矩阵的初等变换及线性方程组习题课

合集下载

第3章 矩阵的初等变换与线性方程组的解

第3章 矩阵的初等变换与线性方程组的解
1 0 A = 0 2 0 −2

1 0 B = 0 2 0 0
矩阵等价性具有如下性质: (1)反身性: A ↔ A (2)对称性:如果 A ↔ B ,那么 B ↔ A (3)传递性:如果 A ↔ B, B ↔ C ,那么 A ↔ C
第 i行
| E ( i , j ) |= −1,
第j行
E ( i , j ) −1 = E ( i , j )
第i列
第j列
-12-
2、倍乘初等矩阵
1 E ( i ( k )) = O 1 k 1 O
↑ 第i列
← 第 i行 1
r
Pl L P2 P1 A = E
问 A − 1 = Pl L P2 P1 作一次行变换 再作一次行变换 继续… 考虑对 ( A E ) 作行变换
P1 ( A E ) = ( P1 A P1 E )
P2 P1 ( A E ) =
( P2 P1 A
P2 P1 E )
Pl L P2 P1 ( A E ) = ( Pl L P2 P1 A Pl L P2 P1 E )
A ↔ B,
如何把它们用等号联系起来?
-11-
定义
对单位矩阵E做一次初等变换得到的矩阵称
为初等矩阵。 共有三种初等矩阵,分别为 1、交换初等矩阵
1 O 1 0 1 L ← 1 E ( i, j ) = M O M 1 1 L 0 ← 1 O 1 ↑ ↑
第三章 矩阵的初等变换与线性方程组的解
§3.1 矩阵的初等变换 §3.2 初等矩阵 §3.3 矩阵的秩 §3.4 线性方程组的解

矩阵的初等变换和线性方程组

矩阵的初等变换和线性方程组

换前后的方程组是同解的。
2、在上述变化过程中,实际上,只对方程组的系数与常数进行运算,未知 量并未参加运算。因此,若记
B =(A
⎛ 2 −1 −1 1 2⎞
b
)
⎜ ⎜ ⎜
1 4
1 −6
−2 2
1 −2
4
⎟ ⎟
4⎟
⎜ ⎝
3
6
−9
7
9
⎟ ⎠
那么上述对方程组的变换完全可以转换为对矩阵 B 的变换。 把方程组的上述三种初等变换移植到矩阵上,可得矩阵的三种初等变换。
⎪⎪0 ⎨⎪0
x1 x1
+ +
x2 − x3 + 0x4 = 3, (2) 0x2 + 0x3 + x4 = −3, (3)

⎪⎩0x1 + 0x2 + 0x3 + 0x4 = 0.(4)
方程组②是 4 个未知量 3 个有效方程的方程组,应有一个自由未知量,由于方程
组②呈阶梯形,可把每个台阶的第一个未知量(即 x1, x2, x4 )选为非自由未知量,
解:
⎧x1 + x2 − 2x3 + x4 = 4, (1)

⎯(⎯1()3↔)÷⎯(22)⎯→
⎪⎪2 ⎨⎪2
x1 x1
− x2 − x3 + x4 = 2, (2) − 3x2 + x3 − x4 = 2, (3)
⎪⎩3x1 + 6x2 − 9x3 + 7x4 = 9.(4)
⎧x1 + x2 − 2x3 + x4 = 4, (1)
元素不等于零 ,不妨设 a11 ≠ 0 (如 a11 = 0 ,可以对矩阵 A 施以第(1)种初等

第2章 线性方程组与矩阵初等变换-郑成勇主编教材配套课件

第2章 线性方程组与矩阵初等变换-郑成勇主编教材配套课件

11
−2
r3
−3r2
0
−10
11
−2
11 3
0
11
r2 r3
−3r1 −11r1
0
−30
33
0
0
0 0 6
最后一个矩阵所对应的线性方程组为
0
x1 + 3x2 x1 −10x2
− 3x3 = 1 +11x3 = −2
.
0x1 + 0x2 + 0x3 = 6
方程组最后一个方程显然矛盾,故方程组无解.
矩阵总可以经过若干次初等变换化为它标准形 F
=
Er O
O
O
mn

04 其中 r 为行阶梯形矩阵中非零行的行数.
OPTION
Linear Algebra
2.3 矩阵初等行变换解线性方程组
第2章 线性方程组与矩阵初等变换 14
定义2.1 矩阵的秩 将一个矩阵 A化成行阶梯阵后, 其非零行的行数称为矩阵的
a21
a22

am1 am2
a1n
a2n
amn
x1
未 知
x
=
x2


xn
b1
常 数 列
b
=
b2
bm
Ax = b
a11 a12
增广矩阵
B =[A
b]
=
a21
a22
am1 am2
a1n b1
a2n
b2
amn bm
A = [a1, a2 , , an ] 其中 ai ( i = 1, 2, , n ) 为矩阵 A 的第i 列,则按分块矩阵乘法运算,

免费第3章课件 线性代数 矩阵的初等变换与线性方程组

免费第3章课件 线性代数 矩阵的初等变换与线性方程组
矩阵初等变换前后两个矩阵之间的关系是
什么?
A B , 如何把它们用等号联系起来?
-17-
T 回顾 ei A ? Ae j ?
a11 a12 A a 21 a 22 a 31 a 32
a13 r1 r3 a 23 a 33
a 31 a 32 a 21 a 22 a11 a12
( 2) kci ( k 0) ( 3) ci kc j
以上六种变换统称为矩阵的初等变换
-6-
初等变换的逆变换仍为初等变换, 且变换类型相同.
ri rj 逆变换 ri rj ; 1 kri ri 逆变换 k ri krj 逆变换 ri kr j
初等列变换也有类似的结果
-7-
B [ Ae1 , Ae2 , A( ke3 )] A[e1 , e2 , ke3 ]
a11 a12 a 21 a 22 a 31 a 32
a13 1 0 0 a 23 0 1 0 a 33 0 0 k
把单位矩阵作同样变换得 到的矩阵放在A的右边!
方程组与增广矩阵是一一对应关系, 我们用增广 矩阵来写求解过程
2 1 2 4 ~ A 1 1 2 1 4 1 4 2
-2-
首先搞清一个概念:什么是同解方程组?同解方程
组也称等价方程组.(注:等价与同解有点小区别,这里
就不区分了)
2 1 2 4 ~ r1 r2 A 1 1 2 1 4 1 4 2
1 0 0 0
0 2 0 1 1 0 0 0 1 0 0 0
0 0 0 0
1 2 0 1 0 0 1 2 0 0 0 0 0 0 0 0

