腰三角形,则m 可取的值最多有A.2个B.3个C.4个D.5个9.下列四个多项式,可能是322-+mx x (m 是整数)的因式的是A.x -2B.2x +3C.x +4D.122-x 10.如图2,点D 在线段BC 上,若BC=DE ,AC=DC ,AB=EC ,且∠ACE=180°-∠ABC-x 2,则下列角中,大小为x °的角是A.∠EFCB.∠ABCC.∠FDCD.∠DFC二、填空题(本大题有6小题,每小题4分,共24分)11.计算:(1)()=32a ;(2)()=+22253b a a12.计算:=⋅32334x y y x 13.如图3,在△ABC 中,∠ACB=90°,AD 平分∠CAB ,交边BC 于点D ,过点D 作DE ⊥AB ,垂足为E.若∠CAD=20°,则∠EDB 的度数是.14.如图4,有一张边长为x 的正方形ABCD 纸板,在它的一个角上切去一个边长为y 的正方形AEFG ,剩下图形的面积是32,过点F 作FH ⊥DC ,垂足为H.将长方形GFHD 切下,与长方形EBCH 重新拼成一个长方形,若拼成的长方形的较长的一边长为8,则正方形ABCD 的面积是.15.已知锐角∠MPN ,依照下列步骤进行尺规作图:(1)在射线PN 上截取线段PA(2)分别以P ,A 为圆心,大于21PA 的长为半径作弧,两弧相交于E 、F 两点;(3)作直线EF ,交射线PM 于点B ;(4)在射线AN 上截取AC=PB ;(5)连接BC则∠BCP 与∠MPN 之间的数量关系是.16.在△ABC 中,∠C=90°,D 是边BC 上一点,连接AD ,若∠BAD+3∠CAD=90°,DC=a ,BD=b ,则AB=.(用含a ,b 的式子表示)三、解答题(本大题有9小题,共86分)17.(本题满分12分)(1)计算:()()()()34222+-+-+y y y y ;(2)分解因式:22222242y a xy a x a ++.18.(本题满分7分)如图5,点B ,E ,C ,F 在一条直线上,AB=DE ,∠A=∠D ,AB ∥DE.求证:BE=CF.先化简,再求值:17149122+-÷-mm m ,其中m =2.20.(本题满分8分)已知点A (1,1),B (-1,1),C (0,4).(1)在平面直角坐标系中描出A 、B 、C 三点;(2)在同一平面内,点与三角形的位置关系有三种:点在三角形内、点在三角形边上、点在三角形外.若点P 在△ABC 外,请判断点P 关于y 轴的对称点P’与△ABC 的位置关系,直接写出判断结果.21.(本题满分8分)如图6,在△ABC 中,AB=AC,过点B 作BD ⊥AC ,垂足为D ,,若D 是边AC 的中点,(1)求证:△ABC 是等边三角形;(2)在线段BD 上求作点E ,使得CE=2DE.(要求:尺规作图,不写画法,保留作图痕迹)22.(本题满分9分)某企业在甲地有一工厂(简称甲厂)生产某产品,2017年的年产量过万件,2018年甲厂经过技术改造,日均生产的该产品数是该厂2017年的2倍还多2件.(1)若甲厂2018年生产200件该产品所需的时间与2017年生产99件该产品所需的时间相同,则2017年甲厂日均生产该产品多少件?(2)由于该产品深受顾客欢迎,2019年该企业在乙地建立新厂(简称乙厂)生产该产品.乙厂的日均生产的该产品数是甲厂2017年的3倍还多4件.同年该企业要求甲、乙两厂分别生产m ,n 件产品(甲厂的日均产量与2018年相同),m :n=14:25,若甲、乙两厂同时开始生产,谁先完成任务?请说明理由.已知一些两位数相乘的算式:62×11,78×69,34×11,63×67,18×22,15×55,12×34,54×11.利用这些算式探究两位数乘法中可以简化运算的特殊情形:(1)观察已知算式,选出具有共同特征的3个算式,并用文字描述它们的共同特征;(2)分别计算你选出的算式.观察计算的结果,你能发现不经过乘法运算就可以快速、直接地写出积的规律吗?请用文字描述这个规律;(3)证明你发现的规律;(4)在已知算式中,找出可以应用(或经过转化可以应用)上述规律的所有算式,并将它们写在横线上:.24.(本题满分11分)在△PQN 中,若α+∠=∠Q 21p (0°<α≤25°),则称△PQN 为“差角三角形”,且p ∠是Q ∠的“差角”.