(高起专)第十章二重积分习题解答-6页文档资料
高数第10章经典类型题参考答案
第十章 经典类型题一、二重积分的计算(1)直角坐标系1.画出积分区域,并计算二重积分2+1x D e dxdy ⎰⎰(),其中D 是由x 轴,x y =及1x =所围成的闭区域。
解:2+1x D e dxdy ⎰⎰()1=.2e 2.计算二重积分D σ⎰⎰,其中D 是由2与1y x y ==所围成区域。
解:D σ⎰⎰4=-.153.计算二重积分2Dx dxdy ⎰⎰,其中D 是由直线2,3,y x y x ===所围成的闭区域. 解:83.12D xdxdy =⎰⎰ 4. 计算二重积分sin d d ,D x x y x ⎰⎰其中D 是直线2,y x x π==及x 轴所围成的闭区域. 解:sin d d =4.D x x y x ⎰⎰5.计算二重积分22D x dxdy y⎰⎰,其中D 是直线12,,2y y x x x ===所围成的闭区域。
解: 22=3.D x dxdy y⎰⎰ (2)极坐标系6.计算二重积分22x y D e dxdy +⎰⎰,其中D 是由中心在原点,半径为a 的圆周所围成的闭区域. 解:222+(1).x y a D edxdy e π-=-⎰⎰7. 计算二重积分Dx σ⎰⎰2d ,其中D 是圆x y +=221所围成的闭区域。
解: 1.4D x σπ⎰⎰2d =22arctan,1D y dxdy D x y x+=⎰⎰8. 计算其中是由直线y=x,x 轴和围成的在圆周第一象限的闭区域。
. 解:2arctan .64Dy dxdy x π=⎰⎰ 9.计算二重积分cos()D x σ⎰⎰22+y d ,其中D是由直线,y x =轴和圆4x y +=22所围成的在第一象限的闭区域。
解: 2cos(D x σ⎰⎰2+y )d sin 4π6=. 二、三重积分的计算10.计算()⎰⎰⎰++V dxdydz z y x sin ,其中V 是平面2π=++z y x 和三个坐标平面所围成的区域。
二重积分习题及答案
D1
yx
D2
D1 , D2 两部分
2
D2
( x y )d xd y 2 d xd y
D
o
1 x
2 ( 2 1) 3 2 说明: 若不用对称性, 需分块积分以去掉绝对值符号.
5 计算
2 2 ( x y ) dxdy , D : x y 1 D
分析 积分区域D关于x、y轴均对称, 被积函数
f ( x, y) x y 关于x,y均是偶函数,利用对称性
去掉绝对值符号. 解 采用直角坐标 ( x y )dxdy 4 dx
D
1
1 x 2 0
0
( x y )dy 8 3
【注】在利用对称性计算二重积分时,要同时考虑被积 函数的奇偶性和积分区域的对称性,不能只注意积分区域 关于坐标轴的对称性,而忽视了被积函数应具有相应的奇
解
x r cos 在极坐标系下 y r sin 所以圆方程为 r 1, 1 直线方程为 r , sin cos
x2 y2 1
x y 1
f ( x, y )dxdy
D
2
0
d
1
1 sin cos
f ( r cos , r sin )rdr .
8
计算 ( x y )dxdy ,其 D 为由圆
2 2 D
x 2 y 2 2 y , x 2 y 2 4 y 及直线 x 3 y 0 , y 3 x 0 所围成的平面闭区域. 解 y 3x 0 2
3
x y 4 y r 4 sin
2 1
4. 计算二重积分
高等数学第十章《二重积分》复习 课件
y x 2(y) d y
x 1(y)
则
d
dy
2(y) f (x, y)dx
c o
c
1( y)
x
例2. 计算 x yd , 其中D 是抛物线 y2 x 及直线 D
y x 2 所围成的闭区域.
解: 看成Y型区域,
则
D
:
1 y y2 x
2 y
ห้องสมุดไป่ตู้
2
2 y2
D
x yd
dy 1
y2
xyd
该物体的质量为
b
a
Dz
f
(x,
y, z)d
xd
y dz
记作
b
dz
f (x, y, z)dxdy
a
Dz
z
b
z Dz
a
O
y
x
面密度≈
f (x, y, z)d z
截面法的一般步骤:
(1) 把积分区域 向某轴(例如z 轴)投影,得
投影区间 [a, b] ;
(2) 对 z [a, b]用过z轴且平行 截 ,得截面 Dz;
11
一、利用直角坐标计算二重积分
由曲顶柱体体积的计算可知,
若D为 X – 型区域
y y 2(x)
axb
D : 1( x) y 2( x)
D x
则
f (x, y)dxdy
b
dx
2( x)
f
( x,
oa y y)dy
1(x)b
x
D
a
1( x)
若D为Y –型区域
c yd
D : 1( y) x 2( y)
xoy平面的平z面去
二重积分(答案)
第五次课一.(上册)回顾一元定积分的定义,牛顿-莱布尼兹公式(很重要,要掌握)二.二重积分的定义 几何意义(了解), 课本65页三.二重积分的性质(课本68页)四.二重积分的计算(重点) 课本70页(注:最主要的是确定积分的上限限)1. 直角坐标系下计算二重积分(X 型, Y 型,如何选择)2. 极坐标系下计算二重积分一.选择题1.设D 是以(0,0),(1,0),(1,2),(0,1)O A B C 为顶点的梯形所围成的有界闭区域,(,)f x y 是域D 上的连续函数,则二重积分(,)Df x y dxdy =⎰⎰ ( B )(A )1101(,)xdx f x y dy +⎰⎰(B )110(,)xdx f x y dy +⎰⎰(C )11211(,)(,)y dx f x y dy dx f x y dy -+⎰⎰⎰⎰(D )112111(,)(,)y dx f x y dy dx f x y dy -+⎰⎰⎰⎰2.二次积分⎰⎰22),(x dy y x f dx 的另一种积分次序是 ( A )(A )⎰⎰402),(ydx y x f dy (B )⎰⎰40),(ydx y x f dy (C )⎰⎰4022),(x dx y x f dy (D )⎰⎰402),(ydx y x f dy3.设f 是连续函数,而D :122≤+y x 且0>y ,则dxdy y x f D)(22⎰⎰+= ( A )(A )⎰1)(dr r rf π (B )⎰1)(dr r f π (C )2⎰1)(dr r rf π (D )2⎰1)(dr r f π二.填空题1.若积分区域D 是2214x y ≤+≤,则=3D dxdy π⎰⎰2.改换积分的次序⎰⎰⎰⎰-+102120),(),(xxdy y x f dx dy y x f dx =三.计算题1.设区域D 由22,y x y x ==所围成,求2()Dx y d +σ⎰⎰解:原式=241122200)[)]22x x x dx x y dy x x dx +=+-⎰⎰=54142033()22140x x x x dx -+-=⎰2.设D 是由直线2x =,y x =及1xy =所围成的平面区域,求22Dx dxdy y⎰⎰解:原式=222312119()4xxx dx dy x x dx y=-+=⎰⎰⎰ 解:原式=111200111(1)()266xdx x y dy x x dx ---=-+=⎰⎰⎰3.计算(课本81页 例题13)4. (课本81页 例题12).:222a y x D ≤+120(,)yydy f x y dx -⎰⎰,d d 22⎰⎰--Dy x y x e。
(完整word版)高等数学第10章课后习题答案(科学出版社)
于是所求的曲面积分为
.
(2) ,其中 为旋转抛物面 介于 之间部分的下侧。
解由两类曲面积分之间的联系,可得
,
在曲面 上,有
。
故
。
再依对坐标的曲面积分的计算方法,得
。
注意到
,
故
。
(3) ,其中 为 , 的上侧;
解 在 面上的投影为半圆域 , ,
=
= =
由对称性 = , =
∴原式= =
(4) ,其中 是由平面 , , , 所围成的四面体的表面的外侧。
,
其中 为上半球面 , , ,故
,
其中 是 在 坐标面上的投影区域,利用极坐标计算此二重积分,于是得
= ,
是一个无界函数的反常积分,按反常积分的计算方法可得
,
故
。
解法2设球面方程为 ,定直径在 轴上,依题意得球面上点 的密度为 ,从而得球面的质量为 ,由轮换对称性可知: ,故有
.
