二次函数和二次方程
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
;http://www.ox-seo.com SEO优化服务 搜索引擎排名服务
一般的,一元二次方程ax2+bx+c=0(a≠0)的 根就是二次函数y=ax2+bx+c (a≠0)的 值为 _0_时_自__变__量__x_的值; 也就是函数_y_=_a_x_2+_b_x_+__c的图象与_x_轴交点 的_横__坐标.
二次函数y=ax2+bx+c (a≠0) 一元二次方程ax2+bx+c=0(a≠0)
二次函数与一元二次方程
二次函数与一元二次方程之间有什么联系?
①方程 x2 2x 3 0 与函数 y x2 2x 3
②方程 x2 2x 1 0与函数 y x2 2x 1 ③方程 x 22x 3 0与函数 y x2 2x 3
Δ=b2-4ac Δ>0
ax2+bx+c=0 (a>0)
y=ax2+bx+c (a>0)
Δ=0
Δ<0
方程无实数根
讨论:二次函数y=f(x),若f(m)f(n)<0, 且m<n,那么一定能说明在区间[m,n] 内一定有零点吗?
思考:若x0是二次函数y=f(x)的零点, 且m<x0<n,那么f(m)f(n)<0一定成立吗?
例3:
求证:一元二次方程 2x2 3x 7 0
有两个不相等的实数根.
证法一: 用Δ>0来判断.
想想还有没有其他的证明的方法了?
f (x) 2x2 3x 7
小结:
1.一元二次函数与一元二次方程间 的关系.
2.二次函数的零点. 3.利用二次函数与方程间的关系解
题.
思考:已知二次函数 y f (x ) 满足
因此,我们把一元二次方程ax2+bx+c=0的 根也称做函数y=ax2+bx+c(a≠0)的 零点.
思考:
1.零点是不是点? 2.是不是所有的二次函数都有零点? 3.如何判断二次函数是否有零点,有几
个零点? 4.对有两个零点的二次函数,函数图象
经过零点时,函数值有什么变化?在两 个零点之间的函数值有什么特点?
y
y
yFra Baidu bibliotek
-1
2x
01 x
2
1x
Δ=b2-4ac Δ>0
ax2+bx+c=0 (a>0)
y=ax2+bx+c (a>0)
Δ=0
Δ<0
方程无实数根
顶部垂下缕缕簇簇怪蛇般的光影,看上去酷似金橙色的景色伴随着深红色的泪珠飘飘而下……大道左侧不远处是一片土灰色的仙草地,仙草地旁边紫、黑、红三色相交 的林带内不时出现闪动的异影和怪异的叫声……大道右侧远处是一片纯黄色的海峡,那里似乎还闪动着一片白象牙色的泥榆树林和一片墨绿色的鬼蕉树林……见有客到 ,大道两旁淡红色的闪影金基座上,正在喧闹的青鲸神和灰豹魔立刻变成了一个个凝固的雕像……这时,静静的泉水也突然喷出一簇簇、一串串直冲云霄的五光十色的 音符般的水柱和云丝般的水花……突然,满天遍地飞出数不清的梦幻,顷刻间绚丽多姿的梦幻就同时绽放,整个大地和天空立刻变成了怪异的海洋……空气中瞬间跳跃 出神奇的妖影之香……飞进主塔罕见的水红色蛋形大门,空阔安静、灿烂浪漫的大厅立刻让人眼前一亮,但扑面而来的空气也让人感到一种陶醉完美的味道……大厅的 地面是用明亮怪异的深灰色五光银和乳蓝色美仙冰铺成,四周高大的朦胧金墙壁雕绘着辉宏而粗犷的巨幅壁画……大厅前方,隐隐可见一座光彩亮丽、正被仙雾光环笼 罩的圣坛,但见仙雾朦胧萦绕,光环耀眼梦幻,所以很难看清圣坛上的身影和圣人……通向圣坛的豪华地毯两旁摆放着两排精美的硕大花盆,花盆中生长着整齐繁茂、 鲜花盛开、香气四溢的巨大乔本花卉……每个花盆前面都摆放着一只精巧怪异的大香炉,缕缕飘渺幽静、带着异香的紫烟正袅袅地升上大厅高高的穹顶……抬头看去, 大厅穹顶完全是用可自动变幻景物的神秘材料魔化而成,穹顶的景色一会儿是云海,一会儿是星空,一会儿是海底,一会儿是巨洞……穹顶中央巨大焰火雾淞般的梦幻 吊灯,四周是亿万造形奇异、色彩变幻的顶灯……蘑菇王子和知知爵士刚刚在两张镶着五色钻石的纯金座椅上坐下,只听一声悠长的号角响起,大厅突然辉煌灿烂起来 ,笼罩在圣坛上的仙雾很快散去……只见圣坛中央的宝座上仍然坐着主考官Y.依佛奇兹首相,两旁还是坐着那些副考官和监考官!一阵的钟声响过,主考官Y.依佛 奇兹首相站起身来,然后看着蘑菇王子和知知爵士问道:“你们两个准备好没有?”蘑菇王子答道:“我们准备好了!”主考官Y.依佛奇兹首相大声道:“那就开始 吧!”Y.依佛奇兹首相刚刚说完,就见亮红色个穿着亮红色天石天石袄的司仪官同时用手朝空中一指,随着六道闪光,整个大厅像菊花一样展开怒放,然后纷纷向远 方退去,逐渐消失在地平线之下……接着只见一座几乎无底透明、正在凌空盘踞的巨大巨龟形运动场,旋风般地在蘑菇王子和知知爵士的脚下展现出来,而悬空盘踞的 巨大运动
f ( 1 3 ) f ( 1 3 ) 0 且最大值为3, 求 y f (x ) 的表达式.
