动点产生的面积问题

合集下载

【九年级数学代数培优竞赛专题】专题13 巧解二次函数与图形面积综合题【含答案】

【九年级数学代数培优竞赛专题】专题13 巧解二次函数与图形面积综合题【含答案】

专题13 巧解二次函数与图形面积综合题知识解读因动点产生的图形面积问题,是抛物线与三角形、四边形相结合的重要形式,解决这类问题常常用到以下技巧:(1)图形的面积割补;(2)利用平行线的性质作等积变形;(3)等量代换,即把面积之比转化为线段之比;(4)“等底,等高,等面积”由二推一,即以其中任意两个为条件,第三个为结论,命题总成立.培优学案典例示范例1如图13-1,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)若点E是抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.【提示】(1)只需将A点,C点坐标代入解析式中即可;(2)思路一:△ACE的面积可由12AC×h表示,因为AC固定,若要它的面积最大,则只需h最大,即点E到直线AC的距离最大,如图13-2,若设一条平行于AC的直线,那么当该直线与抛物线有且只有一个公共点时,该点就是点E.不妨把这种方法形象的记忆为“平行切线法”。

思路二:基于“分割图形”考虑.如图13-3,过点E 作x 轴的垂线,交AC 于点F .设E (x ,x 2-4x +3),则S △AEC =S △AEF +S △CEF =32EF ,即△ACE 的面积取决于EF 的长。

若把EF 的长称为△ACE 的“竖直高”,把A ,C 两点横坐标之差的绝对值称为△ACE 的“水平宽”,则△ACE 的面积可直接记为“12×竖直高×水平宽”。

思路三:基于“补全图形”考虑。

但要分点E 在x 轴下方和上方两种情况讨论(为什么要分两种情况?),如图13-4,同时一定要搞清楚线段长度与点坐标的关系,长度是正的,要用大坐标减去小坐标,若不能区分,加上绝对值,请读者自行完成。

【跟踪训练】1.如图13-5,抛物线223212--=x x y 交x 轴正半轴于点A ,交y 轴于点B ,点C 是线段AB 方的抛物线上的一点,求ABC ∆的面积的最大值,并求出此时点C 的坐标。

初中数学动点产生的面积问题学习方法

初中数学动点产生的面积问题学习方法

初中数学动点产生的面积问题学习方法
函数中的动点问题是以函数为背景,充分运用方程、转化、函数以及数形结合等思想来研究解决。

1.求不规则图形或难以同时求出底和高的三角形的面积,一般的思路是割补法:
①有一边“水平”或“竖直”的多边形,作垂线分割成直角三角形或直角梯形,如图1;
②“斜”的三角形一般不易找到它的底和高,通常过顶点作铅垂线和水平线“补”成矩形,再减去各角上的直角三角形面积,如图2.
图1
图2
2.对于“斜”三角形可用“铅垂法”求面积:如图3,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积的新方法:S△ABC=1/2ah,即三角形面积等于水平宽与铅垂高乘积的一半.
图3
3.底或高不明显,但已知边的关系,可用相似比间接求得.①如图4,同底三角形的面积比等于高的比同高三角形的面积比等于底的比;②如图5,同底等高三角形的面积相等.
图4
图5
【典型例题】
如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.。

专题10 动点产生的面积关系(解析版)

专题10 动点产生的面积关系(解析版)

专题10 动点产生的面积关系教学重难点1.体会点的运动过程,能从点的运动过程中抓住一些不变的量;2.能从点的运动过程中建立自变量与面积的关系式;3.让学生学会求一些基本图形的面积;4.体会压轴题的解题方法和思路。

【备注】:1.此部分知识点梳理,根据第1个图先让学生初步体会到压轴题中求图形面积的种类,可以看看每一类图形学生都是怎么求解的;2再根据第2个图引导学生总结求三角形面积的一般方法。

时间5分钟左右完成。

压轴题中求图形面积类型:三角形面积的一般求解方法:【备注】:1.以下每题教法建议,请老师根据学生实际情况参考;2.在讲解时:不宜采用灌输的方法,应采用启发、诱导的策略,并在读题时引导学生发现一些题目中的条件(相等的量、不变的量、隐藏的量等等),使学生在复杂的背景下自己发现、领悟题目的意思;3.可以根据各题的“参考教法”引导学生逐步解题,并采用讲练结合;注意边讲解边让学生计算,加强师生之间的互动性,让学生参与到例题的分析中来;4.例题讲解,可以根据“参考教法”中的问题引导学生分析题目,边讲边让学生书写,每个问题后面有答案提示;5.引导的技巧:直接提醒,问题式引导,类比式引导等等;6.部分例题可以先让学生自己试一试,之后再结合学生做的情况讲评;7.每个题目的讲解时间根据实际情况处理,建议每题7分钟,选讲例题在时间足够的情况下讲解。

例1(2020静安区建承中学一模)在平面直角坐标系xOy 中(如图),已知二次函数2y ax bx c =++(其中a 、b 、c 是常数,且a ≠0)的图像经过点A (0,-3)、B (1,0)、C (3,0),联结AB 、AC .(1)求这个二次函数的解析式;(2)点D 是线段AC 上的一点,联结BD ,如果:3:2ABD BCD S S ∆∆=,求tan∠DBC 的值; (3)如果点E 在该二次函数图像的对称轴上,当AC 平分∠BAE 时,求点E 的坐标.【整体分析】(1)直接利用待定系数法,把A 、B 、C 三点代入解析式,即可得到答案; (2)过点D 作DH ∠BC 于H ,在∠ABC 中,设AC 边上的高为h ,利用面积的比得到32AD DC =,然后求出DH 和BH ,即可得到答案;(3)延长AE 至x 轴,与x 轴交于点F ,先证明△OAB∠∠OFA ,求出点F 的坐标,然后求出直线AF 的方程,即可求出点E 的坐标. 【详解】解:(1)将A (0,-3)、B (1,0)、C (3,0)代入20y ax bx c a =++≠()得,03,0934,300a b a b c =+-⎧⎪=+-⎨⎪-=++⎩解得143a b c =-⎧⎪=⎨⎪=-⎩,∴此抛物线的表达式是:243y x x =-+-.(2)过点D 作DH ⊥BC 于H ,在∠ABC中,设AC边上的高为h,则11:():():3:222ABD BCDS S AD h DC h AD DC∆∆=⋅⋅==,又∠DH//y轴,∴25 CH DC DHOC AC OA===.∵OA=OC=3,则∠ACO=45°,∴△CDH为等腰直角三角形,∴26355 CH DH==⨯=.∴64255 BH BC CH=-=-=.∴tan∠DBC=32 DHBH=.(3)延长AE至x轴,与x轴交于点F,∠OA=OC=3,∴∠OAC=∠OCA=45°,∠∠OAB=∠OAC-∠BAC=45°-∠BAC,∠OFA=∠OCA-∠FAC=45°-∠FAC,∠∠BAC=∠FAC,∴∠OAB=∠OFA . ∴△OAB∠∠OFA , ∴13OB OA OA OF ==. ∴OF=9,即F (9,0);设直线AF 的解析式为y=kx+b (k≠0),可得093k b b =+⎧⎨-=⎩ ,解得133k b ⎧=⎪⎨⎪=-⎩,∴直线AF 的解析式为:133y x =-, 将x=2代入直线AF 的解析式得:73y =-,∴E (2,73-). 【点睛】本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的解析式,等腰直角三角形的判定和性质,求一次函数的解析式,解题的关键是掌握二次函数的图像和性质,以及正确作出辅助线构造相似三角形.例2..已知9023ABC AB BC AD BC P ∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足PQ AD PC AB =(如图所示)。

中考数学复习之因动点产生的面积问题解题策略

中考数学复习之因动点产生的面积问题解题策略

因动点产生的面积问题解题策略一.解题策略解读:面积的存在性问题常见的题型和解题策略有两类:图1 图2 图3 计算面积常用到的策略还有:图4 图5 图6例1.已知抛物线y=mx2+(1-2m)x+1-3m与x轴交于不同的两点A、 B.(1) 求m的取值范围;(2) 证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3) 当<m≤8时,由(2)求出的点P和点A、 B构成的△ABP的面积是否有最值,若有,求出最值及相应的m的值;若没有,请说明理由.思路:1. 已知的抛物线的解析式可以因式分解的,抛物线过x轴上的定点(-1, 0).2. 第(2)题分两步,先对m赋予两个不同的值,联立求方程组的解,再验证这个点是确定的.3. 第(3)题中△ABP的高为定值,点A为定点,求△ABP的最大面积,其实就是求点B的横坐标的最大值.例2.问题提出(1) 如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2) 如图2,在矩形ABCD中,AB=4, AD=6, AE=4, AF=2.是否在边BC、CD上分别存在点G、 H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3) 如图3,有一块矩形板材ABCD, AB=3米, AD=6米,现想从此板材中截出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,米,∠EHG=45°.经研究,只有当点E、 F、 G分别在边AD、 AB、 BC上时,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能截出符合要求的部件.试问能否截得符合要求的面积尽可能大的四边形EFGH部件?若能,求出截得的四边形EFGH 部件的面积;若不能,请说明理由.图1 图2 图3思路:1. 第(2)题的模型是“打台球”两次碰壁问题,依据光的反射原理.2. 第(3)题需先设AF的长并求解,再验证点H在矩形内部,然后计算面积.例3.如图1,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8, OE=17.抛物线y=x2-3x+m与y轴交于点A,抛物线的对称轴与x轴交于点B,与CD交于点K.(1) 将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①求点F的坐标;②请直接写出抛物线的函数表达式;(2) 将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连结OG,折痕与OG交于点H,点M是线段EH上的一个动点(不与点H重合),连结MG, MO,过点G作GP⊥OM于点P,交EH于点N,连结ON.点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1·S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化的范围;若不变,请直接写出这个值.温馨提示: 考生可以根据题意,在备用图中补充图形,以便作答.图1 备用图思路:1. 第(1)题中点F的位置是由A、 B两点确定的,A、 B两点的坐标都隐含在抛物线的解析式中.2. 第(2)题思路在画示意图过程中,点G是关键点.以E为圆心,EO为半径画弧,交CD于点G.例 4.如图,已知平行四边形ABCD的三个顶点A(n, 0)、 B(m, 0)、 D(0,2n)(m>n>0),作平行四边形ABCD关于直线AD的对称图形AB1C1 D.(1) 若m=3,试求四边形CC1B1B面积S的最大值;(2) 若点B1恰好落在y轴上,试求的值.思路:1. 第(1)题先说理再计算,说理四边形CC1B1B是矩形.2. 第(2)题根据AB1=AB列关于m、 n的方程,整理就可以得到m与n的关系.例5.如图,在平面直角坐标系中,抛物线y=-x2+bx+c经过点A(3, 0)和点B(2, 3),过点A的直线与y轴的负半轴相交于点C,且tan∠CAO=.(1) 求这条抛物线的表达式及对称轴;(2) 连结AB、 BC,求∠ABC的正切值;(3) 若点D在x轴下方抛物线的对称轴上,当S△ABC =S△ADC时,求点D的坐标.解析:1. 直觉告诉我们,△ABC是直角三角形.2. 第(3)题的意思可以表达为: B、 D在直线AC的两侧,到直线AC的距离相等.于是我们容易想到,平行线间的距离处处相等.例6.如图,半圆O的直径AB=10,有一条定长为6的动弦CD在弧AB上滑动(点C、D分别不与点A、 B重合),点E、 F在AB上,EC⊥CD, FD⊥CD.(1) 求证:EO=FO;(2) 连结OC,如果△ECO中有一个内角等于45°,求线段EF的长;(3) 当动弦CD在弧AB上滑动时,设变量CE=x,四边形CDFE的面积为S,周长为l,问:S与l是否分别随着x变化而变化?试用所学过的函数知识直接写出它们的函数解析式及函数定义域,以说明你的结论.思路:1. 用垂径定理和平行线等分线段定理证明点O是EF的中点.2. 第(2)题的△ECO中,∠ECO是定值,45°的角分两种情况.3. 第(3)题用x表示OE的长,在△ECO中,∠ECO是定值.例7.直线y=2x+m与抛物线y=ax2+ax+b都过点M(1, 0),且a<b.(1) 求抛物线顶点Q的坐标(用含a的式子表示);(2) 试说明抛物线与直线有两个交点;(3) 设抛物线与直线的另一个交点为N.①若-1≤a≤-时,求MN的取值范围;②求△QMN的面积最小值.思路:1. 将M(1, 0)分别代入直线和抛物线的解析式,可以确定m的值,用a表示b.2. 联立直线与抛物线的解析式,消去y,得到关于a的一元二次方程,判断Δ>0.3. 第(3)题①,分别求a=-1和a=-时直线与抛物线的交点M、 N的坐标,再求MN的长,两个MN的长,就是MN的取值范围的两端值.例8.已知Rt△EFP和矩形ABCD如图1摆放(点P与点B重合),点F、 B(P)、 C 在同一直线上,AB=EF=6cm, BC=FP=8cm, ∠EFP=90°.如图2, △EFP从图1位置出发,沿BC方向匀速运动,速度为1cm/s, EP与AB交于点G;同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM⊥BD,垂足为H,交AD于点M,连结AF、 PQ.当点Q停止运动时,△EFP也停止运动.设运动时间为t(s)(0<t<6).解答下列问题:(1) 当t为何值时,PQ∥BD?(2) 设五边形AFPQM的面积为y(cm2),求y与t之间的函数关系式;(3) 在运动过程中,是否存在某一时刻t,使S五边形AFPQM ∶S矩形ABCD=9∶8?若存在,求出t的值;若不存在,请说明理由;(4) 在运动过程中,是否存在某一时刻t,使点M在线段PG的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.图1 图2思路:1. 把线段BP、 PC、 CQ、 DQ的长用t表示出来.再把线段BG、 DM的长用t表示出来.2. 用割补法求五边形AFPQM的面积,等于直角梯形减去两个直角三角形的面积.3. 第(3)题用第(2)题的结果,直接解方程就可以了.4. 第(4)题是根据MP2=MG2列方程,需要构造以MP为斜边的直角三角形.例9.如图1,在平面直角坐标系中,过原点O及点A(8, 0)、 C(0, 6)作矩形OABC,连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从点A出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1) 如图1,当t=3时,求DF的长;(2) 如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值;(3) 连结AD,当AD将△DEF分成的两部分的面积比为1∶2时,求相应的t的值.图1 图2思路;1. 作DM⊥AB于M, DN⊥OA于N,那么△NDF与△MDE的相似比为3∶4.2. 面积比为1∶2要分两种情况讨论.把面积比转化为两个同高三角形底边的比.3. 过点E作OA的平行线,构造“8字型”相似,这样就把底边的比利用起来了.例10.如图1,二次函数y=x2+bx+c的图象与x轴交于A、 B两点,与y轴交于点C, OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1) 求b、 c的值;(2) 如图1,连结BE,线段OC上点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3) 如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.图1 图2思路:1. 由已知抛物线的解析式可得C(0, c),再用c表示B、 D两点的坐标,然后将B、 D代入抛物线的解析式列关于b、 c的方程组.2. 第(2)题: 通过点C、 F分别与点D、 F'关于直线l对称,得到点F'是BE的中点,从而求得点F的坐标.3. 第(3)题: 设点P的横坐标为m,用m表示点M、 N的坐标,进而用m表示线段PM、 PN、 PA的长,根据两个三角形的面积相等,求出PN边上的高QH.最后讨论NQ与QH的关系.例11.如图,在平面直角坐标系中,直线y=12x+2与x 轴交于点A,与y 轴交于点C.抛物线y=-x 2+bx+c 经过A 、 C 两点,与x 轴的另一个交点为点B.(1) 求抛物线的函数表达式;(2) 点D 为直线AC 上方抛物线上一动点.① 连结BC 、 CD.设直线BD 交线段AC 于点E, △CDE 的面积为S 1, △BCE 的面积为S 2,求 12S S 的最大值; ② 过点D 作DF ⊥AC,垂足为F,连结CD.是否存在点D,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求出点D 的坐标;若不存在,请说明理由.图1 备用图思路: 1. △CDE 与△BCE 是同高三角形,面积比等于底边的比.构造“8字型”,把底边的比转化为竖直线段的比.2. 第(3)题的第一种情况∠DCF=2∠BAC,过点C 作x 轴的平行线,通过内错角相等,再作轴对称的角,很容易找到点D 的位置.3. 第(3)题的第二种情况∠CDF=2∠BAC,先要探求2∠BAC的大小(正切值),如果这一步探究不出来,基本上进行不下去.例12.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O 顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= ;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN 的面积为y,求当x为何值时y取得最大值?最大值为多少?思路:(1)由旋转的性质可以证明△OBC是等边三角形,从而可得∠OBC的度数;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤83时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E,利用面积公式表示出△OMN的面积(y值);②当8 3<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H,利用∠CBO=60°表示出MH,再利用面积公式表示出△OMN的面积(y值);③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G,易求OG,再利用面积公式表示出△OMN的面积(y值),最后分别求出三种情况下面积最大值,从而求出整个运动过程中y的最大值.例13. 在平面直角坐标系中,抛物线2y ax bx c=++交x轴于A、B两点,交y轴于点C(0,43-),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=34.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方向以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由;②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.思路:本题是代数几何综合题,以平面直角坐标系为背景,考查了求二次函数解析式,二次函数的性质,,方程组的解法,几何图形面积的表示,相似三角形的判定与性质,分类讨论思想,三角形的面积的最值问题,综合性强,难度大,解题的关键是需要学生有良好的运算能力及分析问题和解决问题的能力,还得富有耐心.(1)利用A、B、C三点的坐标确定二次函数的解析式.(2)利用题目的已知条件表示出相关线段的长,①中利用三角函数值探索出∠PAQ=∠ACD,再根据题目中的要求使得△ADC与△PQA相似,进行分类讨论得到对应线段成比例,列出关于t的方程求解即可;②直接利用三角形的面积公式列出△APQ与△CAQ 的面积之和与时间t之间的函数关系式,再将所得的二次函数的解析式配方确定最值即可得到答案.。

2和因动点产生的面积问题

2和因动点产生的面积问题

由动点形生成的面积问题面积是平面几何中一个重要的概念,关联着平面图形中的重要元素边与角,由动点而生成的面积问题,是抛物线与直线形结合的觉形式,解决这类问题常用到以下与面积相关的知识(1)图形的割补 (2)等积变形 (3)等比转化1:将直角边长为6的等腰Rt △AOC 放在如图所示的平面直角坐标系中,点O 为坐标原点,点C 、A 分别在x 、y 轴的正半轴上,一条抛物线经过点A 、C 及点B (–3,0).(1)求该抛物线的解析式;(2)若点P 是线段BC 上一动点,过点P 作AB 的平行线交AC 于点E ,连接AP ,当△APE 的面积最大时,求点P 的坐标;(3)在第一象限内的该抛物线上是否存在点G ,使△AGC 的面积与(2)中△APE的最大面积相等?若存在,请求出点G 的坐标;若不存在,请说明理由2 如图,已知二次函数图像的顶点坐标为(2,0),直线1+=x y 与二次函数的图像交于A 、B 两点,其中点A在y 轴上。

(1)二次函数的解析式为y= ; (2)证明点)12,(--m m 不在(1)中所求的二次函数的图像上;(3)若C 为线段AB 的中点,过C 点作x CE ⊥轴于E 点,CE 与二次函数的图像交于D 点。

①y 轴上存在点K ,使以K 、A 、D 、C 为顶点的四边形是平行四边形,则K 点的坐标是 ; ②二次函数的图像上是否存在点P ,使得ABD POE S S ∆∆=2?若存在,求出P 点坐标;若不存在,请说明理由。

3、如图,在直角坐标平面内,O 为坐标原点,A 点的坐标为(1,0),B 点在x 轴上且在点A 的右侧,AB =OA ,过点A 和B 作x 轴的垂线分别交二次函数y =x 2的图象于点C 和D ,直线OC 交BD 于M ,直线CD 交y 轴于点H 。

记C 、D 的横坐标分别为x C ,x D ,点H 的纵坐标y H 。

(1)证明:①S △CMD ∶S 梯形ABMC =2∶3 ②x C ·x D =-y H(2)若将上述A 点坐标(1,0)改为A 点坐标(t ,0),t >0,其他条件不变,结论S △CMD :S 梯形ABMC =2∶3是否仍成立?请说明理由。