2设某流体的流速为 ,求单位时间内从圆柱 : ( )的内部流向外侧的流量(通量)。
,其中 从 变到 ,
故
。
解法2作有向线段 ,其方程为
,其中 从 变到 ,
则有向曲线 与有向线段 构成一条分段光滑的有向闭曲线,设它所围成的闭区域为 ,由格林公式,有
,
即
,
而
,
故
。
3.计算 ,其中 为平面 在第一卦限中的部分;
解 将曲面 投影到 面上,得投影区域为 ,此时曲面方程可表示为
,
于是
,
。
4. 计算 ,其中 是球面 的上半部分并取外侧;
解如右图所示,因为闭曲面取外侧,所以 取下侧, 取后侧, 取左侧, 取上侧。于是
资料:第十章 重积分答案
第十章 重积分答案第一节 二重积分的概念与性质1.根据二重积分的几何意义,确定下列积分的值。
)1(; ,222222a y x D d y x a D≤+--⎰⎰为其中σ解:由二重积分的几何意义知,;323222a d y x a Dπσ=--⎰⎰)2(.0 , ,)(222D22>>≤++-⎰⎰a b a y x D d y x b 为其中σ 解:由二重积分的几何意义知,).32()(2D22a b a d y x b -=+-⎰⎰πσ 2.根据二重积分的性质,比较下列积分的大小。
)1(;1)2()2( ,)( )(2232≤-+-++⎰⎰⎰⎰y x D d y x d y x DD为其中与σσ 解:由 1)2()2(22≤-+-y x 知 ,1|2|,1|2|≤-≤-y x 即 ,31,31≤≤≤≤y x 于是 ,12>≥+y x 所以 32)()(y x y x +<+ 于是.)( )(32σσd y x d y x DD⎰⎰⎰⎰+<+ ;10 ,53:,)][ln( )ln()2(2≤≤≤≤++⎰⎰⎰⎰y x D d y x d y x DD是矩形区域其中与σσ解:在D 内 x +y >e , 故 ln(x+y )>1, 于是.)][ln( )ln(2⎰⎰⎰⎰+<+DDd y x d y x σσ .1 ,21,0 ,0 , )ln()3(所围成是由直线其中与=+=+==+⎰⎰⎰⎰y x y x y x D xyd d y x DDσσ解:在D 中,,0,0≥≥y x 且,121≤+≤y x 而不在直线x +y =1上的D 内任何点(x , y ), 都有 ,121<+≤y x 故 ,)ln(xy y x <+ 于是. )ln(⎰⎰⎰⎰<+DDxyd d y x σσ3.利用二重积分的性质估计下列积分的值。
)1(};4|),{( ,)94(2222≤+=++⎰⎰y x y x D d y x D其中σ 解:上,:在区域422≤+y x D ,259449)(49492222=+⋅≤++≤++≤y x y x ,422ππσ=⋅=的面积为而区域D从而 ,425)94(4922πσπ⋅≤++≤⋅⎰⎰D d y x 即 .100)94(3622πσπ≤++≤⎰⎰Dd y x)2(}.20 ,10|),{( ,)(22≤≤≤≤=--+⎰⎰y x y x D d y x xy x D其中σ 解:,),(22y x xy x y x f --+=设 则 f (x ,y )在D 上的最大值,31)31,32(==f M 最小值,4)2,0(-==f m 区域D 的面积,2=σ 从而 .32)(822≤--+≤-⎰⎰Dd y x xy x σ 4.设 f (x ,y ) 为一连续函数,试证:).0,0(),(1lim2222f dxdy y x f y x =⎰⎰≤+→ρρπρ证:由于f (x ,y )连续,由二重积分中值定理知,存在点}|,{),(222ρηξ≤+∈y x y x ,使得),,(),(),(2222ηξπρσηξρf f dxdy y x f y x =⋅=⎰⎰≤+所以 ),(1lim),(1lim222222ηξπρπρπρρρρf dxdy y x f y x ⋅=→≤+→⎰⎰).0,0(),(lim 0f f ==→ηξρ第二节 二重积分的计算1.计算下列二重积分(1) ;10 ,10 : ,122≤≤≤≤+⎰⎰y x D d y x D其中σ 解:⎰⎰+D d yx σ221⎰⎰+=1021021y dy dx x 01arctan 01313y x ⋅=12π=。
高等数学 课后习题答案 第十章
习题十1. 根据二重积分性质,比较ln()d Dx y σ+⎰⎰与2[ln()]d Dx y σ+⎰⎰的大小,其中:(1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形;(2)D 表示矩形区域{(,)|35,02}x y x y ≤≤≤≤.解:(1)区域D 如图10-1所示,由于区域D 夹在直线x+y=1与x+y=2之间,显然有图10-112x y ≤+≤从而0l n ()1x y ≤+<故有2l n ()[l n ()]x y x y +≥+ 所以2l n ()d [l n ()]dDDx y x yσσ+≥+⎰⎰⎰⎰(2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥.图10-2 从而 ln(x+y)>1 故有2l n ()[l n ()]x y x y +<+ 所以2l n ()d [l n ()]dDDx y x yσσ+<+⎰⎰⎰⎰2. 根据二重积分性质,估计下列积分的值:(1),{(,)|02,02}I D x y x y σ==≤≤≤≤⎰⎰;(2)22sin sin d ,{(,)|0π,0π}DI x y D x y x y σ==≤≤≤≤⎰⎰;(3)2222(49)d ,{(,)|4}DI x y D x y x y σ=++=+≤⎰⎰.解:(1)因为当(,)x y D ∈时,有02x ≤≤, 02y ≤≤因而04xy ≤≤.从而2≤≤故2d DD σσσ≤≤⎰⎰⎰⎰⎰⎰即2d d DDσσσ≤≤⎰⎰⎰⎰而d Dσσ=⎰⎰(σ为区域D 的面积),由σ=4得8σ≤≤⎰⎰(2) 因为220sin 1,0sin 1x y ≤≤≤≤,从而220sin sin 1x y ≤≤故 220d sin sin d 1d DDDx y σσσ≤≤⎰⎰⎰⎰⎰⎰即220sin sin d d DDx y σσσ≤≤=⎰⎰⎰⎰而2πσ=所以2220sin sin d πDx y σ≤≤⎰⎰(3)因为当(,)x y D ∈时,2204x y ≤+≤所以 22229494()925x y x y ≤++≤++≤故229d (49)d 25d DDDx y σσσ≤++≤⎰⎰⎰⎰⎰⎰即 229(49)d 25Dx y σσσ≤++≤⎰⎰而2π24πσ=⋅=所以 2236π(49)d 100πDx y σ≤++≤⎰⎰3. 根据二重积分的几何意义,确定下列积分的值:(1)222(,{(,)|};Da D x y x y a σ=+≤⎰⎰(2)222,{(,)|}.D x y x y a σ=+≤⎰⎰解:(1)(,Da σ-⎰⎰在几何上表示以D 为底,以z 轴为轴,以(0,0,a )为顶点的圆锥的体积,所以31(π3D a a σ=⎰⎰(2)σ⎰⎰在几何上表示以原点(0,0,0)为圆心,以a为半径的上半球的体积,故32π.3a σ=⎰⎰4. 设f(x ,y)为连续函数,求2220021lim(,)d ,{(,)|()()}πDr f x y D x y x x y y r r σ→=-+-≤⎰⎰.解:因为f(x ,y)为连续函数,由二重积分的中值定理得,(,),D ξη∃∈使得2(,)d (,)π(,)Df x y f r f σξησξη=⋅=⋅⎰⎰又由于D 是以(x0,y0)为圆心,r 为半径的圆盘,所以当0r→时,00(,)(,),x y ξη→于是:0022200000(,)(,)11lim(,)d limπ(,)lim (,)ππlim (,)(,)Dr r r x y f x y r f f r r f f x y ξησξηξηξη→→→→=⋅===⎰⎰5. 画出积分区域,把(,)d Df x y σ⎰⎰化为累次积分:(1){(,)|1,1,0}D x y x y y x y =+≤-≤≥;(2)2{(,)|2,}D x y y x x y =≥-≥(3)2{(,)|,2,2}D x y y y x x x =≥≤≤解:(1)区域D 如图10-3所示,D 亦可表示为11,01y x y y -≤≤-≤≤.所以1101(,)d d (,)d yDy f x y y f x y xσ--=⎰⎰⎰⎰(2) 区域D 如图10-4所示,直线y=x-2与抛物线x=y2的交点为(1,-1),(4,2),区域D 可表示为22,12y x y y ≤≤+-≤≤.图10-3 图10-4所以2221(,)d d (,)d y Dyf x y y f x y xσ+-=⎰⎰⎰⎰(3)区域D 如图10-5所示,直线y=2x 与曲线2y x =的交点(1,2),与x=2的交点为(2,4),曲线2y x =与x=2的交点为(2,1),区域D 可表示为22,1 2.y x x x ≤≤≤≤图10-5所以2221(,)d d (,)d xDxf x y x f x y yσ=⎰⎰⎰⎰.6. 画出积分区域,改变累次积分的积分次序:(1)2220d (,)d yy y f x y x⎰⎰; (2)eln 1d (,)d xx f x y y⎰⎰;(3)1320d (,)d y y f x y x-⎰; (4)πsin 0sin2d (,)d xxx f x y y-⎰⎰;(5)123301d (,)d d (,)d yyy f x y y y f x y x-+⎰⎰⎰⎰.解:(1)相应二重保健的积分区域为D :202,2.y y x y ≤≤≤≤如图10-6所示.图10-6D 亦可表示为:04,.2xx y ≤≤≤所以22242d (,)d d (,)d .yx yy f x y x x f x y y =⎰⎰⎰⎰(2) 相应二重积分的积分区域D:1e,0ln.x y x≤≤≤≤如图10-7所示.图10-7D亦可表示为:01,e e,yy x≤≤≤≤所以e ln1e100ed(,)d d(,)dyxx f x y y y f x y x=⎰⎰⎰⎰(3) 相应二重积分的积分区域D为:01,32,y x y≤≤≤≤-如图10-8所示.图10-8D亦可看成D1与D2的和,其中D1:201,0,x y x≤≤≤≤D2:113,0(3).2x y x≤≤≤≤-所以2113213(3)200010d(,)d d(,)d d(,)dy x xy f x y x x f x y y x f x y y--=+⎰⎰⎰⎰⎰.(4) 相应二重积分的积分区域D为:0π,sin sin.2xx y x≤≤-≤≤如图10-9所示.图10-9D亦可看成由D1与D2两部分之和,其中D1:10,2arcsinπ;y y x-≤≤-≤≤D2:01,arcsinπarcsin.y y x y≤≤≤≤-所以πsin 0π1πarcsin 0sin12arcsin 0arcsin 2d (,)d d (,)d d (,)d xyx yyx f x y y y f x y x y f x y x----=+⎰⎰⎰⎰⎰⎰(5) 相应二重积分的积分区域D 由D1与D2两部分组成,其中 D1:01,02,y x y ≤≤≤≤ D2:13,03.y x y ≤≤≤≤-如图10-10所示.图10-10D 亦可表示为:02,3;2xx y x ≤≤≤≤-所以()123323012d ,d d (,)d d (,)d yyxxy f x y x y f x y x x f x y y--+=⎰⎰⎰⎰⎰⎰7. 