一般的,一元二次方程ax2+bx+c=0(a≠0)的 根就是二次函数y=ax2+bx+c (a≠0)的 值为 _0_时_自__变__量__x_的值; 也就是函数_y_=_a_x_2+_b_x_+__c的图象与_x_轴交点 的_横__坐标.
二次函数y=ax2+bx+c (a≠0) 一元二次方程ax2+bx+c=0(a≠0)
二次函数与一元二次方程
二次函数与一元二次方程之间有什么联系?
①方程 x2 2x 3 0 与函数 y x2 2x 3
②方程 x2 2x 1 0与函数 y x2 2x 1 ③方程 x 22x 3 0与函数 y x2 2x 3
Δ=b2-4ac Δ>0
ax2+bx+c=0 (a>0)
y=ax2+bx+c (a>0)
Δ=0
Δ<0
方程无实数根
讨论:二次函数y=f(x),若f(m)f(n)<0, 且m<n,那么一定能说明在区间[m,n] 内一定有零点吗?
思考:若x0是二次函数y=f(x)的零点, 且m<x0<n,那么f(m)f(n)<0一定成立吗?
例3:
求证:一元二次方程 2x2 3x 7 0
有两个不相等的实数根.
证法一: 用Δ>0来判断.
想想还有没有其他的证明的方法了?
f (x) 2x2 3x 7
小结:
1.一元二次函数与一元二次方程间 的关系.
2.二次函数的零点. 3.利用二次函数与方程间的关系解
题.
思考:已知二次函数 y f (x ) 满足
因此,我们把一元二次方程ax2+bx+c=0的 根也称做函数y=ax2+bx+c(a≠0)的 零点.
思考:
1.零点是不是点? 2.是不是所有的二次函数都有零点? 3.如何判断二次函数是否有零点,有几
个零点? 4.对有两个零点的二次函数,函数图象
经过零点时,函数值有什么变化?在两 个零点之间的函数值有什么特点?
y
y
yFra Baidu bibliotek
-1
2x
01 x
2
1x
Δ=b2-4ac Δ>0
ax2+bx+c=0 (a>0)
y=ax2+bx+c (a>0)
Δ=0
Δ<0
方程无实数根
顶部垂下缕缕簇簇怪蛇般的光影,看上去酷似金橙色的景色伴随着深红色的泪珠飘飘而下……大道左侧不远处是一片土灰色的仙草地,仙草地旁边紫、黑、红三色相交 的林带内不时出现闪动的异影和怪异的叫声……大道右侧远处是一片纯黄色的海峡,那里似乎还闪动着一片白象牙色的泥榆树林和一片墨绿色的鬼蕉树林……见有客到 ,大道两旁淡红色的闪影金基座上,正在喧闹的青鲸神和灰豹魔立刻变成了一个个凝固的雕像……这时,静静的泉水也突然喷出一簇簇、一串串直冲云霄的五光十色的 音符般的水柱和云丝般的水花……突然,满天遍地飞出数不清的梦幻,顷刻间绚丽多姿的梦幻就同时绽放,整个大地和天空立刻变成了怪异的海洋……空气中瞬间跳跃 出神奇的妖影之香……飞进主塔罕见的水红色蛋形大门,空阔安静、灿烂浪漫的大厅立刻让人眼前一亮,但扑面而来的空气也让人感到一种陶醉完美的味道……大厅的 地面是用明亮怪异的深灰色五光银和乳蓝色美仙冰铺成,四周高大的朦胧金墙壁雕绘着辉宏而粗犷的巨幅壁画……大厅前方,隐隐可见一座光彩亮丽、正被仙雾光环笼 罩的圣坛,但见仙雾朦胧萦绕,光环耀眼梦幻,所以很难看清圣坛上的身影和圣人……通向圣坛的豪华地毯两旁摆放着两排精美的硕大花盆,花盆中生长着整齐繁茂、 鲜花盛开、香气四溢的巨大乔本花卉……每个花盆前面都摆放着一只精巧怪异的大香炉,缕缕飘渺幽静、带着异香的紫烟正袅袅地升上大厅高高的穹顶……抬头看去, 大厅穹顶完全是用可自动变幻景物的神秘材料魔化而成,穹顶的景色一会儿是云海,一会儿是星空,一会儿是海底,一会儿是巨洞……穹顶中央巨大焰火雾淞般的梦幻 吊灯,四周是亿万造形奇异、色彩变幻的顶灯……蘑菇王子和知知爵士刚刚在两张镶着五色钻石的纯金座椅上坐下,只听一声悠长的号角响起,大厅突然辉煌灿烂起来 ,笼罩在圣坛上的仙雾很快散去……只见圣坛中央的宝座上仍然坐着主考官Y.依佛奇兹首相,两旁还是坐着那些副考官和监考官!一阵的钟声响过,主考官Y.依佛 奇兹首相站起身来,然后看着蘑菇王子和知知爵士问道:“你们两个准备好没有?”蘑菇王子答道:“我们准备好了!”主考官Y.依佛奇兹首相大声道:“那就开始 吧!”Y.依佛奇兹首相刚刚说完,就见亮红色个穿着亮红色天石天石袄的司仪官同时用手朝空中一指,随着六道闪光,整个大厅像菊花一样展开怒放,然后纷纷向远 方退去,逐渐消失在地平线之下……接着只见一座几乎无底透明、正在凌空盘踞的巨大巨龟形运动场,旋风般地在蘑菇王子和知知爵士的脚下展现出来,而悬空盘踞的 巨大运动
f ( 1 3 ) f ( 1 3 ) 0 且最大值为3, 求 y f (x ) 的表达式.