二次函数动点问题专题

二次函数动点问题专题

二次函数动点问题专题一、因动点产生的面积问题1、如图,抛物线与x轴交与A(1,0),B(- 3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由. (3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由.cbxxy++-=2ABC2、如图,抛物线y=12x2+b x-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0)。

(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上一个动点,当CM+DM的值最小时,求m的值;(4)点P为直线BC下方抛物线上一动点,问当P在什么位置时,四边形ACPB 的面积最大,求出此时的P点坐标及最大面积。

3.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B 两点,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方抛物线上的动点.(1)求这个二次函数表达式;(2)连接PO、PC,并将△POC沿y轴对折,得到四边形POP′C,那么是否存在点P,使得四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.4、(2015中大附中一模)如图,已知抛物线c bx ax y ++=2过点A (6,0),B (-2,0),C (0,-3).(1)求此抛物线的解析式;(2)若点H 是该抛物线第四象限的任意一点,求四边形OCHA 的最大面积;(3)若点Q 在y 轴上,点G 为该抛物线的顶点,且∠GQA =45º,求点Q 的坐标.5、(2016•越秀区一模)如图,已知抛物线y=x 2﹣(m +3)x +9的顶点C 在x 轴正半轴上,一次函数y=x +3与抛物线交于A 、B 两点,与x 、y 轴分别交于D 、E 两点.(1)求m 的值;(2)求A 、B 两点的坐标;(3)当﹣3<x <1时,在抛物线上是否存在一点P ,使得△PAB 的面积是△ABC 面积的2倍?若存在,请求出点P 的坐标;若不存在,请说明理由.二、因动点产生的等腰三角形存在性问题1、已知:如图抛物线a x x y +-=421过点A (0,3),抛物线1y 与抛物线2y 关于y 轴对称,抛物线2y 的对称轴交x 轴于点B ,点P 是x 轴上的一个动点,点Q 是第四象限内抛物线1y 上的一点。

专题01 因动点产生的面积问题-突破中考数学压轴题学霸秘笈大揭秘(学生版)

专题01 因动点产生的面积问题-突破中考数学压轴题学霸秘笈大揭秘(学生版)

专题01因动点产生的面积问题【类型综述】面积是平面几何中一个重要的概念,关联着平面图形中的重要元素边与角,由动点而生成的面积问题,是抛物线与直线形结合的觉形式,常见的面积问题有规则的图形的面积(如直角三角形、平行四边形、菱形、矩形的面积计算问题)以及不规则的图形的面积计算,解决不规则的图形的面积问题是中考压轴题常考的题型,此类问题计算量较大。

有时也要根据题目的动点问题产生解的不确定性或多样性。

解决这类问题常用到以下与面积相关的知识:图形的割补、等积变形、等比转化等数学方法. 面积的存在性问题常见的题型和解题策略有两类:一是先根据几何法确定存在性,再列方程求解,后检验方程的根.二是先假设关系存在,再列方程,后根据方程的解验证假设是否正确.【方法揭秘】解决动点产生的面积问题,常用到的知识和方法,如下:如图1,如果三角形的某一条边与坐标轴平行,计算这样“规则”的三角形的面积,直接用面积公式.如图2,图3,三角形的三条边没有与坐标轴平行的,计算这样“不规则”的三角形的面积,用“割”或“补”的方法.图1 图2 图3计算面积长用到的策略还有:如图4,同底等高三角形的面积相等.平行线间的距离处处相等.如图5,同底三角形的面积比等于高的比.如图6,同高三角形的面积比等于底的比.图4 图5 图6【典例分析】例1 如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1, 0),B(4, 0)两点,与y轴交于点C(0, 2).点M(m, n)是抛物线上一动点,位于对称轴的左侧,并且不在坐标轴上.过点M作x轴的平行线交y轴于点Q,交抛物线于另一点E,直线BM交y轴于点F.(1)求抛物线的解析式,并写出其顶点坐标;(2)当S△MFQ∶S△MEB=1∶3时,求点M的坐标.例2如图,已知抛物线与坐标轴分别交于点、和点,动点从原点开始沿方向以每秒个单位长度移动,动点从点开始沿方向以每秒个单位长度移动,动点、同时出发,当动点到达原点时,点、停止运动.直接写出抛物线的解析式:________;求的面积与点运动时间的函数解析式;当为何值时,的面积最大?最大面积是多少?当的面积最大时,在抛物线上是否存在点(点除外),使的面积等于的最大面积?若存在,求出点的坐标;若不存在,请说明理由.例3如图,在平面直角坐标系中,直线112y x=+与抛物线y=ax2+bx-3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上的一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m.①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;②连结PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为9∶10?若存在,直接写出m的值;若不存在,请说明理由.例4如图,已知二次函数的图象过点O(0,0)、A(4,0)、B(432,3-),M是OA的中点.(1)求此二次函数的解析式;(2)设P是抛物线上的一点,过P作x轴的平行线与抛物线交于另一点Q,要使四边形PQAM是菱形,求点P的坐标;(3)将抛物线在x轴下方的部分沿x轴向上翻折,得曲线OB′A(B′为B关于x轴的对称点),在原抛物线x轴的上方部分取一点C,连结CM,CM与翻折后的曲线OB′A交于点D,若△CDA的面积是△MDA面积的2倍,这样的点C是否存在?若存在求出点C的坐标;若不存在,请说明理由.例5如图,直线l经过点A(1,0),且与双曲线myx=(x>0)交于点B(2,1).过点(,1)P p p-(p>1)作x轴的平行线分别交曲线myx=(x>0)和myx=-(x<0)于M、N两点.(1)求m的值及直线l的解析式;(2)若点P在直线y=2上,求证:△PMB∽△PNA;(3)是否存在实数p,使得S△AMN=4S△AMP?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.例6 如图1,在△ABC中,∠C=90°,A C=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)求线段AD的长;(2)若EF⊥AB,当点E在斜边AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围);[来源:Z。