求下列立体体积:(1)旋转抛物面z=x2+y2,平面z=0与柱面x2+y2=ax 所围; (2)旋转抛物面z=x2+y2,柱面y=x2及平面y=1和z=0所围. 解:(1)由二重积分的几何意义知,所围立体的体积V=22()d d Dx y x y+⎰⎰其中D :22{(,)|}x y x y ax +≤由被积函数及积分区域的对称性知,V=2122()d d D x y x y+⎰⎰,其中D1为D 在第一象限的部分.利用极坐标计算上述二重积分得cos πππcos 344442220001132d d 2d cos d π4232a a V r r r a a θθθθθθ====⎰⎰⎰⎰.(2) 由二重积分的几何意义知,所围立体的体积22()d d ,DV x y x y =+⎰⎰其中积分区域D 为xOy 面上由曲线y=x2及直线y=1所围成的区域,如图10-11所示.图10-11D 可表示为:211, 1.x x y -≤≤≤≤所以21122221()d d d ()d DxV x y x y x x y y-=+=+⎰⎰⎰⎰2111232461111188d ()d .333105x x y y x x x x x --⎡⎤=+=+--=⎢⎥⎣⎦⎰⎰ 8. 计算下列二重积分:(1)221d d ,:12,;Dx x y D x y x y x ≤≤≤≤⎰⎰(2)e d d ,x yDx y ⎰⎰D 由抛物线y2=x,直线x=0与y=1所围;(3)d ,x y ⎰⎰D 是以O(0,0),A(1,-1),B(1,1)为顶点的三角形;(4)cos()d d ,{(,)|0π,π}Dx y x y D x y x x y +=≤≤≤≤⎰⎰.解:(1)()22222231221111d d d d d d xx Dx xx x x x y x y x x x x y yy ==-=-⎰⎰⎰⎰⎰⎰2421119.424x x ⎡⎤=-=⎢⎥⎣⎦(2) 积分区域D 如图10-12所示.图10-12D 可表示为:201,0.y x y ≤≤≤≤所示22110000e d d d e d d e d()xx x y y y y yD xx y y x y y y ==⎰⎰⎰⎰⎰⎰ 21111ed (e 1)d e d d y x y y yy y y y y y y y==-=-⎰⎰⎰⎰1111120000011de d e e d .22yy yy y y y y y =-=--=⎰⎰⎰(3) 积分区域D 如图10-13所示.图10-13 D 可表示为:01,.x x y x ≤≤-≤≤所以2110d d arcsin d 2xxx x y x y x y xx --⎡==+⎢⎣⎰⎰⎰⎰⎰112300ππ1πd .2236x x x ==⋅=⎰ππππ0πππ0(4)cos()d d d cos()d [sin()]d [sin(π)sin 2]d (sin sin 2)d 11.cos cos 222x Dxx y x y x x y y x y xx x x x x xx x +=+=+=+-=--⎡⎤==+⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰9. 计算下列二次积分:10112111224sin (1)d d ;(2)d e d d e d .yy y xxyxy x xy x y x +⎰⎰⎰⎰解:(1)因为sin d xx x ⎰求不出来,故应改变积分次序。
(完整版)高等数学II练习册-第10章答案
(完整版)⾼等数学II练习册-第10章答案习题10-1 ⼆重积分的概念与性质1.根据⼆重积分的性质,⽐较下列积分的⼤⼩:(1)2()D x y d σ+??与3()Dx y d σ+??,其中积分区域D 是圆周22(2)(1)2x y -+-=所围成;(2)ln()Dx y d σ+??与2[ln()]Dx y d σ+??,其中D 是三⾓形闭区域,三顶点分别为(1,0),(1,1),(2,0);2.利⽤⼆重积分的性质估计下列积分的值:(1)22sin sin DI x yd σ=,其中{(,)|0,0}D x y x y ππ=≤≤≤≤;(2)22(49)DI x y d σ=++??,其中22{(,)|4}D x y x y =+≤.(3).DI =,其中{(,)|01,02}D x y x y =≤≤≤≤解 (),f x y =Q 2,在D 上(),f x y 的最⼤值()14M x y ===,最⼩值()11,25m x y ====故0.40.5I ≤≤习题10-2 ⼆重积分的计算法1.计算下列⼆重积分:(1)22()Dx y d σ+??,其中{(,)|||1,||1}D x y x y =≤≤;(2)cos()Dx x y d σ+??,其中D 是顶点分别为(0,0),(,0)π和(,)ππ的三⾓形闭区域。
2.画出积分区域,并计算下列⼆重积分:(1)x y De d σ+??,其中{(,)|||1}D x y x y =+≤(2)22()Dxy x d σ+-??,其中D 是由直线2y =,y x =及2y x =所围成的闭区域。
3.化⼆重积分(,)DI f x y d σ=为⼆次积分(分别列出对两个变量先后次序不同的两个⼆次积分),其中积分区域D 是:(1)由直线y x =及抛物线24y x =所围成的闭区域;(2)由直线y x =,2x =及双曲线1(0)y x x=>所围成的闭区域。
高等数学课程重积分考试试卷及答案解析
高等数学课程第十章 重积分单元测试题(B )一、选择题1、二重积分(),Df x y dxdy ⎰⎰的值与 ( )A. 函数f 及变量 ,x y 有关B. 区域D 及变量 ,x y 无关C. 函数f 及区域D 有关D. 函数f 无关,区域D 有关 2、函数(),f x y 在有界闭区域 D 上连续是二重积分(),Df x y dxdy ⎰⎰存在的 ( )A. 充分必要条件B. 充分条件,但非必要条件C. 必要条件,但非充分条件 D . 既非充分又非必要条件 3、二重积分2Dxy dxdy ⎰⎰(其中2:0,2D y x x ≤≤≤)的值为 ( ) A. 0 B.323 C. 643D. 256 4、设区域 22:1D x y +≤ , f 是D 上的连续函数,则 ( ) A. ()12rf r dr π⎰B. ()14rf r dr π⎰C. ()12f r dr π⎰D. ()14rf r dr π⎰5、设积分区域(){},1,1D x y x y =≤≤,则下式中正确的是 ( )A.2221()4Dx yx ex y dxdy xe dx ++=⎰⎰⎰ B.22()0Dx y ex y dxdy ++=⎰⎰C.222210()4D x y x e x y dxdy xe dx +⎛⎫+= ⎪⎝⎭⎰⎰⎰ D.22210()8D x y x e x y dxdy xe dx ++=⎰⎰⎰ 6. 二重积分Dxydxdy ⎰⎰(其中2:0,01D y x x ≤≤≤≤)的值为 ( )A. 16;B. 112;C. 12; D.14.二、判断题1、若函数(),,f x y z 在有界闭区域 Ω上连续,则其在上可积. ( )2、如果在D 上,(),1f x y ≡,D 的面积为 σ,则Dd σσ=⎰⎰ . ( )3、若函数(),f x y 是有界闭区域D 上的非负连续函数,且在D 上不恒为零,则(),0Df x y d σ>⎰⎰.( )4、如果函数(),f x y 在关于x 轴对称的有界闭区域D 上连续,且()(),,f x y f x y -=-,则(),0Df x y =⎰⎰. ( )5、若函数(),f x y 是有界闭区域D 上的连续函数,(),0f x y >则(),Df x y d σ⎰⎰的几何意义是表示以(),f x y 表示的曲面为顶,以区域D 为底的曲顶柱体的体积. ( )三、填空题1、设区域D 的面积为S ,在极坐标系下D 上的积分Drdrd θ=⎰⎰ .2、设22:4D x y +≤,0y ≥,则()32sin Dx y d σ=⎰⎰ . 3、已知(),f x y 为连续函数,则()110,dy f x y dx ⎰交换积分次序后为 .4、二次积分(),aadx f x y dy -⎰在极坐标系下,先对r 进行积分为 .5、根据二重积分的几何意义,D= 其中222:D x y a +≤,0y ≥,0a >.6. 交换积分次序:⎰⎰-222xy dy edx =四、计算题1、计算二重积分()22D xy d σ+⎰⎰,其中(){,0D x y x y =≤≤≤≤.2、计算二重积分D⎰⎰,其中(){}2222,4D x y x y ππ=≤+≤.2* 计算,dxdy ey x ⎰⎰+D22D :a y x ≤+22.(8分)3、计算三重积分()22xy dxdydz Ω+⎰⎰⎰,其中Ω是以曲面()222x y z +=与4z =为界面的区域.4. 计算二重积分()⎰⎰+Ddxdy y x ,其中x y x D 222≤+:. 5. 计算二重积分⎰⎰≤++=42222y x y xdxdy e I 的值.6. 利用球面坐标变换计算三重积分222()Vx y z dxdydz ++⎰⎰⎰,其中V 是由球面 2222=(0)x y z αα++>所围成的区域的内部。
最新10第十章重积分答案72997汇总
10第十章重积分答案729973.利用二重积分的性质估计下列积分的值。
«Skip Record If...»«Skip Record If...»解:«Skip Record If...»«Skip Record If...»«Skip Record If...»从而«Skip Record If...»即«Skip Record If...»«Skip Record If...»«Skip Record If...»解:«Skip Record If...»则f(x,y)在D上的最大值«Skip Record If...»最小值«Skip Record If...»区域D的面积«Skip Record If...»从而«Skip Record If...»4.设f(x,y) 为一连续函数,试证:«Skip Record If...»证:由于f(x,y)连续,由二重积分中值定理知,存在点«Skip Record If...»,使得«Skip Record If...»所以«Skip Record If...»«Skip Record If...»第二节二重积分的计算1.计算下列二重积分(1) «Skip Record If...»解:«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»。
高数第十章习题.docx