线性代数课后习题1-4作业答案(高等教育出版社)

线性代数课后习题1-4作业答案(高等教育出版社)

第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4. (3)222111c b a c b a ; 解 222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).4. 计算下列各行列式:(1)71100251020214214; 解 7110251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-;解 2605232112131412-260503212213041224--=====c c 041203212213041224--=====r r 000003212213041214=--=====r r . (3)efcf bf de cd bd aeac ab ---;解 ef cf bf de cd bd ae ac ab ---e c b e c b ec b adf ---=abcdef adfbce 4111111111=---=.(4)dc b a 100110011001---. 解d c b a 100110011001---dc b aab ar r 10011001101021---++===== dc a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 6. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=yx z x z y zy x b a )(33+=.8. 计算下列各行列式(D k 为k 阶行列式): (1)aa D n 1 1⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解aa a a a D n 0 0010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 000 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n -a n -2=a n -2(a 2-1).(2)xa a a x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得 ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 0000 )1(=[x +(n -1)a ](x -a )n 第二章 矩阵及其运算 1. 计算下列乘积:(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.2. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A TB .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 3.已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4.设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.5. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫. 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.8. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵. 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 利用逆矩阵解下列线性方程组: (1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x .19.设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 20. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.21. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.22. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1, )3(41)2(1A E E A -=+-.第三章 矩阵的初等变换与线性方程组 1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫⎝⎛--340313021201;解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. )~⎪⎪⎭⎫⎝⎛100001000001.(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; 解 ⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011. 3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123;解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫⎝⎛-------106126311101042111000010000100001 故逆矩阵为⎪⎪⎪⎭⎫⎝⎛-------10612631110104211. 5. (2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r ,所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X . 9. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.12. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2; (3)当k ≠1且k ≠-2时, R (A )=3. P106/ 1.已知向量组A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ;B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示.证明 由 ⎪⎪⎪⎭⎫⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫ ⎝⎛-------971820751610402230421301~r ⎪⎪⎪⎭⎫⎝⎛------531400251552000751610421301 ~r ⎪⎪⎪⎭⎫ ⎝⎛-----000000531400751610421301~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示.由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R (B )≠R (B , A ), 所以A 组不能由B 组线性表示. 4. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A ,所以R (A )=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为022200043012||≠=-=B ,所以R (B )=3等于向量的个数, 从而所给向量组线性相无关.5. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1, a , -1)T , a 3=(1, -1, a )T . 解 以所给向量为列向量的矩阵记为A . 由)1)(1(111111||+-=--=a a a aa a A知, 当a =-1、0、1时, R (A )<3, 此时向量组线性相关.9.设b 1=a 1+a 2, b 2=a 2+a 3, b 3=a 3+a 4, b 4=a 4+a 1, 证明向量组b 1, b 2, b 3, b 4线性相关.证明 由已知条件得a 1=b 1-a 2, a 2=b 2-a 3, a 3=b 3-a 4, a 4=b 4-a 1,于是 a 1 =b 1-b 2+a 3 =b 1-b 2+b 3-a 4 =b 1-b 2+b 3-b 4+a 1, 从而 b 1-b 2+b 3-b 4=0,这说明向量组b 1, b 2, b 3, b 4线性相关.11.(1) 求下列向量组的秩, 并求一个最大无关组:(1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a 3=(-2, -4, 2, -8)T ; 解 由⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a , 知R (a 1, a 2, a 3)=2. 因为向量a 1与a 2的分量不成比例, 故a 1, a 2线性无关, 所以a 1, a 2是一个最大无关组.12.利用初等行变换求下列矩阵的列向量组的一个最大无关组:(1)⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125;解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~rr r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125, 所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫⎝⎛---140113*********12211. 解 因为⎪⎪⎪⎭⎫ ⎝⎛---1401131302151201221113142~rr r r --⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122112343~rr r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组. 13. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T的秩为2, 求a , b .解 设a 1=(a , 3, 1)T , a 2=(2, b , 3)T , a 3=(1, 2, 1)T , a 4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=52001110311161101110311131********) , , ,(~~2143b a a b a b a r r a a a a ,而R (a 1, a 2, a 3, a 4)=2, 所以a =2, b =5. 20.求下列齐次线性方程组的基础解系: (1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x ;解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=00004/14/3100401 2683154221081~r A ,于是得⎩⎨⎧+=-=43231)4/1()4/3(4x x x x x .取(x 3, x 4)T =(4, 0)T , 得(x 1, x 2)T =(-16, 3)T ; 取(x 3, x 4)T =(0, 4)T , 得(x 1, x 2)T =(0, 1)T . 因此方程组的基础解系为ξ1=(-16, 3, 4, 0)T , ξ2=(0, 1, 0, 4)T .(2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x .解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛----=000019/719/141019/119/201 367824531232~r A ,于是得⎩⎨⎧+-=+-=432431)19/7()19/14()19/1()19/2(x x x x x x .取(x 3, x 4)T =(19, 0)T , 得(x 1, x 2)T =(-2, 14)T ; 取(x 3, x 4)T =(0, 19)T , 得(x 1, x 2)T =(1, 7)T . 因此方程组的基础解系为ξ1=(-2, 14, 19, 0)T , ξ2=(1, 7, 0, 19)T .26. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=+++=+++=+3223512254321432121x x x x x x x x x x ;解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛=2100013011080101 322351211250011~r B . 与所给方程组同解的方程为⎪⎩⎪⎨⎧=+=--=213 843231x x x x x . 当x 3=0时, 得所给方程组的一个解η=(-8, 13, 0, 2)T . 与对应的齐次方程组同解的方程为⎪⎩⎪⎨⎧==-=043231x x x x x . 当x 3=1时, 得对应的齐次方程组的基础解系ξ=(-1, 1, 1, 0)T .(2)⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x . 解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-----=0000022/17/11012/17/901 6124211635113251~r B . 与所给方程组同解的方程为⎩⎨⎧--=++-=2)2/1((1/7)1)2/1()7/9(432431x x x x x x . 当x 3=x 4=0时, 得所给方程组的一个解η=(1, -2, 0, 0)T .与对应的齐次方程组同解的方程为⎩⎨⎧-=+-=432431)2/1((1/7))2/1()7/9(x x x x x x . 分别取(x 3, x 4)T =(1, 0)T , (0, 1)T , 得对应的齐次方程组的基础解系ξ1=(-9, 1, 7, 0)T . ξ2=(1, -1, 0, 2)T .。