动点产生的面积问题-教师版

动点产生的面积问题-教师版

1 / 29xy12QPAOCBxyAOB【例1】 如图,已知直线l :22y x =-+与x 轴、y 轴分别交于点B 、C ,将直线y=x向上平移1个单位长度得到直线P A ,点Q 是直线P A 与y 轴的交点,求四边形PQOB 的面积. 【难度】★★【答案】65.【解析】由题意可得:直线P A 的解析式为1+=x y令⎩⎨⎧+-=+=221x y x y ,解得:⎪⎩⎪⎨⎧==3431y x ,则⎪⎭⎫ ⎝⎛3431,P .∵点Q 是直线P A 与y 轴的交点, ∴()01Q ,. ∵直线l :22y x =-+与x 轴、y 轴分别交于点B 、C , ∴B (1,0),C (0,2). ∴65311211221=⨯⨯-⨯⨯=-=CPQ COB PQOB S S S △△四边形. 【总结】考察四边形面积的求法,不规则图形的面积用割补法来解决.【例2】 如图,已知直线AB :2y x =+与直线OA :13y x =交于点A ,与直线OB :3y x =交于点B 两点.求△AOB 的面积. 【难度】★★ 【答案】4.【解析】令⎪⎩⎪⎨⎧=+=x y x y 312,解得:⎩⎨⎧-=-=13y x ,则()31A --,. 令⎩⎨⎧=+=x y x y 32,解得:⎩⎨⎧==31y x ,则()13B ,. 设直线AB 与x 轴相交于C ,则C (-2,0),∴412213221=⨯⨯+⨯⨯=+=OCB OAC OAB S S S △△△.【总结】考察三角形面积的求法,不能直接求面积则用割补法来解决,注意交点坐标 的求法.例题解析【例3】 如图,已知直线3y x =+的图像与x 轴、y 轴分别交于A 、B 两点,直线l 经过原点,与线段AB 交于点C ,把△AOB 的面积分为2:1两部分,求直线l 的解 析式. 【难度】★★【答案】2y x =-或x y 21-=.【解析】∵直线3y x =+的图像与x 轴、y 轴分别交于∴A (-3,0),B (0,3),∴293321=⨯⨯=OAB S △.当OBA OBCS S △△32=时, 则2932321⨯=⨯⨯C y ,则2=C y , ∵C 点在直线AB 上,∴C (-1,2), 则直线l 的解析式为:2y x =-;当OBA OBC S S △△31=时,则2931321⨯=⨯⨯C y ,则1=C y , ∵C 点在直线AB 上,∴C (-2,1),则直线l 的解析式为:x y 21-=.综上直线l 的解析式为2y x =-或x y 21-=.【总结】考察面积的求法,本题中要注意分类讨论.3 / 29【例4】 如图,已知,在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在矩形ABCD 边AB 、BC 、DA 上,AE =2.(1)如图1,当四边形EFGH 为正方形时,求△GFC 的面积;(2)如图2,当四边形EFGH 为菱形,且BF =a 时,求△GFC 的面积.(用含a 的代数式表示)【难度】★★★ 【答案】见解析.【解析】(1)过点G 作GM ⊥BC 于M .∵四边形EFGH 为正方形时,∴︒=∠+∠90BEF AEH ∵︒=∠+∠90AHE AEH ,∴BEF AHE ∠=∠ ∵BEF AHE ∠=∠,B A ∠=∠,EF EH =, ∴BEF AHE ≌△△同理可知:BEF MFG ≌△△ ∴2===AE BF GM∴10=-=BF BC FC ,则10=GFC S △; (2)过点G 作GM ⊥BC 于M ,连接HF ∵AD ∥BC ,∴MFH AHF ∠=∠ ∵EH ∥FG ,∴GFH EHF ∠=∠ ∴MFG AHE ∠=∠∵MFG AHE ∠=∠,GMF A ∠=∠,GF EH =, ∴MFG AHE ≌△△∴2==AE GM∴()a a GM FC S GFC -=⨯-=⋅=122122121△.【总结】本题主要考察菱形、正方形的性质和全等三角形的判定和性质.A BCDEF 图1GHABCDE F 图2GHMM4 / 29【例5】 如图1,正方形ABCD 的边长为2,点A (0, 1)和点D 在y 轴正半轴上,点B 、C 在第一象限,一次函数y =kx +2的图像l 交AD 、CD 分别于E 、F . (1)若△DEF 与△BCF 的面积比为1∶2,求k 的值; (2)联结BE ,当BE 平分∠FBA 时,求k 的值. 【难度】★★★【答案】(1)1=k ;(2)2=k .【解析】(1)∵正方形ABCD 的边长为2,点A (0, 1)和点D 在y 轴正半轴上,点B 、C 在第一象限, ∴B (2, 1),C (2, 3),D (0, 3).∵一次函数y =kx +2的图像l 交AD 、CD 分别于E 、F , ∴E (0, 2). 设F (m , 3),∵△DEF 与△BCF 的面积比为1∶2, ∴()212221121=⨯-⨯⋅m m ,解得:1=m ,∴F (1, 3) ∵F (1, 3)在直线y =kx +2上,∴1=k ; (2)延长BE 交CD 的延长线于H , ∵BE 平分∠FBA ,∴ABE FBE ∠=∠∵CD ∥AB ,∴ABE H ∠=∠,∴FBE H ∠=∠,∴FB=HF ∵AE =1,DE=1,∴AE=DE∵AE=DE ,BAE HDE ∠=∠,BEA HED ∠=∠ ∴△HED ≌△BEA∴HD=AB =2,∴H (-2, 3) 设F (n , 3) ∵FB=HF ,∴()22222+=+-n n ,解得:21=n , ∴F (21, 3) ∵F (21, 3)在直线y =kx +2上, ∴2=k .【总结】考察等腰三角形的性质和两点之间的距离公式的运用,注意点的坐标与解析式的关系.ABCD EFxy OH5 / 29【例6】 如图,在平面直角坐标系中,函数y =2x +12的图像分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点. (1)求直线AM 的表达式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请求出点P 的坐标; (3)若点H 为坐标平面内任意一点,是否存在点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由. 【难度】★★★【答案】(1)6+=x y ;(2)P (6, 12)或P (-18, -12); (3)H (-12, 0)或H (-6, 18)或H (56-, 518). 【解析】(1)∵函数y =2x +12的图像分别交x 轴、y 轴于A 、B 两点,∴A (-6, 0),B (0, 12)∵点M 为线段OB 的中点, ∴M (0, 6), 则直线AM 的表达式为6+=x y ; (2)当点P 在AM 的延长线上时∵S △ABP =S △AOB ,∴OP ∥AB ,则可知直线OP 的表达式为x y 2=. ∵P 在直线AM 上,∴令⎩⎨⎧+==62x y x y ,解得:⎩⎨⎧==126y x , ∴P (6, 12);当P 在AM 的反向延长线上时,过P 点作PN ⊥OB ,垂足为H 设P (n , n+6)∵AONP ABO BPN ABP S S S S 梯形△△△--=, S △ABP =S △AOB ,()()()()1262166621126216621⨯⨯=--⨯--⨯-⨯⨯----⋅n n n n ,解得:18-=n ,则P (-18, -12).(3)存在点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形.若以AM 为底,BM 为腰,过点B 作AM 的平行线,当点H (-12, 0)时,以A 、B 、M 、H 为顶点的四边形是等腰梯形;若以BM 为底,AM 为腰,过点A 作BM 的平行线,当点H (-6, 18)时,以A 、B 、M 、H 为顶点的四边形是等腰梯形;若以AB 为底,BM 为腰,过点M 作AB 的平行线,当点H (56-, 518)时,以A 、B 、M 、H 为顶点的四边形是等腰梯形.【总结】本题综合性较强,本题一方面考察面积的确定,另一方面考察等腰梯形的性质和分类讨论.ABOMxy6 / 29【例7】 如图1,已知直角坐标平面内点A (2, 0),P 是函数y =x (x >0)图像上一点,PQ ⊥AP 交y 轴正半轴于点Q . (1)试证明:AP =PQ ;(2)设点P 的横坐标为a ,点Q 的纵坐标为b ,那么b 关于a 的函数关系式是_______;(3)当S △AOQ =23S △APQ 时,求点P 的坐标.【难度】★★★【答案】(1)见解析;(2)22-=a b ;(3)⎪⎪⎭⎫ ⎝⎛--255255,P 或⎪⎪⎭⎫ ⎝⎛++255255,P . 【解析】(1)过P 作x 轴、y 轴的垂线,垂足分别为H 、T ,∵P 是函数y =x (x >0)图像上一点 ∴PH=PT ,PH ⊥PT∵PQ ⊥AP ,∴QPT APH ∠=∠∵QPT APH ∠=∠,PH=PT ,QTP AHP ∠=∠ ∴△PHA ≌△PTQ ∴AP =PQ ;(2)由(1)可得:TQ a AH =-=2 ∵OH OT TQ OQ ==+, ∴a a b =-+2, 即22-=a b ; (3)设()P a a ,, ∵2221-=⋅⋅=a OQ OA S AOQ △,222122+-==a a AP S APQ △, ∴()2232222+-=-a a a , 解得:255±=a . ∴⎪⎪⎭⎫ ⎝⎛--255255,P 或⎪⎪⎭⎫ ⎝⎛++255255,P . 【总结】本题主要考察全等的运用,及三角形面积的求法,注意利用面积公式确定点的坐标.P QAy O x7 / 29【例8】 如图,矩形ABCD 中,AB =1,AD =2,M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,试写出△APM 的面积y 与点P 经过的路程x 之间的函数关系,写出定义域,并画出函数图像. 【难度】★★ 【答案】见解析.【解析】当P 在AB 上运动时,即10≤<x ,y =x AP AD S APM =⋅=21△;当P 在BC 上运动时,即31≤<x , ∵PCM ABP ABCM APM S S S S △△梯形△--=, ∴y =454432123+-=----=x x x S APM △; 当P 在CM 上运动时,即273≤<x , y =x x S APM -=⨯⎪⎭⎫⎝⎛-=2722721△.函数图像如由图所示.【总结】本题主要考察面积与动点的结合,注意进行讨论.【例9】 如图,在梯形ABCD 中,AD //BC ,AB =CD =AD =5cm ,BC =11cm ,点P 从点D 出发沿DA 边以每秒1cm 的速度移动,点Q 从点B 出发沿BC 边以每秒2cm 的速度移动(当点P 到达点A 时,点P 与点Q 同时停止移动),假设点P 移动的时间为x (秒),四边形ABQP 的面积为y (cm 2). (1)求y 关于x 的函数解析式,并写出它的定义域;(2)在移动的过程中,求四边形ABQP 的面积与四边形QCDP 的面积相等时x 的值;(3)在移动过程中,是否存在x 使得PQ =AB ,若存在,求出所有的x 的值;若不存在,请说明理由. 【难度】★★【答案】(1)102+=x y (50≤≤x ); (2)3=x ;(3)35=x 或311=x . 【解析】(1)作AE ⊥BC 于E ,DF ⊥BC 于F ,∵AB =CD =AD =5cm ,BC =11cm , ∴BE=CF =3,则4=AE .ABCDMPABCDPQE F8 / 29∵2DP x BQ x ==,, ∴()10242521+=⨯+-⨯=x x x y (50≤≤x ); (2)当四边形ABQP 的面积与四边形QCDP 的面积相等时, 四边形ABQP 的面积等于四边形ABCD 的面积的一半,∴()41152121102⨯+⨯⨯=+x ,解得:3=x ;(3)∵PQ =AB ,AD //BC ,∴四边形ABQP 为平行四边形或等腰梯形. 当四边形ABQP 为平行四边形时,则AP =BQ ,∴x x 25=-,解得:35=x ;当四边形ABQP 为等腰梯形时,则四边形PQCD 为平行四边形,∴x x 211-=,解得:311=x ;综上所述,当PQ =AB 时,x 的值为53或113.【总结】本题主要考察动点背景下的平行四边形和等腰梯形的性质的综合运用.【例10】 已知:如图1,在线段AE 的同侧作正方形ABCD 和正方形BEFG (BE <AB ),连结EG 并延长交DC 于点M ,作MN ⊥AB ,垂足为N ,MN 交BD 于P .设正方形ABCD 的边长为1. (1)证明:△CMG ≌△NBP ;(2)设BE =x ,四边形MGBN 的面积为y ,求y 关于x 的函数解析式,并写出定义域;(3)如果按照题设方法作出的四边形BGMP 是菱形,求BE 的长. 【难度】★★★ 【答案】见解析.【解析】(1)∵正方形ABCD 和正方形BEFG ,∴︒=∠45ABD ,︒=∠45BEG ∵CM ∥BE ,∴︒=∠=∠45BEG CMG ∵正方形ABCD ,MN ⊥AB ,∴四边形BCMN 是矩形, ∴CM=NB . ∵CM=NB ,PNB C ∠=∠,PBN CMG ∠=∠ ∴△CMG ≌△NBP ;(2)∵正方形BEFG ,BE =x , ∴x BE BG ==, ∴x CG -=1,ABC DEFGPMN9 / 29∴()()212111212+-=-+=x x x y (10<<x ); (3)由已知可得:MN ∥BC ,MG ∥BP , ∴四边形BGMP 是平行四边形.要使四边形BGMP 是菱形,则MG BG =, ∴()x x -=12,解得:22-=x , ∴当22-=BE 时,四边形BGMP 是菱形.【总结】本题考察正方形的性质和动点背景的下面积问题,解题时注意认真分析题目中的条件.【例11】 已知:在梯形ABCD 中,AD //BC ,∠B =90°,AB =BC =4,点E 在边AB上,CE =CD .(1)如图1,当∠BCD 为锐角时,设AD =x ,△CDE 的面积为y ,求y 与x 之间 的函数解析式,并写出函数的定义域; (2) 当CD =5时,求△CDE 的面积. 【难度】★★★【答案】(1)x x y 4212+-=(40<<x );(2)27或252.【解析】(1)过C 作CF ⊥AD 交AD 延长线于F∵AD //BC ,∠B =90°,AB =BC =4, ∴四边形ABCF 是正方形.∵CE =CD ,BC=CF ,∴△BCE ≌△FCD ,∴DF=BE ∵AD =x ,∴x DF -=4,∴x BE -=4 ∴ADE BEC ABCD y S S S =--△△梯形 ()()1114444222x x x x =+⨯-⋅⋅-⨯⨯- 2142x x =-+, 定义域为:40<<x ;(2)当∠BCD 为锐角时, ∵CD =5时,CF=4,∴由勾股定理可得:3=DF ,则1=AD代入解析式中可得:27=y ;当∠BCD 为钝角时,易知3DF BE ==.AB CDEFA B CDEF10 / 29∴CDEBCEADEABCD SS SS=--梯形111(47)43417222=⨯+⨯-⨯⨯-⨯⨯ 252=. 综上所述,△CDE 的面积为27或252. 【总结】考察全等三角形的构造和正方形的性质的综合运用,第(2)问要注意分类讨论.【例12】 如图1,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x m =-+交折线OAB 于点E .(1)当点E 恰为AB 中点时,求m 的值;(2)当点E 在线段OA 上,记△ODE 的面积为y ,求y 与m 的函数关系式并写出定义域;(3)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形O 1A 1B 1C 1,试判断四边形O 1A 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,若不变,写出该重叠部分的面积;若改变,写出重叠部分面积S 关于m 的函数关系式. 【难度】★★★ 【答案】见解析.【解析】∵四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),∴B (3,1). (1)当点E 恰为AB 中点时,则E (3,21) ∵点E 在直线12y x m =-+上, ∴代入E 点坐标,可得:2=m ;(2)当点E 在线段OA 上,∵直线12y x m =-+交折线OAB 于点E , ∴E (m 2,0),∴m m y =⋅⋅=1221(312m <≤); (3)设O 1A 1与CB 相交于点M ,OA 与B 1C 1相交于点N ,则四边形O 1A 1B 1C 1与 矩形OABC 的重叠部分的面积为四边形DNEM 的面积.AB CDEOxy∵DM ∥NE ,DN ∥ME ,∴四边形DNEM 是平行四边形 ∵NED MED ∠=∠,NED MDE ∠=∠,∴NED MED ∠=∠, ∴ME MD =,∴四边形DNEM 是菱形过D 作DH ⊥OA ,垂足为H ,设菱形DNEM 的边长为a∵D (22-m ,1),E (m 2,0), ∴DH =1,HE =()2222m m --=,∴2NH EN EH a =-=-, 在直角△DHN 中,()22212+-=a a ,解得:45=a ∴菱形DNEM 的面积为:55144⨯=.【总结】本题综合性较强,一方面考查面积与动点的结合,另一方面考查面积的定值,注意进行分析.【例13】 如图1,在正方形ABCD 中,点E 在边AB 上(点E 与点A 、B 不重合),过点E 作FG ⊥DE ,FG 与边BC 相交于点F ,与边DA 的延长线相交于点G . (1)当E 是AB 中点时,求证AG =BF ;(2)当E 在边AB 上移动时,观察BF 、AG 、AE 之间具有怎样的数量关系?并证明你所得到的结论;(3)联结DF ,如果正方形的边长为2,设AE =x ,△DFG 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域.【难度】★★★【答案】(1)见解析;(2)AE AG BF =+;(3)2212+=x y (20<<x ).【解析】(1)当E 是AB 中点时,AE=BE∵AE=BE ,AEG BEF ∠=∠,B EAG ∠=∠ ∴△EAG ≌△EBF ∴AG =BF(2)AE AG BF =+过点F 作FH ⊥DA ,垂足为H ,则四边形ABFH 是矩形 ∴FH=AB=AD∵DE ⊥FG ,∴DEA ADE G ∠=∠-︒=∠90 ∵FH=AD ,DEA G ∠=∠,G A ∠=∠ ∴△FHG ≌△DAE , ∴GH=AE ,即AE AG HA =+ ∵BF=HA , ∴AE AG BF =+;A BCD EF GH(3)由(2)可得:FG=DE ∴224+==x DE FG ∴221442122222+=+⋅+=x x x y (20<<x ) 【总结】本题主要考察正方形背景下的动点问题,注意对常见辅助线的添加以及线段间的转化.【例14】 如图1,梯形ABCD 中,AD //BC ,∠B =90°,AD =18,BC =21.点P 从点A 出发沿AD 以每秒1个单位的速度向点D 匀速运动,点Q 从点C 沿CB 以每秒2个单位的速度向点B 匀速运动.点P 、Q 同时出发,其中一个点到达终点时两点停止运动,设运动的时间为t 秒.(1)当AB =10时,设A 、B 、Q 、P 四点构成的图形的面积为S ,求S 关于t 的函数关系式,并写出定义域;(2)设E 、F 为AB 、CD 的中点,求四边形PEQF 是平行四边形时t 的值.【难度】★★★【答案】(1)t S 5105-=(5.100≤≤t ); (2)23=t . 【解析】(1)由题意可得:AP =t ,CQ =t 2,则()t t t S 51051022121-=⨯-+⨯=(5.100≤≤t );(2)过点D 作DH ⊥BC 于H ,取CH 的中点G ,则四边形ABHD 是矩形.∵F 是CD 的中点,G 是CH 的中点,∴DH FG 21=∵AD //BC ,∠B =90°,AD =18,BC =21∴CH =21-18=3,CG =2321=CH∴232-=-=t GC QC QG ∵四边形PEQF 是平行四边形, ∴PE=QF∵AB FG AE 21==,90A FGQ ∠=∠=GABCDE F PABCD Q图1备用图H∴△AEP ≌△GFQ , ∴QG=AP∴t t =-232, 解得:23=t ,即当四边形PEQF 是平行四边形时,t 的值为32. 【总结】本题一方面考察梯形背景下的动点结合,另一方面考察中位线及平行四边形的性质的综合运用,注意认真分析.【例15】 如图1,在菱形ABCD 中,∠B =45°,AB =4.左右作平行移动的正方形EFGH 的两个顶点F 、G 始终在边BC 上.当点G 到边BC 中点时,点E 恰好在边AB 上.(1)如图1,求正方形EFGH 的边长;(2)设点B 与点F 的距离为x ,在正方形EFGH 作平行移动的过程中,正方形EFGH 与菱形ABCD 重叠部分的面积为y ,求y 与x 的函数解析式,并写出它的定义域;(3)联结FH 、HC ,当△FHC 是等腰三角形时,求BF 的长. 【难度】★★★ 【答案】见解析.【解析】(1)当点G 到边BC 中点时,BG=2,∵∠B =45°,正方形EFGH 的两个顶点F 、G 始终在边BC 上. ∴BF=EF=FG ∵BG=2,∴FG=1, 即正方形EFGH 的边长为1;(2)当10≤<x 时,()212121122++-=--=x x x y ,当31≤<x 时,1=y ;(3)当FH=HC 时,∵HG ⊥CF ,∴FG=CG=1, ∴2114=--=--=FG GC BC BF ; 当FC=HC 时,∵CG CG FG FC +=+=1,2221GC GC GH HC +=+= ∴112+=+GC GC ,解得:0=GC , ∴3014=--=--=FG GC BC BF ;当FH=FC 时,则2=FC ,此时24-=-=FC BC BF , 综上所述,当△FHC 是等腰三角形时,BF 的长为2或3或42-.HAB C DEF G【总结】本题主要考察平行四边形与正方形的性质的综合运用,解题时注意对等腰三角形要进行分类讨论.【例16】 如图1,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,A (0,4),C (5, 0),点D 是y 轴正半轴上一点,将四边形OABC 沿着过点D 的直线翻折,使得点O 落在线段AB 上的点E 处.过点E 作y 轴的平行线与x 轴交于点N .折痕与直线EN 交于点M ,联结DE 、OM . 设OD =t ,MN =s . (1)试判断四边形EDOM 的形状,并证明;(2)当点D 在线段OA 上时,求s 关于t 的函数解析式,并写出函数的定义域; (3)用含t 的代数式表示四边形EDOM 与矩形OABC 重叠部分的面积.【难度】★★★ 【答案】见解析.【解析】(1)四边形EDOM 是菱形.∵将四边形OABC 沿着过点D 的直线翻折,使得点O 落在线段AB 上的点E 处, ∴EDM ODM ∠=∠,DE OD =. ∵EM ∥OD , ∴DME ODM ∠=∠, ∴DME EDM ∠=∠,∴EM DE =,∵DE OD =,∴EM OD =. ∵EM ∥OD ,∴四边形EDOM 是平行四边形, ∵EM DE =,∴平行四边形EDOM 是菱形; (2)由(1)可得:OD =EM = t , ∵EN =OA =4, ∴t s -=4(24t <<); (3)当点D 在线段OA 上时,∵t EM ED OM OD ====,4=EN ,s t =-4∴()22224816224ON OM MN t t t t =-=--=-=-∴四边形EDOM 与矩形OABC 重叠部分面积为:224224OD ON t t t t ⋅=⋅-=-; 当点D 在线段OA 延长上时(如图所示),∵4AD t BD t =-=,, ∴2222(4)224AE BD AD t t t =-=--=-, ∴四边形EDOM 与矩形OABC 重叠部分面积为:2244824AE OA t t ⋅=-⨯=-, 综上所述,四边形EDOM 与矩形OABC 重叠部分的面积为224t t -或824t -. 【总结】本题主要考察菱形的判定方法和性质的综合运用,解题时注意进行分析.MA BCDE MNAB C OOxy xyE DN【例17】 已知:如图1,梯形ABCD 中,AD //BC ,∠A =90°,∠C =45°,AB =AD =4.E 是直线AD 上一点,联结BE ,过点E 作EF ⊥BE 交直线CD 于点F .联结BF .(1)若点E 是线段AD 上一点(与点A 、D 不重合),(如图1所示) ①求证:BE =EF ;②设DE =x ,△BEF 的面积为y ,求y 关于x 的函数解析式,并写出此函数的定义域;(2)直线AD 上是否存在一点E ,使△BEF 是△ABE 面积的3倍,若存在,直接写出DE 的长,若不存在,请说明理由.【难度】★★★ 【答案】见解析.【解析】(1)①在AB 上截取AG=AE ,连接EG ,∵∠A =90°,AG=AE , ∴︒=∠=∠45AEG AGE , ∴︒=∠135BGE ∵AD //BC ,∠C =45°, ∴︒=∠135D ,∴D BGE ∠=∠ ∵AG=AE ,AB =AD , ∴ED=BG∵∠A =90°,EF ⊥BE , ∴DEF ABE ∠=∠∵ED=BG ,D BGE ∠=∠,DEF ABE ∠=∠ ∴△BGE ≌△EDF , ∴BE =EF ;②∵DE =x ,∴4AE x =-, ∵∠A =90°,∴()222244+-=+=x AB AE BE ,∵BE =EF , ∴()()23284444212122222+-=+-⋅+-=⋅⋅=x x x x EF BE y (40<<x );A BCDEFABCD图1备用图备用图ABCDGEF G(2)①当点E 在线段AD 上时,∵()11448222ABE S AB AE x x =⨯⨯=⨯⨯-=-△,又3BEFABESS=,∴()23282832+-=-⨯x x x ,解得:522±-=x (负值舍去),∴522+-=DE ;②当点E 在线段DA 延长线上时,延长BA 到G ,使得BG =DE ,连接EG , 则△AGE 是等腰直角三角形.同(1)可证△BGE ≌△EDF , ∴BE =EF ,21122BEF S BE EF BE =⨯⨯=⨯= ∵()824421-=-⨯⨯=x x S ABE △,又3BEFABES S=,∴()23288232+-=-⨯x x x ,解得:5210±=x ,∴5210±=DE ;③当点E 在线段AD 延长线上时,延长AB 到G ,使得BG =DE ,连接EG , 则△AGE 是等腰直角三角形.同(1)可证△BGE ≌△EDF , ∴BE =EF ,21122BEF S BE EF BE =⨯⨯=⨯==,∵()144282ABE S x x =⨯⨯+=+△,又3BEFABESS=,∴()28323282x x x ++⨯+=,解得:2x =±,∴2DE =+;综上所述,当△BEF 是△ABE 面积的3倍时,DE 的长为2-+或10±或2+【总结】本题综合性较强,主要考察全等三角形的构造方法和梯形的性质运用,注意对点在直线上的准确理解,要分多种情况进行讨论.【例18】 如图,已知正方形ABCD 的边长为3,菱形EFGH 的三个顶点E 、G 、H 分别在正方形的边AB 、CD 、DA 上,AH =1,联结CF . (1)当DG =1时,求证菱形EFGH 为正方形;(2)设DG =x ,△FCG 的面积为y ,写出y 关于x 的函数解析式,并指出x 的取值范围;(3)当DG =433时,求∠GHE 的度数.【难度】★★★ 【答案】见解析.【解析】(1)当DG =1时,∵AH =1,∴DG=AH∵菱形EFGH , ∴HG=HE ,∵90A D ∠=∠=, ∴△HDG ≌△EAH , ∴AEH DHG ∠=∠ ∵︒=∠+∠90AEH AHE ,∴︒=∠+∠90DHG AHE ,∴︒=∠90GHE ∴菱形EFGH 是正方形;(2)联结GE ,过F 作FM ⊥DC 交DC 的延长线于M , ∵CD ∥AB ,∴AEG CGE ∠=∠∵FG ∥HE ,∴HEG FGE ∠=∠,∴HEA FGC ∠=∠ ∵HEA FGC ∠=∠,M A ∠=∠,FG=HE , ∴△AHE ≌△MFG , ∴1==FM HA ,∴()x x y 21233121-=-⋅⨯=(30<<x );(3)∵正方形ABCD 的边长为3,AH =1, ∴DH =2.当DG =433时,213233422222=⎪⎭⎫⎝⎛+=+=DG DH GH , ∴2132=HE ,∴33522=-=HA HE AE . 过G 做GN ⊥AB 于N ,∵DG =433,335=AE , ∴33=NE , ∴21323332222=⎪⎪⎭⎫ ⎝⎛+=+=EN GN GE , ∴HE GE GH ==, ∴△EGH 是等边三角形, ∴︒=∠60GHE .【总结】本题主要考察正方形的性质及全等三角形的综合运用,注意辅助线的合理添 加.ABCD EFG H M N【例19】 已知:如图,四边形OABC 的四个顶点坐标分别为O (0, 0),A (8, 0),B (4,4),C (0, 4),直线l :y =x +m 保持与四边形OABC 的边交于点M 、N (M 在折线AOC 上,N 在折线ABC 上).设四边形OABC 在l 右下方部分的面积为S 1,在l 左上方部分的面积为S 2,记S =S 1-S 2(S ≥0). (1)求∠OAB 的大小;(2)当M 、N 重合时,求l 的解析式;(3)当m ≤0时,线段AB 上是否存在点N ,使得S =0?若存在,求m 的值;若不存在,请说明理由;(4)求S 与m 的函数关系式. 【难度】★★★ 【答案】见解析.【解析】(1)过B 作BE ⊥x 轴,垂足为E ,则点E (4,0)∵B (4,4), ∴44==AE BE ,,∴△ABE 为等腰直角三角形, ∴︒=∠45OAB ; (2)∵S ≥0,∴点M 、N 只能重合到点C (0, 4),此时4=m ,故直线l 的解析式为:y =x +4;(3)四边形OABC 的面积()2448421=⨯+⨯.∵直线l :y =x +m 保持与四边形OABC 边交于点M 、N , ∴△AMN 为等腰直角三角形.当S =0时,则△AMN 的面积为四边形OABC 的面积的一半. 过N 做x 轴的垂线NH ,则NH=AH=MH .设a NH =,则122212==⋅⋅a a a ,解得:32=a , ∴()82323N -,,∵点N 在直线l :y =x +m 上, ∴834-=m ;ABC OxyN ME H(4)∵S =S 1-S 2(S ≥0),∴834-≥m .①当0834<≤-m 时,m OM -=,m AM +=8, 经过A (8, 0),B (4,4)的直线解析式为:8+-=x y , 令⎩⎨⎧+=+-=m x y x y 8, 解得:⎪⎩⎪⎨⎧+=-=2828m y m x ∴16441282822121++=+⨯+⨯⨯=m m m m S ,1224S S -=, ∴88212422121++=-=-=m m S S S S ; ②当40≤≤m 时,m OM =,m CM -=4,∴()22421m S -=,1224S S -=,∴882242121++-=-=-=m m S S S S ;综上所述,2218880)288(04)m m m S m m m ⎧++≤<⎪=⎨⎪-++≤≤⎩.【总结】本题综合性较强,主要考察图形的运动,包含了一次函数的性质及解析式的求法.解题时要注意从多个角度分析,特别要清楚动点的移动位置.【例20】 在边长为4的正方形ABCD 中,点O 是对角线AC 的中点,P 是对角线AC上一动点,过点P 作PF ⊥CD 于点F ,作PE ⊥PB 交直线CD 于点E ,设P A =x ,PCE S y =△.(1)求证:DF =EF ;(2)当点P 在线段AO 上时,求y 关于x 的函数关系式及自变量x 的取值范围;(3)点P 在运动过程中能否使△PEC 为等腰三角形?如果能,请直接写出P A 的长;如果不能,请简单说明理由. 【难度】★★★ 【答案】见解析.【解析】(1)延长FP 交AB 于点G∵正方形ABCD 中,PF ⊥CD 于点F ,∴四边形AGFD 是矩形, ∴DF=AG ,︒=∠90AGF ∵正方形ABCD , ∴︒=∠45BAC∵︒=∠90AGF ,∴GP AG =,∴GP DF = 同理可得:BG PF CF ==∵PE ⊥PB ,︒=∠90AGF ,∴FPE GBP ∠=∠ ∵FPE GBP ∠=∠,BG PF =,PFE BGP ∠=∠ ∴△GBP ≌△FPE ,∴GP=EF ∵GP DF =,∴EF DF =; (2)∵P A =x , ∴x GP AG 22==,x EF DF 22==, 则x DE 2=,∴x CE 24-=, ∵x PF 224-=, ∴()8232122424212+-=⎪⎪⎭⎫ ⎝⎛--=x x x x y (022x ≤≤)(3)点P 在运动过程中能使△PEC 为等腰三角形. 当点E 在CD 边上时,∵︒≥∠90CEP ,要使△PEC 为等腰三角形,则︒=∠=∠45ECP CPE ,则PE ⊥CE . ∵PE ⊥PB , ∴BP ∥CD , ∴BP ∥BA .于是点P 在AB 上,又点P 在AC 上,∴A 与P 重合,此时AP =0. 当点E 在DC 延长线上时,要使△PEC 为等腰三角形,只能是PC=CE , ∴易得P A =4.【总结】本题主要考查正方形的性质的综合运用,注意对等腰的分类讨论.A BCDE F P OGxy BAOC【习题1】 如图,直线443y x =-+与y 轴交于点A ,与直线4455y x =+交于点B ,且直线4455y x =+与x 轴交于点C ,求△ABC 的面积. 【难度】★★ 【答案】4.【解析】∵直线443y x =-+与y 轴交于点A ,∴A (0,4);∵直线443y x =-+与x 轴交于点D ,∴D (3,0);令⎪⎩⎪⎨⎧+=+-=5454434x y x y , 解得:⎪⎩⎪⎨⎧==223y x , 则322B ⎛⎫ ⎪⎝⎭,;∵直线4455y x =+与x 轴交于点C , ∴C (-1,0),∴424214421=⨯⨯-⨯⨯=-=BCD ACD ABC S S S △△△. 【总结】考察面积的求法,不规则图形的面积用割补法来解决,注意交点坐标的确定.随堂检测【习题2】 已知直线2y x =-+与x 轴、y 轴分别交于A 点和B 点,另一条直线(0)y kx b k =+≠经过点C (1,0),且把△AOB 分成两部分.若△AOB 被分成的两部分面积比为1:5,求k 和b 的值. 【难度】★★★【答案】22k b ==-,或2233k b =-=,.【解析】∵直线2y x =-+与x 轴、y 轴分别交于A 点和B 点,∴A (2,0),B (0,2).若△AOB 被分成的两部分面积比为1:5,那么直线(0)y kx b k =+≠与y 轴或A B 交点的纵坐标为:326122=⨯⨯. 当(0)y kx b k =+≠与直线2y x =-+相交时,交点为D ,当32=y 时,223x =-+,解得:34=x ,∴D (34,32), ∵点C (1,0),D (34,32)在直线(0)y kx b k =+≠上, ∴22k b ==-,;当(0)y kx b k =+≠与y 轴相交时,交点为E ,当32=y 时,223x =-+,解得:34=x ,∴E (0,32), ∵C (1,0),E (0,32)在直线(0)y kx b k =+≠上, ∴2233k b =-=,.综上,22k b ==-,或2233k b =-=,.【总结】本题主要考察面积的求法及交点坐标的确定,注意要分类讨论.【习题3】 直线364y x =-+与坐标轴分别交与点A 、B 两点,点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿O B A →→运动. (1)直接写出A 、B 两点的坐标;(2)设点Q 的运动时间为t 秒,△OPQ 的面积为S ,求出S 与t 之间的函数关系;(3)当485S =时,求出点P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标. 【难度】★★★ 【答案】见解析.【解析】(1)∵直线364y x =-+与坐标轴分别交与点A 、B 两点,∴A (8,0),B (0,6);(2)∵OA=8,OB=6,∴AB=10.∵点Q 沿线段OA 运动,速度为每秒1个单位长度, ∴运动时间为8秒,∴点P 的运动速度是(6+10)÷8=2. 当点P 在线段OB 上运动时(03)t ≤≤, ∵t OQ =,t OP 2=, ∴2t S =;当点P 在线段BA 上运动时(38)t <≤,t OQ =,t t AP 2162106-=-+=, ∵8t OA OQ S S OPAOPQ ==△△,10216tBA AP S S OBA OPA -==△△, ∴t t t t S t t S OAB OPQ 52453241021681021682+-=⨯-⋅=-⋅=△△,综上所述,S 与t 之间的函数关系为:22(03)324(38)55t t S t t t ⎧≤≤⎪=⎨-+<≤⎪⎩;(3)当485S =时,∵6321548⨯⨯>,∴点P 在AB 上,当485S =时,524524532=+-t t ,解得:4=t ,∴524=PD ,8=AP ,532=AD , ∴58=OD ,∴P (58,524), ∴以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标(528,524)或 (512-,524)或(512,524-)ABxyOQ P【习题4】 如图,已知:过点A (8,0)、B (0,83)两点的直线与直线3y x =交于点C ,平行于y 轴的直线l 从原点O 出发,以每秒1个单位长度的速度沿x 轴向右平移,到C 点时停止;l 分别交线段BC 、OC 于点D 、E ,以DE 为边向左侧作等边△DEF ,设△DEF 与△BCO 重叠部分的面积为S (平方单位),直线l 的运动时间为t (秒).(1) 写出点C 的坐标和t 的取值范围; (2) 求s 与t 的函数关系式. 【难度】★★★ 【答案】见解析.【解析】(1)∵直线过点A (8,0)、B (0,83),∴直线AB 的解析式为383+-=x y . 令⎪⎩⎪⎨⎧=+-=x y x y 3383, 解得:⎩⎨⎧==344y x ,∴C (4,43), 40≤≤t ;(2)作EM ⊥y 轴与M ,DG ⊥y 轴于点G∵直线l 的运动时间为t (秒),∴D (t ,383t -+),E (t ,3t ), ∴t t t DE 32383383-=-+-=, ∴等边△DEF 的DE 边上的高为:()t t DE 31232382323-=-=. ∵E (t ,3t ),∴t ME =,t MN 33=,同理可得:t GH 33= ∴可求梯形上底为:t t 3323238--, ∴当点F 在BO 边上时:t t =-312,∴3=t . 当30<≤t 时,重叠部分为等腰梯形,223783238323383233t S t t t t t ⎛⎫=-+--=-+ ⎪ ⎪⎝⎭; 当43≤≤t 时,重叠部分为三角形,()()348324333123238212+-=--=t t t t S .【总结】本题综合性较强,主要考察一次函数与动点的结合以及图形的运动,解题时 一方面要清晰动点的运动轨迹,另一方面要学会表示动点的坐标,第(2)问注意 要分类讨论.AB CDEOxy l FPMGxy QPAOC B【作业1】 如图,已知直线P A :(0)y x n n =+>与直线PB :2()y x m m n =-+>交于点P .(1)用m 、n 表示出A 、B 、P 点的坐标;(2)若点Q 是直线P A 与y 轴的交点,且四边形PQOB 的面积56,AB=2,试求 点P 的坐标,并写出直线P A 与PB 的解析式. 【难度】★★ 【答案】见解析.【解析】(1)∵直线P A :(0)y x n n =+>交x 轴与A ,∴A (n -,0),∵直线PB :2()y x m m n =-+>交x 轴与B , ∴B (2m,0), 令⎩⎨⎧+-=+=m x y n x y 2, 解得:323m n x m n y -⎧=⎪⎪⎨+⎪=⎪⎩,∴P (3m n -,32nm +);(2)∵点Q 是直线P A 与y 轴的交点, ∴Q (0,n ).∵四边形PQOB 的面积56,∴()65321221=-⋅-⋅-⋅⋅=-n m n m m m S S CPQ COB △△. ∵AB=2, ∴23=+n m, ∴21m n ==,. ∴直线P A 的解析式为:1y x =+, 直线PB 的解析式为:22y x =-+.【总结】本题主要考察点的坐标的求法及几何图形面积的表示.课后作业xy FEO【作业2】 如图所示,直线y kx b =+的截距为6,该直线分别交x 轴、y 轴于E 、F ,点E 的坐标为(-4,0). (1)求直线y kx b =+的表达式;(2)若点P (x ,y )是该直线第二象限上的一个动点,P A ⊥x 轴,PB ⊥y 轴,垂足分别为点A 、B ,试求四边形OAPB 的面积S 与x 的函数关系式,并写出自变量x 的取值范围. 【难度】★★★ 【答案】见解析.【解析】(1)∵直线y kx b =+的截距为6,该直线分别交x 轴、y 轴于E 、F ,∴点E 的坐标为(-4,0),∴直线y kx b =+的表达式为623+=x y ;(2)∵点P (x ,y )是该直线第二象限上的一个动点,∴623+=x y ,∴()x x x x S 6236232--=⎪⎭⎫⎝⎛+-=(04<<-x ).【总结】考察一次函数解析式的求法及图形面积的确定, 注意点的坐标与线段长度的关系.【作业3】 如图,已知:直角梯形ABCD 中,AB ∥CD ,∠A =90°,AB =6,AD =4,DC =3,点P 从点A 出发,沿ADCB 方向移动,动点Q 从点A 出发,在AB 边上移动,设点P 移动的路程为x ,点Q 移动的路程为y ,线段PQ 平分梯形ABCD 的周长. (1) 求y 关于x 的函数解析式,并写出x 和y 的取值范围;(2) 当P 不在BC 边上时,线段PQ 能否平分ABCD 的面积?若能,求出此时x 的值;若不能,说明理由. 【难度】★★★ 【答案】见解析.【解析】(1)过C 做CE ⊥AB 于E ,则CD=AE =3. ∵CE =4, ∴BC =5,∴梯形的周长为18.∵线段PQ 平分梯形ABCD 的周长, ∴9=+y x . ∵60≤≤y , ∴93≤≤x , ∴x y -=9(93≤≤x );ABCD PQ E(2)∵P 不在BC 边上时,则73≤≤x . 当43<≤x 时,点P 在AD 边上,则xy S APQ 21=△. ∵线段PQ 能否平分ABCD 的面积, ∴921=xy . 由1929xy x y ⎧=⎪⎨⎪+=⎩,解得:,∴36x y =⎧⎨=⎩或63x y =⎧⎨=⎩(舍去);当74≤≤x 时,P 在CD 边上,此时()y x S ADPQ +-⨯=4421四边形 ∵线段PQ 能否平分ABCD 的面积, ∴()94421=+-⨯y x联立9=+y x ,方程组无解.故当x =3时,线段PQ 平分ABCD 的面积.【总结】本题考察的知识点较多,包含了梯形的性质,面梯形面积及三角形的面积公式,二元二次方程组的解法等,第(1)问注意对解析式的确定,第(2)问注意利用第(1)问的结论,同时要进行分类讨论.【作业4】 如图,在平面直角坐标系中,两个函数162y x y x ==-+,的图像交于点A ,动点P 从点O 开始在线段O 向点A 方向以每秒1个单位的速度运动,作PQ ∥x 轴交直线BC 于点Q ,以PQ 为一边向下作正方形PAMN ,设它与△ABO 重叠部分的面积为S .(1) 求点A 的坐标;(2) 试求出点P 在线段OA 上运动时,S 与运动的时间t (秒)的关系式.【难度】★★★【答案】见解析.【解析】(1)令⎪⎩⎪⎨⎧+-==621x y x y , 解得:⎩⎨⎧==44y x ,∴A (4,4);ABCP Q O yx(2)∵动点P 从点O 开始在线段O 向点A 方向以每秒1个单位的速度运动, ∴t OP =, 则P (t 22,t 22). ∵PQ ∥x 轴,∴Q (t 212-,t 22), ∴t PQ 22312-=. 当t t 2222312=-时, 23=t . 当230≤<t 时,t t t t S 262322312222+-=⎪⎪⎭⎫ ⎝⎛-=; 当P 到达A 点时,24=t , 当2423<<t 时,144236292231222+-=⎪⎪⎭⎫ ⎝⎛-=t t t S ,综上所述,223(0291442t t S t t ⎧-+<≤⎪⎪=⎨⎪-+<⎪⎩.【总结】本题主要考察交点坐标与面积的确定,解题的关键是要能够掌握重叠部分图 形的特点,一开始是矩形,后来才是正方形,要找出这个临界点,这样就将问题简化 了.。