第十章重积分第二节二重积分计算法习题 一、填空题:1、+ 3兀2歹 + y 3)d(j = _______________ .其中 D: 0 < x < 1,0 < y < 1.D2、 J jxcos(x+yW = ___________________ •其中D 是顶点分别为(0,0),(龙,0),(兀,兀)的三角形闭区域.D3、 将二重积分JJ/(x,yW ,D 是由X 轴及半圆周%4 5 + y 2 = r 2(y>0)所围成的闭区域,化为先对y 后对x 的二次积分,应为D4、将二重积分Jj f(x, y)db ,其中D 是由直线y = x,x = 2及双曲线y = -(x>0)所围成的闭域,化为先对X 后对y 的二次积分, D X应为 ___________________________ ・ sinxx /(匕y)dy 改换积分次序,应为 -sin —2£_2 dyf. f(x, y)dx +〜y)dx 改换积分次序,应为 ____________________________________二、画出积分区域,并计算下列二重积分:1、 J j e x+y d(y,其中D 是由|x| + |^| <1所确定的闭区域.D2、 J J(%2+ /-x)da 其中D 是由直线y = 2y y = xRy = 2兀所围成的闭区域. D训JD三、 设平面薄片所占的闭区域D 由直线x+ y = 2, y = x 和x 轴所围成,它的面密度p(x, y) = x 2 + y 2,求该薄片的质量. 四、 求由曲面z = x 2+ 2y 2及z = 6 — 2+ — y2,所围成的立体的体积. 答案f(x,y)dy ; 4.刃6仕+『创了(兀,以仕;5、(创*: ' /(兀,y 皿;2 7 v_y4、将(心[/(x, y)dy 化为极坐标形式的二次积分为 ______________________________ .5、将£ (x 2 + y 2)^dy 化为极坐标形式的二次积分为 ____________________ ,其值为 ________________二、计算下列二重积分:1、jjln(l + x 2 + y 2)da t 其中D 是由圆周x 2 + y 2 = 1及坐标轴所围成的在第一彖限内的区域.DD4 将JJ f(x, y)dxdy , D 为x 2 + y 2<2x,表示为极坐标形式的二次积分,为 ______________D5 将JJ/(x,y)dxdy 小为05 y 51—兀,05x51,表示为极坐标形式的二次积分为W一]13 5 兀 4 、〜二 1、e-e : 2、—:3、 兀;4、—F —•二 S 一•四、6龙63 2 3极坐标习题一.填空题:arcsin v/•() p/r「1 /•^•-arcsin vr2 r\+x 26、Whc 加(3)如 IM 如/(3心 7、WL f^y )dy.5、将二次积分 MTy)dy 改换积分次序,应为 ___________________________7、将二次积分3' «[”(兀皿=)?叫dy(彳-x )(x-刃3>将X 2 +)労化为极坐标形式的二次积分为 y-x 2 dxdy,其中D : -1 <x<l,0< y <2.2、 Jj(x 2 + y 2)d(m 中 D 是由直线 y 二兀,y = x + a,y = a,y = 3a(a > 0)所罔成的区域. D3、 JJjF 一F — bdb,其中D 是由圆周X 2 + y 2 = Rx 所围成的区域.D4、 j||x 2 + / -2c/cr, Jt 中 D :F + y2s3.D芒/*2acos^三、 试将对极坐标的二次积分I = J/(rcos^,rsin^)rJr 交换积分次序."4°yz 7^ /> ° 四、 设平面薄片所占的闭区域D 是由螺线r = 2 &上一段弧(0<3<-)与直线0 =-所闱成,它的面密度为p(x, y) = x^ + y\求 这薄片的质量.五、计算以xoy 面上的圆周x 2 + y 2 = ax 成的闭区域为底,而以曲面z = x 2 + y 2为顶的曲顶柱体的体积. 答案r — r2cos^r — p(cos^+sin^)"—、1、J :d/(rcos^,rsin 0ydr ; 2、 啊&sineI/(厂cos&rsin&)厂dr ; 5、|4kccOlan*JO4、丄龙.三、/ = £ 1rdr^\ f(rcosO,rsin2 ° "4第三节三重积分习题 一、填空题:1、若Q 由ill 「血z = x 2 + >?2及平血z=l 所围成,则三重积分JJJ/(%, y, z)dxdydz 化为三次积分是 Q222、若O 是由illiiiicz = A ><C >0), * +》〒 = l,z=o 所围成的在第一卦限内的闭区域,则三重积分jjj/(x,z^dxdydz 可化为三61 Q次积分为 ________ ■3、 若Q:0<x< 1,()< y < 1,0<z< 1,则 jj (兀 + y + z)dxdydzQ4、 若 Q :是由 x = 0, z = 0, z = h(h > 0), x + 2y =。
(高起专)第十章二重积分习题解答
(高起专)第十章二重积分习题解答(一) 选择题(在每小题给出的四个选项中,只有一项符合题目要求,选出正确的选项) 1.12200I dy x y dx =⎰,则交换积分次序后得 C 。
(A)1220I dy x y dy =⎰; (B)12203I x y dy =⎰;(C )2112203x I dx x y dx -=⎰⎰; (D )2112203x I dx x y dy +=⎰⎰。
2.设积分域为{(,)|11,11}D x y x y =-≤≤-≤≤,则x yDedxdy +=⎰⎰ D. .(A)2)1(-e , (B)21)(2--e e , (C) 42)1(-e , (D) 21)(--e e ;3. 设积分域D 由直线,2,2y x x y x =+==围成,则(,)D f x y dxdy =⎰⎰ C(A)120(,)xxdx f x y dy -⎰⎰, (B) 21(,)yydyf x y dx -⎰⎰, (C) 212(,)xxdx f x y dy -⎰⎰, (D) 1(,)xdx f x y dy ⎰⎰.;4.22x y DI e dxdy --=⎰⎰,D :221x y +≤,化为极坐标形式是 D 。
(A )221[]r I edr d πθ-=⎰⎰;(B )21204[]r I e dr d πθ-=⎰⎰;(C )21202[]r I e rdr d πθ-=⎰⎰;(D )221[]r I e rdr d πθ-=⎰⎰。
5. 2DI xy d σ=⎰⎰, 其中22:1D x y +≤的第一象限部分,则 C 。
(A)120I dy xy dy =⎰; (B )1120I dx xy dy =⎰⎰;(C)12I dx dy =⎰;(D )1232cos sin I d r dr πθθθ=⎰⎰。
填空题1.交换二次积分次序,1(,)xI f x y dy =⎰= 。
故211(,)(,)yxy I dx f x y dy dy f x y dx ==⎰⎰⎰2.设积分域D 由11,22,x y -≤≤-≤≤围成,则3(2)Dxy dxdy +=⎰⎰ 03.设积分域为22{(,)|14,}D x y x y y x =≤+≤≥,则积分22()Df x y dxdy +=⎰⎰在极坐标下的二次积分为 。
高数第十章习题(二重积分)
x2 y2 1 1 1 2 2 2 2 dxdy 2 2 ( x y )dxdy a b 2a b D D
R 1 4 1 1 1 1 1 2 2 2 2 d r rdr R 2 2 0 4 b 2a b 0 a
n 2
证
dx ( x y ) dy ( x y )
a a b b a y
b
f ( y )dy f ( y )dx
a
y x
D
n 2
1 n1 b f ( y )dy[ ( x y ) ]y a n1 1 b n1 a (b y ) f ( y )dy. n1
D
A ).其中区域为 D
解答
(B) e (D)
23
0 x 1,1 y 0 .
1 (A) e
;
; 1 .
1 (C) e ;
二重积分习题课
5、 设 D : x 2 y 2 1, 则二重积分 f ( x 2 y 2 )dxdy
D
可以化为( C )
( A) 4 d x
θ
A
d
0
2
( )
0
f ( r cos , r sin )rdr .
11
二重积分习题课
二、典型例题
x2 1 例1 计算 2 d . 其中 D 由 y x , y , x 2 x D y 围成.
解
1 D : y x , 1 x 2. x
D
z
C
M
(Advanced Mathematics)
S
x
0
P
高数第十章答案
高数第十章答案【篇一:高等数学2第十章答案】=txt>1.根据二重积分的性质,比较下列积分的大小:(1)成;2223d与,其中积分区域是圆周(x?2)?(y?1)?2所围(x?y)d?(x?y)d????? dd(2)??ln(x?y)d?与??[ln(x?y)]d?,其中d是三角形闭区域,三顶点分别为(1,0),dd2(1,1),(2,0);2.利用二重积分的性质估计下列积分的值:(1)i?22sinxsinyd?,其中d?{(x,y)|0?x??,0?y??};??d(2)i?2222,其中d?{(x,y)|x?y?4}.(x?4y?9)d???d(3).i?d,其中d?{(x,y)|0?x?1,0?y?2}解 ?f?x,y??,积分区域的面积等于2,在d上f?x,y?的最大值m?14?x?y?0?,最小值m?1?5?x?1,y?2? 故0.4?i?0.5习题10-2二重积分的计算法1.计算下列二重积分:(1)??(x2?y2)d?,其中d?{(x,y)||x|?1,|y|?1};d(2)??sinyd?,其中d是由y?x,y2?x所围成的闭区域. dy解:??sinyd??dy?10dy?ysinyy2ydx?1?sin1 2.画出积分区域,并计算下列二重积分:(1)??ex?yd?,其中d?{(x,y)||x|?y?1}d(2)22(x?y?x)d?,其中d是由直线y?2,y?x及y?2x所围成的闭区域。
??d3.化二重积分i???f(x,y)d?为二次积分(分别列出对两个变量先后次序不同的两个二次d积分),其中积分区域d是:(1)由直线y?x及抛物线y2?4x所围成的闭区域;(2)由直线y?x,x?2及双曲线y?1(x?0)所围成的闭区域。
x4.求由曲面z?x2?2y2及z?6?2x2?y2所围成的立体的体积。
5.画出积分区域,把积分22其中积分区域d是: ??f(x,y)dxdy表示为极坐标形式的二次积分, d(1){(x,y)|x?y?2x};(2){(x,y)|0?y?1?x,0?x?1}6.化下列二次积分为极坐标形式的二次积分:(1?2dxxfdy;【篇二:高等数学2第十章答案_62010】=txt>1.根据二重积分的性质,比较下列积分的大小:(1)成;2223d与,其中积分区域是圆周(x?2)?(y?1)?2所围(x?y)d?(x?y)d????? dd(2)??ln(x?y)d?与??[ln(x?y)]d?,其中d是三角形闭区域,三顶点分别为(1,0),dd2(1,1),(2,0);2.利用二重积分的性质估计下列积分的值:(1)i?22sinxsinyd?,其中d?{(x,y)|0?x??,0?y??};??d(2)i?2222,其中d?{(x,y)|x?y?4}.(x?4y?9)d???d(3).i?d,其中d?{(x,y)|0?x?1,0?y?2}解f?x,y??,积分区域的面积等于2,在d上f?x,y?的最大值1m??x?y?0?,最小值m???x?1,y?2? 45故0.4?i?0.5习题10-2二重积分的计算法1.计算下列二重积分:(1)22(x?y)d?,其中d?{(x,y)||x|?1,|y|?1};??d(2)??xcos(x?y)d?,其中d是顶点分别为(0,0),(?,0)和(?,?)的三角形闭区域。
高等数学课后习题及参考答案(第十章)
