平面体系的几何组成分析习题解答
郑州大学远程结构力学练习及答案本科闭卷
第二章平面体系的几何组成分析多余约束的存在要影响体系的受力性能和变形性能,是有用的。
连接两刚片的两根不共线的链杆相当于一个单铰(瞬铰)的约束作用。
X 相当于(4— 1) =3个单铰,相当于 6个约束。
X 为链杆,去除二元体后剩下体系如题答图 所示,有一个自由度。
X AB 杆不能既作为刚片川的一部 分又作为刚片i 、n 连接链杆。
去除二元体 后剩下的体系如题答图所示,有一个自由 度。
2、单项选择题将三刚片组成无多余约束的几何不变体系,必要的约束数目是几个A 2B 3C 4D 6三刚片组成无多余约束的几何不变体系,其联结方式是A 以任意的三个铰相联C 以三对平行链杆相联 瞬变体系在一般荷载作用下A 产生很小的内力 C 产生很大的内力从一个无多余约束的几何不变体系上去除二元体后得到的新体系是A 无多余约束的几何不变体系B 有多余约束的几何不变体系练习题: 1、判断题多余约束是体系中不需要的约束。
瞬变体系在很小的荷载作用下会产生很大的内力,所以不能作为结构使用。
两根链杆的约束作用相当于一个单铰。
每一个无铰封闭框都有三个多余约束。
连接四个刚片的复铰相当于四个约束。
图示体系是由三个刚片用三个共线的铰 图示体系是由三个刚片用三个共线的铰A\、BABC 相连,故为瞬变体系。
ABC 相连,故为瞬变体系。
(C )(D )(C (D (C (C (C) ) ) ) )1、判断题题图CBC 杆使用两次。
将刚片川视以不在一条线上三个铰相联 以三个无穷远处的虚铰相联不产生内力 不存在静力解答C图示体系是 A 瞬变体系BC 无多余约束的几何不变体系C 几何可变体系图示体系属于A 静定结构几何瞬变体系B 超静定结构 题图C图示体系属于A 无多余约束的几何不变体系 C 有多余约束的几何可变体系 不能作为建筑结构使用的是无多余约束的几何不变体系 几何不变体系C一根链杆 (C有多余约束的几何不变体系 瞬变体系有多余约束的几何不变体系 几何可变体系图示体系是A 瞬变体系 BC 无多余约束的几何不变体系下列那个体系中的1点不是二元体 (B ) 有一个自由度和一个多余约束的可变体系有两个多余约束的几何不变体系 (C )2、单项选择题 D B 2.5 A 2.6 C 2.3 C 题图2.4 A D ____ D 铰A 是相当于两个单铰的复铰, 体系是三个刚片用四个单铰相连,用了 8 个约束,有两个多余约束。
结构力学章节习题及参考答案
习题3.1是非判断题
(1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。( )
(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。( )
(3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的内力。( )
(4)习题3.1(4)图所示多跨静定梁中,CDE和EF部分均为附属部分。( )
(7) 习题2.1(6)(a)图所示体系去掉二元体EDF后,成为习题2.1(6) (c)图,故原体系是几何可变体系。( )
习题 2.1(6)图
习题2.2填空
(1) 习题2.2(1)图所示体系为_________体系。
习题2.2(1)图
(2) 习题2.2(2)图所示体系为__________体系。
习题 2-2(2)图
(4)习题5.1(3)图(a)和(b)所示两结构的变形相同。( )
习题7.2填空题
(1)习题5.2(1)图(a)所示超静定梁的支座A发生转角,若选图(b)所示力法基本结构,则力法方程为_____________,代表的位移条件是______________,其中1c=_________;若选图(c)所示力法基本结构时,力法方程为____________,代表的位移条件是______________,其中1c=_________。
(3) 习题7.2(3)图所示刚架各杆的线刚度为i,欲使结点B产生顺时针的单位转角,应在结点B施加的力矩MB=______。
习题 7.2(1)图习题 7.2(2)图 习题 7.2(3)图
(4) 用力矩分配法计算习题7.2(4)图所示结构(EI=常数)时,传递系数CBA=________,CBC=________。