中考数学复习考点知识专题训练24---因动点产生的面积问题(提高篇)

中考数学复习考点知识专题训练24---因动点产生的面积问题(提高篇)

中考数学复习考点知识专题训练24 因动点产生的面积问题(提优篇)1.一次函数y=23x+4的图象与x轴相交于点A,与y轴相交于点B,O为坐标原点.(1)求点B的坐标;(2)请在坐标系中用描点法画出该函数的图象;(3)若点C是该函数图象上的动点,当△OBC的面积为6时,求点C的坐标.2.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+2x+3与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,抛物线顶点为点D.(1)求B,C,D三点坐标;(2)如图1,抛物线上有E,F两点,且EF∥x轴,当△DEF是等腰直角三角形时,求线段EF 的长度;(3)如图2,连接BC,在直线BC上方的抛物线上有一动点P,当△PBC面积最大时,点P坐标.3.如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足√a+1+(b﹣3)2=0.(1)填空:a=,b=;(2)若在第三象限内有一点M(﹣2,m),用含m的式子表示△ABM的面积;(3)在(2)条件下,当m=−32时,线段BM与y轴相交于C(0,−910),点P是坐标轴上的动点,当满足△PBM的面积是△ABM的面积的2倍时,求点P的坐标.4.如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2).(1)求直线AC的表达式;(2)求△OAC 的面积;(3)动点M 在线段OA 和射线AC 上运动,是否存在点M ,使△OMC 的面积是△OAC 的面积的14?若存在,求出此时点M 的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系xOy 中,抛物线y =ax 2﹣2ax ﹣3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx +b 与y 轴负半轴交于点C 与抛物线的另一个交点为D ,且D 点的横坐标为4.(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示); (2)点E 是直线l 上方的抛物线上的动点,若△ACE 的面积的最大值为254,求抛物线y =ax 2﹣2ax﹣3a (a <0)的解析式;(3)在(2)的条件下,求四边形CDBE 的面积.6.平面直角坐标系中,直线y1=34x+3与x轴、y轴分别交于A、C两点,直线y=12x﹣1与x轴、y轴分别交于B、D两点.(1)如图1,点F是直线x=−23上的动点,当△ADF的面积等于253时,有一线段MN=√5(点M在点N的左侧)在直线BD上移动,首尾顺次连接点A、M、N、F构成四边形AMNF的周长最小时,点N的横坐标.(2)如图2,将△DBC绕点D逆时针旋转α°(0°<α°<180°),记旋转中的△DBC为△DB′C′,若直线B′C′与直线AC交于点P,直线B′C′与直线DC交于点Q,当△CPQ是等腰三角形时,直接写出CP的值.7.如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).(1)求该抛物线的解析式;(2)若点M、N分别为x轴、y轴上的动点,点E为直线AC上方抛物线上的动点,连接AE,CE,当△ACE的面积最大时,请求出E点的坐标.连接EM、EN、MN,求EM+EN+MN的最小值;(3)若平行于x轴的动直线l与该抛物线交于点P,与线段AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.8.如图,平面直角坐标系中,ABCD 为矩形,其中点A 、C 坐标分别为(﹣8,4)、(2,﹣8),且AD ∥x 轴,交y 轴于M 点,AB 交x 轴于N . (1)求B 、D 两点坐标和矩形ABCD 的面积;(2)一动点P 从A 出发(不与A 点重合),以12个单位/秒的速度沿AB 向B 点运动,在P 点运动过程中,连接MP 、OP ,请直接写出∠AMP 、∠MPO 、∠PON 之间的数量关系;(3)是否存在某一时刻t ,使△AMP 的面积等于矩形面积的13?若存在,求t 的值并求此时点P 的坐标;若不存在请说明理由.9.如图1,二次函数y =﹣x 2+bx +c 的图象过点A (3,0),B (0,4)两点,动点P 从A 出发,在线段AB 上沿A →B 的方向以每秒2个单位长度的速度运动,过点P 作PD ⊥y 于点D ,交抛物线于点 C .设运动时间为t (秒).(1)求二次函数y=﹣x2+bx+c的表达式;(2)连接BC,当t=56时,求△BDP的面积;(3)如图2,动点P从A出发时,动点Q同时从O出发,在线段OA上沿O→A的方向以1个单位长度的速度运动,当点P与B重合时,P、Q两点同时停止运动,连接DQ、PQ,将△DPQ沿直线PC折叠到△DPE.在运动过程中,当PE与AB重合时求t的值.10.如图,直线y=−34x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+34x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.11.如图,点O 为平面直角坐标系的原点,三角形ABC 中,∠BAC =90°,AB =m .顶点A ,C 的坐标分别为(1,0),(n ,0),且|m ﹣3|+(n ﹣5)2=0. (1)求三角形ABC 的面积;(2)动点P 从点C 出发沿射线CA 方向以每秒1个单位长度的速度运动,设点P 的运动时间为t 秒,连接PB ,请用含t 的式子表示三角形ABP 的面积; (3)在(2)的条件下,当三角形ABP 的面积为152时,直线BP 与y 轴相交于点D ,求点D 的坐标.12.如图,抛物线y =ax 2+bx +c 与x 轴相交于A (3,0)、B 两点,与y 轴交于点C (0,3),点B 在x 轴的负半轴上,且OA =3OB .(1)求抛物线的函数关系式;(2)若P 是抛物线上且位于直线AC 上方的一动点,求△ACP 的面积的最大值及此时点P 的坐标;(3)在线段OC上是否存在一点M,使BM+√22CM的值最小?若存在,请求出这个最小值及对应的M点的坐标;若不存在,请说明理由.13.如图,长方形ABCD中AD=acm,AB=bcm,且a,b满足|8﹣a|+(b﹣4)2=0.(1)求长方形ABCD的面积;(2)动点P在AD所在直线上,从A出发向左运动,速度为2cm/s,动点Q在DC所在直线上,从D出发向上运动,速度为4cm/s.动点P,Q同时出发,设运动时间为t秒.①当0<t<4时,以D,P,B,Q为顶点的四边形面积为cm2;(用含t的式子表示);②当t>4时,以D,P,B,Q为顶点的四边形面积为cm2;(用含t的式子表示);③求当t为何值时,S△BAP=S△CQB.14.如图,已知直线y=43x+4分别交x轴、y轴于点A,B,P是以C(2,0)为圆心,2为半径的圆上一动点.求△P AB面积的最小值.15.如图,一次函数y=x+3的函数图象与x轴,y轴分别交于点A,B.(1)若点P(﹣2,m)为第三象限内一个动点,请问△OPB的面积会变化吗?若不变,请求出面积;若变化,请说明理由.(2)在(1)的条件下,试用含m的代数式表示四边形APOB的面积;若△APB的面积是6,求m的值.16.如图,直线y1=﹣x+4与双曲线y=kx(k≠0)交于A、B两点,点A的坐标为(1,m),经过点A直线y2=x+b与x轴交于点C.(1)求反比例函数的表达式以及点C的坐标;(2)点P是x轴上一动点,连接AP,若△ACP是△AOB的面积的一半,求此时点P的坐标.17.如图,在平面直角坐标系中,抛物线y=−13x2+2√33x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线的顶点为点E.【面积最值】经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD 的面积最大时,求点P的坐标;18.已知,直线l1:y=3x﹣2k与直线l2:y=x+k交点P的纵坐标为5,直线l1与直线l2与y轴分别交于A、B两点.(1)求出点P的横坐标及k的值;(2)求△P AB的面积;(3)点M为直线l1上的一个动点,当△MAB面积与△P AB面积之比为2:3时,求此时的点M 的坐标.19.如图,已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的表达式;(2)抛物线的对称轴上有一动点P,求出P A+PD的最小值;(3)若抛物线上有一动点M,使△ABM的面积等于△ABC的面积,求M点坐标.(4)抛物线的对称轴上是否存在动点Q,使得△BCQ为等腰三角形?若存在,求出点Q的坐标;若不存在,说明理由.20.如图,已知抛物线过点A(4,0),B(﹣2,0),C(0,﹣4).(1)求抛物线的解析式;(2)如图,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标.11 / 11。