高等数学课后习题及参考答案(第十章)习题10-11.设在xOy面内有一分布着质量的曲线弧L,在点(x,y)处它的线密度为μ(x,y),用对弧长的曲线积分分别表达:(1)这曲线弧对x轴、对y轴的转动惯量I x,I y;(2)这曲线弧的重心坐标,.解在曲线弧L上任取一长度很短的小弧段ds(它的长度也记做ds),设(x,y)为小弧段ds上任一点.曲线L对于x轴和y轴的转动惯量元素分别为dI x=y2μ(x,y)ds,dI y=x2μ(x,y)ds.曲线L对于x轴和y轴的转动惯量分别为,.曲线L对于x轴和y轴的静矩元素分别为dM x=yμ(x,y)ds,dM y=xμ(x,y)ds.曲线L的重心坐标为,.2.利用对弧长的曲线积分的定义证明:如果曲线弧L分为两段光滑曲线L1和L2,则.证明划分L,使得L1和L2的连接点永远作为一个分点,则.令λ=max{∆s i}→0,上式两边同时取极限,即得.3.计算下列对弧长的曲线积分:(1),其中L为圆周x=a cos t,y=a sin t (0≤t≤2π);解=.(2),其中L为连接(1, 0)及(0, 1)两点的直线段;解L的方程为y=1-x (0≤x≤1);.(3), 其中L 为由直线y =x 及抛物线y =x 2所围成的区域的整个边界; 解 L 1: y =x 2(0≤x ≤1), L 2: y =x (0≤x ≤1) ..(4), 其中L 为圆周x 2+y 2=a 2, 直线y =x 及x 轴在第一象限内所围成的扇形的整个边界;解 L =L 1+L 2+L 3, 其中L 1: x =x , y =0(0≤x ≤a ),L 2: x =a cos t , y =a sin t ,L 3: x =x , y =x ,因而 ,.(5)⎰Γ++ds zy x 2221, 其中Γ为曲线x =e t cos t , y =e t sin t , z =e t 上相应于t 从0变到2的这段弧;解,.(6), 其中Γ为折线ABCD , 这里A 、B 、C 、D 依次为点(0, 0, 0)、(0, 0, 2)、(1, 0, 2)、(1, 3, 2);解 Γ=AB +BC +CD , 其中AB : x =0, y =0, z =t (0≤t ≤1),BC : x =t , y =0, z =2(0≤t ≤3),CD : x =1, y =t , z =2(0≤t ≤3),故.(7), 其中L 为摆线的一拱x =a (t -sin t ), y =a (1-cos t )(0≤t ≤2π);解.(8), 其中L 为曲线x =a (cos t +t sin t ), y =a (sin t -t cos t )(0≤t ≤2π).解.4. 求半径为a , 中心角为2ϕ的均匀圆弧(线密度μ=1)的重心.解 建立坐标系如图10-4所示, 由对称性可知, 又ϕϕsin a =, 所以圆弧的重心为)0 ,sin (ϕϕa 5. 设螺旋形弹簧一圈的方程为x =a cos t , y =a sin t , z =kt , 其中0≤1≤2π, 它的线密度ρ(x , y , z )=x 2+y 2+z 2, 求:(1)它关于z 轴的转动惯量I z ; (2)它的重心.解 .(1).(2),,,,故重心坐标为.习题 10-21. 设L 为xOy 面内直线x =a 上的一段, 证明: .证明 设L 是直线x =a 上由(a , b 1)到(a , b 2)的一段,则L : x =a , y =t , t 从b 1变到b 2. 于是.2. 设L 为xOy 面内x 轴上从点(a , 0)到(b , 0)的一段直线,证明.证明L : x =x , y =0, t 从a 变到b , 所以.3. 计算下列对坐标的曲线积分:(1), 其中L 是抛物线y =x 2上从点(0, 0)到点(2, 4)的一段弧;解 L : y =x 2, x 从0变到2, 所以.(2), 其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);解 L =L 1+L 2, 其中L 1: x =a +a cos t , y =a sin t , t 从0变到π,L 2: x =x , y =0, x 从0变到2a ,因此.(3), 其中L 为圆周x =R cos t , y =R sin t 上对应t 从0到的一段弧;解.(4)⎰+--+L yx dy y x dx y x 22)()(, 其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行); 解 圆周的参数方程为: x =a cos t , y =a sin t , t 从0变到2π, 所以⎰+--+L y x dy y x dx y x 22)()(.(5), 其中Γ为曲线x =k θ, y =a cos θ, z =a sin θ上对应θ从0到π的一段弧;解 ⎰⎰--+=-+Γπθθθθθθ022]cos cos )sin (sin )[(d a a a a k k ydz zdy dx x .(6), 其中Γ是从点(1, 1, 1)到点(2, 3, 4)的一段直线;解 Γ的参数方程为x =1+t , y =1+2t , z =1+3t , t 从0变到1..(7), 其中Γ为有向闭折线ABCA , 这里的A , B , C依次为点(1, 0, 0), (0, 1, 0), (0, 0, 1);解 Γ=AB +BC +CA , 其中AB : x =x , y =1-x , z =0, x 从1变到0,BC : x =0, y =1-z , z =z , z 从0变到1,CA : x =x , y =0, z =1-x , x 从0变到1,故.(8), 其中L 是抛物线y =x 2上从(-1, 1)到(1, 1)的一段弧.解 L : x =x , y =x 2, x 从-1变到1, 故4. 计算, 其中L 是:(1)抛物线y =x 2上从点(1, 1)到点(4, 2)的一段弧;解 L : x =y 2, y =y , y 从1变到2, 故.(2)从点(1, 1)到点(4, 2)的直线段;解 L : x =3y -2, y =y , y 从1变到2, 故(3)先沿直线从点(1, 1)到(1, 2), 然后再沿直线到点(4, 2)的折线;解 L =L 1+L 2, 其中L 1: x =1, y =y , y 从1变到2,L 2: x =x , y =2, x 从1变到4,故dy x y dx y x dy x y dx y x L L )()()()(21-+++-++=⎰⎰ .(4)沿曲线x =2t 2+t +1, y =t 2+1上从点(1, 1)到(4, 2)的一段弧.解 L : x =2t 2+t +1, y =t 2+1, t 从0变到1, 故.5. 一力场由沿横轴正方向的常力F 所构成, 试求当一质量为m的质点沿圆周x 2+y 2=R 2按逆时针方向移过位于第一象限的那一段时场力所作的功.解 已知场力为F =(|F |, 0), 曲线L 的参数方程为x =R cos θ, y =R sin θ,θ从0变到, 于是场力所作的功为.6. 设z 轴与力方向一致, 求质量为m 的质点从位置(x 1, y 1, z 1)沿直线移到(x 2, y 2, z 2)时重力作的功.解 已知F =(0, 0, mg ). 设Γ为从(x 1, y 1, z 1)到(x 2, y 2, z 2)的直线,则重力所作的功为7.把对坐标的曲线积分化成对弧长的曲线积分,其中L为:(1)在xOy面内沿直线从点(0, 0)到(1, 1);解L的方向余弦,故.(2)沿抛物线y=x2从点(0, 0)到(1, 1);解曲线L上点(x,y)处的切向量为τ=(1, 2x),单位切向量为,故.(3)沿上半圆周x2+y2=2x从点(0, 0)到(1, 1).解L的方程为,其上任一点的切向量为,单位切向量为,故.8.设Γ为曲线x=t,y=t2,z=t3上相应于t从0变到1的曲线弧,把对坐标的曲线积分化成对弧长的曲线积分.解曲线Γ上任一点的切向量为τ=(1, 2t, 3t2)=(1, 2x, 3y),单位切向量为,.习题10-31.计算下列曲线积分,并验证格林公式的正确性:(1),其中L是由抛物线y=x2及y2=x所围成的区域的正向边界曲线;解L=L1+L2,故,而 dxdy x dxdy y P x Q DD )21()(-=∂∂-∂∂⎰⎰⎰⎰ ,所以 ⎰⎰⎰+=∂∂-∂∂l D Qdy Pdx dxdy yP x Q )(. (2), 其中L 是四个顶点分别为(0, 0)、(2, 0)、(2, 2)、和(0, 2)的正方形区域的正向边界.解 L =L 1+L 2+L 3+L 4, 故dy xy y dx xy x L L L L )2())((2324321-+-+++=⎰⎰⎰⎰ ⎰⎰⎰⎰+-+-+=202002022222)8()4(dy y dx x x dy y y dx x ,而,所以 ⎰⎰⎰+=∂∂-∂∂l D Qdy Pdx dxdy yP x Q )(. 2. 利用曲线积分, 求下列曲线所围成的图形的面积:(1)星形线x =a cos 3t , y =a sin 3t ;解.(2)椭圆9x 2+16y 2=144;解 椭圆9x 2+16y 2 =144的参数方程为x =4cos θ, y =3sin θ, 0≤θ≤2π, 故.(3)圆x 2+y 2=2ax .解 圆x 2+y 2=2ax 的参数方程为x =a +a cos θ, y =a sin θ, 0≤θ≤2π,故.3. 计算曲线积分,其中L为圆周(x-1)2+y2=2,L的方向为逆时针方向.解,.当x2+y2≠0时.在L内作逆时针方向的ε小圆周l:x=εcosθ,y=εsinθ(0≤θ≤2π),在以L和l为边界的闭区域Dε上利用格林公式得,即.因此.4.证明下列曲线积分在整个xOy面内与路径无关,并计算积分值:(1);解P=x+y,Q=x-y,显然P、Q在整个xOy面内具有一阶连续偏导数,而且,故在整个xOy面内,积分与路径无关.取L为点(1, 1)到(2, 3)的直线y=2x-1,x从1变到2,则.(2);解P=6xy2-y3,Q=6x2y-3xy2,显然P、Q在整个xOy面内具有一阶连续偏导数,并且,故积分与路径无关,取路径(1, 2)→(1, 4)→(3, 4)的折线,则.(3).解P=2xy-y4+3,Q=x2-4xy3,显然P、Q在整个xOy面内具有一阶连续偏导数,并且,所以在整个xOy面内积分与路径无关,选取路径为从(1, 0)→(1, 2)→(2, 1)的折线,则.5. 利用格林公式, 计算下列曲线积分:(1), 其中L 为三顶点分别为(0, 0)、(3, 0)和(3, 2)的三角形正向边界;解 L 所围区域D 如图所示, P =2x -y +4, Q =5y +3x -6,4)1(3=--=∂∂-∂∂yP x Q , 故由格林公式,得.(2)⎰-+-+Lx x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (222, 其中L 为正 向星形线(a >0);解 , ,,由格林公式⎰-+-+L x x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (222.(3), 其中L 为在抛物线2x =πy 2上由点(0, 0)到的一段弧;解 , ,,所以由格林公式,其中L 、OA 、OB 、及D 如图所示.故.