上海数学高二下学期知识点
上海高二下数学知识点总结
上海高二下数学知识点总结数学是一门抽象而精确的科学学科,是人们思考和解决各种实际问题的有效工具。
在高二下学期的数学学习中,我们接触了许多重要的知识点,下面是对这些知识点的总结。
一、函数与方程1. 一次函数:一次函数的标准形式为y = kx + b,其中k为斜率,b为截距。
我们可以通过斜率和截距来确定一次函数的图像和性质。
2. 二次函数:二次函数的标准形式为y = ax² + bx + c,其中a、b、c为常数且a ≠ 0。
二次函数的图像是一个抛物线,通过顶点、轴对称轴和其他特征点可以确定二次函数的图像和性质。
3. 高次函数:高次函数包括三次函数、四次函数等等,它们的图像形状和性质与二次函数类似,但更加复杂。
4. 指数函数与对数函数:指数函数的标准形式为y = a^x,对数函数的标准形式为y = loga(x)。
指数函数和对数函数是互为反函数的关系,它们在实际问题中的应用非常广泛。
5. 三角函数:三角函数包括正弦函数、余弦函数和正切函数等等,它们与三角比的关系有关。
我们可以通过三角函数的图像和性质来解决与三角函数相关的问题。
二、几何与向量1. 平面几何:平面几何研究平面上的图形和性质,包括点、线、面、角等基本概念。
我们可以通过平面几何的知识来解决直角三角形、相似三角形、等腰三角形等几何问题。
2. 空间几何:空间几何研究三维空间中的图形和性质,包括点、直线、平面、立体等基本概念。
我们可以通过空间几何的知识来解决与空间图形相关的问题,如球体的体积计算、三棱锥的形状等。
3. 向量与坐标:向量是具有大小和方向的量,可以用箭头表示。
我们可以通过向量的运算来解决与向量相关的问题,如向量的加减、数量积、向量积等。
坐标则是一种表示点在数学空间中位置的方式,我们可以通过坐标系来描述平面或空间中的点和图形。
三、概率与统计1. 概率:概率是研究随机事件发生可能性的数学理论。
我们可以通过概率的知识来解决与概率相关的问题,如事件的概率计算、概率的加法规则和乘法规则等。
上海高二下数学知识点总结
上海高二下数学知识点总结高二下学期是数学学习的重要阶段,掌握并巩固好这一学期的数学知识,对于高考的顺利备考和取得好成绩至关重要。
为了帮助同学们更好地回顾数学知识,本文将对上海高二下学期的数学知识点进行总结。
一、函数与导数1. 函数的概念和性质:自变量、函数值、定义域、值域、奇偶性等。
2. 基本初等函数:常数函数、幂函数、指数函数、对数函数、三角函数等。
3. 辅助函数:复合函数、反函数、方程与不等式的解等。
4. 导数的定义与计算:导数的定义、导数的几何意义、基本求导法则、高阶导数等。
5. 函数的单调性与极值:单调递增、单调递减、极大值、极小值、拐点等。
6. 增量与微分:增量的定义、微分的概念、微分近似计算等。
二、三角函数与向量1. 角度与弧度:角度的概念和度数制、弧度的概念和弧度制等。
2. 三角函数的基本关系:正弦函数、余弦函数、正切函数等。
3. 三角函数的性质与图像:函数图像、周期性、奇偶性、单调性等。
4. 三角函数的运算:和差化积、积化和差、倍角公式、半角公式等。
5. 向量的基本概念:向量的定义、向量的运算、向量的模、单位向量等。
6. 向量的夹角与投影:向量的夹角定义、向量的数量积、向量的数量积与夹角的关系等。
三、数列与数学归纳法1. 数列的基本概念:数列的定义、通项公式、前n项和、递归公式等。
2. 常见数列:等差数列、等比数列、等差数列的前n项和、等比数列的前n项和等。
3. 数学归纳法:数学归纳法的基本原理、数学归纳法的应用等。
四、平面向量与解析几何1. 平面向量的基本概念:平面向量的定义、平面向量的运算、平面向量的共线条件等。
2. 向量的数量积与向量的夹角:向量的数量积的定义、数量积的性质、数量积与向量夹角的关系等。
3. 平面向量的坐标表示:平面向量的坐标表示、平面向量的数量积的坐标表示等。
4. 解析几何中的图形问题:平面几何基础知识、平面上的直线、曲线、图形的性质等。
5. 解析几何中的方程问题:直线的方程、圆的方程等。
2023-2024年上海沪教版高二第二学期期末数学--核心考点11 概率初步(续)(解析版)
核心考点11概率初步(续)目录一.相互独立事件和相互独立事件的概率乘法公式(共6小题)二.n次独立重复试验中恰好发生k次的概率(共4小题)三.条件概率与独立事件(共4小题)四.全概率公式(共2小题)五.离散型随机变量及其分布列(共2小题)六.离散型随机变量的期望与方差(共7小题)七.超几何分布(共1小题)八.二项分布与n次独立重复试验的模型(共4小题)九.正态分布曲线的特点及曲线所表示的意义(共7小题)考点考向一.相互独立事件和相互独立事件的概率乘法公式【知识点的认识】1.相互独立事件:事件A(或B)是否发生,对事件B(或A)发生的概率没有影响,这样两个事件叫做相互独立事件.2.相互独立事件同时发生的概率公式:将事件A和事件B同时发生的事件即为A•B,若两个相互独立事件A、B同时发生,则事件A•B发生的概率为:P(A•B)=P(A)•P(B)推广:一般地,如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率之积,即:P(A1•A2…A n)=P(A1)•P(A2)…P(A n)3.区分互斥事件和相互独立事件是两个不同的概念:(1)互斥事件:两个事件不可能同时发生;(2)相互独立事件:一个事件的发生与否对另一个事件发生的概率没有影响.二.n次独立重复试验中恰好发生k次的概率【概念】一般地,在n次独立重复试验中,用ξ表示事件A发生的次数,如果事件发生的概率是P,则不发生的概率q=1﹣p,N次独立重复试验中发生K次的概率是P(ξ=K)=(K=1,2,3,…n)那么就说ξ服从二项分布.其中P称为成功概率.记作ξ~B(n,p),期望:Eξ=np,方差:Dξ=npq.三.条件概率与独立事件【知识点的知识】1、条件概率的定义:对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示.(2)条件概率公式:称为事件A与B的交(或积).(3)条件概率的求法:①利用条件概率公式,分别求出P(A)和P(AB),得P(B|A)=,其中P(A)>0;②借助古典概型概率公式,先求出事件A包含的基本事件数n(A),再在事件A发生的条件下求出事件B包含的基本事件数,即n(A∩B),得P(B|A)=四.全概率公式【全概率公式】一般地,设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=.五.离散型随机变量及其分布列【考点归纳】1、相关概念;(1)随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示.(2)离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是随机变量,η=aξ+b,其中a、b是常数,则η也是随机变量.(3)连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量(4)离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.2、离散型随机变量(1)随机变量:在随机试验中,试验可能出现的结果可以用一个变量X来表示,并且X是随着试验结果的不同而变化的,这样的变量X叫做一个随机变量.随机变量常用大写字母X,Y,…表示,也可以用希腊字母ξ,η,…表示.(2)离散型随机变量:如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.3、离散型随机变量的分布列.(1)定义:一般地,设离散型随机变量X的所有可能值为x1,x2,…,x n;X取每一个对应值的概率分别为p1,p2,…,p n,则得下表:X x1x2…x i…x nP p1p2…p i…p n该表为随机变量X的概率分布,或称为离散型随机变量X的分布列.(2)性质:①p i≥0,i=1,2,3,…,n;②p1+p2+…+p n=1.六.离散型随机变量的期望与方差【知识点的知识】1、离散型随机变量的期望数学期望:一般地,若离散型随机变量ξ的概率分布为x1x2…x n…P p1p2…p n…则称Eξ=x1p1+x2p2+…+x n p n+…为ξ的数学期望,简称期望.数学期望的意义:数学期望离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平.平均数与均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令p1=p2=…=p n,则有p1=p2=…=p n=,Eξ=(x1+x2+…+x n)×,所以ξ的数学期望又称为平均数、均值.期望的一个性质:若η=aξ+b,则E(aξ+b)=aEξ+b.2、离散型随机变量的方差;方差:对于离散型随机变量ξ,如果它所有可能取的值是x1,x2,…,x n,…,且取这些值的概率分别是p1,p2,…,p n…,那么,称为随机变量ξ的均方差,简称为方差,式中的Eξ是随机变量ξ的期望.标准差:Dξ的算术平方根叫做随机变量ξ的标准差,记作.方差的性质:.方差的意义:(1)随机变量的方差的定义与一组数据的方差的定义式是相同的;(2)随机变量的方差、标准差也是随机变量的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;(3)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛.七.