第二章最小二乘法OLS和线性回归模型知识分享

合集下载

第二章最小二乘法OLS和线性回归模型

第二章最小二乘法OLS和线性回归模型
其中t(=1,2,3,…..,T)表示观测数。 式(2.3)即为一个简单的双变量回归模型(因其仅 具有两个变量x, y)的基本形式。
8
▪ 其中yt被称作因变量 ▪ xt被称作自变量
(dependent variable)、(independent variable)、
被解释变量
解释变量
(explained variable)、(explanatory variable)、
6
▪ 图2-1中的直线可表示为
y= x
(2.1)
根据上式,在确定α、β的情况下,给定一个x
值,我们就能够得到一个确定的y值,然而根
据式(2.1)得到的y值与实际的y值存在一个
误差(即图2-1中点到直线的距离)。
7
▪ 如果我们以u表示误差,则方程(2.1)变为:
y= x u (2.2) 即: yt xt ut (2.3)
可以进行如下变换:
(2.10)
ln yt lnA lnxt ut (2.11)
▪ 令Yt ln yt、 lnA、X t lnxt ,则方程
(2. 11)变为:
Yt X t ut
(2.12)
可以看到,模型2.12即为一线性模型。
19
▪ 4.估计量(estimator)和估计值(estimate) ▪ 估计量是指计算系数的方程;而估计值是指估
15
▪ 总体回归方程(PRF)表示变量之间的真实关 系,有时也被称为数据生成过程(DGP), PRF中的α、β值是真实值,方程为:
yt xt + u t (2. 7)
▪ 样本回归方程(SRF)是根据所选样本估算的 变量之间的关系函数,方程为:
yˆ ˆ ˆxt
(2.8)

最小二乘法(OLS)的原理解析

最小二乘法(OLS)的原理解析
最小二乘法(OLS)的原理解析 ​
定义​
最小二乘法(OLS),英文全称ordinary least squares,又称最小平方法,是回归分析 (regression analysis)最根本的一个形式,对模型条件要求最少,也就是使散点图上的所有观测值 到回归直线距离的平方和最小。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘 法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小,最小二 乘法还可用于曲线拟合,其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
公式​
在一元线性回归模型中,回归方程一般表示为​
yi ​
=
β^0​

+
β^ x 1 i ​


​,所用到的是statmodels模块中
OLS(最小二乘法),通过实际值​ yi​ ​与拟合值​ y^i​​ ​差的平方和Q最小,也就是残差平方和最小,来
确定拟合方程中的系数​ β1​ ​和截距​ β0​ ​,公式如下:​
n
n

(​ xi
)2


(


xi
)2

i=1
i=1
n
n
n
n
​ ​ (∑

xi2
)(



yi
)


(∑
xi)(∑
xiyi
)

β^ = i=1
0​

i=1 n
i=1
i=1
n
n

(​ xi
)2


(

最小二乘法与线性回归模型

最小二乘法与线性回归模型

最小二乘法与线性回归模型线性回归是一种常用的统计分析方法,用于研究因变量与一个或多个自变量之间的关系。

在线性回归中,我们经常使用最小二乘法来进行参数估计。

本文将介绍最小二乘法和线性回归模型,并探讨它们之间的关系和应用。

一、什么是最小二乘法最小二乘法是一种数学优化技术,旨在寻找一条直线(或者更一般地,一个函数),使得该直线与一组数据点之间的误差平方和最小化。

简而言之,最小二乘法通过最小化误差的平方和来拟合数据。

二、线性回归模型在线性回归模型中,我们假设因变量Y与自变量X之间存在线性关系,即Y ≈ βX + ε,其中Y表示因变量,X表示自变量,β表示回归系数,ε表示误差。