(4), 其中L 是在圆周上由点(0, 0)到点(1, 1)的一段弧.解 P =x 2-y , Q =-x -sin 2y ,0)1(1=---=∂∂-∂∂yP x Q , 由格林公式有,其中L 、AB 、BO 及D 如图所示.故.6.验证下列P(x,y)dx+Q(x,y)dy在整个xOy平面内是某一函数u(x,y)的全微分,并求这样的一个u(x,y):(1)(x+2y)dx+(2x+y)dy;证明因为,所以P(x,y)dx+Q(x,y)dy是某个定义在整个xOy面内的函数u(x,y )的全微分..(2)2xydx+x2dy;解因为,所以P(x,y)dx+Q(x,y)dy是某个定义在整个xOy面内的函数u(x,y)的全微分..(3)4sin x sin3y cos xdx–3cos3y cos2xdy解因为,所以P(x,y)dx+Q(x,y)dy是某个定义在整个xOy平面内的函数u(x,y)的全微分..(4)解因为,所以P(x,y)dx+Q(x,y)dy是某个定义在整个xOy平面内的函数u(x,y)的全微分..(5)解因为,所以P(x,y)dx+Q(x,y)dy是某个函数u(x,y)的全微分.7.设有一变力在坐标轴上的投影为X=x+y2,Y=2xy-8,这变力确定了一个力场,证明质点在此场内移动时,场力所做的功与路径无关.解场力所作的功为.由于,故以上曲线积分与路径无关,即场力所作的功与路径无关.习题10-41.设有一分布着质量的曲面∑,在点(x,y,z)处它的面密度为μ(x,y,z),用对面积的曲面积分表达这曲面对于x轴的转动惯量.解. 假设μ(x , y , z )在曲面∑上连续, 应用元素法, 在曲面∑上任意一点(x , y , z )处取包含该点的一直径很小的曲面块dS (它的面积也记做dS ), 则对于x 轴的转动惯量元素为dI x =(y 2+z 2)μ(x , y , z )dS ,对于x 轴的转动惯量为.2. 按对面积的曲面积分的定义证明公式,其中∑是由∑1和∑2组成的.证明 划分∑1为m 部分, ∆S 1, ∆S 2, ⋅⋅⋅, ∆S m ;划分∑2为n 部分, ∆S m +1, ∆S m +2, ⋅⋅⋅, ∆S m +n ,则∆S 1, ⋅⋅⋅, ∆S m , ∆S m +1, ⋅⋅⋅, ∆S m +n 为∑的一个划分, 并且.令, , , 则当λ→0时, 有.3. 当∑是xOy 面内的一个闭区域时, 曲面积分与二重积分有什么关系?解 ∑的方程为z =0, (x , y )∈D ,,故 .4. 计算曲面积分, 其中∑为抛物面z =2-(x 2+y 2)在xOy 面上方的部分, f (x , y , z )分别如下:(1) f (x , y , z )=1;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,.因此⎰⎰+=πθ2020241rdr r d .(2) f (x , y , z )=x 2+y 2;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,dxdy y x dxdy z z dS y x 22224411++=++=.因此 dxdy y x y x dS z y x f xyD 2222441)(),,(+++=⎰⎰⎰⎰∑ ⎰⎰+=πθ2020241rdr r d.(3) f (x , y , z )=3z .解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,.因此dxdy y x y x xyD 2222441)](2[3+++-=⎰⎰.5. 计算, 其中∑是:(1)锥面及平面z =1所围成的区域的整个边界曲面; 解 将∑分解为∑=∑1+∑2, 其中∑1: z =1 , D 1: x 2+y 2≤1, dS =dxdy ;∑1:, D 2: x 2+y 2≤1, .+.提示: .(2)锥面z 2=3(x 2+y 2)被平面z =0及z =3所截得的部分. 解 ∑:, D xy : x 2+y 2≤3,,因而 .提示: .6. 计算下面对面积的曲面积分:(1), 其中∑为平面在第一象限中的部分;解 , ,,.(2), 其中∑为平面2x +2y +z =6在第一象限中的部分; 解 ∑: z =6-2x -2y , D xy : 0≤y ≤3-x , 0≤x ≤3,,⎰⎰--+--=x dy y xy x x dx 30230)22236(3.(3)dS z y x )(++∑⎰⎰, 其中∑为球面x 2+y 2+z 2=a 2上z ≥h (0<h <a )的部分;解 ∑:, D xy : x 2+y 2≤a 2-h 2,,(根据区域的对称性及函数的奇偶性).提示:,(4), 其中∑为锥面被x 2+y 2=2ax 所截得的有限部分. 解 ∑: , D xy : x 2+y 2≤2ax ,,dxdy y x y x xy dS zx yz xy xyD ])([2)(22+++=++⎰⎰⎰⎰∑421564a =. 提示: .7. 求抛物面壳的质量, 此壳的面密度为μ=z .解 ∑: , D xy : x 2+y 2≤2,.故.8. 求面密度为μ0的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量.解 ∑: , D xy : x 2+y 2≤a 2,,.提示:.习题10-51. 按对坐标的曲面积分的定义证明公式:.解 证明把∑分成n 块小曲面∆S i (∆S i 同时又表示第i 块小曲面的面 积), ∆S i 在yOz 面上的投影为(∆S i )yz , (ξi , ηi ,ζi )是∆S i 上任意取定的一点, λ是各小块曲面的直径的最大值, 则.2. 当∑为xOy 面内的一个闭区域时, 曲面积分与二重积分有什么关系?解 因为∑: z =0, (x , y )∈D xy , 故dxdy z y x R dxdy z y x R xyD ),,(),,(⎰⎰⎰⎰±=∑,当∑取的是上侧时为正号, ∑取的是下侧时为负号.3. 计算下列对坐标的曲面积分:(1)zdxdy y x 22∑⎰⎰其中∑是球面x 2+y 2+z 2=R 2的下半部分的下侧;解 ∑的方程为, D xy : x 2+y 2≤R , 于是zdxdyy x 22∑⎰⎰dxdy y x R y x xyD )(22222----=⎰⎰.(2), 其中z 是柱面x 2+y 2=1被平面z =0及z =3所截得的第一卦限内的部分的前侧;解 ∑在xOy 面的投影为零, 故.∑可表示为, (y , z )∈D yz ={(y , z )|0≤y ≤1, 0≤z ≤3}, 故⎰⎰⎰⎰⎰⎰⎰-=-=-=∑3010102221311dy y dy y dz dydz y xdyz yz D ∑可表示为, (z , x )∈D zx ={(z , x )|0≤z ≤3, 0≤x ≤1}, 故dzdx x ydzdx zx D 21-=⎰⎰⎰⎰∑⎰⎰⎰-=-=30101022131dx x dx x dz . 因此 .解法二 ∑前侧的法向量为n =(2x , 2y , 0), 单位法向量为,由两种曲面积分之间的关系,dS z y x ydzdx xdydz zdxdy )cos cos cos (γβα++=++∑∑⎰⎰⎰⎰.提示: 表示曲面的面积.(3), 其中f (x , y , z )为连续函数, ∑是平面x -y +z =1在第四卦限部分的上侧;解 曲面∑可表示为z =1-x +y , (x , y )∈D xy ={(x , y )|0≤x ≤1, 0≤y ≤x -1}, ∑上侧的法向量为n =(1, -1, 1), 单位法向量为,由两类曲面积分之间的了解可得dS z f y f x f ]cos )(cos )2(cos )[(γβα+++++=∑⎰⎰.(4), 其中∑是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧.解 ∑=∑1+∑2+∑3+∑4, 其中∑1: x =0, D yz : 0≤y ≤1, 0≤z ≤1-y ,∑2: y =0, D zx : 0≤z 1, 0≤x ≤1-z ,∑3: z =0, D xy : 0≤x ≤1, 0≤y ≤1-x ,∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x ,于是 xzdxdy 4000∑⎰⎰+++=由积分变元的轮换对称性可知.因此 .解 ∑=∑1+∑2+∑3+∑4, 其中∑1、∑2、∑3是位于坐标面上的三块;∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x .显然在∑1、∑2、∑3上的曲面积分均为零, 于是yzdzdx xydydz xzdxdy ++=∑⎰⎰4dS xz yz xy )cos cos cos (4γβα++=∑⎰⎰dS xz yz xy )(34++=∑⎰⎰.4. 把对坐标的曲面积分化成对面积的曲面积分:(1)∑为平面在第一卦限的部分的上侧;解 令, ∑上侧的法向量为:,单位法向量为,于是 Rdxdy Qdzdx Pdydz ++∑⎰⎰.(2)∑是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧.解 令F (x , y , z )=z +x 2+y 2-8, ∑上侧的法向量n =(F x , F y , F z )=(2x , 2y , 1),单位法向量为,于是 Rdxdy Qdzdx Pdydz ++∑⎰⎰10-61.利用高斯公式计算曲面积分:(1),其中∑为平面x=0,y=0,z=0,x=a,y=a,z=a所围成的立体的表面的外侧;解由高斯公式原式(这里用了对称性).(2),其中∑为球面x2+y2+z2=a2的外侧;解由高斯公式原式.(3),其中∑为上半球体x2+y2≤a2,的表面外侧;解由高斯公式原式.(4)其中∑界于z=0和z=3之间的圆柱体x2+y2≤9的整个表面的外侧;解由高斯公式原式.(5),其中∑为平面x=0,y=0,z=0,x=1,y=1,z=1所围成的立体的全表面的外侧.解由高斯公式原式.2.求下列向量A穿过曲面∑流向指定侧的通量:(1)A=yz i+xz j+xy k,∑为圆柱x+y2≤a2(0≤z≤h )的全表面,流向外侧;解P=yz,Q=xz,R=xy,⎰⎰⎰dv.=0=Ω(2)A=(2x-z)i+x2y j-xz2k,∑为立方体0≤x≤a, 0≤y≤a, 0≤z≤a,的全表面,流向外侧;解P=2x-z,Q=x2y,R=-xz2,.(3)A=(2x+3z)i-(xz+y)j+(y2+2z)k,∑是以点(3,-1, 2)为球心,半径R=3的球面,流向外侧.解P=2x+3z,Q=-(xz+y),R=y2+2z,⎰⎰⎰dv.π=3=108Ω3.求下列向量A的散度:(1)A=(x2+yz)i+(y2+xz)j+(z2+xy)k;解P=x2+yz,Q=y2+xz,R=-z2+xy,.(2)A=e xy i+cos(xy)j+cos(xz2)k;解P=e xy,Q=cos(xy),R=cos(xz2),.(3)A=y2z i+xy j+xz k;解P=y2,Q=xy,R=xz,.4.设u (x,y,z)、v (x,y,z)是两个定义在闭区域Ω上的具有二阶连续偏导数的函数,,依次表示u (x,y,z)、v (x,y,z)沿∑的外法线方向的方向导数.证明,其中∑是空间闭区间Ω的整个边界曲面,这个公式叫作林第二公式.