第二章几何组成分析习题.doc
7 .图题1- 3 (a)所示体系,几何组成分析试题一、是非判断:1.在一个平面体系上增加二元体不会改变体系的计算自由度。
( )2.若平面体系的计算自山度W= 0,则该体系为无多余约束的几何不变体系或瞬变体系,而不可能为常变体系。
( )3.平面较接杆件体系的计算自由度W^2j-b-r,式中/表不体系中的单较的个数。
( )4.若平面体系的计算自由度W<0,则该体系不可能是静定结构。
( )5 .图题l-l(a)所示体系去掉二元体AB、AC后,成为图(b)的几何可变体系,故原体图(a)系为几何可变体系。
( )6 .图题l-2(a)所示体系依次去掉二元体AB、AC及BD、BE后,成为图(b)所示体系,故原体系是无多余约束的几何不变体系。
( )题1-2图题1-3图8.图题1-4 (a)所示体系,依结点1、2、3、4的顺序去掉4个二元体后,就只剩下地基,故原体系是无多余约束的几何不变体系。
( )二、填空1.如图2-1所示体系为具有 ______________ 个多余约束的几何不变体系。
2.如图2-2所示体系为______________ 体系。
3.如图2-3所示体系为______________ 体系。
III题2-3题2-4题2-5题2-6Az——C)——R4 .如图2-4所示刚片I 、II 、III 由较力及链杆1、2、3、4连接,若较力与及链杆1共线,则所 组成体系为 _____________ 体系;若較〃与及链杆1不共线,则所组成体系为 ________________ 体系。
5 .如图2-5所示体系为 __________ 体系。
------------ 9Q O Q O题2-7图6 .如图2-6所示体系为 __________ 体系。
7 .如图2-7所示体系为 __________ 体系。
8 .如图2-8所示体系为 __________ 体系。
三〜五、试对图三〜五所示体系进行几何组成分析。
几何组成分析习题答案
几何组成分析答案
3.图中链杆1和2的交点O 可视为虚铰。
( )
O
答案 (X)
4.图示体系按三刚片法则分析,三铰共线,故为几何瞬变体系。
( )
答案 ( X )
5.图示体系为几何不变有多余约束。
( )
答案 ( √ )
6.图示体系为几何瞬变。
( )
答案 ( X )
答案 ( X )
8.几何可变体系在任何荷载作用下都不能平衡。
( ) 答案 ( X )
9.三个刚片由三个铰相联的体系一定是静定结构。
( ) 答案 ( X )
10.无多余约束的体系一定是静定结构。
( )
答案 ( X )
二、选择题
1.三个刚片用三个铰两两相互联结而成的体系是:
a.几何不变;
b.几何常变;
c.几何瞬变;
d.几何不变几何常变或几何瞬变。
( ) 答案 ( d )
2.联结三个刚片的铰结点,相当的约束个数为:
a.2个;
b.3个;
c.4个;
d.5个。
( )
答案 (c)
3.两个刚片,用三根链杆联结而成的体系是:
a.几何常变;
b.几何不变;
c.几何瞬变;
d.几何不变或几何常变或几何瞬变。
( ) 答案 (d)
4.图示体系是:
a.几何瞬变有多余约束;
b.几何不变;
c.几何常变;
d.几何瞬变无多余约束。
( )
答案(a)。
福大结构力学课后习题详细答案(祁皑).. - 副本
结构力学(祁皑)课后习题详细答案答案仅供参考第1章1-1分析图示体系的几何组成。
1-1(a)(解原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。
因此,原体系为几何不变体系,且有一个多余约束。
1-1 (b)解原体系依次去掉二元体后,得到一个三角形。
因此,原体系为几何不变体系,且无多余约束。
1-1 (c)[(c-1)(a)(a-1)(b)(b-1)*(c-2) (c-3)解 原体系依次去掉二元体后,得到一个三角形。
因此,原体系为几何不变体系,且无多余约束。
1-1 (d)!(d-1) (d-2) (d-3)解 原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。
因此,原体系为几何不变体系,且无多余约束。