线性回归模型可以用来解决预测和关联分析问题。

三、最小二乘法的原理最小二乘法的基本原理是找到一条直线,使得该直线与数据点之间的误差平方和最小。

具体而言,在线性回归中,我们通过最小化残差平方和来估计回归系数β。

残差是观测值与估计值之间的差异。

在最小二乘法中,我们使用一组观测数据(x₁, y₁), (x₂, y₂), ..., (xₙ, yₙ),其中x表示自变量,y表示因变量。

我们要找到回归系数β₀和β₁,使得残差平方和最小化。

残差平方和的表达式如下:RSS = Σ(yᵢ - (β₀ + β₁xᵢ))²最小二乘法的目标是最小化RSS,可通过求导数等方法得到最优解。

四、使用最小二乘法进行线性回归分析使用最小二乘法进行线性回归分析的一般步骤如下:1. 收集数据:获取自变量和因变量的一组数据。

2. 建立模型:确定线性回归模型的形式。

3. 参数估计:使用最小二乘法估计回归系数。

4. 模型评估:分析回归模型的拟合优度、参数的显著性等。

5. 利用模型:使用回归模型进行预测和推断。

五、最小二乘法与线性回归模型的应用最小二乘法和线性回归模型在多个领域都有广泛的应用。

1. 经济学:通过线性回归模型和最小二乘法,经济学家可以研究经济指标之间的关系,如GDP与失业率、通胀率之间的关系。

最小二乘法OLS和线性回归

最小二乘法OLS和线性回归
第二章 最小二乘法(OLS) 和线性回归模型
1
本章要点
最小二乘法的基本原理和计算方法
经典线性回归模型的基本假定
BLUE统计量的性质 t检验和置信区间检验的原理及步骤 多变量模型的回归系数的F检验 预测的类型及评判预测的标准 好模型具有的特征
2
第一节
最小二乘法的基本属性
一、有关回归的基本介绍
金融、经济变量之间的关系,大体上可以分 为两种:
(1)函数关系:Y=f(X1,X2,….,XP),其中Y的 值是由Xi(i=1,2….p)所唯一确定的。 (2)相关关系: Y=f(X1,X2,….,XP) ,这里Y的 值不能由Xi(i=1,2….p)精确的唯一确定。
3
图2-1 货币供应量和GDP散点图
注意:SRF中没有误差项,根据这一方程得到 的是总体因变量的期望值
17
于是方程(2.7)可以写为:
ˆ ˆ ˆ yt xt ut
和残差项(
(2.9)
总体y值被分解为两部分:模型拟合值(
ˆ u t )。
ˆ y)
18
3.线性关系 对线性的第一种解释是指:y是x的线性函数, 比如,y= x。 对线性的第二种解释是指:y是参数的一个线 性函数,它可以不是变量x的线性函数。 2 比如,y= x 就是一个线性回归模型, 但 y x 则不是。
(一) 方法介绍
本章所介绍的是普通最小二乘法(ordinary least squares,简记OLS);
最小二乘法的基本原则是:最优拟合直线应该 使各点到直线的距离的和最小,也可表述为距 离的平方和最小。
假定根据这一原理得到的α、β估计值为 、 , ˆ yt 。 xt ˆ ˆ ˆ 则直线可表示为

金融计量学课件PPT第2章最小二乘法和线性回归

金融计量学课件PPT第2章最小二乘法和线性回归
变量取值范围内。
为了提高预测精度,可以对模型 进行优化和调整,例如添加或删 除自变量、使用交叉验证等技术

04
CATALOGUE
最小二乘法和线性回归在金融中的应用
股票价格预测
总结词
通过最小二乘法和线性回归,可以对股票价格进行预测,帮助投资者做出更明 智的投资决策。
详细描述
利用历史股票数据,通过最小二乘法和线性回归分析股票价格的时间序列数据 ,建立预测模型。根据模型预测结果,投资者可以判断未来股票价格的走势, 从而制定相应的投资策略。
金融计量学课件ppt 第2章最小二乘法和 线性回归
目录
• 引言 • 最小二乘法 • 线性回归 • 最小二乘法和线性回归ALOGUE
引言
课程背景
金融市场日益复杂
01
随着金融市场的日益复杂,投资者和决策者需要更精确的定量
分析工具来评估投资机会和风险。
金融数据的特点
缺点
对异常值敏感,容易受到离群点的影 响;假设数据符合线性关系,对于非 线性关系的数据表现不佳;无法处理 分类变量和交互项。
03
CATALOGUE
线性回归
线性回归的定义
线性回归是一种通过最小化预测误差 平方和来建立变量之间线性关系的统 计方法。
线性回归模型通常表示为:Y = β0 + β1X1 + β2X2 + ... + ε,其中Y是因 变量,X1、X2等是自变量,β0、β1 等是回归系数,ε是误差项。
02
金融数据具有时序性和波动性,通过计量经济学方法可以对这
些数据进行有效的分析和预测。
最小二乘法和线性回归在金融领域的应用
03
最小二乘法和线性回归是金融计量学中常用的基础分析方法,