超几何分布【知识点的知识】一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=K)=,k=m,m+1,m+2,...,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n﹣N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.八.二项分布与n次独立重复试验的模型【知识点的知识】1、二项分布:一般地,在n次独立重复的试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=p k(1﹣p)n﹣k,k=0,1,2,…n,此时称随机变量X服从二项分布,记作X~B(n,p),并记p k(1﹣p)n﹣k=b(k,n,p).2、独立重复试验:(1)独立重复试验的意义:做n次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验.(2)一般地,在n次独立重复试验中,设事件A发生的次数为X,在每件试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=p k(1﹣p)n﹣k,k=0,1,2,…n,此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.(3)独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n 次试验是独立的.(4)独立重复试验概率公式的特点:P n(k)=p k(1﹣p)n﹣k,是n次独立重复试验中某事件A恰好发生k次的概率.其中,n是重复试验的次数,p是一次试验中某事件A发生的概率,k是在n次独立重复试验中事件A恰好发生的次数,需要弄清公式中n,p,k的意义,才能正确运用公式.九.正态分布曲线的特点及曲线所表示的意义【知识点的知识】1.正态曲线及性质(1)正态曲线的定义函数φμ,σ(x)=,x∈(﹣∞,+∞),其中实数μ和σ(σ>0)为参数,我们称φμ,σ(x(2)正态曲线的解析式①指数的自变量是x定义域是R,即x∈(﹣∞,+∞).②解析式中含有两个常数:π和e,这是两个无理数.③解析式中含有两个参数:μ和σ,其中μ可取任意实数,σ>0这是正态分布的两个特征数.④解析式前面有一个系数为,后面是一个以e为底数的指数函数的形式,幂指数为﹣.2.正态分布(1)正态分布的定义及表示如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=φμ,σ(x)dx,则称X的分布为正态分布,记作N(μ,σ2).(2)正态总体在三个特殊区间内取值的概率值①P(μ﹣σ<X≤μ+σ)=0.6826;②P(μ﹣2σ<X≤μ+2σ)=0.9544;③P(μ﹣3σ<X≤μ+3σ)=0.9974.3.正态曲线的性质正态曲线φμ,σ(x)=,x∈R有以下性质:(1)曲线位于x轴上方,与x轴不相交;(2)曲线是单峰的,它关于直线x=μ对称;(3)曲线在x=μ处达到峰值;(4)曲线与x轴围成的图形的面积为1;(5)当σ一定时,曲线随着μ的变化而沿x轴平移;(6)当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.4.三个邻域会用正态总体在三个特殊区间内取值的概率值结合正态曲线求随机变量的概率.落在三个邻域之外是小概率事件,这也是对产品进行质量检测的理论依据.考点精讲一.相互独立事件和相互独立事件的概率乘法公式(共6小题)1.(2022春•闵行区校级期末)已知某地市场上供应的灯泡中,甲厂产品占70%,乙厂占30%,甲厂产品的合格率是90%,乙厂产品的合格率是80%,则从该地市场上买到一个合格灯泡的概率是0.87.【分析】根据相互独立事件的概率乘法公式计算即可.【解答】解:从该地市场上买到一个合格灯泡的概率是0.7×0.9+0.3×0.8=0.87.故答案为:0.87.【点评】本题考查相互独立事件乘法公式的运用,是基础题.2.(2022春•闵行区校级期末)某科技公司组织技术人员进行某新项目研发,技术人员将独立地进行项目中不同类型的实验甲、乙、丙,已知实验甲、乙、丙成功的概率分别为、、,对实验甲、乙、丙各进行一次,则至少有一次成功的概率为.(结果用最简分数表示)【分析】利用相互独立事件的概率乘法公式以及对立事件的概率公式可解.【解答】解:记实验甲、乙、丙成功分别为事件A,B,C,且它们相互独立,故实验甲、乙、丙各进行一次,至少有一次成功的概率为:P=(1﹣)=1﹣=,故答案为:.【点评】本题考查了相互独立事件的概率乘法公式,对立事件概率公式,属于基础题.3.(2022春•宝山区校级期末)已知甲、乙两袋中分别装有编号为1、2、3、4的四个球.从甲、乙两袋中各取出一个球,每个球被取出的可能性相同.事件A:从甲袋中取出的球的编号是偶数事件B:从乙袋中取出的球的编号是奇数事件C:取出的两个球的编号都是偶数或都是奇数给出下列命题:①事件A与事件B相互独立;②事件B与事件C相互独立;③事件C与事件A相互独立.那么这三个命题中真命题的个数为()A.0个B.1个C.2个D.3个【分析】【解答】解:由题意:P(A)=,P(B)=,P(C)==,因为事件AB:从甲袋中取出的球的编号是偶数,乙袋中取出的球的编号是奇数,所以P(AB)==,因为事件BC:甲乙两袋中取出的球的编号都是奇数,所以P(BC)==,因为事件AC:甲乙两袋中取出的球的编号都是偶数,P(AC)==,则P(AB)=P(A)P(B),P(BC)=P(B)P(C),P(AC)=P(A)P(C),所以A,B相互独立,B,C相互独立,A,C相互独立,所以D正确.故选:D.【点评】本题考查相互独立事件的概率公式,是基础题.4.(2022春•黄浦区校级期中)甲、乙两人进行投篮比赛,且两人每次投篮是否命中互不影响.已知甲、乙两人每次投篮命中的概率分别为0.8和0.6.(1)甲、乙各投一次篮,则甲命中且乙未命中的概率为0.32;(2)甲、乙各投两次篮,则甲比乙多命中一次的概率为0.3584.【分析】(1)根据对立事件性质,独立事件乘法公式求解;(2)分情况讨论:甲命中2次,乙命中1次;甲命中1次,乙命中0次,仍利用根据对立事件性质,独立事件的乘法公式计算.【解答】解:设甲和乙投篮命中分别为事件A,B,依题意P(A)=0.8,P(B)=0.6,根据对立事件性质,独立事件乘法公式,甲、乙各投一次篮,则甲命中且乙未命中的概率为:P(A)=P(A)P()=P(A)(1﹣P(B))=0.8×0.4=0.32,甲、乙各投两次篮,则甲比乙多命中一次,意味着甲命中2次,乙命中1次;甲命中1次,乙命中0次,概率为:P=×0.4×0.4=0.3584.故答案为:0.32,0.3584.【点评】本题考查概率的求法,考查相互独立事件概率乘法公式、互斥事件概率加法公式等基础知识,考查运算求解能力,是基础题.5.(2022春•徐汇区校级期中)设某工厂有甲、乙、丙3个车间生产同一批彩电.(1)假设100台彩电中有10台次品,现采用不放回抽样从中依次抽取3次,每次抽1台,求第3次才抽到合格品的概率;(2)若甲、乙、丙3个车间的产量依次占全厂的45%、35%、20%,且各车间的次品率分别为4%、2%、5%,.现从一批产品中检查出1个次品,求该次品来自甲、乙、丙车间的概率分别是多少?【分析】(1)根据分步乘法计数原理,可直接求解;(2)求出各种产量的数量,然后根据全概率公式求出次品率,然后根据条件概率求解即可.【解答】解:(1)第3次才抽到合格品的概率;(2)设B=“从一批产品中检查出1个次品”,A1=“零件为甲车间加工”,A2=“零件为乙车间加工”,A3=“零件为丙车间加工”,则Ω=A1∪A2∪A3,且A1,A2,A3两两互斥,由题意可知,P(A1)=0.45,P(A2)=0.35,P(A3)=0.2,P(B|A1)=0.04,P(B|A2)=0.02,P(B|A3)=0.05,由全概率公式可得,P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=0.45×0.04+0.35×0.02+0.2×0.05=0.035,则该次品来自甲车间的概率==,该次品来自乙车间的概率,该次品来自丙车间的概率.【点评】本题主要考查了古典概型的概率公式,考查了条件概率的概率公式,属于基础题.6.(2022春•闵行区校级期末)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰:比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为.(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.【分析】(1)甲连胜四场只能是前四场全胜,由此能求出甲连胜四场的概率.(2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛,比赛四场结束,共有三种情况,甲连胜四场比赛,乙连胜四场比赛,丙上场后连胜三场,由此能求出需要进行五场比赛的概率.(3)设A为甲输,B为乙输,C求出丙最终获胜的概率.【解答】解:(1)甲连胜四场只能是前四场全胜,P=()4=.(2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛,比赛四场结束,共有三种情况,甲连胜四场的概率为,乙连胜四场比赛的概率为,丙上场后连胜三场的概率为,∴需要进行第五场比赛的概率为:P=1﹣=.(3)设事件A为甲输,事件B为乙输,事件C为丙输,记事件M:甲赢,记事件N:丙赢,则甲赢的基本事件包括:BCBC、ABCBC、ACBCB、BABCC、BACCB、BCACB、BCABC、BCBAC,则甲赢终的概率为:P=()4+()5×7=;由对称性可知:乙赢的概率和甲赢的概率相等,所以丙获胜的概率为P=.