注意:这个题的二元体中有的是变了形的,分析要注意确认。
1-1 (e)~解 原体系去掉最右边一个二元体后,得到(e-1)所示体系。
在该体系中,阴影所示的刚片与支链杆C 组成了一个以C 为顶点的二元体,也可以去掉,得到(e-2)所示体系。
在图(e-2)中阴影所示的刚片与基础只用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。
因此,原体系为几何可变体系,缺少一个必要约束。
1-1 (f)[解 原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相(d )(e )(e-1)AB}AB (e-2)(f )(f-1)连,符合几何不变体系的组成规律。
因此,可以将该刚片和相应的约束去掉只分析其余部分。
很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。
因此,原体系为几何不变体系,且无多余约束。
1-1 (g)解 原体系中阴影所示的刚片与体系的其它部分用三个链杆相连,符合几何不变体系的组成规律。
因此,可以将该刚片和相应的约束去掉,只分析其余部分。
余下的部分(图(g-1))在去掉一个二元体后,只剩下一个悬臂杆(图(g-2))。
因此,原体系为几何不变体系,且无多余约束。
结构力学课后习题答案重庆大学
第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。
( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。
( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。
( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。
( )(5) 习题(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。
( )B DACEF习题 (5)图(6) 习题(6)(a)图所示体系去掉二元体ABC 后,成为习题(6) (b)图,故原体系是几何可变体系。
( )(7) 习题(6)(a)图所示体系去掉二元体EDF 后,成为习题(6) (c)图,故原体系是几何可变体系。
( )(a)(b)(c)D习题 (6)图【解】(1)正确。
(2)错误。
0W 是使体系成为几何不变的必要条件而非充分条件。
(3)错误。
(4)错误。
只有当三个铰不共线时,该题的结论才是正确的。
(5)错误。
CEF 不是二元体。
(6)错误。
ABC 不是二元体。
(7)错误。
EDF 不是二元体。
习题 填空(1) 习题(1)图所示体系为_________体系。
习题(1)图(2) 习题(2)图所示体系为__________体系。
习题2-2(2)图(3) 习题(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。
习题(3)图(4) 习题(4)图所示体系的多余约束个数为___________。
习题(4)图(5) 习题(5)图所示体系的多余约束个数为___________。
习题(5)图(6) 习题(6)图所示体系为_________体系,有_________个多余约束。
习题(6)图(7) 习题(7)图所示体系为_________体系,有_________个多余约束。
平面体系几何组成分析的方法(静定的概念)(建筑力学)
例题分析
例1.分析图示体系的几何构造性。 解析:(1)计算自由度
W 4244 0
自由度为0,说明体系具有成为几何不变体系的最少约束数目。 进一步判断,依次去掉二元体DFE、BDC、BEC、BCA后,整个体系只剩下 地基了,为几何不变体系。由于去掉二元体并不改变原体系的几何构造性,因此 原体系也是几何不变体系。
二元体规则是非常好用的规则,特别是去二元体,可以大大简化体系 构件数目,使判断简化,其主要有以下几个技巧:
(1)根据需要进行链杆与刚片之间的转化,巧妙使用二元体; (2)当体系比较复杂时,可以先考虑其中的一个它部分之间的连接关系, 判定整个体系的几何构造性。
例题分析