2.2 一元线性回归模型的最小二乘估计

2.2 一元线性回归模型的最小二乘估计

511 382950 562500 260712
1018 1068480 1102500 1035510
963 1299510 1822500 926599
5769300 7425000 4590020
640000 352836 1210000 407044 1960000 1258884 2890000 1334025 4000000 1982464 5290000 2544025 6760000 3876961 8410000 4318084 10240000 6682225 12250000 6400900 53650000 29157448
2无偏性即估计量的均值期望等于总体回归参数真值3有效性最小方差性即在所有线性无偏估计量中最小二乘估计量2证明最小方差性假设为不全为零的常数则容易证明具有最的小方差普通最小二乘估计量ordinaryleastsquaresestimators称为最佳线性无偏估计量bestlinearunbiasedestimatorblue
易知 故
ki
xi 0 xi2
ˆ1 1 ki i
ki Xi 1
E(ˆ1 ) E(1 ki i ) 1 ki E(i ) 1
同样地,容易得出
E(ˆ0 ) E(0 wi i ) E(0 ) wi E(i ) 0
二、参数的普通最小二乘估计(OLS)
给定一组样本观测值(Xi, Yi)(i=1,2,…n)要 求样本回归函数尽可能好地拟合这组值.
普通最小二乘法(Ordinary least squares, OLS) 给出的判断标准是:二者之差的平方和
n
n
Q (Yi Yˆi )2 (Yi (ˆ0 ˆ1 X i )) 2

第2章 最小二乘法和线性回归模型(更新至0510)

第2章 最小二乘法和线性回归模型(更新至0510)

思不得其解,同时又发现某人种的平均身高是相 当稳定的。 最后得到结论:儿子们的身高回复于全体男子的 平均身高,即“回归”——见1889年F.Gallton 的论文《普用回归定律》。 后人将此种方法普遍用于寻找变量之间的规律。
16
3. 回归分析
回归分析(regression):通过一个或几个变量的变化去解释另一
160000 140000 120000 100000 80000 60000 40000 20000 0 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 X Y
图2.1
图2.2
10
2.1.2 散点相关图分析
点击主窗口Quick\Graph\Scatter, 在弹出的Series List窗口输入序列名x和y(如图 2.3),点击ok,即可得到图18的X(GDP)和Y(总消费)之间 的散点图。 注意:(1)和(2)中,作散点图时输入的第一个变量为横轴变量,一般取为解释 变量;第二个变量为纵轴变量,一般取为被解释变量,每次只能显示两个变量之间的 相关图,若模型中含有多个解释变量,可以逐个进行分析。
高斯—马尔可夫定理(Gauss-Markov theorem) 在给定经典线性回归的假定下,最小二乘估计量是 具有最小方差的线性无偏估计量。
33
34
最小二乘估计量的性质——证明
ˆ 2、无偏性,即估计量 0 、ˆ1 的均值(期望)等于总体回归
参数真值 0 与 1
证:
易知 故
ˆ 1 k i Yi k i ( 0 1 X i i ) 0 k i 1 k i X i k i i
80000 70000 60000 50000

计量经济学02

计量经济学02

4-21
关于 R2 及 SER 的例子
TestScore = 698.9 – 2.28×STR, R2 = 0.051, SER = 18.6
学生/教师之比只解释了测试成绩变化中很小的一部分。这合理么?这 是否意味着学生/教师之比在政策制定中无关紧要?
4-22
Copyright © 2011 Pearson Addison-Wesley. All rights reserved.
Copyright © 2011 Pearson Addison-Wesley. All rights reserved.
4-4
一元线性回归模型
问题:缩小班级规模会对学生的成绩有什么影响?
数据:加州所有K-6和K-8的学区(n=420) 变量: • 5年级考试分数(标准化考试,包括数学和阅 读),学区平均分数 • 学生教师比(STR)=学生数除以全职教师的 数量
残差:
ˆ Antelope u
= 657.8 – 654.8 = 3.0
4-15
Copyright © 2011 Pearson Addison-Wesley. All rights reserved.
OLS 回归: STATA 结果
regress testscr str, robust Regression with robust standard errors Number of obs = 420 F( 1, 418) = 19.26 Prob > F = 0.0000 R-squared = 0.0512 Root MSE = 18.581 ------------------------------------------------------------------------| Robust testscr | Coef. Std. Err. t P>|t| [95% Conf. Interval] --------+---------------------------------------------------------------str | -2.279808 .5194892 -4.39 0.000 -3.300945 -1.258671 _cons | 698.933 10.36436 67.44 0.000 678.5602 719.3057 -------------------------------------------------------------------------