(1)已知△ABC 是等边三角形,判断△ABC 是否为“差角三角形”,并说明理由;(2)在△ABC 中,∠C=90°,50°≤∠B ≤70°,判断△ABC 是否为“差角三角形”,若是,请写出所有的“差角”并说明理由;若不是,也请说明理由.25.(本题满分14分)如图7,在四边形ABCD 中,AC 是对角线,∠ABC=∠CDA=90°,BC=CD ,延长BC 交AD 的延长线于点E.(1)求证:AB=AD(2)若AE=BE+DE ,求∠BAC 的值;(3)过点E 作ME ∥AB ,交AC 的延长线于点M ,过点M 作MP ⊥DC ,交DC 的延长线于点P ,连接PB.设PB=a ,点O 是直线AE 上的动点,当MO+PO 的值最小时,点O 与点E 是否可能重合?若可能,请说明理由并求此时MO+PO 的值(用含a 的式子表示);若不可能,请说明理由.松鼠AI智适应—厦门金湖校区。
2019年福建省普通高中学生学业会考数学试题及答案
姓名 考生号(在此卷上答题无效)机密★2019年6月17日 启用前2 0 1 9 年 福 建 省 普 通 高 中 学 生 学 业 基 础 会 考数 学 试 题(考试时间:90分钟;满分:100分)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.第I 卷1至3页,第Ⅱ卷4至6页. 考生注意:1. 答题前,考生务必将自己的考生号、姓名填写在试题卷、答题卡上.考生要认真核对答题 卡上粘贴的条形码的“考生号、姓名”与考生本人考生号、姓名是否一致.2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色字迹签字笔在答题卡上作答.在 试题卷上作答,答案无效.3. 考试结束,监考员将试题卷和答题卡一并收回. 参考公式:样本数据x,32,…,×。
的标准差其中S 为底面面积,h 为高其中玉为样本平均数球的表面积公式S =4rR ²,柱体体积公式V= Sh,其中S 为底面面积,h 为高 球的体积公式台体体积公式其中R 为球的半径其中S',S 分别为上、下底面面积,h 为高第 I 卷 (选择题 45分)一、选择题(本大题有15小题,每小题3分,共45分.每小题只有一个选项符合题意) 1. 若 集 合A = { 0 , 1 1 , B = { 1 , 2 | ,则A U B =A.|0,1,2}B.{0,1}C.{1,2}D.{1} 2. 若角α=-50°,则角α是A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角数学试题 第 1 页 ( 共 6 页 )锥体体积公式 ,β222 1 13.右图是一个底面边长为2的正三棱柱,当侧面水平放置时,它的俯视图是(第3题)A B C D4 . 若三个数1,2,m 成等比数列,则实数m =A. 8B. 4C. 3D. 2 5 . 一 组数据3,4,5,6,7的中位数是A.7B. 6C. 5D. 4 6.函数y = 2sinx 的最小值是A.-2B.-1C. 1D. 2 7.直径为2的球的表面积是A.2πB. 4πC. 8πD.16m 8.从a,b,c,d 四个字母中,随机抽取一个字母,则抽到字母a 的概率是A.B. C. D.19 . 已 知 向 量 a = ( 1 , 2 ) , b = ( - 2 , 1 ) , 则 a - b = A. (-1,3) B.(-3,-1)C. (1,3)D. (3,1)10. 已知直线1的斜率是1,且在y 轴上的截距是- 1,则直线1的方程是A.y=-x-1B.y=-z+1C.y=x-1D.y=x+1 11 . 不等式x² - 2x>0的解集是A. {x1x<0B. {xlx>2}C. {xIO<x<2} D . x I x < 0 , 或 x > 2 }数 学 试 题 第 2 页 ( 共 6 页 )数学试题第3页(共6页)12.下列图象表示的函数中,在R 上是增函数的是A B CD13.不等式组表示的平面区域的面积是A.4B.2C. 1D.14.某公司市场营销部员工的个人月收入与月销售量成一次函数关系,其对应关系如图所示由图示信息可知,月销售量为3百件时员工的月收入是 A.2100元B. 2400元C.2700元D. 3000元15.函的零点个数是A. 1月收入(元)2400 1800O 1 2 3 月销售量(百件(第14题)D. 4C. 3B. 2X第Ⅱ卷(请考生在答题卡上作答)二 、填空题(本大题有5小题,每小题3分,共15分) 16. 