线性代数习题册(第三章 矩阵的初等变换与线性方程组参考答案)

线性代数习题册(第三章 矩阵的初等变换与线性方程组参考答案)

(B) 若 A B ,则 R( A) = R(B) ;
(C ) 若 P,Q 可逆,则 R(PAQ) = R( A) ; (D) R( A + B) ≥ R( A) + R(B) .
分析:本题是考察矩阵秩的性质。(A)、(B)、(C)都是正确的。如
R(= PAQ) R= ( AQ) R( A) ,所以(C)是正确的。(D)不正确。因为
( X) (X)
3. 若矩阵 A 所有的 k 阶子式全为 0 ,则 R( A) < k .
( √)
4. 初等变换不改变矩阵的秩.
(√)
5. 设矩阵 A, B 分别为线性方程组相应的系数矩阵和增广矩阵,则线性方程组 Ax = b 有唯
一解当且仅当 R( A) = R(B).
(X)
6. 若 A 是 m × n 矩阵,且 m ≠ n ,则当 R( A) = n 时,齐次线性方程组 Ax = 0 只有零解.
( x j − xi ) ≠ 0

1≤i< j≤n
1
xn

x n−1 n
故齐次线性方程组只有唯一的零解,即 a=1 a=2 = a=n 0 。
13. 设 A 为 m × n 矩阵,且 R( A=) m < n ,则(
).
( A) 若 AB = O ,则 B = 0 ;
(B) 若 BA = O ,则 B = 0 ;

1
1 0
0
0


a11 a21
a12 a22
a13 a23

=

a21 a11
a22 a12
a23 a13

0 0 1 a31 a32 a33 a31 a32 a33

线性代数 矩阵的初等变换与线性方程组 习题课

线性代数 矩阵的初等变换与线性方程组 习题课

二、矩阵的秩及其求法
1、定义: A的秩就是A中最高阶非零子式的阶数.记作R(A)=r.
2.矩阵秩的性质 设A: m n 型矩阵,则:
(1)0 R( A) min(m, n);
0, k 0
(2) R( AT ) R( A);
(3) R(kA) R( A),k 0
(4)行阶梯形矩阵的秩等于该矩阵非零行的行数.
7.当A等于(
)时,
CH3 初等变换与方程组
a11 a12 a13 a11 3a31 a12 3a32 a13 3a33
Aa21
a22
a23



a21
a22
a23

a31 a32 a33 a31
a32
a33
1 0 0
1 0
A 0 1 0 (B) 0 1
A11 A21 A31 A41

A*


A12

A13 A14
A22 A23 A24
A32 A33 A34
0 A42

A43 A44

R( A* ) 0
例5 设A是n阶矩阵,且A2=E, 证明R(A+E)+R(A-E)=n
证明:由A2=E得: A2 E ( A E)( A E) 0
t
0

0 4 5 2
1 2 -1 1 0 -4 t 2 2 0 0 3 t 0
1 2 1 1 0 4 t 2 2 0 4 5 2
r(A)=2 3 t =0, 即 t =3
例3 设线性方程组
为A的伴随矩阵,且

线性代数课件第三章

线性代数课件第三章
的元素都为零, 则称这个矩阵为标准形矩阵.
定理 任何矩阵都可经过单纯的初等行变换化为行
最简形矩阵. 任何矩阵都可经过初等变换化为标准形矩 阵.
下面我们还是通过例子来说明该定理.
单击这里开始
从上面的例子可见, 任何矩阵经单纯的初等行变换 必能化为行阶梯形矩阵和行最简形矩阵, 但不一定能化 成标准形矩阵, 如果再使用初等列变换, 则一定能化成 标准形矩阵. 将矩阵化为行阶梯形矩阵的方法不是唯一 的, 所得结果也不唯一. 但一个矩阵的标准形是唯一的, 这反映了矩阵的另一个属性, 即矩阵的秩的概念.
第三章 矩阵的初等变换与线性方程组
第一节 矩阵的初等变换 第二节 矩阵的秩 第三节 线性方程组的解 知识要点 释疑解难 习题课
第三章 矩阵的初等变换与线性方程组
本章先引进矩阵的初等变换, 建立矩阵的秩的概念; 然后利用矩阵的秩讨论齐次线性方程组有非零解的充要 条件和非齐次线性方程组有解的充要条件, 并介绍用初 等变换解线性方程组的方法.
(i) 对调两行(对调 i, j 两行, 记作 ri rj ); (ii) 以数 k 0 乘某一行中的所有元素
(第 i 行乘 k , 记作 ri k ); (iii) 把某一行所有元素的 k 倍加到另一行对应的元素 上去(第 j 行的 k 倍加到第 i 行上,记作 ri + krj).
把定义中的“行”换成“列”,即得矩阵的初等列变 定义换. 的矩阵的初等行变换与初等列变换, 统称初等变换.