多元线性回归与最小二乘估计

多元线性回归与最小二乘估计

多元线性回归与最小二乘估计1.假定条件、最小二乘估计量和高斯—马尔可夫定理 多元线性回归模型:y t = β0 +β1x t 1 +β2x t 2 +…+βk - 1x t k -1 + u t(1.1)其中y t 是被解释变量(因变量),x t j 是解释变量(自变量),u t 是随机误差项,βi , i = 0, 1, … , k - 1是回归参数(通常未知)。

对经济问题的实际意义:y t 与x t j 存在线性关系,x t j , j = 0, 1, … , k - 1, 是y t 的重要解释变量。

u t 代表众多影响y t 变化的微小因素。

使y t 的变化偏离了E( y t ) =多元线性回归与最小二乘估计1.假定条件、最小二乘估计量和高斯—马尔可夫定理 多元线性回归模型:y t = β0 +β1x t 1 +β2x t 2 +…+βk - 1x t k -1 + u t(1.1)其中y t 是被解释变量(因变量),x t j 是解释变量(自变量),u t 是随机误差项,βi , i = 0, 1, … , k - 1是回归参数(通常未知)。

对经济问题的实际意义:y t 与x t j 存在线性关系,x t j , j = 0, 1, … , k - 1, 是y t 的重要解释变量。

u t 代表众多影响y t 变化的微小因素。

使y t 的变化偏离了E( y t ) =β0 +β1x t 1 +β2x t 2 +…+βk - 1x t k -1决定的k 维空间平面。

当给定一个样本(y t , x t 1, x t 2 ,…, x t k -1), t = 1, 2, …, T 时, 上述模型表示为y 1 =β0 +β1x 11 +β2x 12 +…+βk - 1x 1 k -1 + u 1, 经济意义:x t j 是y t 的重要解释变量。

y 2 =β0 +β1x 21 +β2x 22 +…+βk - 1x 2 k -1 + u 2, 代数意义:y t 与x t j 存在线性关系。

第二章 第一节最小二乘法的基本属性

第二章 第一节最小二乘法的基本属性
C ov ( u i , u j ) E [ u i E ( u i )][ u j E ( u j )]
E (u iu j ) 0
(i j )
假定4:随机扰动 u i 与解释变量 X 不相关
C ov ( u i , X i ) E [ u i E ( u i )][ X i E ( X i )] 0
Y
由于
的分布性质
Yi 1 2 X i u i
i
u i的分布性质决定了 Y 的分布性质。
对 u i 的一些假定可以等价地表示为对 Y的假定: i
假定1:零均值假定
假定2:同方差假定
E (Yi X i ) 1 2 X i
V ar (Y X i )
2
假定3:无自相关假定
ˆ
作标准化变换,所得的 t 统计量不再服从正态分布
(这时分母也是随机变量),而是服从 t 分布:
t ˆ ˆ SE ( )
^
~ t (n 2)
t
ˆ ˆ S E ( )
^
~ t(n 2)
• 回归系数区间估计的方法
一般情况下, 总体方差
2
未知,用无偏估计 ˆ
ˆ 和 ˆ 分别是样本回归函数的参数
被解释变量 Y 的实际观测值 Y i 不完全等于样本条件
均值,二者之差用
ei
表示,
ei
称为剩余项或残差项:
或者
ˆ e i Yi Y i ˆ ˆ Yi X i e i
对样本回归的理解
ˆ ˆ Yi X i e i
件均值 E (Y X i )
Xi
X
3、回归线与回归函数

线性回归与最小二乘法

线性回归与最小二乘法

线性回归与最小二乘法线性回归模型是使用最广泛的模型之一,也最经典的回归模型,如下所示x轴表示自变量x的值,y轴表示因变量y的值,图中的蓝色线条就代表它们之间的回归模型,在该模型中,因为只有1个自变量x,所以称之为一元线性回归,公式如下我们的目的是求解出具体的参数值,可以穿过这些点的直线可以有多条,如何选取呢?此时就需要引入一个评价标准。

在最小二乘法中,这个评价标准就会误差平方和,定义如下其中e表示通过回归方程计算出的拟合值与实际观测值的差,通过维基百科上的例子来看下实际的计算过程如上图所示,有4个红色的采样点,在每个点都可以得到(x, y)的观测值,将4个采样点的数据,带入回归方程,可以得到如下结果计算全部点的误差平方和,结果如下对于上述函数,包含了两个自变量,为了求解其最小值,可以借助偏导数来实现。