若幂函数f(x)= x*的图象过点(3,(3),则这个函数的解析式f(x)=17. 执行右边的程序框图,当输人m 的值为3时,则输出的 m 值 是 18. 函数的最小值是19. 已 知 向 量a = ( 1 , 1 ) , b = ( x , 1 ) ,且a I b ,则x =20. 设△ABC 的三个内角A,B,C 所对的边分别为a,b,c,若a = √ 3 , c = 1 ,, 则 b =三 、解答题(本大题有5小题,共40分.解答应写出文字说明、证明过程或演算步骤)21. (本小题满分6分)已知,α是第一象限角.( 1 )求c o s a 的 值 ; ( Ⅱ ) 求的值.22 . (本小题满分8分)甲、乙两人玩投掷骰子游戏,规定每人每次投掷6枚骰子,将掷得的点数和记为该次成 绩.进行6轮投掷后,两人的成绩用茎叶图表示,如图. (1)求乙成绩的平均数;(Ⅱ)规定成绩在27点以上(含27点)为高分,根据两人的成绩,估计掷得高分的概率.(第22题)数学试题 第 4 页 ( 共 6 页 )开始输 入 mm<4? 是 m=m+1 否 输出m结束乙 8 559 38甲 7 43 9 6 1 0 1 2 3(第17题)(非选择题 55分】23. (本小题满分8分)一辆汽车在某段路程中的行驶速率。
福建省厦门第六中学2019年九年级综合测试题数学卷含答案
厦门第六中学2019年九年级综合测试题数学一.填空题(每空5分,共40分,其中..1—8任选7题,9、10任选1题,多做不加分) 1.一元二次方程0522=++x kx 有根的k 的取值范围是________________; 2.如图,点P 是反比例函数2y x=-上的一点,PD ⊥x 轴于点D ,则△POD 的面积为 ;3. 如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:由乙抛掷,同时 出现两个正面,乙得1分;抛出一正一反,甲得1分. 谁先累积到10分,谁就获胜.你认 为 (填“甲”或“乙”)获胜的可能性更大4.AB 、AC 与⊙O 相切于B 、C ,∠A=50O,点P 是圆上异于B 、C 的一动点,∠BPC 的度数是 ; 5.如图,已知,,,A B,A AB 4333222111A A E A A A D A A A C ====∠B =20°,则∠4A =_____;(2题图) (5题图) (6题图) (8题图) 6.如图,当半径为30cm 的转动轮转过1200角时,传送带上的物体A 平移的距离为 cm 。
7.如图,在一个房间内,有一个梯子斜靠在墙上,此时梯子的倾斜角为75°. 梯子顶端距地面的垂直距离MA 为5米,如果梯子底端不动,顶端靠在对面墙上,此时梯子的倾斜角为45°.则这间房子的宽AB 是________米;8.如图,矩形AOBC ,以O 为坐标原点,OB ,OA 分别在x 轴,y 轴上,点A 坐标为(0,3),∠OAB =60°,以AB 为轴对折后,使C 点落在D 点处,则D 点的坐标 .9.右图由正五边形构成,在图1中有5个点,图2中有12个点,图3 中有22个点,以此类推,图4(最长边上有5个点)中共有 个点; 图n (最长边上有n +1个点)中共有_________个点。
(用含n 的代数式表示)。
10.如图,作等边△ABC ,取AC 的中点D ,以AD 为边 向△ABC 形外作等边△ADE ,取AE 的中点G ,再以EG 为边作等边△EFG ,如此反复,当作出第6个三角形时, 若AB =4,整个图形的外围周长是 .A1BA2A34 B二、选择题(每题6分,共72分)11.设a 、b 、c 、d 、e 的值均为0、1、2中之一,且a+b+c+d+e=6,a 2+b 2+c 2+d 2+e 2=10,则a 3+b 3+c 3+d 3+e 3的值为 ( )(A )14 (B )16 (C )18 (D )20 12.下列说法正确的有( )个(1) 如下图,已知PA =PB ,则PO 是线段AB 的垂直平分线; (2) 对于反比例函数xy 2=,(x 1,y 1),(x 2,y 2)是其图象上两点,若x 1<x 2,则y 1>y 2; (3) 对角线互相垂直平分的四边形是菱形;(4) 如下图,在△ABC 中,∠A =30°BC=2,则AC =4; (5) 一组对边平行的四边形是梯形; (6)xky =是反比例函数; (6) 若一个等腰三角形的两边长为2和3,那么它的周长为7.A.0B.1C.2D.5(12题图) (13题图)13.