2022-2023学年上海初二下学期同步讲义第16讲 动点产生的面积问题解析版

2022-2023学年上海初二下学期同步讲义第16讲 动点产生的面积问题解析版

第16讲 动点产生的面积问题运动变化题是随着图形的某一元素的运动变化,导致问题的结论改变或者保持不变的几何题,它揭示了“运动”与“静止”、“一般”与“特殊”的内在联系.解题的关键是分清几何元素运动的方向和捷径,注意在运动过程中哪些是变量,哪些不是变量,通常要根据几何元素所处的不同位置加以分类讨论,同时,综合运用勾股定理、方程和函数等知识,本节课的内容涉及三角形、特殊的四边形的面积问题.模块一:面积计算的问题 知识精讲本节主要是在函数背景下求三角形或四边形的面积问题,较复杂的题目可以采取“割补”的思想构造较简单的图形进行求解.例题解析例1.(2018·上海八年级期中)一次函数2y x m =-+的图像经过点(2,3)P -,且与x 轴、y 轴分别交于点A 、B ,求△AOB 的面积.【答案】14【详解】先将点P 坐标代入函数解析式,可求出m 值,再根据函数解析式求出A 、B 两点坐标即可求出△AOB 的面积.解:将()2,3P -代入2y x m =-+得,1,m =- 2 1.y x ∴=--当0y =时,1,2x =- ∴点A 坐标为(12-,0),当0x =时,1,y =- ∴点B 坐标为(0,-1),∴1, 1.2OA OB == ∴11111.2224AOB S OA OB =⋅⋅=⨯⨯=例2.(2020·上海市静安区实验中学八年级期中)一次函数222(2)mm y m x n --=-+的图像y 随x 增大而减小,且经过点(1,6)A .求(1)mn 的值;(2)求该直线与坐标轴围成的三角形的面积及坐标原点到直线的距离. 【答案】(1)9mn =-;(2)该直线与坐标轴围成的三角形的面积为272,坐标原点到直. 【分析】(1)由一次函数的定义和性质列出方程和不等式求出m 的值,代入A 点坐标,可求出n 值;(2)由解析式可得y 轴截距与x 轴截距,然后根据三角形面积公式求解;利用勾股定理求出直线与坐标轴围成的三角形的斜边长,然后用等积法求解. 【详解】解:(1)222(2)mm y x x n --=-+是一次函数∴2221m m --=即(3)(1)0m m -+= 解得13m =;21m =-. 又y 随x 增大而减小∴20m -<即2m <∴1m =-∴一次函数解析式为:3y x n =-+代入点(1,6)A 得63n =-+∴n=9 ∴9mn =-(2)由(1)得:39y x =-+y 轴截距:9b =x 轴截距:933b k-=-=-∴该直线与坐标轴围成的三角形的面积:112739222b S b k =••-=⨯⨯=设坐标原点到直线的距离为h .有12722S h =⨯=∴h∴. 【点睛】此题考查了待定系数法求一次函数解析式,一次函数图象上的点的坐标特征,熟练掌握待定系数法是解本题的关键.例3.(2019·上海市闵行区七宝第二中学八年级期中)在直角坐标平面内,O 为原点,点A 的坐标为(1,0),点C 的坐标为(0,4),直线//CM x 轴. 点B 与点A 关于原点对称,直线y x b =+(b 为常数)经过点B ,且与直线CM 相交于点D .(1)求b 的值和点D 的坐标;(2)在x 轴上有一点Q ,使BQD ∆的面积为8,求Q 点的坐标;(3)在x 轴的正半轴上是否存在一点P ,使得POD ∆为等腰三角形,若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)1b =,(3,4)D ;(2)1(3,0)Q 或2(5,0)Q -.(3)存在.1(5,0)P 或2(6,0)P 或325(,0)6P . 【分析】(1)先求出点B 的坐标,由直线过点B ,把点B 的坐标代入解析式,可求得b 的值;点D 在直线CM 上,其纵坐标为4,利用求得的解析式确定该点的横坐标即可; (2)过点D 作DE x ⊥轴,根据三角形面积公式求出BQ 的长,可得Q 点坐标; (3)△POD 为等腰三角形,有三种情况:OP OD =,PD OD =,PD PO =,故需分情况讨论,要求点P 的坐标,只要求出点P 到原点O 的距离即可; 【详解】 解:(1)B 与(1,0)A 关于原点对称∴(1,0)B -y x b =+过点B∴10b -+= ∴1b = ∴1y x =+当4y =时,14x +=∴3x = ∴(3,4)D ∴1b =,(3,4)D .(2)过点D 作DE x ⊥轴,垂足为E ,则4DE =DE 是BQD ∆在边BQ 上的高.182BQD S BQ DE ∆=•= ∴4BQ =∴在x 轴上存在两个Q 点满足条件.即:1(3,0)Q 或2(5,0)Q -. (3)存在.5OD①当OP OD =时5OP OD ==,(0,0)O∴1(5,0)P②当PD OD =时PD OD =,DE x ⊥∴DE 是OP 边得中线 ∴OE PE =DE x ⊥,5OD =,4DE =∴3OE = ∴6OP = ∴2(6,0)P③当PD PO =时设(,0)P aPD PO =∴PD a =在Rt PED ∆中,PD a =,3PE a =-,4DE =∴222(3)4a a =-+解得:256a =. ∴325(,0)6P 综上所述:1(5,0)P 或2(6,0)P 或325(,0)6P .【点睛】本题考查了待定系数法求函数解析式,一次函数图像上点的坐标特征以及等腰三角形的判定和性质,注意分情况讨论是解决本题的关键.例4.(2020·上海市位育实验学校八年级月考)如图,直线1l 的解析式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A,B ,两条直线交于点C ,在直线2l 上存在一点P ,使得△ADP 的面积是△ADC 面积的2倍,那么点P 的坐标为____________【答案】(8,6)或(0,−6)【分析】已知l 1的解析式,令y =0求出D 点坐标,设l 2的解析式为y =kx +b ,由图联立方程组求出k ,b 的值,联立方程组,求出交点C 的坐标,继而可求出S △ADC ,△ADP 与△ADC 底边都是AD ,根据△ADP 的面积是△ADC 面积的2倍,可得点P 的坐标. 【详解】由y =−3x +3,令y =0,得−3x +3=0, ∴x =1, ∴D (1,0);设直线l 2的解析表达式为y =kx +b ,由图象知:x =4,y =0;x =3,y =−32,代入表达式y =kx +b ,∴40332k b k b ⎧⎪⎨-⎪⎩+=+=∴326k b ⎧⎪⎨⎪-⎩==, ∴直线l 2的解析表达式为y =32x −6; 由33362y x y x =-+⎧⎪⎨-⎪⎩=, 解得23x y ⎧⎨-⎩==,∴C (2,−3), ∵AD =3,∴S△ADC=12×3×|−3|=92,∵△ADP与△ADC底边都是AD,△ADP的面积是△ADC面积的2倍,∴△ADC高就是点C到直线AD的距离的2倍,即C纵坐标的绝对值=6,则P到AD距离=6,∴点P纵坐标是±6,∵y=32x−6,y=6,∴32x−6=6,解得x=8,∴P1(8,6).∵y=32x−6,y=−6,∴32x−6=−6,解得x=0,∴P2(0,−6)综上所述,P1(8,6)或P2(0,−6).故填:(8,6)或(0,−6).【点睛】本题考查的是一次函数的性质,三角形面积的计算等有关知识,利用图象上点的坐标得出解析式是解题关键.例5.(2020·上海市南汇第四中学八年级月考)如图,直线1:33L y x=-+与x轴、y轴分别交于A、B两点,在y轴上有一点(0,9)C,动点M从A点以每秒2个单位的速度沿x轴向左移动.(1)求A 、B 两点的坐标(2)求COM 的面积S 与M 的移动时间t (秒)之间的函数关系式; (3)当t 何值时COM AOB △≌△,并求此时M 点的坐标.(4)当t 何值时COM 的面积是AOB 一半,并求此时M 点的坐标.【答案】(1)A(9,0);(2)B(0,3);(2)S=()()8190 4.52819 4.52t t t t ⎧-+≤≤⎪⎪⎨⎪-⎪⎩>;(3)当t=3,M(3,0),当t=6,M(-3,0);(4)当t=154,M(32,0);当t=214,M(-32,0) 【分析】(1)对于1:33L y x =-+,令x=0可求出B 点坐标,令y=0可求出A 点坐标; (2)分点M 在原点左侧和右侧两种情况,根据三角形的面积公式解答即可;(3)分点M 在原点左侧和右侧两种情况,根据全等三角形的性质列式求出t 的值,进而可求出点M 的坐标;(4)根据三角形的面积公式列式求出OM 的长,进而分点M 在原点左侧和右侧两种情况,可求出t 的值及点M 的坐标. 【详解】解:(1)当x=0时,y=3, ∴B(0,3). 当y=0时,1033x =-+,x=9, ∴A(9,0); (2)9÷2=4.5秒,当点M 在原点右侧时,即0≤t ≤4.5时,由题意得,OM=9-2t , ∴S=()1192922OM OC t ⋅=-⨯=8192t -+. 当点M 在原点左侧时,即t >4.5时,由题意得,OM=2t-9, ∴S=()1129922OM OC t ⋅=-⨯=8192t -, ∴S=()()8190 4.52819 4.52t t t t ⎧-+≤≤⎪⎪⎨⎪-⎪⎩>;(3)当点M 在原点右侧时,即0≤t ≤4.5时,∵COM AOB△≌△,∴OM=OB,∴9-2t=3,∴t=3,∴OM=9-6=3,∴M(3,0);当点M在原点左侧时,即t>4.5时,∵COM AOB△≌△,∴OM=OB,∴2t-9=3,∴t=6,∴OM=12-9=3,∴M(-3,0);综上可知,当t=3,M(3,0),当t=6,M(-3,0);(4)S△AOB=112793222 OA OB⋅=⨯⨯=,∵S△COM=12S△AOB,∴1112792222 OM OC OM⋅=⨯=⨯,∴OM=32,当点M在原点右侧时,9-2t=32,∴t=154,此时M(32,0);当点M在原点左侧时,2t-9=32,∴t=214,此时M(-32,0),综上可知,当t=154,M(32,0);当t=214,M(-32,0). 【点睛】本题考查了一次函数与坐标轴的交点,三角形的面积,全等三角形的性质,以及分类讨论的数学思想,分类讨论是解答本题的关键.例6.(2019·上海嘉定区·上外附中八年级月考)如图,已知一次函数y=kx+3的图形经过点A (1, m),与x 轴、y 轴分别相交于B 、C 两点,且∠ABO=45°,设点D 的坐标为(3,0) (1) 求m 的值;(2) 联结CD 、AD ,求△ACD 的面积;(3) 设点E 为x 轴上一动点,当∠ADC=∠ECD 时,求点E 的坐标.【答案】(1)m =4;(2)3ACDS;(3)点E 的坐标为(32,0)或(6,0). 【分析】(1)求出点B 坐标,利用待定系数法求出直线BC 的解析式即可解决问题; (2)根据ACDABDBCDSSS进行计算即可;(3)分点E 在点D 左侧和点E 在点D 右侧两种情况,分别求出直线CE 1和直线CE 2的解析式即可得到对应的点E 的坐标.【详解】解:(1)∵一次函数y=kx+3的图象与x 轴、y 轴分别相交于B 、C 两点,∠ABO=45°, ∴OB =OC =3, ∴B (-3,0),将B (-3,0)代入y=kx+3得:0=-3k+3, 解得:k =1,∴直线BC 的解析式为:y =x+3,当x =1时,y =x+3=4,∴m =4;(2)∵B (-3,0),C (0,3),D (3,0),A (1,4),∴BD =6, ∴116463322ACD ABD BCD S S S ; (3)如图所示,当点E 在点D 左侧时,∵∠ADC =∠E 1CD ,∴AD ∥CE 1,设直线AD 的解析式为:y =k 1x+b (k ≠0),代入A (1,4),D (3,0)得:11403k b k b=+⎧⎨=+⎩,解得:126k b =-⎧⎨=⎩, ∴直线AD 的解析式为:26y x =-+,故设直线CE 1的解析式为:2y x c =-+,代入C (0,3)得:3c =,∴直线CE 1的解析式为:23y x =-+,当y =0时,解得:32x =, ∴E 1(32,0); 当点E 在点D 右侧时,AD 与CE 2交于点F ,∵∠ADC =∠E 2CD ,∴FC =FD ,∵OB =OD =3,∠ABO =45°,∴∠CDB =45°,∴∠ACD =45°+45°=90°,即∠ACF +∠FCD =90°,∵∠CAF +∠FDC =90°,∴∠ACF =∠CAF ,∴FC =FA ,∴F 为线段AD 的中点,∴点F 的坐标为()2,2,设直线CE 2的解析式为:23y k x =+,代入F ()2,2得:2223k ,解得:212k =-, ∴直线CE 2的解析式为:132y x =-+, 当y =0时,解得:6x =,∴E 2(6,0),综上所述,点E 的坐标为(32,0)或(6,0).【点睛】本题是一次函数与几何综合题,考查了待定系数法求函数解析式,一次函数的图象和性质,等腰直角三角形的性质,三角形面积计算以及等腰三角形的判定和性质等知识,熟练掌握待定系数法,灵活运用数形结合的思想是解答本题的关键.例7..(2019·上海市市西初级中学八年级期中)如图,在平面直角坐标系中,点(6,0)A -,(4,3)B -,边AB 上有一点(,2)P m ,点C ,D 分别在边OA ,OB 上,联结CD ,//CD AB ,联结PC ,PD ,BC .(1)求直线AB 的解析式及点P 的坐标;(2当CQ BQ =时,求出点C 的坐标;(3)在(2)的条件下,点R 在射线BC 上,ABO RBO S S ∆∆=,请直接写出点R 的坐标.【答案】(1)直线AB 解析式为y =32x +9,P 点坐标为(-143,2)(2)C 点坐标为(-2,0)(3)R (2,-6).【分析】(1)由A 、B 两点的坐标,利用待定系数法可求得直线AB 的解析式,再把P 点坐标代入直线解析式可求得P 点坐标;(2)由条件可证明△BPQ ≌△CDQ ,可证得四边形BDCP 为平行四边形,由B 、P 的坐标可求得BP 的长,则可求得CD 的长,利用平行线分线段成比例可求得OC 的长,则可求得C 的坐标;(3)由条件可知AR ∥BO ,故可先求出直线OB ,BC 的解析式,再根据直线平行求出AR 的解析式,联立直线AR 、BC 即可求出R 点坐标.【详解】(1)设直线AB 解析式为y =kx +b , 把A 、B 两点坐标代入可得4360k b k b -+=⎧⎨-+=⎩,解得329k b ⎧=⎪⎨⎪=⎩, ∴直线AB 解析式为y =32x +9, ∵(,2)P m 在直线AB 上,∴2=−32m +9,解得m =-143, ∴P 点坐标为(-143,2); (2)∵//CD AB ,∴∠PBQ =∠DCQ ,在△PBQ 和△DCQ 中PBQ DCQ CQ BQPQB DQC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△PBQ ≌△DCQ (ASA ),∴BP =CD ,∴四边形BDCP 为平行四边形,∵(4,3)B -,(-143,2),∴CD =BP =, ∵A (-6,0),∴OA =6,AB =∵CD ∥AB ,∴△COD ∽△AOB∴CO CD AO AB =,即6CO =,解得CO =2, ∴C 点坐标为(-2,0);(3)∵ABO RBO S S ∆∆=,∴点A 和点R 到BO 的距离相等,∴BO ∥AR ,设直线BO 的解析式为y=nx ,把(4,3)B -代入得3=-4n ,解得n=-34x ∴直线BO 的解析式为y=-34x , ∴设直线AR 的解析式为y=-34x+e ,把A(-6,0)代入得0=-34×(-6)+e 解得e=-92∴直线AR 的解析式为y=-34x-92, 设直线BC 解析式为y =px +q ,把C 、B 两点坐标代入可得4320k b k b -+=⎧⎨-+=⎩,解得323k b ⎧=-⎪⎨⎪=-⎩, ∴直线AB 解析式为y =-32x-3, 联立3942332y x y x ⎧=--⎪⎪⎨⎪=--⎪⎩解得26x y =⎧⎨=-⎩∴R (2,-6).【点睛】本题为一次函数的综合应用,涉及待定系数法、全等三角形的判定和性质、勾股定理、平行四边形的判定和性质、相似三角形的判定与性质、三角形的面积等知识点,解题的关键是熟知待定系数法求出函数解析式.例8.(2020·上海嘉定区·八年级期末)在平面直角坐标系xOy 中,已知一次函数43y x b =-+的图像与x 轴、y 轴分别相交于点A 、B ,且与两坐标轴所围成的三角形的面积为6.(1)直接写出点A 与点B 的坐标(用含b 的代数式表示);(2)求b 的值;(3)如果一次函数43y x b =-+的图像经过第二、三、四象限,点C 的坐标为(2,m ),其中0m >,试用含m 的代数式表示△ABC 的面积.【答案】(1)3(,0)4A b ;(0,)B b (2)4± (3)3102m + 【分析】(1)由一次函数43y x b =-+的图象与x 轴、y 轴分别相交于点A 、B ,令y=0求出x ,得到A 点坐标;令x=0,求出y ,得到B 点坐标;(2)根据一次函数43y x b =-+的图象与两坐标轴所围成的三角形的面积为6列出方程,即可求出b 的值; (3)根据一次函数43y x b =-+的图象经过第二、三、四象限,得出b=-4,确定A (-3,0),B (0,-4).利用待定系数法求出直线AC 的解析式,再求出D (0,35m ),那么BD=35m+4,再根据S △ABC =S △ABD +S △DBC ,即可求解.【详解】解:(1)∵一次函数y=43-x+b 的图象与x 轴、y 轴分别相交于点A 、B , ∴当y=0时,43-x+b=0,解得x=34b ,则A (34b ,0), 当x=0时,y=b ,则B (0,b );故 3(,0)4A b ;(0,)B b ; (2) ∵1136224AOB S OA OB b b =⋅⋅=⋅⋅= ∴216b =,∴4b =±;(3) ∵函数图像经过二、三、四象限,∴4b =-, ∴443y x =--. ∴(3,0)A -,(0,4)B -.设直线AC 的解析式为y kx t =+,将A 、C 坐标代入得032k t m k t =-+⎧⎨=+⎩解得535m k t m ⎧=⎪⎪⎨⎪=⎪⎩ 设直线AC 与y 轴交于点D ,则(0)53D m ,. ∴345BD m =+ ∵ABC ABD CBD S S S =+ ∴13(4)(32)102532ABC S m m =⋅+⋅+=+. 【点睛】本题考查了一次函数图象上点的坐标特征,三角形的面积,一次函数的性质,利用待定系数法求一次函数的解析式.例9.(2020·上海金山区·八年级期中)如图,在平面直角坐标系中,正比例函数()0y kx k =≠的图像经过点1(1,)2A ,点B 的坐标为()2,6. (1)求k 的值;(2)求OAB ∆的面积;(3)若点C (不与点A 重合)在此正比例函数()0y kx k =≠图像上,且点C 的横坐标为a ,求ABC ∆的面积.(用a 的代数式表示)【答案】(1)1=2k ;(2)52OAB S =△;(3)5522ABC S a =-△或5522ABC S a =-△ 【分析】(1)利用待定系数法求k 的值;(2)求直线OB 的解析式,从而求得D 点坐标,然后利用三角形面积公式求解;(3)过点C 做CE ⊥y 轴,交AB 于点E ,求得直线AB 的解析式,从而求得E 点坐标,然后利用三角形面积公式求解【详解】解:(1)将1(1,)2A 代入正比例函数()0y kx k =≠中得:1=2k (2)设直线OB 的解析式为y mx =,将B ()2,6代入,得: 2=6m ,解得:=3m∴直线OB 的解析式为:3y x =过点A 作AD ⊥x 轴,交OB 于点D则D 点坐标为(1,3)∴AD =15322-= ∴15222OAB S AD =⨯=△ (3)由题意可得:C 点坐标为1,2a a ⎛⎫ ⎪⎝⎭过点C 做CE ⊥y 轴,交AB 于点E设直线AB 的解析式为1y k x b =+,将1(1,)2A ,B ()2,6代入,得: 111226k b k b ⎧+=⎪⎨⎪+=⎩,解得:111=25k b ⎧⎪⎨⎪=-⎩ ∴直线AB 的解析式为:1152y x =- ∴E 点坐标为1101,11112a a ⎛⎫+ ⎪⎝⎭∴EC=110101011111111 a a a⎛⎫-+=-⎪⎝⎭∴1111101062241111 ABCS EC a⎛⎫=⋅-=-⎪⎝⎭△∴5522ABCS a=-△或5522ABCS a=-△【点睛】本题考查一次函数与几何综合,掌握一次函数图像上点的坐标特点,利用数形结合思想解题是关键.例10.(2019·上海市西延安中学八年级期中)已知一次函数y=-34x+6的图象与坐标轴交于A、B点(如图),AE平分∠BAO,交x轴于点E.(1)求点B的坐标;(2)求直线AE的表达式;(3)过点B作BF⊥AE,垂足为F,连接OF,试判断△OFB的形状,并求△OFB的面积.【答案】(1)B(8,0);(2)直线AE的表达式为y=-2x+6; (3) △OFB为等腰三角形,S△OBF=8.【分析】(1)对于一次函数y=-34x+6,令y=0和x=0求出对应的x与y的值,确定出OA及OB的长,即可确定出B的坐标;(2)由(1)得出A的坐标,利用勾股定理求出AB的长,过E作EG垂直于AB,由AE为角平分线,利用角平分线定理得到EO=EG,利用HL可得出直角三角形AOE与直角三角形AGE全等,可得出AO=AG,设OE=EG=x,由OB-OE表示出EB,由AB-AG=AB-AO表示出BG,在直角三角形BEG中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出OE的长,得出E的坐标,设直线AE的解析式为y=kx+b(k≠0),将A和E的坐标代入,得到关于k与b的方程组,求出方程组的解得到k与b的值,即可得到直线AE的解析式;(3)延长BF与y轴交于K点,由AF为角平分线得到一对角相等,再由AF与BF垂直得到一对直角相等,以及AF为公共边,利用ASA得出三角形AKF与三角形ABF全等,可得出AK=AB,利用三线合一得到F为BK的中点,在直角三角形OBK中,利用斜边上的中线等于斜边的一半得到OF为BK的一半,即OF=BF,过F作FH垂直于x轴于H点,利用三线合一得到H为OB的中点,由OB的长求出OH的长,即为F的横坐标,将求出的横坐标代入直线AE解析式中求出对应的纵坐标,即为HF的长,以OB为底,FH为高,利用三角形的面积公式即可求出三角形BOF的面积;【详解】(1)对于y=-34x+6,当x=0时,y=6;当y=0时,x=8,∴OA=6,OB=8,在Rt△AOB中,根据勾股定理得:AB=10,则A(0,6),B(8,0);(2)过点E作EG⊥AB,垂足为G∵AE平分∠BAO,EO⊥AO,EG⊥AG,∴EG=OE,在Rt△AOE和Rt△AGE中,{AE AE EO EG==∴Rt△AOE≌Rt△AGE(HL),∴AG=AO,设OE=EG=x,则有BE=8-x,BG=AB-AG=10-6=4,在Rt△BEG中,EG=x,BG=4,BE=8-x,根据勾股定理得:x2+42=(8-x)2,解得:x=3,∴E(3,0),设直线AE的表达式为y=kx+b(k≠0),将A(0,6),E(3,0)代入y=kx+b得:6?