通过偏导数和函数极值的关系可以知道,在函数的最小值处,偏导数肯定为0,所以可以推导出如下公式对于上述两个方程构成的方程组,简单利用消元法或者代数法就可以快速求出两个参数的值实际上,更加通过的方法是通过矩阵运算来求解,这种方法不仅适合一元线性回归,也适合多元线性回归,其本质是利用矩阵来求解以下方程组计算过程如下>>> data = np.array([[1, 1], [1, 2], [1, 3], [1, 4]])>>> dataarray([[1, 1],[1, 2],[1, 3],[1, 4]])>>> target = np.array([6, 5, 7, 10]).reshape(-1, 1)>>> targetarray([[ 6],[ 5],[ 7],[10]])#先对data矩阵求逆矩阵#再计算两个矩阵的乘积>>> np.matmul(np.matrix(data).I, target)matrix([[3.5],[1.4]])通过一个逆矩阵与矩阵乘积操作,就可以方便的求解参数。

ols最小二乘法

ols最小二乘法

ols最小二乘法OLS最小二乘法是一种常用的线性回归分析方法,它以最小化残差平方和为目标,通过求解最小二乘估计量来拟合回归模型。

这种方法在统计学领域有着广泛的应用,尤其是在经济学、金融学等领域,被广泛应用于关于各种变量之间的关系分析。

在OLS最小二乘法中,首先需要确定一个线性回归方程,假设我们有n个样本数据,其中每个样本都包含p个自变量和一个因变量,可以表示为y = β0 + β1x1 + β2x2 + …… + βpxp + ε,其中β0是截距项,β1~βp是自变量的系数,ε是误差项。

我们的目标是通过OLS方法来估计出β0~βp的值,从而得到回归方程,使其拟合样本数据最佳。

在OLS方法中,我们通过最小化残差平方和来估计回归系数,即通过使得所有样本数据的误差平方和最小来确定回归系数的值。

残差平方和是指所有样本数据的误差的平方和,即∑(y - y_hat)²。

其中y 表示样本数据的实际值,y_hat表示回归模型的预测值。

在确定回归系数的过程中,我们需要通过OLS估计出β0~βp的值,即使得残差平方和最小的β0~βp的值。

这个过程可以通过求解回归方程的正规方程组来实现,即(X'X)β = X'y,其中X是n*p的自变量矩阵,y是n*1的因变量向量,β是p*1的系数向量。

通过求解正规方程组,我们可以得到β的最小二乘估计值。

需要注意的是,OLS方法只能用于线性回归分析,且要求自变量之间不存在多重共线性,即自变量之间不能完全线性相关。

此外,在使用OLS方法时,还需要对回归结果进行显著性检验和模型拟合度检验,以确保回归结果的可靠性。

OLS最小二乘法是一种常用的线性回归分析方法,它通过最小化残差平方和来估计回归系数,从而得到回归方程,使其拟合样本数据最佳。

在使用OLS方法时,需要注意线性回归和多重共线性的问题,并对回归结果进行显著性检验和模型拟合度检验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16
▪ 总体回归方程(PRF)表示变量之间的真实关 系,有时也被称为数据生成过程(DGP), PRF中的α、β值是真实值,方程为:
yt xt+ u t (2. 7)
▪ 样本回归方程(SRF)是根据所选样本估算的 变量之间的关系函数,方程为:
yˆ ˆˆxt
(2.8)
注意:SRF中没有误差项,根据这一方程得到
其中t(=1,2,3,…..,T)表示观测数。 式(2.3)即为一个简单的双变量回归模型(因其仅 具有两个变量x, y)的基本形式。
9
▪ 其中yt被称作因变量 ▪ xt被称作自变量
(dependent variable)、(independent variable)、
被解释变量
解释变量
(explained variable)、(explanatory variable)、
ˆ y ˆx
(2.5) (2.6)
15
▪ (二)一些基本概念 ▪ 1.总体(the population)和样本(the sample) ▪ 总体是指待研究变量的所有数据集合,可以是
有限的,也可以是无限的;而样本是总体的一 个子集。
▪ 2、总体回归方程(the population regression function,简记PRF),样本回归方程(the sample regression function,简记SRF)。
比如:恐怖事件、自然灾害、设备故障等。
12
▪ 二、参数的最小二乘估计
▪ (一) 方法介绍
▪ 本章所介绍的是普通最小二乘法(ordinary least squares,简记OLS);
▪ 最小二乘法的基本原则是:最优拟合直线应该 使各点到直线的距离的和最小,也可表述为距 离的平方和最小。
▪ 假定根据这一原理得到的α、β估计值为 、 ,
结果变量
原因变量
(effect variable); (causal variable)
10
▪ α、β为参数(parameters),或称回归系数 (regression coefficients);
▪ ut通常被称为随机误差项(stochastic error term),或随机扰动项(random disturbance term),简称误差项,