如图,将矩形ABCD 分成15个大小相等的正方形,E 、F 、G 、H 分别在AD 、AB 、BC 、CD 边上,且是某个小正方形的顶点.若四边形EFGH 的面积为1,则矩形ABCD 的面积是( ) A.2 B.35 C.23 D.5614.若关于x 的不等式组232x a x a ≥+⎧⎨<-⎩有解,则函数y=(a-3)x 2-x-41图象与x 轴的交点个数为( )(A )0 (B )1 (C )2 (D )1或215.龟兔赛跑,它们从同一地点同时出发,不久兔子就把乌龟甩在后面,于是兔子便得意洋洋地躺在一棵大树下睡觉。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年厦门市初中毕业班教学质量检测数学试题一、选择题(本大题有10小题,每小题4分,共40分) 1.计算(-1)3,结果正确的是A.-3B.-12.如图,在△ABC 中,∠C =90°,则ABBC等于 A. sinA B. sinB C. tanA D. tanB3.在平面直角坐标系中,若点A 在第一象限,则点A 关于原点的中心对称点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限4.若n 是有理数,则n 的值可以是 A.-1 B.5.如图,AD 、CE 是△ABC 的高,过点A 作AF∥BC ,则下列线段 的长可表示图中两条平行线之间的距离的是 B. AD C. CE D. AC6.命题:直角三角形的一条直角边与以另一条直角边为直径的圆相切. 符合该命题的图形是7.若方程(x -m )(x -a )=0(m ≠0)的根是x 1=x 2=m ,则下列结论正确的是 =m 且a 是该方程的根 =0且a 是该方程的根 =m 但a 不是该方程的根 =0但a 不是该方程的根8.一个不透明盒子里装有a 只白球b 只黑球、c 只红球,这些球仅颜色不同.从中随机摸出一 只球,若P (摸出白球)= 31,则下列结论正确的是 A. a =1 B. a =3 C. a = b =c D. a =21(b+c ) 9.已知菱形ABCD 与线段AE ,且AE 与AB 重合. 现将线段AE 绕点A 逆时针旋转180°,在 旋转过程中,若不考虑点E 与点B 重合的情形,点E 还有三次落在菱形ABCD 的边上,设 ∠B =α,则下列结论正确的是°<α<60° B. α=60° °<α<90° °<α<180°D C A B10.已知二次函数y =-3x 2+2x +1的图象经过点A (α,y 1),B (b ,y 2),C (c ,y 3),其中a 、b 、c 均大于0. 记点A 、B 、C 到该二次函数的对称轴的距离分别为d A 、d B 、d C . 若d A <21< d B < d C , 则下列结论正确的是A.当a ≤x ≤b 时,y 随着x 的增大而增大B.当a ≤x ≤c 时,y 随着x 的增大而增大C.当b ≤x ≤c 时,y 随着x 的增大而减小D.当a ≤x ≤c 时,y 随着x 的增大而减小 二、填空题(本大题有6小题,每小题4分,共24分) 11.计算:-a +3a =________.12.不等式2x -3≥0的解集是________.13.如图,在平面直角坐标系中,若□ABCD 的顶点A 、B 、C 的坐 标分别是(2,3),(1,-1),(7,-1),则点D 的坐标是________.14.某服装店为调动营业员的积极性,决定实行目标管理,根据每月销售目标完成情况发放奖金. 该店统计了每位营业员前半年的月均销售额,并算出所得数据的平均数、众数、中位数,分别为22、15、18(单位:万元). 若想让一半左右的营业员都能达到月销售目标,则月销售额定为________万元较为合适.15.在平面直角坐标系xOy 中,直线y=x 与双曲线y =xk(k >0,x >0)交于点A . 过点A 作AC ⊥x 轴于点C ,过该双曲线上另一点B 作BD ⊥x 轴于点D ,作BE ⊥AC 于点E ,连接AB . 若OD =3OC ,则tan ∠ABE =________.16.