①-② ②-③
x2 x3 3, x4 3,
② ③
(B5)
0 0. ④
至此消元结束, 且得到 (1) 的同解方程组 (B5), (B5) 是方程组 (1) 的所有同解方程组中最简单的一个, 其中

《线性代数》第三章矩阵的初等变换与线性方程组精选习题及解答

《线性代数》第三章矩阵的初等变换与线性方程组精选习题及解答

例 3.10
求齐次线性方程组
⎧ ⎪ ⎨
x1 x1
− −
x2 x2
− +
x3 x3
+ x4 = 0 − 3x4 = 0
的通解.
⎪⎩x1 − x2 − 2x3 + 3x4 = 0
解 系数矩阵经过初等变换得
⎡1 −1 −1 1 ⎤
⎡1 −1 0 −1⎤
A = ⎢⎢1 −1 1 −3⎥⎥ ⎯r⎯→ ⎢⎢0 0 1 −2⎥⎥
阶梯形的非零行数判断矩阵的秩.
2
⎛1 3 1 4⎞

A
⎯r⎯→
⎜ ⎜
0
6
−4
4
⎟ ⎟
,故
R(
A)
=
2
.
⎜⎝ 0 0 0 0⎟⎠
⎡1 1 2 2 3 ⎤
例 3.2
设A=
⎢⎢0 ⎢2
1 3
1 a+2
−1 3
−1 a+6
⎥ ⎥ ⎥
,则
A
的秩
R(
A)
=
(
).
⎢⎣4 0 4 a + 7 a +11⎥⎦
(A) 必为 2
6
⎡ 1 1 0 −2 1 −1⎤
⎡1 0 0 2 −1 −1⎤
( A | b) = ⎢⎢−2 −1
1
−4 2
1
⎥ ⎥
⎯r⎯→
⎢⎢0
1
0
−4
2
0
⎥ ⎥
⎢⎣−1 1 −1 −2 1 2 ⎥⎦
⎢⎣0 0 1 −4 2 −1⎥⎦
R( A) = R( A | b) = 3 < 5 ,所以方程组有无穷多解,令 x4 = c1, x5 = c2 ,得

线性代数:第二—三章 习题课

线性代数:第二—三章   习题课

对A进行一次初等行变换, 相当于在A左边
乘 以 相 应 的m阶 初 等 方 阵 ;
对A进行一次初等列变换,相当于在A的 右边
乘 以 相 应 的n阶 初 等 方 阵 。
3/44
3)定理:任何可逆方阵都可以表示为有限个初等方阵的乘积. 推论:m n矩阵A ~ B的充要条件是:
存在m阶可逆矩阵P及n阶可逆方阵Q, 使PAQ B. 注:m n矩阵A经初等行变换化为B的充要条件是: 存在可逆方阵P,使PA B。
a21 x1
am1 x1
a22 x2
am2 x2
a2n xn amn xn
b2 bm
— m n方程组
可写成矩阵形式 Ax b,
若b 0, 称Ax 0为齐次的;
若b 0, 称Ax b为非齐次的.
满足方程组Ax b的向量x, 称为它的解向量, 也 称 为 解.
8/44
5.解的结构:x k11 k2 2 knr nr
11/44
基础解系. 基础解系为解向量中一个最大无关组.
(1) 基础解系中的向量都是原方程组的解,
(2)基础解系中所含解向量的个数等于 n r( A); (3) 方程组的每个解可以由基础解系的线性运算表示。
定理 如果 n 元齐次线性方程组 Ax=0 有非零解,则它
b k11 k2 2 kn n
成立,则称b是向量组
1
,
2
,,
的线性组合,
n
或称b 可由向量组1 , 2 ,, n线性表示,
其中k1, k2 ,, kn 称为表示系数.
注:线性方程组可表示成向量Fra bibliotek式x11 x2 2 xn n b
14/44
如果方程组有解,就等价于存在一组数k1, k2 ,, kn使

第三章矩阵的初等变换与线性方程组

第三章矩阵的初等变换与线性方程组

r2r3
12 00
3 45 002
0.5×r2
12 00
3 40 001
0 0 0 0 0 r1+(-5)r2 0 0 0 0 0
例:继续将A的行简化阶梯形化为标准形。
1 2 3 4 0 1 0 0 0 0
A 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
结论:任意矩阵Am×n总是与一个行阶梯形矩阵或行 简化阶梯形矩阵等价,也与一个标准形矩阵等价。
转例
注:矩阵A的行阶梯形矩阵中非零行的数目, 称为A的秩R(A)。
➢矩阵在作初等变换后其秩不改变,即 若A→B,则R(A)=R(B)。
➢矩阵秩的性质: (1)0 R( Amn ) min{ m, n}
(2)R( A) R( AT )
转例
3.1 线性方程组的增广矩阵
线性方程组的一般形式为
a11x1a12x2 a1nxn b1 a21x1a22x2 a2nxn b2
———
2 10 -2 -2 1 -9 3 7 3 8 -1 1
r1+r4×(-2)
———
0 14 -4 -8 1 -9 3 7 3 8 -1 1
1 -2 1 3
1 -2 1 3
1.2 初等矩阵 初等矩阵一定是方阵
定义:对单位矩阵E作一次初等变换后,得 到的矩阵称为初等矩阵。
初等矩阵有如下三种类型(对应于三种变 换),分别记作P ( i,j ),P (i[k]),P (i,j[k]) 。
对上式现右乘A-1,得 Ps Ps-1 P2 P1 AA-1 EA-1
则有 Ps Ps-1 P2 P1 E A-1 表明,通过有限次的初等行变换,将可逆矩 阵A化为E的同时,单位矩阵E则化为A-1 。