可以进行如下变换:
T
(residual sum of squares, 简记RSS)

2 t
最小,即最小化:
t1
T
T
RSS= ( yt yˆt ) 2 = (yt ˆ ˆxt )2 (2.4)
t 1
t1
14
▪ 根据最小化的一阶条件,将式2.4分别对、求 偏导,并令其为零,即可求得结果如下 :
ˆ xt yt Txy xt2 Tx2
4
▪ 但有时候我们想知道当x变化一单位时,y平均 变化多少,可以看到,由于图中所有的点都相 对的集中在图中直线周围,因此我们可以以这 条直线大致代表x与y之间的关系。如果我们能 够确定这条直线,我们就可以用直线的斜率来 表示当x变化一单位时y的变化程度,由图中的 点确定线的过程就是回归。
6
▪ 对于变量间的相关关系,我们可以根据大量的 统计资料,找出它们在数量变化方面的规律 (即“平均”的规律),这种统计规律所揭示 的关系就是回归关系(regressive relationship),所表示的数学方程就是回归方程 (regression equation)或回归模型 (regression model)。
比如,y= x2 就是一个线性回归模型,
但 y x 则不是。
▪ 在本课程中,线性回归一词总是对指参数β为 线性的一种回归(即参数只以一次方出现), 对解释变量x则可以是或不是线性的。
19
▪ 有些模型看起来不是线性回归,但经过一些基 本代数变换可以转换成线性回归模型。例如,
yt Axteut
(2.10)
的是总体因变量的期望值
17
于是方程(2.7)可以写为:
yt ˆˆxt uˆt
(2.9)
▪ 总体y值被分解为两部分:模型拟合值( yˆ )
u 和残差项( ˆ t )。
18
▪ 3.线性关系
▪ 对线性的第一种解释是指:y是x的线性函数,
比如,y= x。
▪ 对线性的第二种解释是指:y是参数的一个线 性函数,它可以不是变量x的线性函数。
7
▪ 图2-1中的直线可表示为
y=x
(2.1)
根据上式,在确定α、β的情况下,给定一个x
值,我们就能够得到一个确定的y值,然而根
据式(2.1)得到的y值与实际的y值存在一个
误差(即图2-1中点到直线的距离)。
8
▪ 如果我们以u表示误差,则方程(2.1)变为:
y=xu (2.2)
即: yt xt ut (2.3)
则直 ˆ 线可 ˆ 表示为
yt 。ˆ ˆxt
13
▪ 直线上的yt值,记为 yˆ t ,称为拟合值(fitted
value),实际值与拟合值的差,记为u ˆ t ,称
为残差(residual) ,可以看作是随机误差
项u t 的估计值。
▪ 根据OLS的基本原则,使直线与各散点的距
离的平方和最小,实际上是使残差平方和
▪ 在回归模型中它是不确定的,服从随机分布 (相应的,yt也是不确定的,服从随机分布)。
11
▪ 为什么将ut 包含在模型中? ▪ (1)有些变量是观测不到的或者是无法度量
的,又或者影响因变量yt的因素太多; ▪ (2)在yt的度量过程中会发生偏误,这些偏
误在模型中是表示不出来的; ▪ (3)外界随机因素对yt的影响也很难模型化,
第二章 最小二乘法(OLS) 和线性回归模型
1
本章要点
▪ 最小二乘法的基本原理和计算方法 ▪ 经典线性回归模型的基本假定 ▪ BLUE统计量的性质 ▪ t检验和置信区间检验的原理及步骤 ▪ 多变量模型的回归系数的F检验 ▪ 预测的类型及评判预测的标准 ▪ 好模型具有的特征
2
第一节 最小二乘法的基本属性
▪ 一、有关回归的基本介绍
金融、经济变量之间的关系,大体上可以分 为两种:
(1)函数关系:Y=f(X1,X2,….,XP),其中Y的 值是由Xi(i=1,2….p)所唯一确定的。
(2)相关关系: Y=f(X1,X2,….,XP) ,这里Y的 值不能由Xi(i=1,2….p)精确的唯一确定。
3
图2-1 货币供应量和GDP散点图
相关文档
最新文档