{?30bk b=+=,解得26kb=-⎧⎨=⎩则直线AE的表达式为y=-2x+6;(3)延长BF交y轴于点K,∵AE平分∠BAO,∴∠KAF=∠BAF,又BF⊥AE,∴∠AFK=∠AFB=90°∵AF=AF∴△AFK≌△AFB,∴FK=FB,即F为KB的中点,又∵△BOK为直角三角形,∴OF= 12BK=BF,∴△OFB为等腰三角形,过点F作FH⊥OB,垂足为H(如图所示),∵OF=BF,FH⊥OB,∴OH=BH=4,∴F点的横坐标为4,设F(4,y),将F(4,y)代入y=-2x+6,得:y=-2,FH=|-2|=2,则S△OBF= 12OB•FH=12×8×2=8.例11.如图,已知直线l :22y x =-+与x 轴、y 轴分别交于点B 、C ,将直线y=x 向上平移1个单位长度得到直线PA ,点Q 是直线PA 与y 轴的交点,求四边形PQOB 的面积.【答案】65. 【解析】由题意可得:直线PA 的解析式为1+=x y令⎩⎨⎧+-=+=221x y x y ,解得:⎪⎩⎪⎨⎧==3431y x ,则⎪⎭⎫ ⎝⎛3431,P . ∵点Q 是直线PA 与y 轴的交点, ∴()01Q ,. ∵直线l :22y x =-+与x 轴、y 轴分别交于点B 、C ,∴B (1,0),C (0,2).∴65311211221=⨯⨯-⨯⨯=-=CPQ COB PQOB S S S △△四边形. 【总结】考察四边形面积的求法,不规则图形的面积用割补法来解决.例12.如图,已知直线AB :2y x =+与直线OA :13y x =交于点A ,与直线OB :3y x =交于点B 两点.求△AOB 的面积.【解析】令⎪⎩⎨=x y 31,解得:⎩⎨-=1y ,则()31A --,. 令⎩⎨⎧=+=x y x y 32,解得:⎩⎨⎧==31y x ,则()13B ,. 设直线AB 与x 轴相交于C ,则C (-2,0),∴412213221=⨯⨯+⨯⨯=+=OCB OAC OAB S S S △△△. 【总结】考察三角形面积的求法,不能直接求面积则用割补法来解决,注意交点坐标的求法. 例13.如图,已知直线3y x =+的图像与x 轴、y 轴分别交于A 、B 两点,直线l 经过原点,与线段AB 交于点C ,把△AOB 的面积分为2:1两部分,求直线l 的解析式.【解析】∵直线3y x =+的图像与x 轴、y 轴分别交于A 、B 两点,∴A (-3,0),B (0,3),∴293321=⨯⨯=OAB S △. 当OBA OBC S S △△32=时,则2932321⨯=⨯⨯C y ,则2=C y , ∵C 点在直线AB 上,∴C (-1,2),则直线l 的解析式为:2y x =-; 当OBA OBC S S △△31=时, 则2931321⨯=⨯⨯C y ,则1=C y , ∵C 点在直线AB 上,∴C (-2,1),则直线l 的解析式为:x y 21-=. 综上直线l 的解析式为2y x =-或x y 21-=. 【总结】考察面积的求法,本题中要注意分类讨论.例14.如图,已知,在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在矩形ABCD 边AB 、BC 、DA 上,AE =2.(1)如图1,当四边形EFGH 为正方形时,求△GFC 的面积;(2)如图2,当四边形EFGH 为菱形,且BF =a 时,求△GFC 的面积.(用含a 的代数式表示)【难度】★★★【解析】(1)过点G 作GM ⊥BC 于M .∵四边形EFGH 为正方形时,∴︒=∠+∠90BEF AEH∵︒=∠+∠90AHE AEH ,∴BEF AHE ∠=∠∵BEF AHE ∠=∠,B A ∠=∠,EF EH =,∴BEF AHE ≌△△同理可知:BEF MFG ≌△△∴2===AE BF GM∴10=-=BF BC FC ,则10=GFC S △;(2)过点G 作GM ⊥BC 于M ,连接HF∵AD ∥BC ,∴MFH AHF ∠=∠∵EH ∥FG ,∴GFH EHF ∠=∠∴MFG AHE ∠=∠∵MFG AHE ∠=∠,GMF A ∠=∠,GF EH =,∴MFG AHE ≌△△∴2==AE GM ∴()a a GM FC S GFC -=⨯-=⋅=122122121△. 【总结】本题主要考察菱形、正方形的性质和全等三角形的判定和性质.例15.如图1,正方形ABCD 的边长为2,点A (0, 1)和点D 在y 轴正半轴上,点B 、C 在第一象限,一次函数y =kx +2的图像l 交AD 、CD 分别于E 、F .(1)若△DEF 与△BCF 的面积比为1∶2,求k 的值;(2)联结BE ,当BE 平分∠FBA 时,求k 的值.【难度】★★★【答案】(1)1=k ;(2)2=k .【解析】(1)∵正方形ABCD 的边长为2,点A (0, 1)和点D在y 轴正半轴上,点B 、C 在第一象限,∴B (2, 1),C (2, 3),D (0, 3).∵一次函数y =kx +2的图像l 交AD 、CD 分别于E 、F , ∴E (0, 2).设F (m , 3),∵△DEF 与△BCF 的面积比为1∶2, ∴()212221121=⨯-⨯⋅m m ,解得:1=m ,∴F (1, 3) ∵F (1, 3)在直线y =kx +2上,∴1=k ;(2)延长BE 交CD 的延长线于H ,∵BE 平分∠FBA ,∴ABE FBE ∠=∠∵CD ∥AB ,∴ABE H ∠=∠,∴FBE H ∠=∠,∴FB=HF∵AE =1,DE=1,∴AE=DE∵AE=DE ,BAE HDE ∠=∠,BEA HED ∠=∠∴△HED ≌△BEA∴HD=AB =2,∴H (-2, 3)设F (n , 3)∵FB=HF ,∴()22222+=+-n n ,解得:21=n , ∴F (21, 3) ∵F (21, 3)在直线y =kx +2上, ∴2=k .【总结】考察等腰三角形的性质和两点之间的距离公式的运用,注意点的坐标与解析式的关系.例16.如图,在平面直角坐标系中,函数y =2x +12的图像分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的表达式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请求出点P 的坐标;(3)若点H 为坐标平面内任意一点,是否存在点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由.【难度】★★★【答案】(1)6+=x y ;(2)P (6, 12)或P (-18, -12);(3)H (-12, 0)或H (-6, 18)或H (56-, 518). 【解析】(1)∵函数y =2x +12的图像分别交x 轴、y 轴于A 、B 两点,∴A (-6, 0),B (0, 12)∵点M 为线段OB 的中点, ∴M (0, 6),则直线AM 的表达式为6+=x y ;(2)当点P 在AM 的延长线上时∵S △ABP =S △AOB ,∴OP ∥AB ,则可知直线OP 的表达式为x y 2=.∵P 在直线AM 上,∴令⎩⎨⎧+==62x y x y ,解得:⎩⎨⎧==126y x , ∴P (6, 12); 当P 在AM 的反向延长线上时,过P 点作PN ⊥OB ,垂足为H设P (n , n+6)∵AONP ABO BPN ABP S S S S 梯形△△△--=, S △ABP =S △AOB ,()()()()1262166621126216621⨯⨯=--⨯--⨯-⨯⨯----⋅n n n n ,解得:18-=n , 则P (-18, -12).(3)存在点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形.若以AM 为底,BM 为腰,过点B 作AM 的平行线,当点H (-12, 0)时,以A 、B 、M 、H 为顶点的四边形是等腰梯形;若以BM 为底,AM 为腰,过点A 作BM 的平行线,当点H (-6, 18)时,以A 、B 、M 、H 为顶点的四边形是等腰梯形;若以AB 为底,BM 为腰,过点M 作AB 的平行线,当点H (56-, 518)时,以A 、B 、M 、H 为顶点的四边形是等腰梯形.【总结】本题综合性较强,本题一方面考察面积的确定,另一方面考察等腰梯形的性质和分类讨论.例17.如图1,已知直角坐标平面内点A (2, 0),P 是函数y =x (x >0)图像上一点,PQ ⊥AP 交y 轴正半轴于点Q .(1)试证明:AP =PQ ;(2)设点P 的横坐标为a ,点Q 的纵坐标为b ,那么b 关于a 的函数关系式是_______;(3)当S △AOQ =23S △APQ 时,求点P 的坐标.【难度】★★★【答案】(1)见解析;(2)22-=a b ;(3)⎪⎪⎭⎫ ⎝⎛--255255,P 或⎪⎪⎭⎫ ⎝⎛++255255,P . 【解析】(1)过P 作x 轴、y 轴的垂线,垂足分别为H 、T ,∵P 是函数y =x (x >0)图像上一点∴PH=PT ,PH ⊥PT∵PQ ⊥AP ,∴QPT APH ∠=∠∵QPT APH ∠=∠,PH=PT ,QTP AHP ∠=∠∴△PHA ≌△PTQ∴AP =PQ ;(2)由(1)可得:TQ a AH =-=2∵OH OT TQ OQ ==+,∴a a b =-+2,即22-=a b ;(3)设()P a a ,, ∵2221-=⋅⋅=a OQ OA S AOQ △,222122+-==a a AP S APQ △, ∴()2232222+-=-a a a , 解得:255±=a . ∴⎪⎪⎭⎫ ⎝⎛--255255,P 或⎪⎪⎭⎫ ⎝⎛++255255,P .【总结】本题主要考察全等的运用,及三角形面积的求法,注意利用面积公式确定点的坐标. 模块二:与面积相关的函数解析式知识精讲本节主要研究点在运动的背景下,产生的面积与动点之间的关系,关键点是找出决定这个面积变化的几个量是怎样变化的,重点在于思维能力的培养,难度较大.例题解析例1.如图,矩形ABCD 中,AB =1,AD =2,M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,试写出△APM 的面积y 与点P 经过的路程x 之间的函数关系,写出定义域,并画出函数图像.【难度】★★【解析】当P 在AB 上运动时,即10≤<x ,y =x AP AD S APM =⋅=21△; 当P 在BC 上运动时,即31≤<x ,∵PCM ABP ABCM APM S S S S △△梯形△--=,∴y =454432123+-=----=x x x S APM △; 当P 在CM 上运动时,即273≤<x , y =x x S APM -=⨯⎪⎭⎫ ⎝⎛-=2722721△. 函数图像如由图所示.【总结】本题主要考察面积与动点的结合,注意进行讨论.例2.如图,在梯形ABCD 中,AD //BC ,AB =CD =AD =5cm ,BC =11cm ,点P 从点D 出发沿DA 边以每秒1cm 的速度移动,点Q 从点B 出发沿BC 边以每秒2cm 的速度移动(当点P 到达点A 时,点P 与点Q 同时停止移动),假设点P 移动的时间为x (秒),四边形ABQP 的面积为y (cm 2).(1)求y 关于x 的函数解析式,并写出它的定义域;(2)在移动的过程中,求四边形ABQP 的面积与四边形QCDP 的面积相等时x 的值;(3)在移动过程中,是否存在x 使得PQ =AB ,若存在,求出所有的x 的值;若不存在,请说明理由.【难度】★★【答案】(1)102+=x y (50≤≤x );(2)3=x ;(3)35=x 或311=x . 【解析】(1)作AE ⊥BC 于E ,DF ⊥BC 于F ,∵AB =CD =AD =5cm ,BC =11cm ,∴BE=CF =3,则4=AE .∵2DP x BQ x ==,, ∴()10242521+=⨯+-⨯=x x x y (50≤≤x ); (2)当四边形ABQP 的面积与四边形QCDP 的面积相等时,四边形ABQP 的面积等于四边形ABCD 的面积的一半, ∴()41152121102⨯+⨯⨯=+x ,解得:3=x ; (3)∵PQ =AB ,AD //BC ,∴四边形ABQP 为平行四边形或等腰梯形. 当四边形ABQP 为平行四边形时,则AP =BQ ,∴x x 25=-,解得:35=x ;当四边形ABQP 为等腰梯形时,则四边形PQCD 为平行四边形,∴x x 211-=,解得:311=x ;综上所述,当PQ =AB 时,x 的值为53或113.【总结】本题主要考察动点背景下的平行四边形和等腰梯形的性质的综合运用.例3.已知:如图1,在线段AE 的同侧作正方形ABCD 和正方形BEFG (BE <AB ),连结EG 并延长交DC 于点M ,作MN ⊥AB ,垂足为N ,MN 交BD 于P .设正方形ABCD 的边长为1.(1)证明:△CMG ≌△NBP ;(2)设BE =x ,四边形MGBN 的面积为y ,求y 关于x 的函数解析式,并写出定义域; (3)如果按照题设方法作出的四边形BGMP 是菱形,求BE 的长.【难度】★★★【解析】(1)∵正方形ABCD 和正方形BEFG ,∴︒=∠45ABD ,︒=∠45BEG ∵CM ∥BE ,∴︒=∠=∠45BEG CMG ∵正方形ABCD ,MN ⊥AB ,∴四边形BCMN 是矩形, ∴CM=NB . ∵CM=NB ,PNB C ∠=∠,PBN CMG ∠=∠ ∴△CMG ≌△NBP ;(2)∵正方形BEFG ,BE =x ,∴x BE BG ==, ∴x CG -=1,∴()()212111212+-=-+=x x x y (10<<x );(3)由已知可得:MN ∥BC ,MG ∥BP , ∴四边形BGMP 是平行四边形.要使四边形BGMP 是菱形,则MG BG =,∴()x x -=12,解得:22-=x , ∴当22-=BE 时,四边形BGMP 是菱形.【总结】本题考察正方形的性质和动点背景的下面积问题,解题时注意认真分析题目中的条件.例4.已知:在梯形ABCD 中,AD //BC ,∠B =90°,AB =BC =4,点E 在边AB 上,CE =CD .(1)如图1,当∠BCD 为锐角时,设AD =x ,△CDE 的面积为y ,求y 与x 之间 的函数解析式,并写出函数的定义域; (2) 当CD =5时,求△CDE 的面积.【难度】★★★【答案】(1)x x y 4212+-=(40<<x );(2)27或252.【解析】(1)过C 作CF ⊥AD 交AD 延长线于F∵AD //BC ,∠B =90°,AB =BC =4, ∴四边形ABCF 是正方形.∵CE =CD ,BC=CF ,∴△BCE ≌△FCD ,∴DF=BE ∵AD =x ,∴x DF -=4,∴x BE -=4 ∴ADE BEC ABCD y S S S =--△△梯形 ()()1114444222x x x x =+⨯-⋅⋅-⨯⨯- 2142x x =-+, 定义域为:40<<x ;(2)当∠BCD 为锐角时,∵CD =5时,CF=4,∴由勾股定理可得:3=DF ,则1=AD代入解析式中可得:27=y ;当∠BCD 为钝角时,易知3DF BE ==.∴CDEBCEADEABCD SS SS=--梯形111(47)43417222=⨯+⨯-⨯⨯-⨯⨯ 252=. 综上所述,△CDE 的面积为27或252. 【总结】考察全等三角形的构造和正方形的性质的综合运用,第(2)问要注意分类讨论.例5.如图1,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x m =-+交折线OAB 于点E .(1)当点E 恰为AB 中点时,求m 的值;(2)当点E 在线段OA 上,记△ODE 的面积为y ,求y 与m 的函数关系式并写出定义域; (3)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形O 1A 1B 1C 1, 试判断四边形O 1A 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,若不变,写出该重叠部分的面积;若改变,写出重叠部分面积S 关于m 的函数关系式.【难度】★★★【解析】∵四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),∴B (3,1).(1)当点E 恰为AB 中点时,则E (3,21) ∵点E 在直线12y x m =-+上, ∴代入E 点坐标,可得:2=m ;(2)当点E 在线段OA 上,∵直线12y x m =-+交折线OAB 于点E , ∴E (m 2,0),∴m m y =⋅⋅=1221(312m <≤); (3)设O 1A 1与CB 相交于点M ,OA 与B 1C 1相交于点N ,则四边形O 1A 1B 1C 1与 矩形OABC 的重叠部分的面积为四边形DNEM 的面积. ∵DM ∥NE ,DN ∥ME ,∴四边形DNEM 是平行四边形∵NED MED ∠=∠,NED MDE ∠=∠,∴NED MED ∠=∠, ∴ME MD =,∴四边形DNEM 是菱形过D 作DH ⊥OA ,垂足为H ,设菱形DNEM 的边长为a∵D (22-m ,1),E (m 2,0), ∴DH =1,HE =()2222m m --=,∴2NH EN EH a =-=-, 在直角△DHN 中,()22212+-=a a ,解得:45=a ∴菱形DNEM 的面积为:55144⨯=.【总结】本题综合性较强,一方面考查面积与动点的结合,另一方面考查面积的定值,注意进行分析.例6.如图1,在正方形ABCD 中,点E 在边AB 上(点E 与点A 、B 不重合),过点E 作FG ⊥DE ,FG 与边BC 相交于点F ,与边DA 的延长线相交于点G .(1)当E 是AB 中点时,求证AG =BF ;(2)当E 在边AB 上移动时,观察BF 、AG 、AE 之间具有怎样的数量关系?并证明你所得 到的结论;(4)联结DF ,如果正方形的边长为2,设AE =x ,△DFG 的面积为y ,求y 与x 之间 的函数解析式,并写出函数的定义域.【难度】★★★【答案】(1)见解析;(2)AE AG BF =+;(3)2212+=x y (20<<x ).【解析】(1)当E 是AB 中点时,AE=BE∵AE=BE ,AEG BEF ∠=∠,B EAG ∠=∠ ∴△EAG ≌△EBF ∴AG =BF(2)AE AG BF =+过点F 作FH ⊥DA ,垂足为H ,则四边形ABFH 是矩形∴FH=AB=AD∵DE ⊥FG ,∴DEA ADE G ∠=∠-︒=∠90 ∵FH=AD ,DEA G ∠=∠,G A ∠=∠ ∴△FHG ≌△DAE , ∴GH=AE ,即AE AG HA =+ ∵BF=HA , ∴AE AG BF =+; (3)由(2)可得:FG=DE ∴224+==x DE FG ∴221442122222+=+⋅+=x x x y (20<<x )【总结】本题主要考察正方形背景下的动点问题,注意对常见辅助线的添加以及线段间的转化.例7.如图1,梯形ABCD 中,AD //BC ,∠B =90°,AD =18,BC =21.点P 从点A 出发沿AD 以每秒1个单位的速度向点D 匀速运动,点Q 从点C 沿CB 以每秒2个单位的速度向点B 匀速运动.点P 、Q 同时出发,其中一个点到达终点时两点停止运动,设运动的时间为t 秒. (1)当AB =10时,设A 、B 、Q 、P 四点构成的图形的面积为S ,求S 关于t 的函数关系式,并写出定义域;(2)设E 、F 为AB 、CD 的中点,求四边形PEQF 是平行四边形时t 的值.【难度】★★★【答案】(1)t S 5105-=(5.100≤≤t ); (2)23=t . 【解析】(1)由题意可得:AP =t ,CQ =t 2,则()t t t S 51051022121-=⨯-+⨯=(5.100≤≤t );(2)过点D 作DH ⊥BC 于H ,取CH 的中点G ,则四边形ABHD 是矩形.∵F 是CD 的中点,G 是CH 的中点,∴DH FG 21= ∵AD //BC ,∠B =90°,AD =18,BC =21∴CH =21-18=3,CG =2321=CH∴232-=-=t GC QC QG ∵四边形PEQF 是平行四边形, ∴PE=QF∵AB FG AE 21==,90A FGQ ∠=∠=∴△AEP ≌△GFQ , ∴QG=AP∴t t =-232, 解得:23=t , 即当四边形PEQF 是平行四边形时,t 的值为32. 【总结】本题一方面考察梯形背景下的动点结合,另一方面考察中位线及平行四边形的性质的综合运用,注意认真分析.例8.如图1,在菱形ABCD 中,∠B =45°,AB =4.左右作平行移动的正方形EFGH 的两个顶点F 、G 始终在边BC 上.当点G 到边BC 中点时,点E 恰好在边AB 上. (1)如图1,求正方形EFGH 的边长;(2)设点B 与点F 的距离为x ,在正方形EFGH 作平行移动的过程中,正方形EFGH 与菱形ABCD 重叠部分的面积为y ,求y 与x 的函数解析式,并写出它的定义域;(3)联结FH 、HC ,当△FHC 是等腰三角形时,求BF 的长.【难度】★★★【解析】(1)当点G 到边BC 中点时,BG=2,∵∠B =45°,正方形EFGH 的两个顶点F 、G 始终在边BC 上. ∴BF=EF=FG ∵BG=2,∴FG=1,即正方形EFGH 的边长为1;(2)当10≤<x 时,()212121122++-=--=x x x y ,当31≤<x 时,1=y ;(3)当FH=HC 时,∵HG ⊥CF ,∴FG=CG=1, ∴2114=--=--=FG GC BC BF ; 当FC=HC 时,∵CG CG FG FC +=+=1,2221GC GC GH HC +=+= ∴112+=+GC GC ,解得:0=GC , ∴3014=--=--=FG GC BC BF ;当FH=FC 时,则2=FC ,此时24-=-=FC BC BF ,综上所述,当△FHC 是等腰三角形时,BF 的长为2或3或4.【总结】本题主要考察平行四边形与正方形的性质的综合运用,解题时注意对等腰三角形要。