例2.分析图示体系的几何构造性。 解析:(1)计算自由度
W 72 113 0
自由度为0,说明体系具有成为几何不变体系的最少约束数目。 体系没有二元体,但体系本身是有二元体的,去掉所有二元体,只剩下一个 杆件,所以体系本身几何不变,再考虑其与地基的连接方式,判定体系几何不变。
总结与技巧
示例
例1.分析图示体系的几何构造性。
解析:(1)计算自由度
W 7277 0
体系具有成为几何不变体系的最少约束数目,需进一步判断。 (2)依次去掉二元体FAB、IED、FBJ、IDC如图所示。 (3)三角形GCH看作刚片Ⅰ,地基看作特殊刚片Ⅱ。 (4)刚片Ⅰ、Ⅱ之间通过三根链杆相连,三链杆汇交
结构力学第二章 平面体系的几何组成分析
不完全铰节点 1个单铰
13/73
2-1 几何构造分析的几个概念
四、约束 两个互不相连的刚片,若用刚结点连接, 则两者被连为一体成为一个刚片,自由 度由6减少为3。 一个单刚结点相当于3个约束。 单刚结点
三个互不相连的刚片,若用刚结点连接, 自由度由9减少为3。
由此类推:
复刚节点
连接 n 个刚片的复刚结点,它相当于n-1 个单刚结点或3(n- 1)个约束。
A A
1 B
2 C B
1
3
2 C
B 1
A 2
C
几何可变 几何不变 有多余约束
几何不变 无多余约束
规律1 一个刚片与一个点用两根链杆相连,且三个铰不在同一 直线上,则组成几何不变的整体,并且没有多余约束。
23/73
2-2 平面几何不变体系的组成规律
二、两个刚片之间的联结方式
A 2 B I 3 C
A II B I 3 C
16/73
2-1 几何构造分析的几个概念
六、瞬变体系
B 1
I II A
2
I
C
A
II
1 B
2 C
两根链杆彼此共线 1、从微小运动的角度看,这是一个可变体系。 左图两圆弧相切,A点可作微小运动; 右图两圆弧相交,A点被完全固定。
17/73
2-1 几何构造分析的几个概念
六、瞬变体系
B 1
I II A
2
I A 1 B C 2 D
在体系运动的过程中,瞬铰的位臵随之变 化。 用瞬铰替换对应的两个链杆约束,这种约 束的等效变换只适用于瞬时微小运动。
20/73
2-1 几何构造分析的几个概念
八、无穷远处的瞬铰
郑州大学远程 结构力学 练习及答案 本科 闭卷
3.2对图示体系进行几何组成分析。
3.1(a)依次去掉二元体A,B,C,D剩下右图所示的并排简支梁,故原体系为无多余约束的几何不变体系。
3.1(b)先去除基础,刚片Ⅰ有两个多余约束,刚片Ⅱ有四个多余约束,ⅠⅡ用一个铰一根链杆,故原体系为有6个多余约束的几何不变系。
2.9桁架计算的结点法所选分离体包含几个结点(A)
A单个B最少两个C最多两个D任意个
2.10桁架计算的截面法所选分离体包含几个结点(B)
A单个B最少两个C最多两个D任意个
2.11图示结构有多少根零杆(C)
A5根B6根C7根D8根
2.12图示结构有多少根零杆(D)
A5根B6根C7根D8根
2.13图示结构有多少根零杆(A)
C有两个自由度D可减少一个自由度
2.9图示体系是(D)
A瞬变体系B有一个自由度和一个多余约束的可变体系
C无多余约束的几何不变体系D有两个多余约束的几何不变体系
2.10图示体系是(B)
A瞬变体系B有一个自由度和一个多余约束的可变体系
C无多余约束的几何不变体系D有两个多余约束的几何不变体系
2.11下列那个体系中的1点不是二元体(C)
A静定结构B超静定结构C常变体系D瞬变体系
2.6图示体系属于(C)
A无多余约束的几何不变体系B有多余约束的几何不变体系
C有多余约束的几何可变体系D瞬变体系
2.7不能作为建筑结构使用的是(D)
A无多余约束的几何不变体系B有多余约束的几何不变体系
C几何不变体系D几何可变体系
2.8一根链杆(D)
A可减少两个自由度B有一个自由度
3.2试绘制下列刚架的内力图。
3.3试绘制下列刚架的弯矩图。
平面体系的几何组成分析
平面体系的几何组成分析(总分:100.00,做题时间:90分钟)一、{{B}}判断题{{/B}}(总题数:6,分数:12.00)1.下图所示体系为有一个多余约束的几何不变体系。
(分数:2.00)A.正确B.错误√解析:利用三刚片规则。
可选择AB、CD、EF作为刚片进行分析。
正确答案是无多余约束的几何不变体系。