第三章矩阵的初等变换与线性方程组

第三章矩阵的初等变换与线性方程组

0 0 1
0
0
2
类型二、含参数线性方程组解的讨论
2010年期末考题 课后题16
四、(12分)设有线性方程组:
x1x1xx22
x3 x3
1
x1
x2
x3
2
问 取何值式时,此方程(1)有唯一解,(2) 无解,(3) 有无限
多解?并在有无限多解时求其通解。
答案:(1) 1且 -2有唯一解;(2) -2无解; (3) 1有无限多解,
x1 1 1 1
x2 c1 1 c2 0 0
x
3
0
1 0
2011年选考题
四.(12分)当c, d取何值时,线性方程组
x1 x2 x3 x4 x5 1
3xx2 122xx3 22xx34
x4 3x5 6x5 3
c
5 x1 4 x2 3 x3 3 x4 x5 d
并在有无穷多解时求其通解。
答案:(1) 1或 10,有唯一解, (2) 10,
2 2 1
(3)
1,
通解c 1
1
c 2
0
0
0 1 0
类型三、判断线性方程组的解
2009年期末考题
4. 设B是数域K上的n阶可逆矩阵,对应K中任意n个数b1,…,bn,
x1 b1
线性方程组B
2x2 x3
x1
x2
2x3
2
当 取何值时有解?并求出它的通解。
1 1
答案:(1)=
1,通解c
1
0
1 0
1 2
(2)
2,
通解c
1
2
1 0
课后题18
设 (2 )x1 2 x2 2 x3 1

同济大学《工程数学—线性代数》笔记和课后习题(含真题)详解(矩阵的初等变换与线性方程组)

同济大学《工程数学—线性代数》笔记和课后习题(含真题)详解(矩阵的初等变换与线性方程组)

第3章矩阵的初等变换与线性方程组3.1 复习笔记一、矩阵的初等变换1.初等变换(1)定义下面三种变换称为矩阵的初等行变换:①对调两行(对调i,j两行,记作r i↔r j);②以数k≠0乘某一行中的所有元(第i行乘k,记为r i×k);③把某一行所有元素的k倍加到另一行对应的元上去(第j行的k倍加到第i行上,记作r i+kr j).把定义中的“行”换成“列”,即得矩阵的初等列变换的定义,矩阵的初等行变换与初等列变换,统称为初等变换.(2)矩阵等价①若矩阵A经有限次初等行变换变成矩阵B,就称矩阵A与B行等价,记作;②若矩阵A经有限次初等列变换变成矩阵B,就称矩阵A与B列等价,记作;③若矩阵A经有限次初等变换变成矩阵B,则称矩阵A与B等价,记作A~B.(3)矩阵之间的等价关系的性质①反身性A~A;②对称性若A~B,则B~A;③传递性若A~B,B~C,则A~C.(4)矩阵的类型①两个矩阵,矩阵B4和B5都称为行阶梯形矩阵.行阶梯形矩阵B5又称为行最简形矩阵,其特点是:非零行的第一个非零元为1,且非零元所在的列的其他元素都为0.结论:对于任何非零矩阵A m×n总可经过有限次初等行变换把它变为行阶梯形矩阵和行最简形矩阵.②标准形矩阵F称为矩阵B的标准形,其特点是:F的左上角是一个单位矩阵,其余元素全为0.对于m×n矩阵A,总可经过初等变换(行变换和列变换)把它化为标准形此标准形由m,n,r三个数完全确定,其中r就是行阶梯形矩阵中非零行的行数.所有与A等价的矩阵组成一个集合,标准形F是这个集合中形状最简单的矩阵.2.初等变换的性质(1)定理设A与B为m×n矩阵,则:①的充分必要条件是存在m阶可逆矩阵P,使PA=B;②的充分必要条件是存在n阶可逆矩阵Q,使AQ=B;③A~B的充分必要条件是存在m阶可逆矩阵P及n阶可逆矩阵Q,使PAQ=B.(2)初等矩阵由单位矩阵E经过一次初等变换得到的矩阵称为初等矩阵.(3)性质①设A是一个m×n矩阵,对A施行一次初等行变换,等价于在A的左边乘以相应的m阶初等矩阵;对A施行一次初等列变换,等价于在A的右边乘以相应的n阶初等矩阵.②方阵A可逆的充分必要条件是存在有限个初等矩阵P1,P2,…P l,使A=P1P2…P l.③方阵A可逆的充分必要条件是.二、矩阵的秩1.秩的定义(1)k阶子式在m×n矩阵A中,任取k行与k列(k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式,称为矩阵A的k阶子式.注:m×n矩阵A的k阶子式共有个.(2)矩阵的秩设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,则D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A).注:零矩阵的秩等于0.(3)最高阶非零子式由行列式的性质可知,在A 中当所有r +1阶子式全等于0时,所有高于r +1阶的子式也全等于0,因此把r 阶非零子式称为最高阶非零子式,而A 的秩R (A )就是A 的非零子式的最高阶数.(4)满秩矩阵与降秩矩阵可逆矩阵的秩等于矩阵的阶数,不可逆矩阵的秩小于矩阵的阶数.因此,可逆矩阵又称满秩矩阵,不可逆矩阵(奇异矩阵)又称降秩矩阵.(5)等价矩阵的秩①若A ~B ,则()()R A R B =.②若可逆矩阵P ,Q 使PAQ =B ,则R (A )=R (B ). 2.秩的性质(1)0R ≤(){}min ,;m n A m n ⨯≤ (2)()()T R A R A =;(3)若A ~B,则()()R A R B =;(4)若P 、Q 可逆,则()()R PAQ R A =;(5)()(){}()()()max ,,,R A R B R A B R A R B ≤≤+特别地,当B =b 为非零列向量时,有()()(),1R A R A b R A ≤≤+;(6)()()()R A B R A R B +≤+; (7)()()(){}min ,R AB R A R B ≤; (8)若m n n l A B ⨯⨯=0,则()()R A R B n +≤. 3.满秩矩阵矩阵A 的秩等于它的列数,称这样的矩阵为列满秩矩阵.当A 为方阵时,列满秩矩阵就成为满秩矩阵.4.结论(1)设A 为n 阶矩阵,则()()R A E R A E n ++-≥. (2)若,m n n l A B C ⨯⨯=且()R A n =,则()()R B R C =. (3)设AB =0,若A 为列满秩矩阵,则B =0.三、线性方程组的解 1.解的定义设有n 个未知数m 个方程的线性方程组(3-1-1)该式可以写成以向量x 为未知元的向量方程:Ax =b ,其中,A 为系数矩阵,B =(A ,b )称为增广矩阵,线性方程组(3-1-1)如果有解,就称它是相容的,如果无解,就称它不相容.2.解的判断(1)n 元线性方程组Ax =b①无解的充分必要条件是()(),R A R A b <; ②有唯一解的充分必要条件是()(),R A R A b n ==; ③有无限多解的充分必要条件是()(),R A R A b n =<.(2)n 元齐次线性方程组Ax =0有非零解的充分必要条件是()R A n <. (3)线性方程组Ax =b 有解的充分必要条件是()(),R A R A b =.(4)矩阵方程Ax =B 有解的充分必要条件是()(),R A R A B =. (5)设AB =C,则()()(){}min ,R C R A R B ≤.3.2 课后习题详解1.用初等行变换把下列矩阵化为行最简形矩阵:解:(1)(2)(3)。