如图,在矩形ABCD 中,AB >BC ,以点B 为圆心,AB 的长为 半径的圆分别交CD 边于点M ,交BC 边的延长线于点E . 若 DM=CE ,AE 的长为2π,则CE 的长为________. 三、解答题(本大题有9小题,共86分) 17.(本题满分8分) 解方程组⎩⎨⎧=-=+124y x y x18. (本题满分8分)已知点B 、C 、D 、E 在一条直线上,AB ∥FC ,AB=FC ,BC=DE . 求证:AD ∥FE .化简并求值:(2242a a --1)÷2222a a a +,其中a =220.(本题满分8分)在正方形ABCD 中,E 是CD 边上的点,过点E 作EF ⊥BD 于F . (1)尺规作图:在图中求作点E ,使得EF=EC ; (保留作图痕迹,不写作法)(2)在(1)的条件下连接FC ,求∠BCF 的度数.21.(本题满分8分)某路段上有A 、B 两处相距近200m 且未设红绿灯的斑马线. 为使交通高峰期该路段车辆与行人的通行更有序,交通部门打算在汽车平均停留时间较长的一处斑马线上放置移动红绿灯. 图1,图2分别是交通高峰期来往车辆在A 、B 斑马线前停留时间的抽样统计图.根据统计图解决下列问题:(1)若某日交通高峰期共有350辆车经过A 斑马线,请估计其中停留时间为10s ~12s 的车辆数,以及这些停留时间为10s ~12s 的车辆的平均停留时间;(直接写出答案) (2)移动红绿灯放置在哪一处斑马线上较为合适请说明理由.2 4 6 8 10 12 2 4 6 8 10如图,已知△ABC及其外接圆,∠C=90°,AC=10.(1)若该圆的半径为52,求∠A的度数;(2)点M在AB边上且AM>BM,连接CM并延长交该圆于点D,连接DB,过点C作CE垂直DB的延长线于E. 若BE=3,CE=4,试判断AB与CD是否互相垂直,并说明理由.23.(本题满分10分)在四边形ABCD中,AB∥CD,∠ABC=60°,AB=BC=4,CD=3.(1)如图1,连接BD,求△BCD的面积;(2)如图2,M是CD边上一点,将线段BM绕点B逆时针旋转60°,可得线段BN,过点N作NQ⊥BC,垂足为Q,设NQ=n,BQ=m,求n关于m的函数解析式(自变量m的取值范围只需直接写出)某村启动“贫攻坚”项目,根据当地的地理条件,要在一座高为1000m的山上种植一种经济作物. 农业技术人员在种植前进行了主要相关因素的调查统计,结果如下:①这座山的山脚下温度约为22℃,山高h(单位:m)每增加100m,温度T(单位:℃)下降约℃;③该作物在这座山上的种植量w受山高h影响,大致如图(1)求T关于h的函数解析式,并求T的最小值;(2)若要求该作物种植成活率p不低于92%,根据上述统计结果,山高h为多少米时该作物的成活量最大请说明理由.在平面直角坐标系xOy 中,已知点A . 若对点A 作如下变换;第一步:作点A 关于x 轴的对称点A 1;第二步:以O 为位似中心,作线段OA 1的位似图形OA 2,且相似比12OA OA =q ,则称A 2是点A 的对称位似点. (1)若A (2,3),q =2,直接写出点A 的对称位似点的坐标; (2)知直线l :y =kx -2,抛物线C : y =-21x 2+m x -2(m >0),点N (2)(k k m m ,2k -2) 在直线l 上.①当k =21时,判断E (1,-1)是否为点N 的对称位似点请说明理由; ②若直线l 与抛物线C 交于点M (x 1,y 1)(x 1≠0),且点M 不是抛物线的顶点,则点M 的对称位似点是否可能仍在抛物线C 上请说明理由.参考答案一、BACDB CADCC 二、≥23 13.(8,3) 15. 3116. 4-22 三、 17. ⎩⎨⎧==13y x 18.略 19.aa 2-,1-2 20.在正方形ABCD 中, ∠BCD =90°,BC =CD ∠DBC =∠CDB =45°, ∵EF =EC∴∠EFC =∠ECF 又EF ⊥BD∴∠BFC =∠BCF ∴∠BCF =21(180°-45°)=° 21.(1)7辆,11s. (2)A :501(1×10+3×12+5×10+7×8+9×7+11×1)= B :401(1×3+3×2+5×10+7×13+1×12)= ∵<,故选B. 22.(1)当∠C =90°时,AB 为外接圆的直径, ∵AC =10, AB =102∴△ABC 为等Rt △ ∴∠A =45°(2)记圆心为点O ,连接OC 、OD.