证明由第一格林公式(见书中例3)知,.将上面两个式子相减,即得.5.利用高斯公式推证阿基米德原理:浸没在液体中所受液体的压力的合力(即浮力)的方向铅直向上,大小等于这物体所排开的液体的重力.证明取液面为xOy面,z轴沿铅直向下,设液体的密度为ρ,在物体表面∑上取元素dS上一点,并设∑在点(x,y,z)处的外法线的方向余弦为cos α, cos β, cos γ, 则dS 所受液体的压力在坐标轴x , y , z 上的分量 分别为-ρz cos αdS , -ρz cos β dS , -ρz cos γ dS ,∑所受的压力利用高斯公式进行计算得,,||cos Ω-=-=-=-=ΩΩ∑⎰⎰⎰⎰⎰⎰⎰⎰ρρργρdv dv dS z F z ,其中|Ω|为物体的体积. 因此在液体中的物体所受液体的压力的合力, 其方向铅直向上, 大小等于这物体所排开的液体所受的重力, 即阿基 米德原理得证.习题10-71. 利用斯托克斯公式, 计算下列曲线积分:(1), 其中Γ为圆周x 2+y 2+z 2=a 2, , 若从z 轴的正向看去, 这圆周取逆时针方向;解 设∑为平面x +y +z =0上Γ所围成的部分, 则∑上侧的单位法向量为.于是.提示: 表示∑的面积, ∑是半径为a 的圆.(2), 其中Γ为椭圆x 2+y 2=a 2,(a >0, b >0), 若从x 轴正向看去, 这椭圆取逆时针方向;解 设∑为平面上Γ所围成的部分, 则∑上侧的单位法向量为.于是.提示: ∑(即)的面积元素为.(3), 其中Γ为圆周x 2+y 2=2z , z =2, 若从z 轴的正向看去, 这圆周是取逆时针方向;解 设∑为平面z =2上Γ所围成的部分的上侧, 则.(4), 其中Γ为圆周x 2+y 2+z 2=9, z =0, 若从z 轴的正向看去, 这圆周是取逆时针方向.解 设∑为xOy 面上的圆x 2+y 2≤9的上侧, 则.2. 求下列向量场A 的旋度:(1)A =(2z -3y )i +(3x -z )j +(-2x )k ;解 .(2)A =(sin y )i -(z -x cos y )k ;解 .(3)A =x 2sin y i +y 2sin(xz )j +xy sin(cos z )k .解=[x sin(cos z )-xy 2cos(xz )]i -y sin(cos z )j +[y 2z cos(xz )-x 2cos y ]k . 3. 利用斯托克斯公式把曲面积分化为曲线积分, 并计算积分值, 其中A 、∑及n 分别如下:(1)A =y 2i +xy j +xz k , ∑为上半球面, 的上侧, n 是∑的单位法向量;解 设∑的边界Γ : x 2+y 2=1, z =0, 取逆时针方向, 其参数方程为x =cos θ, y =sin θ, z =0(0≤θ≤2π,由托斯公式.(2)A =(y -z )i +yz j -xz k , ∑为立方体0≤x ≤2, 0≤y ≤2, 0≤z ≤2的表面外侧 去掉xOy 面上的那个底面, n 是∑的单位法向量.解.4. 求下列向量场A 沿闭曲线Γ(从z 轴正向看依逆时针方向)的环流量:(1)A =-y i +x j +c k (c 为常量), Γ为圆周x 2+y 2=1, z =0;解.(2)A =(x -z )i +(x 3+yz )j -3xy 2k , 其中Γ为圆周, z =0.解 有向闭曲线Γ的参数方程为x =2cos θ, y =2sin θ, z =0(0≤π≤2π). 向量场A 沿闭曲线Γ的环流量为⎰⎰-++-=++L L dz xy dy yz x dx z x Rdz Qdy Pdx 223)()(.5.证明rot(a+b)=rot a+rot b.解令a=P1(x,y,z)i+Q1(x,y,z)j+R1(x,y,z)k,b=P2(x,y,z)i+Q2(x,y,z)j+R2(x,y,z)k,由行列式的性质,有.6.设u=u(x,y,z)具有二阶连续偏导数,求rot(grad u)解因为grad u=u x i+u y j+u z k,故=(u zy-u yz)i+(u zx-u xz)j+(u yx-u xy)k=0.*7.证明:(1)∇(uv)=u∇v+v∇u解=u∇v+v∇u.(2)解==u∆v+v∆u+2∇u⋅∇u.(3) ∇⋅(A⨯B )=B⋅(∇⨯A )-A⋅(∇⨯B )解B=P2i+Q2j+R2k,而所以∇⨯(A⨯B)=B⨯(∇⨯A)-A⨯( ∇⨯B )(4) ∇⨯(∇⨯A )=∇(∇⋅A )-∇2a解令A=Pi+Q j++R k,则从而命题地证总习题十1. 填空:(1)第二类曲线积分化成第一类曲线积分是____________, 其中α、β、γ为有向曲线弧Γ上点(x , y , z )处的_____________的方向角.解 , 切向量.(2)第二类曲面积分Rdxdy Qdzdx Pdydz ++∑⎰⎰化成第一类曲面积分是_______, 其中α、β、γ为有向曲面∑上点(x , y , z )处的________的方向角.解 , 法向量.2. 选择下述题中给出的四个结论中一个正确的结论:设曲面∑是上半球面: x 2+y 2+z 2=R 2(z ≥0), 曲面∑1是曲面∑在第一卦限中的部分, 则有________.(A )xdS xdS 14∑∑⎰⎰⎰⎰=; (B );(C )xdS zdS 14∑∑⎰⎰⎰⎰=; (D )xyzdS xyzdS 14∑∑⎰⎰⎰⎰=.解 (C ).3. 计算下列曲线积分:(1), 其中L 为圆周x 2+y 2=ax ;解 L 的参数方程为, (0≤θ≤2π), 故θθθθπd y x ax ds ax ds y x L L )()()(222022'+'⋅==+⎰⎰⎰().(2), 其中Γ为曲线x =t cos t , y =t sin t , z =t (0≤t ≤t 0);解.(3), 其中L 为摆线x =a (t -sin t ), y =a (1-cos t )上对应t 从0到2π的一段弧;解 ⎰⎰⋅-+-⋅+-=+-π20]sin )sin ()cos 1()cos 2[()2(dt t a t t a t a t a a a xdy dx y a L.(4), 其中Γ是曲线x =t , y =t 2, z =t 3上由听t 1=0到t 2=1的一段弧;解.(5), 其中L 为上半圆周(x -a )2+y 2=a 2, y ≥0, 沿逆时针方向;解 这里P =e x sin y -2y , Q =e x cos y -2, .令L 1为x 轴上由原点到(2a , 0)点的有向直线段, D 为L 和L 1所围成的区域, 则由格林公式,.(6), 其中Γ是用平面y =z 截球面x 2+y 2+z 2=1所得的截痕, 从z 轴的正向看去, 沿逆时针方向.解 曲线Γ的一般方程为, 其参数方程为, t 从0变到2π.于是.4. 计算下列曲面积分:(1), 其中∑是界于平面z =0及z =H 之间的圆柱面x 2+y 2=R 2;解 ∑=∑1+∑2, 其中, D xy : -R ≤y ≤R , 0≤z ≤H , ;, D xy : -R ≤y ≤R , 0≤z ≤H , ,于是.(2), 其中∑为锥面(0≤z ≤h ) 的外侧;解 这里P =y 2-z , Q =z 2-x , R =x 2-y , 0=∂∂+∂∂+∂∂zR y Q x P . 设∑1为z =h (x 2+y 2≤h 2)的上侧, Ω为由∑与∑1所围成的空间区域, 则由高斯公式,而40222024)sin cos ()(1h d r r d dxdy y x h πθθθθπ=-=-⎰⎰⎰⎰∑, 所以 .(3)zdxdy ydzdx xdydz ++∑⎰⎰, 其中∑为半球面的上侧;解 设∑1为xOy 面上圆域x 2+y 2≤R 2的下侧, Ω为由∑与∑1所围成的空间区域, 则由高斯公式得,而 ,所以 33202R R zdxdy ydzdx xdydz ππ=-=++∑⎰⎰.(4), 其中∑为曲面(z ≥0)的上侧;解 这里, , , 其中., , ,.设∑1为z =0的下侧, Ω是由∑和∑1所围成的空间区域, 则由高斯公式,32223222)()(1z y x zdxdy ydzdx xdydz z y x zdxdy ydzdx xdydz ++++-=++++∑∑⎰⎰⎰⎰. (5)xyzdxdy∑⎰⎰, 其中∑为球面x 2+y 2+z 2=1(x ≥0, y ≥0)的外侧. 解 ∑=∑1+∑2, 其中∑1是(x 2+y 2≤1, x ≥0, y ≥0)的上侧;∑2是(x 2+y 2≤1, x ≥0, y ≥0)的下侧,xyzdxdy xyzdxdy xyzdxdy 21∑∑∑⎰⎰⎰⎰⎰⎰+=dxdy y x xy dxdy y x xy xyxy D D )1(12222------=⎰⎰⎰⎰ ⎰⎰⎰⎰-⋅⋅=--=103220221sin cos 212ρρρθθθπd d dxdy y x xy xy D .5. 证明22y x ydy xdx ++在整个xOy 平面除去y 的负半轴及原点的区域G 内是某个二元函数的全微分, 并求出一个这样的二元函数.解 这里, . 显然, 区域G 是单连通的, P 和Q 在G 内具有一阶连续偏导数, 并且 , 所以22y x ydy xdx ++在开区域G 内是某个二元函数u (x , y )的全微分. .6. 设在半平面x >0内有力构成力场, 其中k 为常数, . 证明在此力场中场力所作的功与所取的路径无关.解 场力沿路径L 所作的功为.令, . 因为P 和Q 在单连通区域x >0内具有一阶连续的偏导数, 并且,所以上述曲线积分所路径无关, 即力场所作的功与路径无关.7. 求均匀曲面的质心的坐标.解 这里∑:, (x , y )∈D xy ={(x , y )|x 2+y 2≤a 2}.设曲面∑的面密度为ρ=1, 由曲面的对称性可知, . 因为,222421a a dS ππ=⋅=∑⎰⎰, 所以 .因此该曲面的质心为.8. 设u (x , y )、v (x , y )在闭区域D 上都具有二阶连续偏导数, 分段光滑的曲线L 为D 的正向边界曲线. 证明:(1);(2),其中、分别是u 、v 沿L 的外法线向量n 的方向导数, 符号称为二维拉普拉斯算子. 证明 设L 上的单位切向量为T =(cos α, sin α), 则n =(sin α, -cos α).(1),所以 .(2)dxdy u v v u dxdy y u x u v y v x v u DD )()]()([22222222∆-∆=∂∂+∂∂-∂∂+∂∂=⎰⎰⎰⎰. 9. 求向量A =x i +y j +z k 通过闭区域Ω={(x , y , z )|0≤x ≤1, 0≤y ≤1, 0≤z ≤1}的边界曲面流向外侧的通量.解 设∑为区域Ω的边界曲面的外侧, 则通量为33==Ω⎰⎰⎰dv .10. 求力F =y i +z j +x k 沿有向闭曲线Γ所作的功, 其中Γ为平面x +y +z =1被三个坐标面所截成的三角形的整个边界, 从z 轴正向看去, 沿顺时针方向.解 设∑为平面x +y +z =1在第一卦部分的下侧, 则力场沿其边界L (顺时针方向)所作的功为.曲面∑的的单位法向量为, 由斯托克斯公式有.温馨提示-专业文档供参考,请仔细阅读后下载,最好找专业人士审核后使用!。
最新10第十章重积分答案汇总
10第十章重积分答案第十章重积分第一节二重积分的概念与性质1.根据二重积分的几何意义,确定下列积分的值。