中考数学复习之因动点产生的面积问题解题策略

中考数学复习之因动点产生的面积问题解题策略

因动点产生的面积问题解题策略一.解题策略解读:面积的存在性问题常见的题型和解题策略有两类:图1 图2 图3 计算面积常用到的策略还有:图4 图5 图6例1.已知抛物线y=mx2+(1-2m)x+1-3m与x轴交于不同的两点A、 B.(1) 求m的取值范围;(2) 证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3) 当<m≤8时,由(2)求出的点P和点A、 B构成的△ABP的面积是否有最值,若有,求出最值及相应的m的值;若没有,请说明理由.思路:1. 已知的抛物线的解析式可以因式分解的,抛物线过x轴上的定点(-1, 0).2. 第(2)题分两步,先对m赋予两个不同的值,联立求方程组的解,再验证这个点是确定的.3. 第(3)题中△ABP的高为定值,点A为定点,求△ABP的最大面积,其实就是求点B的横坐标的最大值.例2.问题提出(1) 如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2) 如图2,在矩形ABCD中,AB=4, AD=6, AE=4, AF=2.是否在边BC、CD上分别存在点G、 H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3) 如图3,有一块矩形板材ABCD, AB=3米, AD=6米,现想从此板材中截出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,米,∠EHG=45°.经研究,只有当点E、 F、 G分别在边AD、 AB、 BC上时,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能截出符合要求的部件.试问能否截得符合要求的面积尽可能大的四边形EFGH部件?若能,求出截得的四边形EFGH 部件的面积;若不能,请说明理由.图1 图2 图3思路:1. 第(2)题的模型是“打台球”两次碰壁问题,依据光的反射原理.2. 第(3)题需先设AF的长并求解,再验证点H在矩形内部,然后计算面积.例3.如图1,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8, OE=17.抛物线y=x2-3x+m与y轴交于点A,抛物线的对称轴与x轴交于点B,与CD交于点K.(1) 将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①求点F的坐标;②请直接写出抛物线的函数表达式;(2) 将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连结OG,折痕与OG交于点H,点M是线段EH上的一个动点(不与点H重合),连结MG, MO,过点G作GP⊥OM于点P,交EH于点N,连结ON.点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1·S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化的范围;若不变,请直接写出这个值.温馨提示: 考生可以根据题意,在备用图中补充图形,以便作答.图1 备用图思路:1. 第(1)题中点F的位置是由A、 B两点确定的,A、 B两点的坐标都隐含在抛物线的解析式中.2. 第(2)题思路在画示意图过程中,点G是关键点.以E为圆心,EO为半径画弧,交CD于点G.例 4.如图,已知平行四边形ABCD的三个顶点A(n, 0)、 B(m, 0)、 D(0,2n)(m>n>0),作平行四边形ABCD关于直线AD的对称图形AB1C1 D.(1) 若m=3,试求四边形CC1B1B面积S的最大值;(2) 若点B1恰好落在y轴上,试求的值.思路:1. 第(1)题先说理再计算,说理四边形CC1B1B是矩形.2. 第(2)题根据AB1=AB列关于m、 n的方程,整理就可以得到m与n的关系.例5.如图,在平面直角坐标系中,抛物线y=-x2+bx+c经过点A(3, 0)和点B(2, 3),过点A的直线与y轴的负半轴相交于点C,且tan∠CAO=.(1) 求这条抛物线的表达式及对称轴;(2) 连结AB、 BC,求∠ABC的正切值;(3) 若点D在x轴下方抛物线的对称轴上,当S△ABC =S△ADC时,求点D的坐标.解析:1. 直觉告诉我们,△ABC是直角三角形.2. 第(3)题的意思可以表达为: B、 D在直线AC的两侧,到直线AC的距离相等.于是我们容易想到,平行线间的距离处处相等.例6.如图,半圆O的直径AB=10,有一条定长为6的动弦CD在弧AB上滑动(点C、D分别不与点A、 B重合),点E、 F在AB上,EC⊥CD, FD⊥CD.(1) 求证:EO=FO;(2) 连结OC,如果△ECO中有一个内角等于45°,求线段EF的长;(3) 当动弦CD在弧AB上滑动时,设变量CE=x,四边形CDFE的面积为S,周长为l,问:S与l是否分别随着x变化而变化?试用所学过的函数知识直接写出它们的函数解析式及函数定义域,以说明你的结论.思路:1. 用垂径定理和平行线等分线段定理证明点O是EF的中点.2. 第(2)题的△ECO中,∠ECO是定值,45°的角分两种情况.3. 第(3)题用x表示OE的长,在△ECO中,∠ECO是定值.例7.直线y=2x+m与抛物线y=ax2+ax+b都过点M(1, 0),且a<b.(1) 求抛物线顶点Q的坐标(用含a的式子表示);(2) 试说明抛物线与直线有两个交点;(3) 设抛物线与直线的另一个交点为N.①若-1≤a≤-时,求MN的取值范围;②求△QMN的面积最小值.思路:1. 将M(1, 0)分别代入直线和抛物线的解析式,可以确定m的值,用a表示b.2. 联立直线与抛物线的解析式,消去y,得到关于a的一元二次方程,判断Δ>0.3. 第(3)题①,分别求a=-1和a=-时直线与抛物线的交点M、 N的坐标,再求MN的长,两个MN的长,就是MN的取值范围的两端值.例8.已知Rt△EFP和矩形ABCD如图1摆放(点P与点B重合),点F、 B(P)、 C 在同一直线上,AB=EF=6cm, BC=FP=8cm, ∠EFP=90°.如图2, △EFP从图1位置出发,沿BC方向匀速运动,速度为1cm/s, EP与AB交于点G;同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM⊥BD,垂足为H,交AD于点M,连结AF、 PQ.当点Q停止运动时,△EFP也停止运动.设运动时间为t(s)(0<t<6).解答下列问题:(1) 当t为何值时,PQ∥BD?(2) 设五边形AFPQM的面积为y(cm2),求y与t之间的函数关系式;(3) 在运动过程中,是否存在某一时刻t,使S五边形AFPQM ∶S矩形ABCD=9∶8?若存在,求出t的值;若不存在,请说明理由;(4) 在运动过程中,是否存在某一时刻t,使点M在线段PG的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.图1 图2思路:1. 把线段BP、 PC、 CQ、 DQ的长用t表示出来.再把线段BG、 DM的长用t表示出来.2. 用割补法求五边形AFPQM的面积,等于直角梯形减去两个直角三角形的面积.3. 第(3)题用第(2)题的结果,直接解方程就可以了.4. 第(4)题是根据MP2=MG2列方程,需要构造以MP为斜边的直角三角形.例9.如图1,在平面直角坐标系中,过原点O及点A(8, 0)、 C(0, 6)作矩形OABC,连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从点A出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1) 如图1,当t=3时,求DF的长;(2) 如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值;(3) 连结AD,当AD将△DEF分成的两部分的面积比为1∶2时,求相应的t的值.图1 图2思路;1. 作DM⊥AB于M, DN⊥OA于N,那么△NDF与△MDE的相似比为3∶4.2. 面积比为1∶2要分两种情况讨论.把面积比转化为两个同高三角形底边的比.3. 过点E作OA的平行线,构造“8字型”相似,这样就把底边的比利用起来了.例10.如图1,二次函数y=x2+bx+c的图象与x轴交于A、 B两点,与y轴交于点C, OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1) 求b、 c的值;(2) 如图1,连结BE,线段OC上点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3) 如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.图1 图2思路:1. 由已知抛物线的解析式可得C(0, c),再用c表示B、 D两点的坐标,然后将B、 D代入抛物线的解析式列关于b、 c的方程组.2. 第(2)题: 通过点C、 F分别与点D、 F'关于直线l对称,得到点F'是BE的中点,从而求得点F的坐标.3. 第(3)题: 设点P的横坐标为m,用m表示点M、 N的坐标,进而用m表示线段PM、 PN、 PA的长,根据两个三角形的面积相等,求出PN边上的高QH.最后讨论NQ与QH的关系.例11.如图,在平面直角坐标系中,直线y=12x+2与x 轴交于点A,与y 轴交于点C.抛物线y=-x 2+bx+c 经过A 、 C 两点,与x 轴的另一个交点为点B.(1) 求抛物线的函数表达式;(2) 点D 为直线AC 上方抛物线上一动点.① 连结BC 、 CD.设直线BD 交线段AC 于点E, △CDE 的面积为S 1, △BCE 的面积为S 2,求 12S S 的最大值; ② 过点D 作DF ⊥AC,垂足为F,连结CD.是否存在点D,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求出点D 的坐标;若不存在,请说明理由.图1 备用图思路: 1. △CDE 与△BCE 是同高三角形,面积比等于底边的比.构造“8字型”,把底边的比转化为竖直线段的比.2. 第(3)题的第一种情况∠DCF=2∠BAC,过点C 作x 轴的平行线,通过内错角相等,再作轴对称的角,很容易找到点D 的位置.3. 第(3)题的第二种情况∠CDF=2∠BAC,先要探求2∠BAC的大小(正切值),如果这一步探究不出来,基本上进行不下去.例12.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O 顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= ;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN 的面积为y,求当x为何值时y取得最大值?最大值为多少?思路:(1)由旋转的性质可以证明△OBC是等边三角形,从而可得∠OBC的度数;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤83时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E,利用面积公式表示出△OMN的面积(y值);②当8 3<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H,利用∠CBO=60°表示出MH,再利用面积公式表示出△OMN的面积(y值);③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G,易求OG,再利用面积公式表示出△OMN的面积(y值),最后分别求出三种情况下面积最大值,从而求出整个运动过程中y的最大值.例13. 在平面直角坐标系中,抛物线2y ax bx c=++交x轴于A、B两点,交y轴于点C(0,43-),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=34.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方向以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由;②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.思路:本题是代数几何综合题,以平面直角坐标系为背景,考查了求二次函数解析式,二次函数的性质,,方程组的解法,几何图形面积的表示,相似三角形的判定与性质,分类讨论思想,三角形的面积的最值问题,综合性强,难度大,解题的关键是需要学生有良好的运算能力及分析问题和解决问题的能力,还得富有耐心.(1)利用A、B、C三点的坐标确定二次函数的解析式.(2)利用题目的已知条件表示出相关线段的长,①中利用三角函数值探索出∠PAQ=∠ACD,再根据题目中的要求使得△ADC与△PQA相似,进行分类讨论得到对应线段成比例,列出关于t的方程求解即可;②直接利用三角形的面积公式列出△APQ与△CAQ 的面积之和与时间t之间的函数关系式,再将所得的二次函数的解析式配方确定最值即可得到答案.。

中考数学压轴题---因动点产生的面积问题[含答案]

中考数学压轴题---因动点产生的面积问题[含答案]

因动点产生的面积问题例1( 2011年南通市中考第28题)如图1,直线l 经过点A (1,0),且与双曲线m y x=(x >0)交于点B (2,1).过点(,1)P p p -(p >1)作x轴的平行线分别交曲线m y x=(x >0)和m y x=-(x <0)于M 、N 两点.(1)求m 的值及直线l 的解析式;(2)若点P 在直线y =2上,求证:△PMB ∽△PNA ;(3)是否存在实数p ,使得S △AMN =4S △AMP ?若存在,请求出所有满足条件的p 的值;若不存在,请说明理由.图1满分解答(1)因为点B (2,1)在双曲线m y x=上,所以m =2.设直线l 的解析式为y kx b =+,代入点A (1,0)和点B (2,1),得0,2 1.k b k b +=⎧⎨+=⎩ 解得1,1.k b =⎧⎨=-⎩ 所以直线l 的解析式为1y x =-.(2)由点(,1)P p p -(p >1)的坐标可知,点P 在直线1y x =-上x 轴的上方.如图2,当y =2时,点P 的坐标为(3,(2).此时点M 的坐标为(1,2),点N 的坐标为(-1,2).由P (3,2)、M (1,2)、B (2,1)三点的位置关系,可知△PMB 为等腰直角三角形. 由P (3,2)、N (-1,2)、A (1,0)三点的位置关系,可知△PNA 为等腰直角三角形. 所以△PMB ∽△PNA .图2 图3 图4(3)△AMN 和△AMP 是两个同高的三角形,底边MN 和MP 在同一条直线上. 当S △AMN =4S △AMP 时,MN =4MP .①如图3,当M 在NP 上时,x M -x N =4(x P -x M ).因此222()4(1)x x x x ⎛⎫⎛⎫--=-- ⎪ ⎪⎝⎭⎝⎭.解得1132x +=或1132x -=(此时点P 在x 轴下方,舍去).此时1132p +=.②如图4,当M 在NP 的延长线上时,x M -x N =4(x M -x P ).因此222()4(1)x xx x⎛⎫⎛⎫--=-- ⎪ ⎪⎝⎭⎝⎭.解得152x +=或152x -=(此时点P 在x 轴下方,舍去).此时152p +=.考点伸展在本题情景下,△AMN 能否成为直角三角形? 情形一,如图5,∠AMN =90°,此时点M 的坐标为(1,2),点P 的坐标为(3,2). 情形二,如图6,∠MAN =90°,此时斜边MN 上的中线等于斜边的一半. 不存在∠ANM =90°的情况.图5 图6例2(2011年上海市松江区中考模拟第24题)如图1,在平面直角坐标系xOy 中,直角梯形OABC 的顶点O 为坐标原点,顶点A 、C 分别在x 轴、y 轴的正半轴上,CB ∥OA ,OC =4,BC =3,OA =5,点D 在边OC 上,CD =3,过点D 作DB 的垂线DE ,交x 轴于点E .(1)求点E 的坐标;(2)二次函数y =-x 2+bx +c 的图像经过点B 和点E . ①求二次函数的解析式和它的对称轴;②如果点M 在它的对称轴上且位于x 轴上方,满足S △CEM =2S △ABM ,求点M 的坐标.图1满分解答(1)因为BC ∥OA ,所以BC ⊥CD .因为CD =CB =3,所以△BCD 是等腰直角三角形.因此∠BCD =45°.又因为BC ⊥CD ,所以∠ODE =45°.所以△ODE 是等腰直角三角形,OE =OD =1.所以点E 的坐标是(1,0).(2)①因为抛物线y =-x 2+bx +c 经过点B (3,4)和点E (1,0),所以934,10.b c b c -++=⎧⎨-++=⎩ 解得6,5.b c =⎧⎨=-⎩所以二次函数的解析式为y =-x 2+6x -5,抛物线的对称轴为直线x =3.②如图2,如图3,设抛物线的对称轴与x 轴交于点F ,点M 的坐标为(3,t ).C EM M EF C O E O FM C S S S S ∆∆∆=--梯形111(4)321442222t t t =+⨯-⨯⨯-⨯⨯=+.(ⅰ)如图2,当点M 位于线段BF 上时,t t S ABM -=⨯-=∆42)4(21.解方程)4(242t t -=+,得58=t .此时点M 的坐标为(3,58).(ⅱ)如图3,当点M 位于线段FB 延长线上时,42)4(21-=⨯-=∆t t S ABM .解方程)4(242-=+t t ,得8=t .此时点M 的坐标为(3,8).图2 图3考点伸展对于图2,还有几个典型结论:此时,C 、M 、A 三点在同一条直线上;△CEM 的周长最小.可以求得直线AC 的解析式为445y x =-+,当x =3时,85y =.因此点M (3,58)在直线AC 上.因为点A 、E 关于抛物线的对称轴对称,所以ME +MC =MA +MC . 当A 、M 、C 三点共线时,ME +MC 最小,△CEM 的周长最小.例3(2010年广州市中考第25题)如图1,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1).点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x b =-+交折线OAB 于点E .(1)记△ODE 的面积为S ,求S 与b 的函数关系式;(2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形O 1A 1B 1C 1,试探究四边形O 1A 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由.图1满分解答(1)①如图2,当E 在OA 上时,由12y x b =-+可知,点E 的坐标为(2b ,0),OE =2b .此时S =S △ODE =112122O E O C b b ⋅=⨯⨯=.②如图3,当E 在AB 上时,把y =1代入12y x b =-+可知,点D 的坐标为(2b -2,1),CD =2b -2,BD =5-2b .把x =3代入12y x b =-+可知,点E 的坐标为3(3,)2b -,AE =32b -,BE =52b -.此时S =S 矩形OABC -S △OAE - S △BDE -S △OCD =1315133()()(52)1(22)22222b b b b -⨯-----⨯⨯- 252b b =-+.(2)如图4,因为四边形O 1A 1B 1C 1与矩形OABC 关于直线DE 对称,因此DM =DN ,那么重叠部分是邻边相等的平行四边形,即四边形DMEN 是菱形.作DH ⊥OA ,垂足为H .由于CD =2b -2,OE =2b ,所以EH =2.设菱形DMEN 的边长为m .在Rt △DEH 中,DH =1,NH =2-m ,DN =m ,所以12+(2-m )2=m 2.解得54m =.所以重叠部分菱形DMEN 的面积为54.图2 图3 图4考点伸展把本题中的矩形OABC 绕着它的对称中心旋转,如果重叠部分的形状是菱形(如图5),那么这个菱形的最小面积为1,如图6所示;最大面积为53,如图7所示.图5 图6 图7例4( 2010年扬州市中考第28题)如图1,在△ABC 中,∠C =90°,A C =3,BC =4,CD 是斜边AB 上的高,点E 在斜边AB 上,过点E 作直线与△ABC 的直角边相交于点F ,设AE =x ,△AEF 的面积为y .(1)求线段AD 的长;(2)若EF ⊥AB ,当点E 在斜边AB 上移动时,①求y 与x 的函数关系式(写出自变量x 的取值范围); ②当x 取何值时,y 有最大值?并求出最大值.(3)若点F 在直角边AC 上(点F 与A 、C 不重合),点E 在斜边AB 上移动,试问,是否存在直线EF 将△ABC 的周长和面积同时平分?若存在直线EF ,求出x 的值;若不存在直线EF ,请说明理由.图1 备用图满分解答(1) 在Rt △ABC 中, AC =3,BC =4,所以AB =5.在Rt △ACD 中,39cos 355AD AC A ==⨯=.(2) ①如图2,当F 在AC 上时,905x <<.在Rt △AEF 中,4tan 3EF AE A x ==.所以21223y AE EF x =⋅=.如图3,当F 在BC 上时,955x <≤.在Rt △BEF 中,3tan (5)4E F B E B x ==-.所以21315288y A E E F x x =⋅=-+.②当905x <<时,223y x =的最大值为5425;当955x <≤时,231588y x x =-+23575)8232x =--+(的最大值为7532.因此,当52x =时,y 的最大值为7532.图2 图3 图4(3)△ABC 的周长等于12,面积等于6.先假设EF 平分△ABC 的周长,那么AE =x ,AF =6-x ,x 的变化范围为3<x ≤5.因此1142s i n (6)(6)2255AEF S AE AF A xx x x ∆=⋅⋅=-⨯=--.解方程2(6)35x x --=,得1362x =±.因为1362x =+在3≤x ≤5范围内(如图4),因此存在直线EF 将△ABC 的周长和面积同时平分.考点伸展如果把第(3)题的条件“点F 在直角边AC 上”改为“点F 在直角边BC 上”,那么就不存在直线EF 将△ABC 的周长和面积同时平分.先假设EF 平分△ABC 的周长,那么AE =x ,BE =5-x ,BF =x +1.因此21133sin (5)(1)(45)22510BEF S BE BF B x x x x ∆=⋅⋅=-+⨯=---.解方程23(45)310x x ---=.整理,得2450x x -+=.此方程无实数根.例5(2009年兰州市中考第29题)如图1,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴上运动,当P 点到D 点时,两点同时停止运动,设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图2所示,请写出点Q 开始运动时的坐标及点P 运动速度;(2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标.(4)如果点P 、Q 保持原速度速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.图1 图2满分解答(1)Q (1,0),点P 每秒钟运动1个单位长度.(2)过点B 作BE ⊥y 轴于点E ,过点C 作x 轴的垂线交直线BE 于F ,交x 轴于H .在Rt △ABE 中,BE =8,AE =10-4=6,所以AB =10.由△ABE ≌△BCF ,知BF =AE =4,CF =BE =6.所以EF =8+6=14,CH =8+4=12.因此点C 的坐标为(14,12).(3)过点P 作PM ⊥y 轴于M ,PN ⊥x 轴于N .因为PM //BE ,所以AP AM M P ABAFBF==,即1068t A M M P ==.因此34,55A M t P M t==.于是3410,55P NO M t O N P M t==-==.设△OPQ 的面积为S (平方单位),那么2113347(1)(10)52251010S O Q PN t t t t =⋅⋅=+-=-++,定义域为0≤t ≤10.因为抛物线开口向下,对称轴为直线476t =,所以当476t=时,△OPQ 的面积最大.此时P 的坐标为(9415,5310).(4)当53t =或29513t=时, OP 与PQ 相等.图3 图4附加题的一般思路是:点Q的横坐标是点P的横坐标的2倍.先求直线AB、BC、CD的解析式,根据直线的解析式设点P的坐标,再根据两点间的距离公式列方程PO=PQ.附加题也可以这样解:①如图4,在Rt△AMP中,设AM=3m,MP=4 m,AP=5m,那么OQ=8m.根据AP、OQ的长列方程组5, 81,m tm t=⎧⎨=+⎩解得53t=.②如图5,在Rt△GMP中,设GM=3m,MP=4 m,GP=5m,那么OQ=8m.在Rt△GAD中,GD=7.5.根据GP、OQ的长列方程组537.5,81,m tm t=-⎧⎨=+⎩解得29513t=.③如图6,设MP=4m,那么OQ=8m.根据BP、OQ的长列方程组51010,81,m tm t-=-⎧⎨=+⎩解得53t=,但这时点P不在BC上.图5 图6例6(2008年长春市中考第25题)在直角坐标系中,抛物线cbxxy++=2经过点(0,10)和点(4,2).(1)求这条抛物线的解析式.(2)如图1,在边长一定的矩形ABCD中,CD=1,点C在y轴右侧沿抛物线cbxxy++=2滑动,在滑动过程中CD∥x轴,AB在CD的下方.当点D在y轴上时,AB落在x轴上.①求边BC的长.②当矩形ABCD在滑动过程中被x轴分成两部分的面积比为1:4时,求点C的坐标.图1(1)因为抛物线cbxxy++=2经过点(0,10)和点(4,2),所以10,164 2.cb c=⎧⎨++=⎩解得6b=-,10c=.因此抛物线的解析式为y=x2-6x+10.(2)①因为CD=1,点D在y轴上,所以点C的横坐标为1.在y=x2-6x+10中,当x=1时,y=5.所以边BC 的长为5.②因为矩形边长一定,所以BC=5.如图2,当矩形ABCD在x轴上方部分的面积与这个矩形面积的比为1:5时,点C的纵坐标为1.解方程x2-6x+10=1,得123x x==.此时点C的坐标为(3,1).如图3,当矩形ABCD在x轴上方部分的面积与这个矩形面积的比为5:1时,点C的纵坐标为4.解方程x2-6x+10=4,得133x=+,233x=-.此时点C的坐标为(3+3,4)或(3-3,4).图2 图3考点伸展在本题情景下,以CD为半径的⊙C如果与坐标轴相切,那么符合条件的点C有哪些?解:由于CD=1,抛物线的顶点为(3,1),因此与坐标轴相切的⊙C有三个,点C的坐标分别为(1,5),(-1,17),(3,1).在本题情景下,以CB为半径的⊙C如果与坐标轴相切,那么符合条件的点C有哪些?解:由于点(5,5)恰好在抛物线上,因此与坐标轴相切的⊙C有两个,点C的坐标分别为(5,5),(-5,65).。