∠E =90°,BE =3,CE =4,则BC =5 ∠CDE =∠A∴tan ∠CDE = tan ∠A=21 EOD∴DE CE =DE 4=21,DE =8,BD =5 ∴BC =BD∴∠BOC =∠BOD ∴AB ⊥CD 23. (1)33(2)连接AN ,易证:△ABN≌△CBM 则∠BAN =∠BCM =120° 连接AC ,则△ABC 为正△ ∴N 、A 、C 三点共线 ∵NQ =n ,BQ =m , ∴CQ =4-m ,在Rt △NQC 中,NQ =CQ ·tan ∠NCQ n =3(4-m)=-3m+43(21≤ m ≤2) 24.(1)T =22-100h ×=-2001h+22(0≤ h ≤1000) T 随h 增大而减小,∴当H =1000时,T =17 (2)由表中数据分析可知,当19≤ T ≤21时,p 与T 大致符合一次函数关系;不妨取(21,、(20,,则k=21209.094.0--=-251∴p 1=-251(T -21)+=-251T+5087(19≤ T ≤21)当≤ T<19时,p 与T 大致符合一次函数关系;不妨取(19,、(18,,则k=191898.094.0--=251∴p 2=251(T -18)+=251T+5011(≤ T<19)从坐标中观察可知,除点E 外,其余点基本上在同一直线上, 不妨取(200,1600)、(500,1000),则k=50020010001600--=-2w =-2(h -500)+1000=-2 h+2000 (0≤ h ≤1000) 因成活率需不低于92%,故(≤ T ≤) 由(1)知,当温度T 取:、19、时, 相应的h 的值分别是:900、600、300 当300≤ h ≤600时, p 1=-251(-2001h+22)+5087=50001h+5043 QCB成活量y =w ·p 1=(-2 h+2000)( 50001h+5043) =-25001h 2-2535 h+1720 -25001<0,开口向下,对称轴在y 轴的左侧 ∴当300≤ h ≤600时,图象下降,成活量y 随h 增大而减小.∴当h =300时,成活量y 有最大值,此时成活率=92%,种植量为1400, 成活量y 最大值=1400×92%=1288(株)当600< h ≤900时,p 2=251(-2001h+22)+5011=-50001h+1011 成活量y =w ·p 2=(-2 h+2000)( -50001h+1011)= 25001h 2-513h+220025001>0,开口向上,对称轴h=3250>900,图象下降,成活量y 随h 增大而减小 ∴当h =600时,使用p 1=-251T+5087,在这里成活率最小.综上所述:当h =300时,成活量最大. 25.(1)(4,-6)、(-4, 6) (2) ①当k=21时,2k -2=2×21-2=-1,将y =-1代入y=kx -2得:x=2 ∴ N 的坐标为(2,-1),其关于x 轴对称点坐标是(2,1)对于E (1,-1), ∵11-≠21,所构成的Rt △直角边不成比例, ∴E (1,-1)不是N (2,-1)的对称位似点 ②直线l :y =kx -2过点N (2)(kk m m -,2k -2) 2k -2=k2)(kk m m --2,整理得:m 2-mk -2k =0 (m -2k)( m+k)=0 ∴m=2k 或m=-k直线与抛物线相交于点M ,-21x 2+m x -2=kx -2 kx =-21x 2+m x ∵x ≠0,∴k =-21x +m ,x=2(m -k) 抛物线对称轴:x=m ,且点M 不是抛物线的顶点 ∴2(m -k) ≠m ,m ≠2k∴只有m=-k 成立. 此时,x=2(m -k)=-4k ,M 的坐标:(-4k ,-4k 2-2) 于是,M 关于x 轴的对称点M 1(-4k , 4k 2+2)直线OM 1的解析式: y=x kk 4242+-若直线OM 1与抛物线有相交,x k k 4242+-=-21x 2+k x -2 整理得:k x 2- x +4k =0 当△=1-16k 2≥0,k 2≤161时,交点存在,不妨设为M 2,12OM OM =q ,则M 2是点M 的对称位似点∵m>0,且m=-k , ∴k<0, ∴-41≤k<0.。