2.下图所示体系中链杆1和2的交点O可称为虚铰。
(分数:2.00)A.正确B.错误√解析:3.自由度W≤0是体系保持几何不变的充分条件。
(分数:2.00)A.正确B.错误√解析:4.静定结构是无多余约束的几何不变体系,超静定结构是有多余约束的几何不变体系。
(分数:2.00)A.正确√B.错误解析:5.下图所示体系是几何不变体系,且无多余约束。
(分数:2.00)A.正确B.错误√解析:原体系为有一个多余约束的几何不变体系。
6.下图所示对称体系是几何瞬变体系。
(分数:2.00)A.正确√B.错误解析:如下图所示选取刚片,用三刚片规则分析,刚片Ⅰ与Ⅱ交于A点,刚片Ⅰ与Ⅲ交于B点,刚片Ⅱ与Ⅲ交于无穷远处C点,由于A、B的连线与连系刚片Ⅱ、Ⅲ的两杆平行。
根据无穷远点规则判断可知,该体系为几何瞬变体系。
[*]二、{{B}}填空题{{/B}}(总题数:6,分数:12.00)7.下图所示体系的几何组成为______体系。
(分数:2.00)填空项1:__________________ (正确答案:无多余约束的几何不变体系)解析:利用三刚片规则分析。
8.下图所示体系的几何组成为______,______。
(分数:2.00)填空项1:__________________ (正确答案:几何不变体系,无多余约束)解析:先选择基础为一个刚片,然后按“双藤摸瓜”方法找到另外两个刚片。
9.下图所示体系为几何______体系,多余约束数为______个。
(分数:2.00)填空项1:__________________ (正确答案:不变,1)解析:利用三刚片规则分析。
福大结构力学课后习题详细问题详解(祁皑).. - 副本
结构力学(祁皑)课后习题详细答案答案仅供参考第1章1-1分析图示体系的几何组成。
1-1(a)解 原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。
因此,原体系为几何不变体系,且有一个多余约束。
1-1 (b)解 原体系依次去掉二元体后,得到一个三角形。
因此,原体系为几何不变体系,且无多余约束。
1-1 (c)(c-1)(a )(a-1)(b )(b-1)(b-2)(c-2) (c-3)解 原体系依次去掉二元体后,得到一个三角形。
因此,原体系为几何不变体系,且无多余约束。
1-1 (d)(d-1) (d-2) (d-3)解 原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。
因此,原体系为几何不变体系,且无多余约束。
注意:这个题的二元体中有的是变了形的,分析要注意确认。
1-1 (e)解 原体系去掉最右边一个二元体后,得到(e-1)所示体系。
在该体系中,阴影所示的刚片与支链杆C 组成了一个以C 为顶点的二元体,也可以去掉,得到(e-2)所示体系。
在图(e-2)中阴影所示的刚片与基础只用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。
因此,原体系为几何可变体系,缺少一个必要约束。
1-1 (f)解原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相连,符合几何不变体系的组成规律。
因此,可以将该刚片和相应的约束去掉只分析其余部分。
很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。
因此,原体系为几何不变体系,且无多余约束。
1-1 (g)(d ) (e )(e-1)A(e-2)(f )(f-1) (g ) (g-1) (g-2)解 原体系中阴影所示的刚片与体系的其它部分用三个链杆相连,符合几何不变体系的组成规律。
因此,可以将该刚片和相应的约束去掉,只分析其余部分。
余下的部分(图(g-1))在去掉一个二元体后,只剩下一个悬臂杆(图(g-2))。
结构力学习题
第一部分平面体系的几何组成分析一、判断题:1、在任意荷载下,仅用静力平衡方程即可确定全部反力和内力的体系是几何不变体系。
2、图中链杆1和2的交点O可视为虚铰。
二、分析题:对下列平面体系进行几何组成分析。