第3章-72矩阵初等变换与线性方程组作业解答

第3章-72矩阵初等变换与线性方程组作业解答

第3章 矩阵初等变换与线性方程组 (作业1)一. 填空题:设⎪⎪⎭⎫ ⎝⎛=532111363A , ⎪⎪⎭⎫ ⎝⎛-=532010363B , 则由A 变换为B 的一个初等变换为( r 2–31r 1 ); 由B 变换为A 的一个初等变换为( r 2+31r 1 ). 二. 选择题:设A =⎪⎪⎭⎫ ⎝⎛----441221442, B =⎪⎪⎭⎫ ⎝⎛-000000221, 其中矩阵B 是矩阵A 的行最简形, 以下5组初等变换及其次序: ① r 1↔r 2, r 2–2r 1, r 3+2r 1; ② r 3+r 1, r 1⨯1/2, r 2–r 1; ③ r 1–2r 2, r 3+2r 2, r 1↔r 2; ④ r 3+r 1, r 1–2r 2, r 1↔r 2; ⑤ r 3+r 1, r 1–r 2, r 2–r 1. 其中有( D )是由A 变换为B 的初等变换.(A) 2组; (B) 3组; (C) 4组; (D) 5组.三. 把矩阵⎪⎪⎪⎪⎭⎫⎝⎛---------=12433023221453334311A 化为行最简形矩阵.解:⎪⎪⎪⎪⎭⎫⎝⎛---------=12433023221453334311A ⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311⎪⎪⎪⎭⎫ ⎝⎛-----22100221002210034311 ⎪⎪⎪⎭⎫ ⎝⎛---00000000002210034311 ⎪⎪⎪⎭⎫⎝⎛---00000000002210032011 四. 利用矩阵的初等变换求方阵A =⎪⎪⎪⎭⎫ ⎝⎛--113122214的逆阵. ⎪⎪⎭⎫ ⎝⎛--100113010122001214 ⎪⎪⎭⎫ ⎝⎛---100113010122101101 ⎪⎪⎭⎫ ⎝⎛----403210212320101101 ⎪⎪⎭⎫ ⎝⎛-----614100403210101101 ⎪⎪⎭⎫ ⎝⎛-----614100825010513001, 所以,A –1=⎪⎪⎭⎫ ⎝⎛-----614825513.r 1+r 2⨯(–1) r 2+r 1⨯(–3) r 3+r 1⨯(–2) r 4+r 1⨯(–3) r 2÷(–4) r 2÷(–3)r 2÷(–5)r 3+r 2⨯(–1) r 4+r 2⨯(–1) r 1+r 3⨯(–1) r 2+r 1⨯(–2) r 3+r 1⨯(–3) r 2+r 3⨯(–2) r 2↔r 3r 2+r 3⨯(2)r 1+r 3⨯(–1) r 3÷(–1)五. 已知AX + 2E = X +B , 其中⎪⎪⎭⎫ ⎝⎛-=221001323A , ⎪⎪⎭⎫ ⎝⎛---=112221015B ,求矩阵X . 解: 由AX + 2E = X +B 得, (A –E ) X = B –2E , X =(A –E )–1(B –2E ),⎪⎪⎭⎫ ⎝⎛--100121010011001322 ⎪⎪⎭⎫ ⎝⎛--110110010011021340 ⎪⎪⎭⎫⎝⎛--021340110110010011⎪⎪⎭⎫ ⎝⎛--461100110110010011 ⎪⎪⎭⎫ ⎝⎛-----461100351010341001所以, X =(A –E )–1(B –2E ) =⎪⎪⎭⎫ ⎝⎛-----461351341⎪⎪⎭⎫ ⎝⎛---312201013=⎪⎪⎭⎫⎝⎛----051142141.六. k 取何值时矩阵A =⎪⎪⎭⎫⎝⎛-11100001k 可逆, 并在A 可逆的条件下求A –1.解: 显然|A |=k , 故A 可逆当且仅当k ≠0. 以下求A –1.方法一: (A :E )=⎪⎪⎭⎫ ⎝⎛-10011101000001001k ⎪⎪⎭⎫ ⎝⎛--1011100/10010001001k ⎪⎪⎭⎫ ⎝⎛-1/111000/10010001001k k , 所以A –1=⎪⎪⎭⎫ ⎝⎛-1/110/10001k k . 方法二: 将矩阵A 分块, A =⎪⎪⎭⎫ ⎝⎛-11100001k =⎪⎭⎫⎝⎛231A A O A由分块矩阵逆矩阵的有关结论有: A –1=⎪⎪⎭⎫ ⎝⎛-----121131211A A A A O A ,易得⎪⎭⎫ ⎝⎛=-k A /100111, )1(12=-A , ())1,1(10011,1)1(11312k k A A A -=⎪⎪⎭⎫ ⎝⎛--=---, 所以A –1=⎪⎪⎭⎫ ⎝⎛-1/110/10001k k .r 1+r 2⨯(–2) r 3+r 2⨯(1) r 1↔r 2 r 2↔r 3 r 3+r 2⨯(–4) r 3÷(–1) r 2+r 3⨯(–2) r 2↔r 3 r 3+r 1⨯(–1) r 2÷(k ) r 3+r 2⨯(1)第3章 矩阵初等变换与线性方程组 (作业2)一. 填空:1. 设⎪⎪⎪⎪⎭⎫⎝⎛=n n n n n n b a b a b a b a b a ba b a b a b a A 212221212111,其中a i ≠ 0, b i ≠ 0( i = 1, 2, …, n ),则R (A ) = 1 .解: A =(a 1, a 2, ⋅⋅⋅, a n )T (b 1, b 2, ⋅⋅⋅, b n ), R (A )≤R ((a 1, a 2, ⋅⋅⋅, a n )T )R ((b 1, b 2, ⋅⋅⋅, b n ))=1⨯1=1,而a i ≠ 0, b i ≠ 0( i = 1, 2, …, n ), 故A ≠ O , R (A )≥1, 所以R (A )=1.2. 当齐次线性方程组Ax = 0的方程个数大于未知量个数时, 则方程组 不一定 有非零解. 解: 由条件知, 系数矩阵A 的行数m 大于列数n , 因此R (A )=n 可能成立.3. 设B 为非齐次线性方程组Ax = b 的增广矩阵, 则Ax = b 有解的充分必要条件是 R (A )与R (B ) 相等 .解: 根据非齐次线性方程组有解的充分必要条件. 二. 选择题:1. 从矩阵A 中划去一行得到矩阵B ,则矩阵A , B 的秩的关系为( C ).(A)R (A ) = R (B ) +1; (B) R (A ) > R (B ); (C) R (A ) ≥ R (B ) ≥ R (A ) –1; (D) R (B ) > R (A ) –1. 解: 结论(A)(B)(D)都是不能确定的(可以举反例), 而(C)结论是正确的. 2. 矩阵A 的秩为r , 则下列结论正确的是( A ).(A) A 的所有阶数大于r 的子式全等于零; (B) A 没有r – 1阶的非零子式; (C) A 的所有r 阶子式都不为零; (D) A 的所有r – 1阶子式都不为零. 解: 由矩阵秩和最高阶非零子式的概念可得.3. 设非齐次线性方程组Ax = b 有n 个未知量, m 个方程, 且R (A ) = r , 则此方程组( A )。