函数图象中的存在性问题—因动点产生的面积问题

函数图象中的存在性问题—因动点产生的面积问题

函数图象中的存在性问题—因动点产生的面积问题函数图像中的存在性问题是函数图像是否存在的研究。

在研究函数图像的存在性时,我们通常会考虑到以下几个问题:函数是否有定义域和值域,函数是否连续,函数是否可导等等。

其中,因动点产生的面积问题是函数图像的一个特殊存在性问题。

考虑一个动点在平面上运动,其轨迹为函数的图像,我们可以通过计算该轨迹所围成的面积来研究函数图像的存在性。

首先,让我们考虑一个较简单的函数图像,例如:y=x。

当动点在平面上矩形区域内运动时,其轨迹就可以看作是函数y=x的图像。

我们可以将矩形区域分成无数个小长方形,并计算每个小长方形所围成的面积的和。

当矩形区域趋近于函数图像所占据的面积时,这个和就可以逼近函数图像所围成的面积。

如果这个和存在且为有限值,则可以认为函数图像所围成的面积存在。

然而,对于一些函数图像,存在动点产生的面积问题可能并不存在。

例如:y=1/x。

当动点运动到x=0的位置时,函数图像与x轴相切,不再围成一个有限的面积。

在这种情况下,我们无法通过动点产生的面积来研究函数图像的存在性。

对于一些较为复杂的函数图像,动点产生的面积问题可能会更加具有挑战性。

例如:y = sin(x)。

当动点在平面上运动时,函数图像会在一些位置出现多个极大值和极小值。

在这种情况下,计算动点产生的面积变得更为复杂,可能需要使用更高级的数学工具来解决。

总之,动点产生的面积问题是函数图像存在性问题的一个特殊情况。

通过计算动点所产生的面积,我们可以研究函数图像的存在性。

然而,对于一些复杂的函数图像,动点产生的面积问题可能并不存在或更加困难。

因此,在研究函数图像的存在性时,我们需要综合考虑多个因素,并使用合适的数学工具来解决。

动点产生的几何最值问题大全

动点产生的几何最值问题大全

动点产生的几何最值问题大全
动点产生的几何最值问题是数学中一类比较有挑战性的问题,通常涉及到几何图形中的动点以及与之相关的最值情况。

以下是一些常见的动点产生的几何最值问题类型:
1. 最短路径问题:在给定的几何图形中,寻找动点到某个点或线段的最短路径。

这可以涉及到直线、圆、多边形等图形。

2. 最大面积问题:确定动点在几何图形中移动时,如何使形成的图形面积最大。

例如,求动点构成的三角形、矩形等的最大面积。

3. 最长线段问题:找到在特定条件下,动点所形成的最长线段。

4. 最短时间问题:考虑动点在移动过程中,如何以最短时间到达目标点。

5. 最优位置问题:确定动点在几何图形中的最优位置,使得某个目标函数达到最大或最小值。

6. 角度最值问题:探究动点在运动过程中,相关角度的最大或最小值。

7. 对称问题:利用对称性质来解决与动点相关的最值问题。

这些只是一些常见的类型,实际问题可能更加复杂和多样化。

解决动点产生的几何最值问题通常需要结合几何学的知识、定理和方法,以及对运动轨迹和约束条件的分析。

具体的解决方法会根据问题的具体情况而有所不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运动变化题是随着图形的某一元素的运动变化,导致问题的结论改变或者保持不变的几何题,它揭示了“运动”与“静止”、“一般”与“特殊”的内在联系.解题的关键是分清几何元素运动的方向和捷径,注意在运动过程中哪些是变量,哪些不是变量,通常要根据几何元素所处的不同位置加以分类讨论,同时,综合运用勾股定理、方程和函数等知识,本节课的内容涉及三角形、特殊的四边形的面积问题.本节主要是在函数背景下求三角形或四边形的面积问题,较复杂的题目可以采取“割补”的思想构造较简单的图形进行求解.动点产生的面积问题内容分析知识结构模块一:面积计算的问题知识精讲【例1】 如图,已知直线l :22y x =-+与x 轴、y 轴分别交于点B 、C ,将直线y=x向上平移1个单位长度得到直线P A ,点Q 是直线P A 与y 轴的交点,求四边形PQOB 的面积. 【难度】★★ 【答案】 【解析】【例2】 如图,已知直线AB :2y x =+与直线OA :13y x =交于点A ,与直线OB :3y x =交于点B 两点.求△AOB 的面积. 【难度】★★ 【答案】 【解析】例题解析【例3】 如图,已知直线3y x =+的图像与x 轴、y 轴分别交于A 、B 两点,直线l 经过原点,与线段AB 交于点C ,把△AOB 的面积分为2:1两部分,求直线l 的解析式. 【难度】★★ 【答案】 【解析】【例4】 如图,已知,在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在矩形ABCD 边AB 、BC 、DA 上,AE =2.(1)如图1,当四边形EFGH 为正方形时,求△GFC 的面积;(2)如图2,当四边形EFGH 为菱形,且BF =a 时,求△GFC 的面积.(用含a 的代数式表示)【难度】★★★ 【答案】 【解析】A B CDE F 图1GHABCDE F 图2GH【例5】 如图1,正方形ABCD 的边长为2,点A (0, 1)和点D 在y 轴正半轴上,点B 、C 在第一象限,一次函数y =kx +2的图像l 交AD 、CD 分别于E 、F . (1)若△DEF 与△BCF 的面积比为1∶2,求k 的值; (2)联结BE ,当BE 平分∠FBA 时,求k 的值. 【难度】★★★ 【答案】 【解析】【例6】 如图,在平面直角坐标系中,函数y =2x +12的图像分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点. (1)求直线AM 的表达式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请求出点P 的坐标; (3)若点H 为坐标平面内任意一点,是否存在点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由. 【难度】★★★ 【答案】 【解析】【例7】 如图1,已知直角坐标平面内点A (2, 0),P 是函数y =x (x >0)图像上一点,PQ ⊥AP 交y 轴正半轴于点Q . (1)试证明:AP =PQ ;(2)设点P 的横坐标为a ,点Q 的纵坐标为b ,那么b 关于a 的函数关系式是_______;(3)当S △AOQ =23S △APQ 时,求点P 的坐标.【难度】★★★ 【答案】 【解析】本节主要研究点在运动的背景下,产生的面积与动点之间的关系,关键点是找出决定这个面积变化的几个量是怎样变化的,重点在于思维能力的培养,难度较大.模块二:与面积相关的函数解析式知识精讲【例8】 如图,矩形ABCD 中,AB =1,AD =2,M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,试写出△APM 的面积y 与点P 经过的路程x 之间的函数关系,写出定义域,并画出函数图像. 【难度】★★ 【答案】 【解析】【例9】 如图,在梯形ABCD 中,AD //BC ,AB =CD =AD =5cm ,BC =11cm ,点P 从点D 出发沿DA 边以每秒1cm 的速度移动,点Q 从点B 出发沿BC 边以每秒2cm 的速度移动(当点P 到达点A 时,点P 与点Q 同时停止移动),假设点P 移动的时间为x (秒),四边形ABQP 的面积为y (cm 2). (1)求y 关于x 的函数解析式,并写出它的定义域;(2)在移动的过程中,求四边形ABQP 的面积与四边形QCDP 的面积相等时x 的值;(3)在移动过程中,是否存在x 使得PQ =AB ,若存在,求出所有的x 的值;若不存在,请说明理由. 【难度】★★ 【答案】 【解析】例题解析BAB CDMP【例10】已知:如图1,在线段AE的同侧作正方形ABCD和正方形BEFG(BE<AB),连结EG并延长交DC于点M,作MN⊥AB,垂足为N,MN交BD于P.设正方形ABCD的边长为1.(1)证明:△CMG≌△NBP;(2)设BE=x,四边形MGBN的面积为y,求y关于x的函数解析式,并写出定义域;(3)如果按照题设方法作出的四边形BGMP是菱形,求BE的长.【难度】★★★【答案】【解析】【例11】已知:在梯形ABCD中,AD//BC,∠B=90°,AB=BC=4,点E在边AB 上,CE=CD.(1)如图1,当∠BCD为锐角时,设AD=x,△CDE的面积为y,求y与x之间的函数解析式,并写出函数的定义域;(2)当CD=5时,求△CDE的面积.【难度】★★★【答案】【解析】AB CDEA BCDEFGPMN【例12】 如图1,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x m =-+交折线OAB 于点E .(1)当点E 恰为AB 中点时,求m 的值;(2)当点E 在线段OA 上,记△ODE 的面积为y ,求y 与m 的函数关系式并写出定义域;(3)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形O 1A 1B 1C 1,试判断四边形O 1A 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,若不变,写出该重叠部分的面积;若改变,写出重叠部分面积S 关于m 的函数关系式. 【难度】★★★ 【答案】 【解析】【例13】 如图1,在正方形ABCD 中,点E 在边AB 上(点E 与点A 、B 不重合),过点E 作FG ⊥DE ,FG 与边BC 相交于点F ,与边DA 的延长线相交于点G . (1)当E 是AB 中点时,求证AG =BF ;(2)当E 在边AB 上移动时,观察BF 、AG 、AE 之间具有怎样的数量关系?并证明你所得到的结论;(3)联结DF ,如果正方形的边长为2,设AE =x ,△DFG 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域.【难度】★★★ 【答案】 【解析】xA BCD EFG【例14】 如图1,梯形ABCD 中,AD //BC ,∠B =90°,AD =18,BC =21.点P 从点A 出发沿AD 以每秒1个单位的速度向点D 匀速运动,点Q 从点C 沿CB 以每秒2个单位的速度向点B 匀速运动.点P 、Q 同时出发,其中一个点到达终点时两点停止运动,设运动的时间为t 秒.(1)当AB =10时,设A 、B 、Q 、P 四点构成的图形的面积为S ,求S 关于t 的函数关系式,并写出定义域;(2)设E 、F 为AB 、CD 的中点,求四边形PEQF 是平行四边形时t 的值.【难度】★★★ 【答案】【解析】【例15】 如图1,在菱形ABCD 中,∠B =45°,AB =4.左右作平行移动的正方形EFGH 的两个顶点F 、G 始终在边BC 上.当点G 到边BC 中点时,点E 恰好在边AB 上.(1)如图1,求正方形EFGH 的边长;(2)设点B 与点F 的距离为x ,在正方形EFGH 作平行移动的过程中,正方形EFGH 与菱形ABCD 重叠部分的面积为y ,求y 与x 的函数解析式,并写出它的定义域;(3)联结FH 、HC ,当△FHC 是等腰三角形时,求BF 的长. 【难度】★★★ 【答案】 【解析】ABCDE PAQ 图1备用图HAB C DEF G【例16】 如图1,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形.A (0,4),C (5, 0),点D 是y 轴正半轴上一点,将四边形OABC 沿着过点D 的直线翻折,使得点O 落在线段AB 上的点E 处.过点E 作y 轴的平行线与x 轴交于点N .折痕与直线EN 交于点M ,联结DE 、OM . 设OD =t ,MN =s . (1)试判断四边形EDOM 的形状,并证明;(2)当点D 在线段OA 上时,求s 关于t 的函数解析式,并写出函数的定义域; (3)用含t 的代数式表示四边形EDOM 与矩形OABC 重叠部分的面积.【难度】★★★ 【答案】 【解析】【例17】 已知:如图1,梯形ABCD 中,AD //BC ,∠A =90°,∠C =45°,AB =AD =4.E 是直线AD 上一点,联结BE ,过点E 作EF ⊥BE 交直线CD 于点F .联结BF .(1)若点E 是线段AD 上一点(与点A 、D 不重合),(如图1所示) ①求证:BE =EF ;②设DE =x ,△BEF 的面积为y ,求y 关于x 的函数解析式,并写出此函数的定义域;(2)直线AD 上是否存在一点E ,使△BEF 是△ABE 面积的3倍,若存在,直接写出DE 的长,若不存在,请说明理由.【难度】★★★ 【答案】 【解析】AB DEFABCD图1备用图备用图ABCD【例18】如图,已知正方形ABCD的边长为3,菱形EFGH的三个顶点E、G、H分别在正方形的边AB、CD、DA上,AH=1,联结CF.(1)当DG=1时,求证菱形EFGH为正方形;(2)设DG=x,△FCG的面积为y,写出y关于x的函数解析式,并指出x的取值范围;(3)当DGGHE的度数.【难度】★★★【答案】【解析】A BCDEFGH【例19】已知:如图,四边形OABC的四个顶点坐标分别为O(0,0),A(8,0),B(4,4),C(0,4),直线l:y=x+m保持与四边形OABC的边交于点M、N(M 在折线AOC上,N在折线ABC上).设四边形OABC在l右下方部分的面积为S1,在l左上方部分的面积为S2,记S=S1-S2(S≥0).(1)求∠OAB的大小;(2)当M、N重合时,求l的解析式;(3)当m≤0时,线段AB上是否存在点N,使得S=0?若存在,求m的值;若不存在,请说明理由;(4)求S与m的函数关系式.【难度】★★★【答案】【解析】x【例20】 在边长为4的正方形ABCD 中,点O 是对角线AC 的中点,P 是对角线AC上一动点,过点P 作PF ⊥CD 于点F ,作PE ⊥PB 交直线CD 于点E ,设P A =x ,PCE S y =△.(1)求证:DF =EF ;(2)当点P 在线段AO 上时,求y 关于x 的函数关系式及自变量x 的取值范围;(3)点P 在运动过程中能否使△PEC 为等腰三角形?如果能,请直接写出P A 的长;如果不能,请简单说明理由. 【难度】★★★ 【答案】 【解析】【习题1】 如图,直线443y x =-+与y 轴交于点A ,与直线4455y x =+交于点B ,且直线4455y x =+与x 轴交于点C ,求△ABC 【难度】★★ 【答案】 【解析】随堂检测ABCD E F P O【习题2】已知直线2y x=-+与x轴、y轴分别交于A点和B点,另一条直线(0)y kx b k=+≠经过点C(1,0),且把△AOB分成两部分.若△AOB被分成的两部分面积比为1:5,求k和b的值.【难度】★★★【答案】【解析】【习题3】直线364y x=-+与坐标轴分别交与点A、B两点,点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿O B A→→运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系;(3)当485S=时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.【难度】★★★【答案】【解析】【习题4】 如图,已知:过点A (8,0)、B (0,y =交于点C ,平行于y 轴的直线l 从原点O 出发,以每秒1个单位长度的速度沿x 轴向右平移,到C 点时停止;l 分别交线段BC 、OC 于点D 、E ,以DE 为边向左侧作等边△DEF ,设△DEF 与△BCO 重叠部分的面积为S (平方单位),直线l 的运动时间为t (秒).(1) 写出点C 的坐标和t 的取值范围; (2) 求s 与t 的函数关系式. 【难度】★★★ 【答案】 【解析】【作业1】 如图,已知直线P A :(0)y x n n =+>与直线PB :2()y x m m n =-+>交于点P .(1)用m 、n 表示出A 、B 、P 点的坐标;(2)若点Q 是直线P A 与y 轴的交点,且四边形PQOB 的面积56,AB=2,试求点P 的坐标,并写出直线P A 与PB 的解析式. 【难度】★★ 【答案】 【解析】课后作业【作业2】 如图所示,直线y kx b =+的截距为6,该直线分别交x 轴、y 轴于E 、F ,点E 的坐标为(-4,0). (1)求直线y kx b =+的表达式;(2)若点P (x ,y )是该直线第二象限上的一个动点,P A ⊥x 轴,PB ⊥y 轴,垂足分别为点A 、B ,试求四边形OAPB 的面积S 与x 的函数关系式,并写出自变量x 的取值范围. 【难度】★★★ 【答案】 【解析】【作业3】 如图,已知:直角梯形ABCD 中,AB ∥CD ,∠A =90°,AB =6,AD =4,DC =3,点P 从点A 出发,沿ADCB 方向移动,动点Q 从点A 出发,在AB 边上移动,设点P 移动的路程为x ,点Q 移动的路程为y ,线段PQ 平分梯形ABCD 的周长. (1) 求y 关于x 的函数解析式,并写出x 和y 的取值范围;(2) 当P 不在BC 边上时,线段PQ 能否平分ABCD 的面积?若能,求出此时x 的值;若不能,说明理由. 【难度】★★★ 【答案】 【解析】ABCDP Q【作业4】如图,在平面直角坐标系中,两个函数162y x y x==-+,的图像交于点A,动点P从点O开始在线段O向点A方向以每秒1个单位的速度运动,作PQ∥x 轴交直线BC于点Q,以PQ为一边向下作正方形PAMN,设它与△ABO重叠部分的面积为S.(1)求点A的坐标;(2)试求出点P在线段OA上运动时,S与运动的时间t(秒)的关系式.【难度】★★★【答案】【解析】。

相关文档
最新文档