第二部分静定结构内力计算一、判断题:1、静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。
2、静定结构受外界因素影响均产生内力,内力大小与杆件截面尺寸无关。
3、静定结构的几何特征是几何不变且无多余约束。
4、图(a)所示结构。
(a) (b)5、图(b)所示结构支座A转动角,= 0, = 0。
6、荷载作用在静定多跨梁的附属部分时,基本部分一般内力不为零。
7、图(c)所示静定结构,在竖向荷载作用下,AB是基本部分,BC是附属部分。
(c)8、图(d)所示结构B支座反力等于P/2。
(d)9、图(e)所示结构中,当改变B点链杆的方向(不通过A铰)时,对该梁的影响是轴力有变化。
(e)10、在相同跨度及竖向荷载下,拱脚等高的三铰拱,水平推力随矢高减小而减小。
11、图(f)所示桁架有7根零杆。
(f) (g)12、图(g)所示桁架有:=== 0。
13、图(h)所示桁架DE杆的内力为零。
(h) (i)14、图(i)所示对称桁架在对称荷载作用下,其零杆共有三根。
二、作图题:作出下列结构的弯矩图(组合结构要计算链杆轴力)三、计算题:(求指定杆件的内力)第三部分静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C左侧截面的转角时,其虚拟状态应取:5、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知、图,用图乘法求位移的结果为:。
7、图a、b两种状态中,粱的转角与竖向位移间的关系为:=。
【经典】第2、3、4章习题答案 习题答案
第2章 平面体系的几何构造分析习 题2-2 试求出图示体系的计算自由度,并分析体系的几何构造。
(a )(ⅠⅡ)(ⅠⅢ)舜变体系ⅠⅡⅢ(b)W=5×3 - 4×2 – 6=1>0几何可变(c)有一个多余约束的几何不变体系(d)W=3×3 - 2×2 – 4=1>0可变体系2-3 试分析图示体系的几何构造。
(a)(ⅡⅢ) (b)Ⅲ几何不变2-4 试分析图示体系的几何构造。
(a)几何不变(b)(ⅠⅢ)(ⅡⅢ)几何不变(d)W=4×3 -3×2 -5=1>0几何可变体系Ⅲ(ⅠⅢ)有一个多余约束的几何不变体(e)(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)舜变体系(f)(ⅠⅢ)(ⅡⅢ)无多余约束内部几何不变(g)(h)二元体W=3×8 - 9×2 – 7= -1, 有1个多余约束2-5 试从两种不同的角度分析图示体系的几何构造。
(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)舜变体系(b)Ⅲ(ⅡⅢ)(ⅠⅢ)第3章 静定结构习 题3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a)2P F a 2P F aaa aaa4P F Q34P F 2P F(b)2020Q10/326/310(c)2m6m2m4m2m3m2m2m3m3m4m18060(d)7.5514482.524MQ3-3 试作图示刚架的内力图。
(a)3m2m2m2mA2m 2m2m2m4kN ·m6m1k N /m2kN CB242018616MQ18(b)30303011010QM 210(c)6m10kN3m3m 40kN ·mABC D 3m3m45MQ(d)444444/32MQN(e)6m2m 2m4m4m4481``(f)222220M3-4 试找出下列各弯矩图形的错误之处,并加以改正。
(a)2m3m4mF P (b)(c)(d)(e)(f)F3-5 试按图示梁的BC 跨跨中截面的弯矩与截面B 和C 的弯矩绝对值都相等的条件,确定E 、F 两铰的位置。
02-2结构力学第二章 平面体系的几何组成分析-作业答案汇总
38 3 2 29 3 3
3个单铰结点, 3个折算为2个单铰结点的复铰结点
支杆
b3
11/73
(II III) 刚片II
(I II)
刚片III
几何不变且无多余约束
j9 单链杆:12根 复链杆:2根 折算为6根单链杆
W 2 j b 29 12 6 0
5/73
【作业1】分析图示体系的几何构造
图3
【作业1】分析图示体系的几何构造
图4