(完整版)线性代数习题[第三章]矩阵的初等变换与线性方程组

(完整版)线性代数习题[第三章]矩阵的初等变换与线性方程组

习题3-1 矩阵的初等变换及初等矩阵1.用初等行变换化矩阵102120313043A-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦为行最简形.2.用初等变换求方阵321315323A⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的逆矩阵.3.设412221311A-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,32231-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦1B=,求X使AX B=.4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B.(1) 证明B可逆(2)求1AB-.习题 3-2 矩阵的秩1.求矩阵的秩:(1)310211211344A ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦(2)111212122212n n n n n n a b a b a b a b a b a b B a b a b a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L L L L L L L 01,2,,i i a b i n ≠⎡⎤⎢⎥=⎣⎦L2.设12312323k A k k -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =.3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 ..()()a R A R B = .()()b R A R B <;.()()1c R B R A >-; .()()() 1.d R A R B R A ≥≥-4. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4.5. 设n (n ≥3)阶方阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=111ΛΛΛΛΛΛΛΛa a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 11-n .6.设A 为n 阶方阵,且2A A =,试证:()()R A R A E n +-=习题 3-3线性方程组的解1. 选择题(1)设A 是m n ⨯矩阵,0Ax =是非齐次线性方程组Ax b =所对应的齐次线性方程组,则下列结论正确的是( ).A. 若0Ax =仅有零解,则Ax b =有唯一解B. 若0Ax =有非零解,则Ax b =有无穷多个解C. 若Ax b =有无穷多个解,则0Ax =仅有零解D. 若Ax b =有无穷多个解,则0Ax =有非零解,(2)对非齐次线性方程组m n A x b ⨯=,设()R A r =,则( ).A.r m =时,方程组Ax b =有解B.r n =时,方程组Ax b =有唯一解C.m n =时,方程组Ax b =有唯一解D.r n <时,方程组Ax b =有无穷多解(3)设齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0003213213221x x x x x x x x x λλλλ的系数矩阵为A ,且存在三阶方阵B ≠0,使AB =0,则 .2.-=λa 且0=B ; 2.-=λb 且0≠B ;C. 1=λ且0=B ; d . 1=λ且0≠B .(4)设非齐次线性方程组AX=b 的两个互异的解是21,X X ,则 是该方程组的解.121212121.;.;.();..22X X a X X b X X c X X d -+-+2.解下列方程组: (1)12341234123420363051050x x x x x x x x x x x x ++-=⎧⎪+--=⎨⎪++-=⎩(2)21 422221x y z wx y z wx y z w+-+=⎧⎪+-+=⎨⎪+--=⎩3.设123123123(2)2212(5)42 24(5)1x x xx x xx x xλλλλ-+-=⎧⎪+--=⎨⎪--+-=--⎩问λ为何值时,此方程组有唯一解,无解或有无穷多解?并在有无穷多解时求其通解.4. 设线性方程组⎪⎩⎪⎨⎧=++=++=++000222z c y b x a cz by ax z y x(1) a,b,c 满足何种关系时,方程组仅有零解?(2) a,b,c 满足何种关系时,方程组有无穷多解?求出其解.5.设,,,,,515454343232121a x x a x x a x x a x x a x x =-=-=-=-=-证明这个方程组有解的充分必要条件为051=∑=j j a,且在有解的情形,求出它的一般解.。