【点评】本题考查概率的求法,考查相互独立事件概率计算公式和互斥事件概率加法公式等基础知识,考查运算求解能力,是中档题.二.n次独立重复试验中恰好发生k次的概率(共4小题)7.(2021春•长宁区校级期末)设某同学选择等级考科目时,选择物理科目的概率为0.5,选择化学科目的概率为0.6,且这两个科目的选择相互独立,则该同学在这两个科目中至少选择一个的概率是0.8【分析】利用对立事件概率计算公式、相互独立事件概率乘法公式直接求解.【解答】解:设某同学选择等级考科目时,选择物理科目的概率为0.5,选择化学科目的概率为0.6,且这两个科目的选择相互独立,∴该同学在这两个科目中至少选择一个的概率是:p=1﹣(1﹣0.5)(1﹣0.6)=0.8.故答案为:0.8.【点评】查运算求解能力,是基础题.8.(2022秋•徐汇区校级期末)俞女士每次投篮的命中率只有0.2,她在某次投篮练习中决定只要连续两次命中就结束投篮练习,求她至多四次投篮就能结束的概率.【分析】由题知俞女士每次投篮互不影响,记俞女士每次投篮命中为事件A i,则P(A i)=,她至多四次投篮就能结束分投篮次数为2次,3次,4次,由此求出结果.【解答】解:由题知俞女士每次投篮互不影响,俞女士每次投篮的命中率只有0.2,记俞女士每次投篮命中为事件A i,i=1,2,3,4,则P(A i)=,∵只要连续两次命中就结束投篮练习,∴投篮2次结束的概率为P=P(A1A2)==,投篮3次结束的概率为P=P()==,投篮4次结束的概率为P=P()+P()==,∴她至多四次投篮就能结束的概率P=.【点评】本题考查相互独立事件概率乘法公式、互斥事件概率加法公式等基础知识,考查运算求解能力,是基础题.9.(2021春•徐汇区校级月考)已知10件产品中有2件次品.(1)任意取出4件产品检验,求其中恰有1件次品的概率;(2)为了保证使2件次品全部检验出的概率在0.6以上,至少应抽取几件产品作检验?【分析】(1)基本事件总数n==210,其中恰有1件次品包含的基本事件个数m==112,由此能求出其中恰有1件次品的概率;(2)设应抽取x件产品作检验,则,由此能求出至少应抽取8件产品作检验.【解答】解:(1)10件产品中有2件次品,任意取出4件产品检验,基本事件总数n==210,其中恰有1件次品包含的基本事件个数m==112,∴其中恰有1件次品的概率为P===;(2)设应抽取x件产品作检验,则,得x2﹣x﹣54>0,解得x≥8,所以至少应抽取8件产品作检验.【点评】本题考查概率的运算,考查古典概型、排列组合等基础知识,考查运算求解能力等数学核心素养,是基础题.10.(2022秋•嘉定区校级期中)已知甲同学在玩“电子抽卡游戏”,假设每次抽取1张卡,且每次获得“稀有卡”的概率均为0.6%,那么该同学在50次抽取后,一次也没获得“稀有卡”的概率为0.74.(结果精确到1%)【分析】由题意,利用n次独立重复实验中签好发生k次的概率计算公式,结合二项式定理,得出结论.【解答】解:每次抽取1张卡,且每次获得“稀有卡”的概率均为(1﹣0.6%)50,那么该同学在50次抽取后,一次也没获得“稀有卡”的概率为×(0.6%)0(1﹣0.6%)50=(1﹣0.006)50=﹣×0.006+×0.0062+•••+×0.00650≈﹣×0.006+×0.0062=1﹣0.3+0.044≈0.74,故答案为:0.74.【点评】本题主要考查n次独立重复实验中签好发生k次的概率,二项式定理的应用,属于中档题.三.条件概率与独立事件(共4小题)11.(2022春•杨浦区校级期末)有9张卡片,分别写有数字1,2,3,4,5,6,7,8,9.从这9张卡片中不放回地依次取2张卡片,事件A:“第一次取到的卡片标有奇数数字”,事件B:“第二次取到的卡片标有偶数数字”,则P(B|A)=.【分析】根据已知条件,结合条件概率公式,即可求解.【解答】解:由题意可得,P(A)=,P(AB)=,故P(B|A)==.故答案为:.【点评】本题主要考查条件概率公式,考查转化能力,属于基础题.12.(2022春•徐汇区校级期末)设某种宠物小狗活到18岁的概率是0.6,活到25岁的概率是0.2.现有一只18岁的该种宠物小狗,问它活到25岁的概率是.【分析】根据已知条件,结合条件概率公式,即可求解.【解答】解:设某种宠物小狗活到18岁的事件为A,活到25岁的事件为B,由题意可知,P(A)=0.6,P(AB)=0.2,故P(B|A)=.故答案为:.【点评】本题主要考查条件概率公式,考查转化能力,属于基础题.13.(2022春•闵行区校级期末)设随机事件A,B,已知P(A)=0.4,P(B|A)=0.3,P(B|)=0.2,则P(AB)=0.12,P(B)=0.24.【分析】根据已知条件,结合条件概率公式,即可求解.【解答】解:∵P(A)=0.4,P(B|A)=0.3,∴P(AB)=P(A)P(B|A)=0.4×0.3=0.12,∵P(A)=0.4,∴,∴,∴P(B)=P(AB)+=0.12+0.12=0.24.故答案为:0.12;0.24.【点评】本题主要考查条件概率公式,考查转化能力,属于基础题.14.(2022春•浦东新区校级期末)假设某种动物生存到1岁的概率为0.3,生存到10岁的概率为,则一只恰好1岁的该动物生存到10岁的概率为.【分析】根据条件概率公式计算即可.【解答】解:某种动物生存到1岁为事件A,生存到10岁为事件AB,某种动物生存到1岁的概率为0.3,生存到10岁的概率为,恰好1岁的该动物生存到10岁的概率为P(B|A)===.故答案为:.【点评】四.全概率公式(共2小题)15.(2023•宝山区校级模拟)设某产品的一个部件来自三个供应商,这三个供应商的良品率分别是0.92,0.95,0.94,若这三个供应商的供货比例为3:2:1,那么这个部件的总体良品率是(用分数作答).【分析】部件的总体良品率是,计算得到答案.【解答】解:部件的总体良品率是:.故答案为:.【点评】本题主要考查全概率公式,属于基础题.16.(2022春•闵行区校级期末)袋中装有9个形状大小均相同的小球,其中4个红球,3个黑球,2个白球,从中一次取出2个球,记事件A=“两球是同一颜色”,事件B=“两球均为红球”,则P(B|A)=.【分析】利用条件概率公式能求出结果.【解答】解:P(B|A)===.故答案为:.【点评】本题考查概率的求法,考查全概率公式及条件概率公式等基础知识,考查运算求解能力,是基础题.五.离散型随机变量及其分布列(共2小题)17.(2022秋•嘉定区月考)某路口在最近一个月内发生重大交通事故数X服从如下分布:,则该路口一个月内发生重大交通事故的平均数为1.2(精确到小数点后一位).【分析】根据离散型随机变量的期望公式计算即可.【解答】解:由题意得,E(X)=0×0.301+1×0.362+2×0.216+3×0.087+4×0.026+5×0.006+6×0.002≈1.2.故答案为:1.2.【点评】本题考查离散型随机变量的期望的计算,是基础题.18.(2023•嘉定区模拟)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【分析】(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X的分布列.(Ⅱ)由X的分布列求出P(X≤18)=,P(X≤19)=.由此能确定满足P(X≤n)≥0.5中n的最小值.(Ⅲ)法一:由X的分布列得P(X≤19)=.求出买19个所需费用期望EX1和买20个所需费用期望EX2,由此能求出买19个更合适.法二:解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n=19时,费用的期望和当n=20时,费用的期望,从而得到买19个更合适.【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)==,P(X=20)===,P(X=21)==,P(X=22)=,∴X的分布列为:X16171819202122P(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5中,n的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.买19个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20个所需费用期望:EX2=+(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,当n=19时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20时,费用的期望为:20×200+500×0.08+1000×0.04=4080,∴买19个更合适.【点评】本题考查离散型随机变量的分布列和数学期望的求法及应用,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.六.离散型随机变量的期望与方差(共7小题)19.(2022秋•虹口区校级期末)设0<p<1,随机变量ξ的分布列如图,则当p在(0,1)内增大时,()ξ012PA.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小【分析】先求数学期望,再求方差,最后根据方差函数确定单调性.【解答】解:∵,∴,∵,∴D(ξ)先增后减.故选:D.【点评】本题主要考查数学期望、方差的公式,属于基础题.20.(2022秋•徐汇区校级期末)已知随机变量ξ~B(2n,p),n∈N*,n≥2,0<p<1,记f(t)=P(ξ=t),其中t∈N,t≤2n,现有如下命题:①;②若np=6,则f(t)≤f(12),下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题【分析】根据已知得出.