«Skip Record If...»«Skip Record If...»解:由二重积分的几何意义知, «Skip Record If...»«Skip Record If...»«Skip Record If...»解:由二重积分的几何意义知,«Skip Record If...»2.根据二重积分的性质,比较下列积分的大小。
«Skip Record If...»«Skip Record If...»解:由 «Skip Record If...»知 «Skip Record If...»即«Skip Record If...»于是 «Skip Record If...»所以 «Skip Record If...»于是 «Skip Record If...»«Skip Record If...»解:因在D内x+y>e, 故 ln(x+y)>1, 于是 «Skip Record If...»«Skip Record If...»解:在D中,«Skip Record If...»且 «Skip Record If...»而不在直线x+y=1上的D内任何点(x,y), 都有«Skip Record If...»故 «Skip Record If...»于是 «Skip Record If...»3.利用二重积分的性质估计下列积分的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(高起专)第十章二重积分习题解答(一) 选择题(在每小题给出的四个选项中,只有一项符合题目要求,选出正确的选项) 1.1220I dy x y dx =⎰,则交换积分次序后得 C 。
(A)1220I dy x y dy =⎰; (B)12203I x y dy =⎰;(C )2112203x I dx x y dx -=⎰⎰; (D )2112203x I dx x y dy +=⎰⎰。
2.设积分域为{(,)|11,11}D x y x y =-≤≤-≤≤,则x yDedxdy +=⎰⎰ D. .(A)2)1(-e , (B)21)(2--e e , (C) 42)1(-e , (D) 21)(--e e ;3. 设积分域D 由直线,2,2y x x y x =+==围成,则(,)D f x y dxdy =⎰⎰ C(A)120(,)xxdx f x y dy -⎰⎰, (B) 21(,)yydyf x y dx -⎰⎰, (C) 212(,)xxdx f x y dy -⎰⎰, (D) 1(,)xdx f x y dy ⎰⎰.;4.22x y DI e dxdy --=⎰⎰,D :221x y +≤,化为极坐标形式是 D 。
(A )221[]r I edr d πθ-=⎰⎰;(B )21204[]r I e dr d πθ-=⎰⎰;(C )21202[]r I e rdr d πθ-=⎰⎰;(D )221[]r I e rdr d πθ-=⎰⎰。
5. 2DI xy d σ=⎰⎰, 其中22:1D x y +≤的第一象限部分,则 C 。
(A)120I dy xy dy =⎰; (B )1120I dx xy dy =⎰⎰;(C)12I dx dy =⎰;(D )1232cos sin I d r dr πθθθ=⎰⎰。
填空题1.交换二次积分次序,1(,)xI f x y dy =⎰= 。
故211(,)(,)yxy I dx f x y dy dy f x y dx ==⎰⎰⎰2.设积分域D 由11,22,x y -≤≤-≤≤围成,则3(2)Dxy dxdy +=⎰⎰ 03.设积分域为22{(,)|14,}D x y x y y x =≤+≤≥,则积分22()Df x y dxdy +=⎰⎰在极坐标下的二次积分为 。
解52422214()()Df x y d x d y dr f r d rππθ+=⎰⎰⎰⎰。
4.积分224()x y x y dxdy +≤+⎰⎰在极坐标下的二次积分为 。
222224()(cos sin )x y x y dxdy d r dr πθθθ+≤+=+⎰⎰⎰⎰5.二重积分22221()x y x y d σ+≤+=⎰⎰__________ 。
22212231()2x y x y dxdy d r dr ππθ+≤+==⎰⎰⎰⎰6.交换二次积分次序,2200(,)xI dxf x y dy -=⎰⎰= 。
故 2222(,)(,).yxI d x f x y d yd yf x y d x--==⎰⎰⎰⎰ (三)解答题 1.计算积分xy Dxe dxdy ⎰⎰,其中D :01,10≤≤-≤≤y x 。
解 由被积函数可以看出先对y 积分较简单。
110101111|(1)().xy xy xy Dxx xe dxdy xdx e dy e dx e dx x e e -----===-=+=⎰⎰⎰⎰⎰⎰2.计算dxdy xy D⎰⎰2,其中D 是由直线1,==x x y 和x 轴围成的平面区域。
解 由积分区域和被积函数可以看出可以任选积分次序。
解1 先对y 积分1112234510000001111()|333515x x D xy dxdy xdx y dy x y dx x dx x =====⨯⎰⎰⎰⎰⎰⎰ 解2 先对x 积分11122221001()2y D y xy dxdy y dy xdx y x dy ==⎰⎰⎰⎰⎰ 1122350011111(1)()22325111121().23521515y y dy y y =-=-=-==⎰3.计算dxdy y x D⎰⎰+)cos(,其中D 是由直线π===y x x y ,0,围成的平面区域。
解 由积分区域和被积函数可以看出可以任选积分次序,先对y 积分000cos()cos()sin()|1[sin()sin 2]cos()|cos 2| 2.2xDxx y dxdy dx x y dy x y dxx x dx x x πππππππππ+=+=+=+-=-++=-⎰⎰⎰⎰⎰⎰4.计算dxdy y D⎰⎰,其中D 是由直线,x y =,0,1==x x 及曲线xe y =围成的平面区域。
解 由积分区域可以看出,先对y 积分较简单。
11122222000111115|().22446412xx e e x x D x e ydxdy dx ydy y dx e x dx e ===-=--=-⎰⎰⎰⎰⎰⎰ 5.计算22()Dx y dxdy +⎰⎰,其中D 是由抛物线,2x y =直线0,1==y x 围成的平面区域。
解2211122222346001126()()()()33105x x Dx y d x d y d x xy d y x y y d x x x d x+=+=+=+=⎰⎰⎰⎰⎰⎰ 6.将二重积分dxdy y x f D),(⎰⎰化为两种二次积分次序,其中D 是由直线1,1,x y x y +=-=0x =围成的平面区域。
解11110111(,)(,)(,)(,)y yxDx f x y dxdy dx f x y dxdy dy f x y dxdy dy f x y dxdy +----==+⎰⎰⎰⎰⎰⎰⎰⎰7.交换I=110yxdx dy ⎰的积分次序,并求该积分的值。
解 由所给二次积分次序写出积分域D的不等式表达式:01x y ≤≤≤≤ 由此可得积分域的图形:故2110(,)(,)yxy Idx f x y dy dy f x y dx ==⎰⎰⎰8.设()f x 在[0,1]上连续,证明:21100()()()yx dy f x dx e e f x dx =-⎰⎰证 积分dx x f edy y y)(01⎰⎰可以表达成dx x f dy e yy)(01⎰⎰,函数)(x f 为抽象表达式,不便先对x 积分,故可考虑交换积分次序,2221111110()()()|()().yyy x x x f x dx f x dx e dy f x e dx e e f x dx ===-⎰⎰⎰⎰⎰9.计算二重积分dxdy x y I D)22(--=⎰⎰,其中D 是由抛物线,22x y =和直线42=+y x 围成的平面区域。
解 第一步:绘出区域图形,第二步:解方程22(1)24(2)y xx y ⎧=⎨+=⎩,求交点, 将(1)代入(2)得212202,1y y y y +-=⇒=-=,交点为12(8,2),(2,1)M M -。
第三步:确定积分限:由区域特点知,先对x ,后对y 积分较方便,2:21,242D y y x y -≤≤≤≤-2242122124222123452(2)(2)22(2)41181(4432)2510yD y yy x xI y dxdy dy y dxx x xy dyy y y y y dy -----=--=--=--=--+++=⎰⎰⎰⎰⎰⎰10.计算二重积分22(1)DI x y dxdy =--⎰⎰,其中D 是由221x y +=和直线0,==y x y 在第一象限内围成的平面区域。
解 区域是单位圆的一部分,被积函数有表达式22y x+,一般用极坐标计算二重积分,144422224100000111(1)(1)()|24416D I x y dxdy d r rdr r r d d ππππθθθ=--=-=-==⎰⎰⎰⎰⎰⎰11.计算二重积分DI =,其中D 是圆222x y y +=围成的平面区域。
解 区域是圆,被积函数有表达式22y x+,一般用极坐标计算二重积分,由直角坐标化为极坐标,变换公式为:cos ,sin ,x r y r dxdy rdrd θθθ===,因此圆222x y y +=在极坐标下的表达式为22sin 2sin r r r θθ=⇒=,积分域:0,02sin D r θπθ≤≤≤≤, 于是2sin 20320030188sin (1cos )(1)cos 338132(1)(cos cos )339DI d r drd d πθπππθθθθθθθ====--=--=⎰⎰⎰⎰ 12.计算二重积分DI =⎰⎰,其中D 是圆环22224x y ππ≤+≤。
解 用极坐标2202222sinsin 2(cos )2(cos |cos )6.Dd r rdrrd r r r rdr πππππππππθπππ==-=-+=-⎰⎰⎰⎰⎰⎰13.已知D 是圆域222(0)x y a a +≤>,求a 的值,使22()2xy DI e dxdy π-+==⎰⎰。
解 利用极坐标有:22222()2012()(1)2xy D ar r a a I e dxdyd e rdre e πθππ-+---===-=-⎰⎰⎰⎰令 2(1)2a eππ--=,解得a =14.求抛物面222z x y =--与上半圆锥面z =所围成的立体的体积V 。
解 由二重积分的几何意义,⎰⎰Dd y x f σ),(的值等于以D 为底,以曲面),(y x f z =为顶的曲顶柱体的体积,所以抛物面222z x y =--与上半圆锥面z =所围成的立体的体积为2222(2)(2DDDV x y d x y d σσσ=---=--⎰⎰⎰⎰其中D 为抛物面222z x y =--与圆锥面z =所围成的立体在xoy 面上的投影。
为求区域D,由222z x y z ⎧=--⎪⎨=⎪⎩消去z ,得221x y +=,所以区域22:1D x y +≤是圆,被积函数有表达式22y x +,用极坐标计算二重积分,得2134222210005(2(2)2[]346D r r V x y d d r r rdr r πσθππ=--=--=--=⎰⎰⎰⎰.。