先考察如图所示结构
∞(II III)
9/73
【作业2】求图示系统的计算自由度
刚片 m 1 单刚结点 g 4 铰结点 h 0 支杆 b 3
内部无多余约束刚片
W 3m 3g 2h b
31 3 4 3 12
10/73
【作业2】求图示系统的计算自由度
刚片 m 8
单刚结点 g 2
W 3m 3g 2h b
铰结点 h 9
刚片 m 14 单铰链结点 h 18
刚片II
刚片III
(I II)
(I III) 刚片I
瞬变体系
其中折算为2个单铰结点的 复铰结点有6个
∞(II III)
其中折算为3个单铰结点的 复铰结点有2个 单刚结点 2个 g 2 和基础相连的支杆 0个 b 0
W 3m 3g 2h b
314 3 2 218 0
∞(II III)
刚片II (I II) (I III) 刚片III
刚片I
几何不变且无多余约束
(I II) 刚片II (I III) 刚片III
刚片I
几何不变且无多余约束
7/73
【作业2】求图示系统的计算自由度
图1 并进行几何构造分析
几何组成分析习题及答案
题15.7试对图示体系进行几何组成分析。
解 (1)计算自由度。
体系的自由度为W- 2j -6-r=2×8-9-7=0(2)几何组成分析。
首先把三角形A CD和BCE分别看做刚片I和刚片Ⅱ,把基础看做刚片I,则三个刚片用不共线的三个铰A、B、C分别两两相联,组成一个大的刚片。
在这个大的刚片上依次增加二元体12、DGF、CHG、EIH、IJ3。
最后得知整个体系为几何不变,且无多余约束。
题15.8试对图示体系进行几何组成分析。
解 (1)计算自由度。
体系的自由度为W- 3m - 2h -r=3×6-2×7—4=0(2)几何组成分析。
刚片AF和AB由不共线的单铰A以及链杆DH相联,构成刚片I,同理可把BIC EG部分看做刚片Ⅱ,把基础以及二元体12、34看作刚片I,则刚片I、Ⅱ、Ⅲ由不共线的三个铰F、B、G两两相联,构成几何不变体系,且无多余约束。
题15.9试对图示体系进行几何组成分析。
解 (1)计算自由度。
体系的自由度为W- 3m - 2h -r=3×14 -2×19 -4一O(2)几何组成分析。
在刚片HD上依次增加二元体DCJ、CBI、BAH构成刚片I,同理可把DMG部分看做刚片Ⅱ,把基础看做刚片I,则刚片I、Ⅱ、Ⅲ由不共线的单铰D,虚铰N、O 相联,构成几何不变体系,且无多余约束。
题15.10试对图示体系进行几何组成分析。
解 (1)计算自由度。
体系的自由度为W-2j—b-r=2×7—11-3一O(2)几何组成分析。
由于AFG部分由基础简支,所以可只分析A FG部分。
可去掉二元体B AC 只分析B FGC部分。
把三角形BDF、CEG分别看做附片I和I,刚片I和I由三根平行的链杆相联,因而整个体系为瞬变。
题15.11试对图示体系进行几何组成分析。
《结构力学习题集》
第一章 平面体系的几何组成分析一、判断题:1、在任意荷载下,仅用静力平衡方程即可确定全部反力和内力的体系是几何不变体系。
2、图中链杆1和2的交点O 可视为虚铰。
O二、分析题:对下列平面体系进行几何组成分析。
3、 4、CDBCDB5、 6、A CDBEABCDE7、 8、ABCD GE FA BCDEFGHK11、 12、1234513、 14、15、 16、17、 18、1245321、 22、123456781234523、 24、12345625、 26、27、 28、31、32、33、BA CFDE三、在下列体系中添加支承链杆,使之成为无多余约束的几何不变体系。
34、35、第二章 静定结构内力计算一、判断题:1、静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。
2、静定结构受外界因素影响均产生内力,内力大小与杆件截面尺寸无关。
3、静定结构的几何特征是几何不变且无多余约束。
4、图(a)所示结构||M C =0。
aa(a)BCa aAϕ2a2 (b)5、图(b)所示结构支座A 转动ϕ角,M AB = 0, R C = 0。
6、荷载作用在静定多跨梁的附属部分时,基本部分一般内力不为零。
7、图(c)所示静定结构,在竖向荷载作用下,AB 是基本部分,BC 是附属部分。