取,根据二项式定理求出奇数项和偶数项和,即可判断命题①真假;先利用分布列的表达式得出,判断f(t)的增减性.讨论(2n+1)p②真假.【解答】解:由已知可得,.对于命题①,当时,.因为=,=,所以.所以,所以,所以①为假命题;对于命题②,若ξ~B(2n,p).===.当t+1<(2n+1)p时,f(t+1)>f(t),f(t)随着t的增加而增加;当t+1>(2n+1)p时,f(t+1)<f (t),f(t)随着t的增加而减小.当(2n+1)p为整数时,t=(2n+1)p或t=(2n+1)p﹣1时,f(t)有最大值;当(2n+1)p不为整数时,t为(2n+1)p的整数部分时,f(t)有最大值.因为(2n+1)p=12+p,0<p<1,所以当t=12时,f(t)最大,所以有f(t)≤f(12),所以②为真命题.故选:D.【点评】本题考查命题的真假判断以及离散型随机变量和二项式定理的运用,考查函数思想以及运算求解能力,属于中档题.21.(2022秋•宝山区校级期末)已知,随机变量ξ、η相互独立,随机变量ξ的分布为,η的分布为,则当p在内增大时()A.E(ξ+η)减小,D(ξ+η)增大B.E(ξ+η)减小,D(ξ+ηC.E(ξ+η)增大,D(ξ+η)增大D.E(ξ+η)增大,D(ξ+η)减小【分析】利用数学期望和方差的性质直接求解.【解答】解:由题意可得:,E(η)=(﹣1)×(1﹣p)+1×p=2p﹣1,所以,所以当p在(0,)内增大时,E(ξ+η)增大,;D(η)=(﹣2p)2×(1﹣p)+(2﹣2p)2×p=4p﹣4p2,所以,所以当p在(0,)内增大时,D(ξ+η)增大.【点评】本题主要考查离散型随机变量的期望和方差,属于中档题.22.(2022秋•宝山区校级期末)设0<a≤b,随机变量X的分布是,则E(X)的取值范围是()A.B.C.D.【分析】根据概率之和为1找到a,b之间的关系,用a,b表示出E(X),结合不等关系求出E(X)的范围.【解答】解:根据分布列的性质可知:,结合题干条件0<a≤b可解得:,而E(X)=1•a+2•b+4•(a+b)=5a+6b=,于是,故选:B.【点评】本题主要考查离散型随机变量的期望,属于中档题.23.(2022秋•金山区校级期中)中国共产党第二十次代表大会报告指出:教育、科技、人才是全面建设社会主义现代化国家的基础性、战略性支撑,某项人才选拔的测试,共有25道选择题构成,每道题均有4个选项,其中只有1个是正确的.该测试满分为150分,每题答对得6分,未作答得2分,答错得0分.考生甲、乙都已答对前20道题,对后5道题(依次记为T1、T2、T3、T4、T5)均没有把握答对.两人在这5道题中选择若干道作答,作答时,若能排除某些错误选项,则在剩余的选项中随机地选择1个,否则就在4个选项中随机地选择1个.已知甲只能排除T1、T2、T3中各1个错误选项,故甲决定只作答这三题,放弃T4、T5.(1)求甲的总分不低于130分的概率;(2)求甲的总分的概率分布;(3)已知乙能排除T1、T2、T3中各2个错误选项,能排除T4中1个错误选项,但无法排除T5中的任一错误选项.试问乙采用怎样的作答策略(即依次确定后5道题是否作答)可使其总分的期望最大,并说明理由.【分析】(1)根据相互独立事件与互斥事件的概率公式计算可得;(2)设甲的总分为随机变量X,依题意可得X的可能值为124,130,136,求出所对应的概率,即可求出。
最新上海数学高二知识点总结
数列:1.数列的有关概念:(1)数列:按照一定次序排列的一列数。
数列是有序的。
数列是定义在自然数 N*或它的有限子集{1,2,3,…,n }上的函数。
(2)通项公式:数列的第n 项a n 与n 之间的函数关系用一个公式来表示, 这个公式即是该数列的2通项公式。
如:a n = 2 n -1。
(3)递推公式:已知数列{a n }的第1项(或前几项),且任一项 a n 与他的前一项a n -1 (或前几项) 可以用一个公式来表示,这个公式即是该数列的递推公式。
如:a 1 =1卫2 =2, a n 二 a n 」a n,(n ■ 2)。
2 •数列的表示方法:(1)列举法:如1, 3, 5, 7, 9,…(2)图象法:用(n, a n )孤立点表示。
4. 数列{a n }及前n 项和之间的关系(3)解析法:用通项公式表示(4) 递推法:用递推公式表示。
3 •数列的分类:按项数丿'有穷数列无穷数列按单调性[常数列 :a递增数列 」递减数列 摆动数列二 2a n = 2n T, a n = 2 a n = -n亠 1a n = (「1)n 2 nS n - a 1a 2 ■ a3 ■ 111 ' a na n = S 1,(ni) |Sn - S n _1,( n— 2)(三)不等式1、a「b 0 = a b ;a「b=0:= a 二b ;a「b :0= a :: b •2、不等式的性质:① a • b := b a ;② a b,b - c= a c ;③ a b= a c b c ;④ a b, c 0= ac bc,a b,c :: 0= ac :: be :⑤ a b, c d 二a c b d ;⑥ a b 0, c d 0= ac bd ;⑦ a b 0= a n b n n:F】,n 1 ;⑧ a>b〉0 二> V b (n 壬N,n>1 ).小结:代数式的大小比较或证明通常用作差比较法:作差、化积(商)、判断、结论。
上海数学高二下知识点总结
上海数学高二下知识点总结高二下学期的数学学习内容相当丰富,包括了多个知识点,包括了解析几何、数列与数学归纳法、三角函数、常数项数列的数学归纳法、平面向量、立体几何和概率统计等。
这些知识点是高二学生接触的重要数学知识,对于高中数学学业的顺利发展具有关键作用。
本文将对这些知识点进行总结和归纳,以便同学们能够更好地掌握这些知识。
一、解析几何1. 直线方程与线段分点公式直线的方程可以通过两点确定,常见的有点斜式、两点式和截距式等。
线段的分点公式可以方便地求出线段上任意一点的坐标。
2. 直线的位置关系及斜率两条直线的位置关系可以根据它们的斜率和截距来判断是否相交、平行还是重合。
斜率可以通过两点坐标之差的比值来求得。
3. 圆的方程与属性圆的方程可以通过圆心坐标和半径确定。
对于圆,可以利用圆的方程求解与直线的交点,进而判断位置关系。
二、数列与数学归纳法1. 数列的概念与性质数列是按照一定规律排列的一组数,可以是等差数列、等比数列等。
数列有首项、通项和公式等重要概念。
2. 数列的求和公式等差数列和等比数列都有相应的求和公式,可以利用这些公式来快速求得数列的和。
3. 数学归纳法数学归纳法是证明数学命题的常用方法,通过证明当命题成立时,下一步命题也一定成立,从而得出结论。
三、三角函数1. 弧度制与角度制三角函数是通过角的概念而引入的,可以根据角的度数定义三角函数。
角的单位可以是弧度或角度。
2. 基本关系式与诱导公式正弦、余弦和正切是三角函数的基本关系式,在计算中可以利用这些关系式来化简表达式。
诱导公式可以通过基本关系式推导出其他三角函数的值。
3. 三角函数的图像与性质三角函数的图像可以通过将角的弧度或角度代入函数中得到,可以观察到它们的周期性和对称性等属性。
四、常数项数列的数学归纳法1. 常数项数列的概念与性质常数项数列是指数列中的公差为0的情况,此时数列的各项都相等。
常数项数列的通项公式比较简单,可以通过某一项的值直接得到其他项。
高二下期数学学哪些知识点
高二下期数学学哪些知识点高二下学期是数学学科的重要阶段,学生将继续深入学习数学的各个领域和知识点。
在这个学期里,学生们将会接触到许多重要而有趣的数学概念和技巧。
本文将介绍高二下期数学需要学习的主要知识点,帮助学生们规划学习进度和集中精力。
一、函数和方程1.1 二次函数与二次方程学习二次函数和二次方程的性质,如顶点坐标、对称轴、零点等。
理解二次函数与二次方程之间的相互关系,并能够运用相关知识解决实际问题。
1.2 一次函数与一次方程巩固对一次函数和一次方程的理解,学习一次函数的斜率、截距等概念,并能够求解一次方程。
灵活应用所学知识解决实际问题。
1.3 无理方程学习无理方程的基本概念和解法,包括平方根、立方根等。
通过练习巩固技巧,提高解无理方程的能力。
二、三角函数2.1 三角函数的概念学习正弦、余弦、正切等三角函数的概念和性质,掌握它们在单位圆上的几何意义。
能够进行基本的函数变换和图像绘制。
2.2 三角函数的基本关系与恒等变换学习三角函数的基本关系和恒等变换,包括和差化积、倍角公式等。
能够熟练运用这些关系和变换简化复杂的三角函数表达式。
三、数列与数学归纳法3.1 等差数列学习等差数列的概念和性质,包括通项公式、和的计算等。
能够应用等差数列解决实际问题。
3.2 等比数列学习等比数列的概念和性质,包括通项公式、和的计算等。
能够应用等比数列解决实际问题。
3.3 数学归纳法掌握数学归纳法的基本思想和运用方法。
能够运用数学归纳法证明数学命题,并应用数学归纳法解决实际问题。
四、解析几何4.1 二维坐标系复习和巩固二维坐标系的基本概念和性质,包括点、直线、距离、斜率等。
能够熟练应用二维坐标系解决几何问题。
4.2 直线与圆的方程学习直线和圆的方程表示,并能够根据特定条件确定直线和圆的方程。
4.3 斜率与角度学习斜率和角度的概念及其相互之间的关系。
能够应用斜率和角度求解几何问题。
五、概率与统计5.1 随机事件与概率学习随机事件和概率的基本概念,掌握概率计算的方法和技巧。
上海(沪教版)数学高二下学期同步辅导讲义教师版:第二讲复数的方根与实系数一元二次方程
沪教版数学高二下春季班第二讲课题 复数的方根与实系数一元二次方程单元第十三章 学科数学年级十一学习 目标1.掌握待定系数法求解复数的平方根和立方根;掌握1的立方根的相关性质,并能利用其进行化简与求值2.掌握实系数一元二次方程的解法,并会结合根的情况加以讨论3.理解复数模的几何意义,熟悉常见几何图形的复数表达式 重点 1.方根的求解与化简求值;2.实系数一元二次方程的解法与根的情况分析. 难点 实系数一元二次方程的解法与根的情况分析一、复数的平方根与立方根 1.复数的平方根的定义若复数1z ,2z 满足212z z =,则称1z 是2z 的平方根.2.复数的平方根的求法2()(,,,)a bi c di a b c c +=+∈R即利用复数相等,把复数平方根问题转化为实数方程组来求. 教学安排版块 时长1 知识梳理 302 例题解析 603 巩固训练 204 师生总结 10 5课后练习30复数的方根与实系数一元二次方程知识梳理3.复数的平方根的性质复数(0)z z ≠总有两个平方根1z ,2z ,且120z z +=(见图1). 4.复数的立方根的定义类似的,若复数1z ,2z 满足312z z =,则称1z 是2z 的立方根.5.1的立方根 设复数1322i ω=-+,则21,,ωω都是1的立方根. 6.ω的性质 ①210ωω++=, ②31ω=, ③21322i ωω==--. 可运用这些性质化简相关问题(见图2). 7.其他有用结论2(1)2i i -=-,2(1)2i i +=二、实系数一元二次方程实系数一元二次方程20(,,,0)ax bx c a b c a ++=∈≠R 中的24b ac ∆=-为根的判别式,那么(1)0∆>⇔方程有两个不相等的实根242b b aca-±-;(2)0∆=⇔方程有两个相等的实根2b a-; (3)0∆<⇔方程有两个共轭虚根242b ac b ia-±-,在(3)的情况下,方程的根与系数关系(韦达定理)仍然成立. 求解复数集上的方程的方法:(1)设(,)z x yi x y =+∈R 化归为实数方程来解决(化归思想).(2)把z 看成一个未知数(而不是实部和虚部两个未知数),用复数的性质来变形(整体思想). (3)对二次方程,直接用一元二次方程的求根公式(公式法). 图1图2三、常见几何图形的复数表达式 复数1z ,2z 为定值,且12z z ≠.(1)线段12Z Z 的中垂线方程:12||||z z z z -=-; (2)以1Z 为圆心,半径为r 的圆方程:1||z z r -=; (3)以1Z 、2Z 为焦点,长轴长为2(0)a a >的椭圆方程:12||||2z z z z a -+-=(其中12||2z z a -<); (4)以1Z 、2Z 为焦点,实轴长为2(0)a a >的双曲线方程:12||||||2z z z z a ---=(其中12||2z z a ->).1、复数的平方根与立方根 【例1】求4-及86i -的平方根.【难度】★【答案】4-的平方根为2i 或2i -;86i -的平方根为3i -或3i -+ 【例2】计算:(1)615212(13)(13)112(1)22i i i i i ---⎛⎫-+ ⎪⎝⎭;(2)50820028223(22)112313i i i i i i ⎛⎫-+++-++ ⎪ ⎪ ⎪-+-⎝⎭⎝⎭. 例题解析【注意】 (1)在复数集C 中的一元二次方程的求根公式和韦达定理仍适用,但根的判别式仅 在实数集上有效; (2)实系数一元二次方程在复数集中一定有根,若是虚根则一定成对出现; (3)齐二次实系数二次方程2211220(,,)az bz z cz a b c R ++=∈,将等式两端除以2z 后,将得到一个关于12zz 得实系数一元二次方程;(不作要求) (4)虚系数一元二次方程20(0ax bx c a a b c ++=≠,,,至少有一个为虚数)①判别式判断实根情况失效; ②虚根成对出现的性质失效; 如220x ix --=,虽然70∆=>,但该方程并无实根,不过韦达定理仍适用.【难度】★★【答案】(1)513;(2)247+【例3】记122ω=-+,求1ωω+,221ωω+. 【难度】★★ 【答案】11ωω+=-,2211ωω+=-【例4】已知等比数列123,,,,n z z z z L ,其中11z =,2z x yi =+,3z y xi =+(,,0x y x ∈>R ). (1)求,x y 的值;(2)试求使1230n z z z z ++++=L 的最小正整数n ;(3)对(2)中的正整数n ,求123n z z z z g g gL g 的值. 【难度】★★【答案】(1)12x y ⎧=⎪⎪⎨⎪=⎪⎩;(2)12n =;(3)1-.【巩固训练】1.复数34i +的平方根是 .【难度】★ 【答案】(2)i ±+2.计算:(11996= . (2)151512(1)(1)(1)i -=-+ . 【难度】★ 【答案】(1)122-;(2)03.已知ω满足等式210ωω++=.(1)计算4(1)ωω++;304050ωωω++;224(1)(1)ωωωω-+-+;(2)求证:对任意复数u ,有恒等式33233(1)()()3(1)u u u u ωω+++++=+; (3)计算:21n n ωω++,*n ∈N . 【难度】★★【答案】(1)1-;0;4;(2)略;(3)*2**33()1031()032()n n n k k n k k n k k ωω⎧=∈⎪++==-∈⎨⎪=-∈⎩N N N2、复数中的代数式和方程【例5】在复数范围内分解因式:2223x x ++ 【难度】★【答案】222223244x x x x ⎛⎫⎛⎫-+-++=-- ⎪⎪ ⎪⎪⎝⎭⎝⎭2x x ⎛=+- ⎝⎭⎝⎭【例6】复数z 满足方程210z z ++=,求()41z z ++的值 【难度】★★【答案】由210z z ++=得,211022z w z w w w ==-+=∴++=或 所以原式()()4428211w w ww w w w w =++=-+=+=+=-【巩固训练】1.若虚数z 满足327z =,则32315z z z +++的值为 . 【难度】★★ 【答案】332.1≠ω,13=ω,求32302ωωω+++Λ的值.【难度】★★【答案】122i ω=-+时,原式=15-;122ω=--时,原式;3、实系数一元二次方程【例7】已知方程2350()x x m m -+=∈R ,求方程的解.【难度】★【答案】920m ∆=-当0∆>时,即920m <时,32x ±=;当0∆=时,即920m =时,32x =;当0∆<时,即920m >时,32i x ±=.【例8】已知βα,是实系数一元二次方程02=++c bx ax 的两个虚根,且2αβ∈R ,求βα的值.【难度】★★【答案】∵2αβ∈R ,∴2222ααβαββαβ=⇒=,即330αβ-=∴12αβ=-± 【例9】已知12,x x 是实系数方程20x x p ++=的两个根,且满足12||3x x -=,求实数p 的值. 【难度】★★ 【答案】14p ∆=-,(1)当0∆≥时,即14p ≤时,12,x x 是实根,∴12||3x x -==,即32p =⇒=-;(2)当0∆<时,即14p >时,12,x x 是共轭虚根,设1(,)x a bi a b =+∈R ,则2x a bi =-, ∴123|||2|2||32x x bi b b -===⇒=±,由1221x x a +==-,得12a =-.从而21215||2p x x x ===.综上,2p =-或52.【例10】已知,αβ是实系数一元二次方程230x mx -+=的两个根,求||||αβ+的值.【难度】★★【答案】212m ∆=-,(1)当0∆≥时,即m ≥m ≤-30αβ=>,∴||||||||m αβαβ+=+=;(2)当0∆<时,即m -<<||||2||αβα+===【例11】已知复数12,z z 满足1||2z =,2||1z =,12||2z z -=,求12z z . 【难度】★★【答案】212121211121222||()()4z z z z z z z z z z z z z z -=--=⋅-⋅-⋅+⋅=, ∴12121z z z z ⋅+⋅=, ∴122211211z zz z z z z z ⋅⋅+⋅⋅=, ∴122141z zz z +=. 令12z t z =,则141t t+=, ∴240t t -+=,∴122t i =±,即1212z z =.【例12】(1)方程20()x px k p -+=∈R 有一个根为12i +,求实数k 的值; (2)方程240x x k -+=有一个根为12i +,求k 的值. 【难度】★【答案】(1)由题意:另一个根为12i -,∴(12)(12)5k i i =+-=; (2)由题意2(12)4(12)074i i k k i +-++=⇒=+.【例12】关于x 的方程2(2i)i 0x a b x a b --+-=有实根,且一个根的模是2,求实数a 、b 的值. 【难度】★★【答案】设()t t ∈R 是方程的一实根,则2(2)()i 0t at a bt b -++-=.则220,0t at a bt b ⎧-+=⎨-=⎩.(1)当0b =时,此方程为220x ax a -+=.①有实根,0∆≥即1a ≥或0a ≤. 当根为2时,440a a -+=.得43a =.当根为2-时,440a a ++=.得45a =-. ②有一对共轭虚根即01a <<.模为2,即有4a =(舍).(2)当0b ≠时,则1t =,此时1a =.又因为模为2,所以b =所以4,30a b ⎧=⎪⎨⎪=⎩或4,50a b ⎧=-⎪⎨⎪=⎩或1,a b =⎧⎪⎨=⎪⎩1,a b =⎧⎪⎨=⎪⎩【巩固训练】1.下列命题在复数集中是否正确?为什么?