ABC(c)8、图(d)所示结构B 支座反力等于P /2()↑。
(d)9、图(e)所示结构中,当改变B 点链杆的方向(不通过A 铰)时,对该梁的影响是轴力有变化。
AB(e)10、在相同跨度及竖向荷载下,拱脚等高的三铰拱,水平推力随矢高减小而减小。
11、图(f)所示桁架有9根零杆。
(f)a a a a(g)12、图(g)所示桁架有:N1=N2=N3= 0。
13、图(h)所示桁架DE杆的内力为零。
a a(h)(i)14、图(i)所示对称桁架在对称荷载作用下,其零杆共有三根。
15、图(j)所示桁架共有三根零杆。
(j)3m3m3m(k)16、图(k)所示结构的零杆有7根。
一、平面杆件体系的几何构成分析
一、平面杆件体系的几何构成分析1、首先必须深刻理解几个基本概念,这几个概念层层递进。
①几何不变体系:不计材料应变情况下,体系的位置和形状不变。
在几何构成分析中与荷载无关,各个杆件都是刚体。
②刚片:形状不变的物体,也就是刚体。
在几何构成分析中,刚片的选取非常重要,也非常灵活,可大可小,小至一根杆,大至地基基础,皆可视为刚片。
③自由度:体系运动时可以独立改变的坐标的数目。
在平面内,一点有2个自由度,一刚片有3个自由度。
④约束:减少自由度的装置。
一根链杆(或链杆支座)相当于1个约束;一个铰(或铰支座)相当于2个约束,注意两根链杆和一个铰在约束方面的功能完全可等同,可根据几何构成分析的需要相互转换,另外注意瞬铰的概念,两根链杆直接铰接在一点,该点可视为实铰,两根链杆延长后相交在一点,该点则是瞬铰,一个瞬铰也相当于2个约束,两根链杆若平行,瞬铰在平行方向的无穷远处;一个刚结点(或固定端)相当于3个约束。
⑤多余约束:增加一个约束,体系的自由度并不减少,该约束就是多余约束。
注意一个约束是否多余约束,必须视必要约束而定。
只有必要约束确定后才能确定多余约束,不能直接说哪个约束是多余约束。
2、必须深刻理解几何不变体系的组成规律。
教材上列出4个规律,其实基本的规律只有一个,就是三角形规律,即小学数学就传授的“三角形是稳定的”。
例题1:分析下图体系的几何构成。
解:基础以上部分与基础用三根链杆相连,只分析基础以上部分,EB CA去掉多余约束,用多余未知力1X 代替,就是力法的基本未知量 满足平衡条件的1X 有无数个 (因为平衡方程数少于未知量数)形协调条件:01111=∆+P X δ就是力法的基本方程即满足平衡条件的1X 有无数个,满足平衡条件和变形条件的1X二、静定结构的受力分析1、关于截面内力的定义材料力学中定义了轴力、扭矩、剪力、弯矩等四种内力,在结构力学中基本上只涉及轴力、剪力、弯矩:链杆(二力杆)的任一截面只有轴力,以受拉为正(与材力中相同);梁式杆的任一截面有轴力、剪力、弯矩三种内力,剪力以使隔离体顺时针转为正(与材力中相同),与材力中(使梁下部受拉为正)不同,弯矩不规定正负号(因为结力中有各种方位的杆),而是根据截面法求出的弯矩判断哪侧受拉,在弯矩图中画在受拉一侧。
几何组成分析习题答案
几何组成分析答案
3.图中链杆1和2的交点O 可视为虚铰。
( )
O
答案 (X)
4.图示体系按三刚片法则分析,三铰共线,故为几何瞬变体系。
( )
答案 ( X )
5.图示体系为几何不变有多余约束。
( )
答案 ( √ )
6.图示体系为几何瞬变。
( )
答案 ( X )
答案 ( X )
8.几何可变体系在任何荷载作用下都不能平衡。
( ) 答案 ( X )
9.三个刚片由三个铰相联的体系一定是静定结构。
( ) 答案 ( X )
10.无多余约束的体系一定是静定结构。
( )
答案 ( X )
二、选择题
1.三个刚片用三个铰两两相互联结而成的体系是:
a.几何不变;
b.几何常变;
c.几何瞬变;
d.几何不变几何常变或几何瞬变。
( ) 答案 ( d )
2.联结三个刚片的铰结点,相当的约束个数为:
a.2个;
b.3个;
c.4个;
d.5个。
( )
答案 (c)
3.两个刚片,用三根链杆联结而成的体系是:
a.几何常变;
b.几何不变;
c.几何瞬变;
d.几何不变或几何常变或几何瞬变。
( ) 答案 (d)
4.图示体系是:
a.几何瞬变有多余约束;
b.几何不变;
c.几何常变;
d.几何瞬变无多余约束。
( )
答案(a)。