(1)若,,a b c ∈R ,0a ≠,且240b ac -≥,则方程20ax bx c ++=有两个实数根; (2)若,,a b c ∈R ,0a ≠,且12,x x 是方程20ax bx c ++=的两个根,则12b x x a +=-,12c x x a=; (3)若,,a b c ∈R ,0a ≠,且12,x x 是方程20ax bx c ++=的两个根,则221212||()x x x x -=-;(4)若,,a b c ∈R ,0a ≠,且α是方程20ax bx c ++=的根,则α也是方程的根. 【难度】★★【答案】(1)、(2)、(4)正确,(3)不正确2.若12,x x 为方程270x x -+=的两个根,则212||x x -= .【难度】★★ 【答案】273.已知,0x y ≠且022=++y xy x ,求20092009()()x y x y x y+++的值. 【难度】★★【答案】14.关于x 的方程222(31)10x m x m --++=的两根为αβ、,且||||3αβ+=,求实数m 的值. 【难度】★★【答案】53m =-或m =5.设αβ、为方程220x x t ++=,(t ∈R )的两个根,()||||f t αβ=+,(1)求()f t 的解析式;(2)证明关于t 的方程()f t m =,当2m >时恰有两个不等的根,且两根之和为定值. 【难度】★★【答案】(1)0()2,010t f t t t ⎧<⎪=<≤⎨⎪<⎩...(2)证明:函数()y f t =的图像关于直线12t =对称(证略) 当(1,)t ∈+∞时,()f t 为增函数,且()(2,)f t ∈+∞; 当(,0)t ∈-∞时,()f t 为减函数,且()(2,)f t ∈+∞.所以当2m >,方程()f t m =在区间(1,)+∞上有唯一解1t ,在区间(,0)-∞上也有唯一解2t , 则121212t t +=⨯=.4、复数方程综合问题【例13】关于x 的二次方程2120x z x z m +++=中,1z ,2z ,m 都是复数,且21241620z z i -=+,设这个方程的两个根α、β满足||αβ-=||m 的最大值和最小值. 【难度】★★【答案】根据韦达定理有12z z mαβαβ+=-⎧⎨=+⎩∵22212()()444z z m αβαβαβ-=+-=-- ∴2212|()||4(4)|28m z z αβ-=--=.∴2121|(4)|74m z z --=,即|(45)|7m i -+=, 这表明复数m 在以(4,5)C 为圆心,7为半径的圆周上,∴max ||7m =,min ||7m =当5001,150log 22m t m t >⎧⎪<<⎨<-⎪⎩即2log 215050m t -<<.【例14】已知22016220160122016(1)x x a a x a x a x ++=++++g g g ,试求0362016a a a a ++++g g g 的值。
最新上海数学高二知识点总结
⎩⎨⎧无穷数列有穷数列按项数 2221,21(1)2nn a a n a a n a n =⎧⎪=+=⎪⎨=-+⎪⎪=-⋅⎩n n n n n常数列:递增数列:按单调性递减数列:摆动数列:数列:1.数列的有关概念:(1) 数列:按照一定次序排列的一列数。
数列是有序的。
数列是定义在自然数N*或它的有限子集{1,2,3,…,n }上的函数。
(2) 通项公式:数列的第n 项a n 与n 之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。
如:221n a n =-。
(3) 递推公式:已知数列{a n }的第1项(或前几项),且任一项a n 与他的前一项a n -1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。
如:121,2,a a ==12(2)n n n a a a n --=+>。
2.数列的表示方法:(1) 列举法:如1,3,5,7,9,… (2)图象法:用(n, a n )孤立点表示。
(3) 解析法:用通项公式表示。
(4)递推法:用递推公式表示。
3.数列的分类:4.数列{a n }及前n 项和之间的关系:123n n S a a a a =++++ 11,(1),(2)nn n S n a S S n -=⎧=⎨-≥⎩5.等差数列与等比数列对比小结:(三)不等式1、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.2、不等式的性质: ①a b b a >⇔<; ②,a b b c a c >>⇒>; ③a b a c b c >⇒+>+;④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+;⑥0,0ab c d ac bd >>>>⇒>; ⑦()0,1n n a b a b n n >>⇒>∈N >;⑧)0,1a b n n >>>∈N >.小结:代数式的大小比较或证明通常用作差比较法:作差、化积(商)、判断、结论。
上海数学高二知识点总结
⎩⎨⎧无穷数列有穷数列按项数2221,21(1)2n n a a n a a n a n =⎧⎪=+=⎪⎨=-+⎪⎪=-⋅⎩n n n n n 常数列:递增数列:按单调性递减数列:摆动数列:数列:1.数列的有关概念:(1) 数列:按照一定次序排列的一列数。
数列是有序的。
数列是定义在自然数N*或它的有限子集{1,2,3,…,n }上的函数。
(2) 通项公式:数列的第n 项a n 与n 之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。
如:221n a n =-。
(3) 递推公式:已知数列{a n }的第1项(或前几项),且任一项a n 与他的前一项a n -1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。
如:121,2,a a ==12(2)n n n a a a n --=+>。
2.数列的表示方法:(1) 列举法:如1,3,5,7,9,… (2)图象法:用(n, a n )孤立点表示。
(3) 解析法:用通项公式表示。
(4)递推法:用递推公式表示。
3.数列的分类:4.数列{a n }及前n 项和之间的关系:123n n S a a a a =++++ 11,(1),(2)n n n S n a S S n -=⎧=⎨-≥⎩5.等差数列与等比数列对比小结:(三)不等式1、0a ba b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.2、不等式的性质: ①ab b a >⇔<; ②,a b bc a c >>⇒>;③a b a c b c >⇒+>+;④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+;⑥0,0a b c d ac bd >>>>⇒>; ⑦()0,1n n a b a b n n >>⇒>∈N >; ⑧)0,1ab n n >>⇒>∈N >.小结:代数式的大小比较或证明通常用作差比较法:作差、化积(商)、判断、结论。
高二下班学期数学知识点
高二下班学期数学知识点高二下半学期数学知识点高二下半学期是数学学科中的重要阶段,涉及到许多重要的数学知识点。
本文将对高二下半学期的数学知识点进行详细介绍。
1. 三角函数三角函数在高二下半学期的数学学习中起到了重要作用。
主要包括正弦函数、余弦函数、正切函数等。
学生需要了解这些函数的定义、性质和图像,并能熟练运用三角函数解决相关问题。
2. 平面向量平面向量是高二下半学期数学学习的重点之一。
学生需要了解向量的定义、运算规则,掌握向量的法则、共线定理等重要概念,并能运用平面向量解决几何和代数问题。
3. 数列与数学归纳法数列是高二下半学期数学学习中需要掌握的重要知识点。
学生需要了解等差数列、等比数列等常见数列的定义、性质和求和公式。
此外,掌握数学归纳法也是必要的,能够运用数学归纳法证明数学命题。
4. 概率与统计概率与统计是高中数学中的一大重点。
在高二下半学期,学生需要了解概率的基本概念、概率的计算方法,同时还需要学习统计的基本方法和概念,如频数、频率、平均数等。
学生需要具备利用概率和统计知识解决实际问题的能力。
5. 函数与导数函数与导数是高中数学的基础知识之一,也是高二下半学期的重要内容。
学生需要了解函数的概念、函数的性质和函数的图像,同时需要掌握导数的定义和基本运算法则,并能运用导数解决相关问题,如求函数的最值、判断函数的增减性等。
6. 解析几何解析几何是高二下半学期数学学习的重要组成部分。
学生需要了解平面坐标系、直线、圆等基本概念,能够用解析几何的方法解决平面几何问题。
7. 三角恒等变换三角恒等变换是高二下半学期数学学习的重点内容之一。
学生需要掌握常见的三角恒等变换公式,如和差化积、倍角公式等,并能熟练运用这些公式解决相关问题。
8. 不等式不等式是高中数学中的重要内容。
学生需要了解不等式的基本概念和性质,掌握不等式的解法,特别是一元二次不等式的解法,并能应用不等式解决实际问题。
通过对以上数学知识点的学习,高二下半学期的学生可以更好地理解和应用数学知识,提高解决问题的能力和思维能力。
上海高二数学知识点总结
上海高二数学知识点总结一、代数1. 函数的概念与性质- 函数的定义- 函数的表示方法- 函数的域与值域- 函数的单调性与奇偶性2. 二次函数- 二次函数的标准式与顶点式- 二次函数的图像与性质- 二次函数的应用问题3. 不等式- 一元一次不等式与一元二次不等式- 系统不等式与可行域- 不等式的解集与区间表示4. 指数与对数- 指数函数的性质- 对数函数的性质- 指数与对数的运算法则二、几何1. 平面几何- 圆的性质与圆的方程- 圆锥曲线(椭圆、双曲线、抛物线) - 三角形的相似与全等- 平面向量及其运算2. 空间几何- 空间直线与平面的方程- 空间向量及其运算- 立体图形的体积与表面积三、概率与统计1. 概率论基础- 随机事件与概率的定义- 条件概率与独立事件- 随机变量与概率分布2. 统计初步- 数据的收集与整理- 描述性统计(平均数、中位数、众数) - 离散程度的量度(方差、标准差)四、解析几何1. 直线与圆- 直线的斜率与方程- 圆的方程与性质- 直线与圆的位置关系2. 圆锥曲线- 椭圆、双曲线、抛物线的方程与性质 - 圆锥曲线的应用问题五、数学分析1. 极限与连续- 函数的极限概念- 无穷小与无穷大- 函数的连续性2. 导数与微分- 导数的定义与性质- 常见函数的导数- 微分的应用3. 积分基础- 不定积分的概念与性质 - 定积分的基础- 积分的应用问题六、数学思维与方法1. 数学归纳法- 归纳法的原理与步骤 - 典型例题分析2. 数学建模- 数学建模的概念- 数学建模的一般步骤 - 数学建模实例请注意,上述内容仅为一个基本框架,具体的知识点和细节需要根据实际的教学大纲和教材进行调整和补充。
在撰写文档时,应确保每个部分都有详细的解释和示例,以便于读者理解和应用。
此外,文档应使用清晰、专业的语言,并保持格式的一致性和规范性。
上海高二下册数学知识点
上海高二下册数学知识点在上海高二下学期的数学学习中,我们将学习到一系列的数学知识点,包括代数、几何、概率与统计等方面。
以下是本学期重点掌握的数学知识点。
一、代数1. 函数与方程- 二次函数的性质与图像- 一次函数与线性方程组- 绝对值函数与不等式- 对数与指数函数2. 多项式函数与方程- 多项式函数的性质与图像- 二次多项式与因式分解- 高次多项式的根与因式定理3. 三角函数- 三角比的定义与性质- 三角函数图像与周期性- 三角函数的运算与恒等式二、几何1. 平面几何- 平面图形的相似、全等与共线定理 - 平行线与平行四边形- 三角形的性质与应用- 圆的性质与判定定理- 圆锥曲线的基本性质2. 空间几何- 空间直线与平面的位置关系- 空间图形的投影与旋转- 空间向量与坐标表示三、概率与统计1. 随机事件与概率- 随机事件的概念与运算- 概率的计算方法与性质- 条件概率与独立事件- 贝叶斯定理与事件的组合2. 统计与抽样- 数据的整理与分析- 统计量的计算与比较- 抽样调查与数据误差- 统计推断与假设检验以上是上海高二下册数学知识点的简要概括。
在学习过程中,我们需要通过理论学习和大量的练习来掌握这些知识,并且将其应用于解决实际问题。
数学作为一门基础学科,不仅培养了我们的逻辑思维和分析能力,还为我们今后的学习和工作打下了坚实的基础。
希望同学们能够认真对待数学学习,在学习过程中保持良好的态度和耐心,勤加练习,提高自己的数学水平。
相信通过努力,我们一定能够在数学学习中有所收获,取得优异的成绩!以上就是上海高二下册数学知识点的简要介绍,希望对同学们的学习有所帮助。
祝愿大家在数学学习中取得好成绩,为自己的未来铺就坚实的数学基础!。
沪教版高二下数学知识点
沪教版高二下数学知识点高二下学期是数学学科中的重点年级,学生需要巩固和拓展高一上、高一下学期所学的数学知识点。
本文将详细介绍沪教版高二下数学的知识点,帮助学生更好地理解和掌握相关内容。
一、函数与导数1. 函数的概念及性质- 函数的定义:函数是一种特殊的对应关系,每一个自变量对应唯一的因变量。
- 函数的分类:常见的函数有一次函数、二次函数、指数函数、对数函数等。
- 函数的性质:奇偶性、单调性、最值等。
2. 导数及导数的应用- 导数的定义:导数表示函数在某一点上的变化率。
- 导数的计算方法:基本导数公式、导数四则运算法则、链式法则等。
- 导数的应用:切线和法线、函数的单调性与极值等。
二、三角函数与向量1. 三角函数的基本概念- 弧度与角度的转换:弧度制和角度制的转换公式。
- 三角函数的定义:正弦函数、余弦函数、正切函数等。
- 三角函数的周期性:三角函数的周期和变化规律。
2. 三角函数的图像与性质- 三角函数的图像:正弦函数、余弦函数、正切函数的图像特点。
- 三角函数的性质:奇偶性、单调性、最值等。
3. 向量的基本概念与运算- 向量的定义:向量表示有大小和方向的量。
- 向量的运算:加法、减法、数量乘法等。
- 向量的模与方向角:向量的长度和向量与坐标轴的夹角。
三、数列与数项1. 等差数列与等差数列的前n项和- 等差数列的概念:等差数列是指一个数列中的每一项与其前一项的差都相等。
- 等差数列的通项公式与前n项和公式。
2. 等比数列与等比数列的前n项和- 等比数列的概念:等比数列是指一个数列中的每一项与其前一项的比值都相等。
- 等比数列的通项公式与前n项和公式。
3. 递推数列与通项公式- 递推数列的概念:递推数列是指每一项都由前一项经过一定规则推得的数列。
- 递推数列的通项公式:根据递推关系求解数列中的每一项。
四、平面向量与解析几何1. 平面向量的坐标表示与运算- 平面向量的坐标表示:平面向量的坐标与坐标轴的表示方式。
上海高二下数学知识点
上海高二下数学知识点一、不等式和线性规划在高二下学期的数学课程中,不等式和线性规划是一个重要的知识点。
不等式是数学中的一个概念,它描述了数值之间的大小关系。
在学习不等式的过程中,我们会掌握不等式的性质和解不等式的方法。
线性规划是一种优化问题,它的目标是在给定的约束条件下找到最优解。
我们通过建立数学模型和使用图形法求解线性规划问题。
二、函数的极限与导数函数的极限与导数是高二下学期数学课程的另一个重点。
函数的极限是指当自变量趋向于某个值时,函数的取值的趋势。
通过研究函数的极限,我们可以得到函数的性质和行为。
导数是函数的变化率,它描述了函数在某一点的斜率。
我们通过求导数可以得到函数的最值、切线以及函数的增减性等信息。
三、三角函数和正弦定理、余弦定理三角函数是高二下数学课程中的基础知识点。
我们会学习正弦函数、余弦函数以及正切函数等三角函数的性质和图像。
同时,我们还会学习正弦定理和余弦定理,用于求解三角形的边长和角度。
正弦定理和余弦定理是解决三角形问题的有力工具,它们可以帮助我们求解未知边长和角度的值。
四、概率与统计概率与统计是高二下学期数学课程的重要内容。
概率是描述事件发生可能性的数值,我们通过概率的计算可以预测事件的结果。
统计是通过对数据的收集、整理和分析,得出结论和推断的过程。
我们学习概率和统计的基本概念,掌握如何计算概率和分析统计数据。
五、向量与解析几何向量与解析几何是高二下数学课程中的扩展内容。
向量是具有大小和方向的量,我们学习向量的运算、线性相关与线性无关以及向量的平行和垂直等概念。
解析几何是利用代数方法研究几何问题的方法,我们学习如何使用向量和坐标表示和计算几何对象的性质和关系。
六、数列和数列的教学设计数列是高二下学期数学课程中的基础知识点。
我们学习等差数列、等比数列以及通项公式等数列的性质和求解方法。
同时,我们还需要学习数列的教学设计,掌握如何设计数列的学习过程和提高学生的数列问题解决能力。
上海市高二下学期复数的概念及其运算
上海市高二下学期复数的概念及其运算【学习要点】1.把形如)(R b a bi a ∈+、的数叫做双数,用字母z 表示,即=z )(R b a bi a ∈+、, 其中a 叫做双数z 的实部,记作z Re ,b 叫做双数z 的虚部,记作z Im ,i 叫 做虚数单位,规则:12-=i . 双数全体所组成的集合叫做双数集,用字母C 表 示. 双数包括实数和虚数,规则12-=i .2.双数bi a z +=,事先0=b ,双数z 为实数;事先0≠b ,双数z 为虚数;当0=a 且0≠b 时,z 叫做纯虚数.3.假设两个双数bi a z +=1和di c z +=2相等,那么c a =且d b =.4.共轭双数:实部相等虚部相反的两个双数互为共轭双数,双数z 的共轭双数用 z 来表示,假定bi a z +=,那么bi a z -=.5.关于双数bi a z +=,我们把22b a +叫做双数z 的模.记z ,即=z 22b a +. 特别地,z z =.6.双数加减法:设bi a z +=1,di c z +=2,那么i d b c a z z )()(21±+±=±.7.双数乘除法:设bi a z +=1,di c z +=2,那么i ad bc bd ac z z )()(21++-=⋅;8.双数的乘方:n m n m z z z +=⋅,mn n m z z =)(,n n n z z z z 2121)(⋅=⋅.我们规则10=z ,)0(1≠=-z zz n n ,特别地,14=n i ;i i n =+14;124-=+n i ;i i n -=+34.9.双数的开方:它是乘方的逆运算,设bi a z +=1,di c z +=2,且满足21z z n=,即di c bi a n+=+)(,那么称1z 是2z 的一个n 次方根. 特别地,i ±是1-的一个立方根,1的立方根是1、i 2321±-. 10.双数的模的运算性质:①2121z z z z ⋅=⋅;②)0(22121≠=z z z z z ;11.共轭双数运算性质:①2121z z z z +=+,2121z z z z -=-;②)0(22121≠=⎪⎪⎭⎫ ⎝⎛z z z z z ;【例题解说与训练】例1.双数i 43+,i 2-,i ,2π,0,i 2.(1)指出它们哪些是实数,哪些是虚数,哪些是纯虚数? (2)求出上述双数的模及它们的共轭双数. 〖变式训练1〗1.请说出双数i i 31,5,32--+的实部和虚部.2.双数 72+,618.0,i 72,0,i ,2i ,85+i ,i 293-中为实数的有 ,为虚数的有 ,为纯虚数有 .3.命题:①假定C z z ∈21,,且21z z =,那么21z z ±=;②假定R b a ∈,,且b a >, 那么bi ai >;③与自身共轭的双数一定是实数.其中正确的序号为 .例2.实数m 取何值时,双数i m m m m m z )65(3222++++-+=是〔1〕实数?〔2〕虚数?〔3〕纯虚数?〖变式训练2〗1.实数m 区分取什么值时,双数()i m m z 11-++=是(1)实数?(2)虚数?(3) 纯虚数?2.假定双数()()i m m m m 36522-++-为纯虚数,试务实数m 的值. 3.R b a ∈,,指出不等式i b a b i a b a )62(5)(2-++-->--+-成立的条件. 例3.计算:〔1〕)43()2()65(i i i +---+-=〔2〕)20182017()54()43()32()21(i i i i i -++-+-+-+- = 〖变式训练3〗 1.计算:〔1〕)65()43()21(i i i +--++=〔2〕i i i i i i i i 2018201765432-+⋅⋅⋅+-+-+-=2.命题:①假定两个虚数1z 、2z 的和是实数,那么1z 、2z 是共轭双数;②假定1z 、2z 是共轭双数,那么1z -2z 是纯虚数; 假定双数0=+z z ,那么z 是纯虚数.其中正确的序号是 .3.两个双数1z 和2z ,它们之和是i )21()12(-++,它们之差是+-)12( i )21(+,求1z 、2z .例4.双数1z 、2z 满足121==z z ,且i z z 232121+=+.求1z 、2z 的值. 〖变式训练4〗1.双数i z +=21,i z 212+=,那么双数12z z z -=在复平面内所表示的点位于〔 〕(A)第一象限 (B)第二象限 (C )第三象限 (D)第四象限2.复平面上三点C B A 、、区分对应双数i i 25,2,1+ ,那么由C B A 、、所构成的 三角形是〔 〕(A)直角三角形 (B)等腰三角形 (C)锐角三角形 (D)钝角三角形 3.设双数z 满足2=z ,求i z -的最大值及此时的双数z . 例5.1z 、2z 是双数,1)31(z i +为纯虚数,iz z +=212,且252=z ,求2z . 〖变式训练5〗1.双数z 满足i z i 34)21(+=+,那么z = .2.双数21iz i-=+在复平面内对应的点位于 ( ) 〔A 〕第一象限 〔B 〕第二象限 〔C 〕第三象限 〔D 〕第四象限3.假定将双数2i i +表示为a bi +(,a b R ∈)的方式,那么ab的值为( )(A )2- 〔B 〕21- 〔C 〕2 〔D 〕21例6.设z 是虚数,zz 1+=ω是实数,且21<<-ω. (1)求z 的值及z 的实部的取值范围; (2)设zzu +-=11,求证:u 为纯虚数; (3)求2u -ω的最小值.〖变式训练6〗1.假定双数z 同时满足条件:①6101≤+<zz ;②z 的实部、虚部都是整数.求z . 2.假定双数z 满足1=z ,求证:R zz∈+21. 3.设C z ∈,求满足R zz∈+1且22=-z 的双数z . 例7.〔1〕201832ii i i +⋅⋅⋅+++= .〔2〕i 24143-的平方根是 . 〖变式训练7〗1.100432100432ii i i i +⋅⋅⋅++++= .2.i 247-的平方根是 .3.计算:n 为奇数时,求nn i i i i 22)11()11(+-+-+的值. 例8.设ω是1的立方虚根. (1)求ω;(2)求证:ωω=2; (3)求证:012=++ωω. 〖变式训练8〗1.ω是1的立方虚根,那么2018321ωωωω+⋅⋅⋅++++= . 2.ω为13=x 的一个虚根,那么)1)(1)(1)(1(842ωωωω++++= . 3.012=++x x ,那么504030x x x ++的值为= .例9.〔1〕双数4523213)23()()43(-++=i i z 的模为= .〔2〕设双数z 满足1=z ,求22+-z z 的最大值和最小值,并求相应的z .〖变式训练9〗1.双数2105)31()21()247()43(i i i i i z +--+---=的模为= . 2.假定C z z ∈21,,2121z z z z +是〔 〕(A )纯虚数 〔B 〕实数 〔C)虚数 〔D 〕不能确定3.假定双数21,z z 满足31=z ,52=z ,721=-z z ,求21z z .例10.设双数21,z z 满足关系式02121=++z A z A z z ,其中A 为不等于0的双数. 求证:〔1〕221A A z A z =++;〔2〕Az Az A z A z ++=++2121. 〖变式训练10〗1.〔1〕C z z ∈21,,11=z ,求21211z z z z ⋅--的值;〔2〕假定双数321,,z z z 的模均为3,求321321111z z z z z z ++++的值. 2.21,z z 为非零双数,且满足2121z z z z -=+,求证:221⎪⎪⎭⎫⎝⎛z z 一定为正数.3.设双数21,z z 满足01222121=+-+⋅iz iz z z . 〔1〕假定i z z 212=-,求1z 和2z ; 〔2〕假定31=z ,求证:i z 42-为常数.。
上海高二下数学圆知识点总结
上海高二下数学圆知识点总结数学是一门应用广泛的学科,在数学中,几何学是其中一个重要的分支。
而在几何学中,圆是一个非常基础也非常常见的概念。
在高二下学期数学学习中,圆也是一个重要的知识点。
本文将对上海高二下数学学习中与圆相关的知识进行总结。
一、圆的基本定义和性质圆是平面上的一个特殊图形,它由平面上所有到定点距离等于定长的点构成。
圆由圆心和圆周组成,其中圆心是到圆上任意一点距离都相等的点。
圆的直径是通过圆心的一条线段,它的两个端点在圆上。
圆的半径是圆心到圆上任意一点的距离。
根据圆的定义和性质,我们可以得到以下几个重要结论:1. 圆心角的度数等于它所对应的弧度数。
在圆上任意两点和圆心形成的角叫做圆心角。
它们所对应的弧度数等于它们所在弧的长度与圆的半径之比。
2. 在同一个圆或等圆的两个弧所对应的圆心角相等。
3. 在同一个圆或等圆上,弧和所对应的圆心角之间有一个对应关系。
二、圆和直线的关系1. 切线定义:过圆上一点且只和圆有一个交点的直线叫做切线。
与切线相对的弧叫做切线所对应的弧。
2. 切线定理:切线与半径垂直。
3. 切割弦定理:切线把弦切割成两个部分,两部分的乘积等于这两部分的弦乘积。
三、圆和三角形的关系1. 弧上的角定理:在圆上两个弧所对应的圆心角相等,它们所对应的弧长也相等。
2. 外接圆定理:三角形的外接圆的圆心是三角形三边的垂直平分线的交点。
3. 相切定理:当一个三角形的边和圆相切时,切点、切线和这条边所在直径的端点在一条直线上。
四、圆的面积和周长计算1. 圆的周长是圆周的长度,可以通过半径或直径计算。
2. 圆的面积可以通过半径或直径计算,其中使用较多的是以半径计算的面积公式:面积= π * 半径^2。
五、圆锥、圆柱和圆球圆锥、圆柱和圆球都是由圆所生成的立体图形。
它们的表面积和体积计算公式如下:1. 圆锥的表面积= π * 半径 * 斜高+ π * 半径^2。
圆锥的体积= 1/3 * π * 半径^2 * 高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海数学高二下学期知识点高二下学期是学生们数学学习中的重要阶段之一,各个知识点的掌握和应用对于学生的数学水平提高至关重要。
本文将针对上海高二下学期的数学知识点进行论述,并展示相应的学习方法和技巧。
一、复数与数列
高二下学期的数学课程开始了复数与数列的学习。
复数是数学中一个重要的概念,有实部和虚部构成。
学生需要了解复数的基本定义、加减乘除的运算法则以及复数在平面坐标系中的表示方法。
数列部分则需要学生掌握等差数列和等比数列的性质以及应用,如求和、通项等。
二、几何与三角
几何与三角是数学学习中的重要组成部分。
在高二下学期,学生将进一步深入学习平面几何和立体几何,并研究三角函数和三角恒等式。
学生需要掌握平面几何中的重要定理和推论,如平行线定理、圆的性质等。
对于立体几何,学生需了解各种立体图形的特征与性质。
此外,还需要学生掌握三角函数的基本概念和主要公式,能够熟练运用三角函数解决相关问题。
三、导数与微分
导数与微分是高二下学期数学学习的另一个重要内容。
学生需要掌握导数的概念、导数运算法则、导数应用以及函数的增减性和单调性等。
此外,微分也是导数的一个重要应用,学生需要了解微分的定义、微分运算法则以及微分应用等。
四、不等式与极限
在高二下学期,学生还需学习不等式与极限的相关知识。
对于不等式部分,学生需要掌握一元一次不等式、一元二次不等式、绝对值不等式以及相关不等式的解法和性质。
极限部分,学生需要掌握极限的定义、极限的性质以及求极限的方法等。
五、统计与概率
统计与概率是高二下学期数学学习的最后一个知识点。
学生需要了解统计学中的数据收集和处理方法,包括频数统计、频率统计等。
概率部分,学生需要掌握概率的基本概念、概率的计算方法以及事件间的关系等。
在学习上述知识点时,学生需要注意一些学习方法和技巧。
首先,建议学生掌握好数学基础知识,尤其是代数与函数的基础知识,这对于后续知识点的学习非常重要。
其次,学生需要进行大
量的练习,在做题过程中不仅要注重答案的正确性,还要注重解
题过程的合理性和逻辑性。
此外,学生可以通过参加数学竞赛、
小组合作学习等方式来提高自己的数学水平。
综上所述,上海数学高二下学期的知识点涵盖了复数与数列、
几何与三角、导数与微分、不等式与极限以及统计与概率等内容。
学生应该加强对每个知识点的学习和理解,在学习过程中掌握相
应的方法和技巧,提高数学解题的能力和水平。
只有通过不断地
学习和实践,才能够在数学这门学科中获得好的成绩。