第三章 初等矩阵及习题课 3

第三章 初等矩阵及习题课 3

r2 5r3
0 3 2 1 0 4 6 0 2 0 0 0 1 1 3
2 r2 2) 1 0 0 3 ( 0 1 0 2 3 , r3 1) ( 0 0 1 1 3 2 3 X 2 3 . 1 3
等于把 A的第 j 行乘 k 加到第 i 行上 (ri krj ).
2013-7-17 14
6. 类似地,以 En (ij (k )) 右乘矩阵 A,其结果相当于 把 A 的第i列乘 k 加到第 j 列上 (c j kci ).
1 0 0 0 01 k 0 第 i 行 Amn En (i, j ) 1 , i , j , n 1n 0 01 0 第 j 行 0 0 01 nn 1 , i , j k i , n
2013-7-17 2
矩阵的初等列变换也有三种:
1. 对调 矩阵 A中第 i , j 两列,即 (ci c j );
2. 将矩阵 A中第 i列乘非零常数
k,即 ( kci );
3. 将矩阵 A中第 j列乘常数 k加至第 i列, 即 (ci kc j ).
2013-7-17 3
二、初等矩阵的概念
8
初等矩阵的性质
初等矩阵均可逆且其逆阵仍为初等矩阵
1. 变换 ri r j 的逆变换是其本身, 则E ( i , j )1 E ( i , j ) ; 1 2. 变换 ri k 的逆变换为 ri , k 1 1 则 E ( i ( k )) E ( i ( )); k 3. 变换 ri krj 的逆变换为 ri ( k )r j, 1 则 E ( ij( k )) E ( ij( k )) .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作 用:“左乘变行,右乘变列.” 行列式: | E(i, j) | 1 , | E[i(k)]| k , | E[i, j(k)]| 1 .
逆矩阵: E(i, j) 1 E(i, j) , E[i(k)]1 E[i(1 k)] , E[i, j(k)]1 E[i, j(k)] .
(三)矩阵的秩 1.定义 设矩阵 A 中有一个不等于 0 的 r 阶子式 D ,且所有 r 1 阶子式(如果存在的话)全为 0 ,则称 D 为 A 的最高 阶非零子式.数 r 称为矩阵 A 的秩,记为 R(A) . 规定:零矩阵的秩为 0 .
若矩阵 A 经过有限次初等列变换变成矩阵 B ,则称
c
矩阵 A 与 B 列等价;记作 A ~ B ;
若矩阵 A经过有限次初等变换变成矩阵 B ,则称矩
阵 A 与 B 等价;记作 A ~ B ;
(二)初等矩阵 1.定义 由单位矩阵 E 经过一次初等变换得到的矩阵称为
初等矩阵. 2.三种初等矩阵 E(i, j) , E[i(k)] ,E[i, j(k)] .
4
2
3 4 0
2 1 . 3
1 2 6 (D) 0 1 8 【
2 3 0 .

分析 本题是考查初等方阵的性质.由于 E3(2)F 为用 2 乘
矩阵 F 的第三行,故应选 (A). 解 选(A). 【例3】设线性方程组 A x 55 51 b 有唯一解,则必有
分析 本题是考查初等方阵的定义及性质.
解 E ; E[i, j(2k)] ; E[i(k 2 )] .
3 0 0
1 0 0
【例3】设矩阵
A
1
4
0
,E
0
1
0 ,则逆矩阵 ( A 2E) 1
.
0 0 3
0 0 1
分析 本题可利用初等行变换法求逆矩阵.

1 1 2
0 12
0 0

0 0 1
2.性质 (1) 0 R( Amn ) min{m, n}. (2) R( AT ) R( A) . (3)若 A ~ B ,则 R(A) R(B) . (4)若 P ,Q 可逆,则 R(PAQ) R(A) .
3.求法 (1)定义法; (2)利用初等行变换化 A为与之等价的行阶梯形 矩阵 B . B 非零行的行数就是A 的秩.
的秩为
.
分析 本题是考查列乘行形式的矩阵秩的性质.因 R(A) 1,
R(Q) 1,故 A与 Q 均至少有一个非零元,所以 AQ 也至少有
一个非零元,从而R(AQ) 1 ;又 AQ 的各行元素对应成比例, 所以 AQ 的任何阶 2子式均为 0 ,故 R(AQ) 1.可见 R(AQ) 1. 解 1. 注 一般结论:设 , 均为非零列矩阵,则 A T R(A) 1 .
(四)线性方程组的解
1. Amn x 0 有非零解 R(A) n ;
2. Amn x b有解 R(A) R(B) ,B ( A, b) ;即
(1)当 R( A) R(B) n 时,Amn x b 有唯一解;
(2)当 R(A) R(B) r n 时, Amn x b有无穷多解;
0, R(A) n 1
【例5】设 A是 43 矩阵, A的秩
R(A) 2
,而
1 B 0
0 2
2 0

R( AB)
.
1 0 3
分析 本题是考查矩阵秩的性质.因 | B | 10 0 ,所以 B可逆, 从而 R(AB) R(A) 2
解 2.
【例6】已知 m 1 矩阵 A 的秩为1 ,1 m 矩阵 Q 的秩为 1,则 AQ
(第 j 行的 k 倍加到第 i 行上,记作 ri krj ).
注 (1)将定义中“行”改为“列”,称为矩阵的初等列变
换;
(“记”号:)“r ”换为c
(2)初等行变换与初等列变换统称为初等变换.
定义2 若矩阵 A经过有限次初等行变换变成矩阵 B ,则称
r
矩阵 A与 B 行等价;记作 A ~ B;
互为逆矩阵,所以 E(1, 2(6))E(1, 2(6))A EA A, 故应选 (B) .
解 选 (B) .
【例2】设
F
1 0
2 1
3 4
,E3(2)
是3
阶初等方阵,则
E3(2)F等于
2 3 0
(A)
1 0
4
2 1 6
3 4 0
.
(B)
1 2 0
2 3 1
3 0
.
(C)
1 0
(3)当 R(A) R(B) 时, Amn x b无解.
3.通解的求法:
初等行变换法.
(五)一些重要结论
1. A 可逆 A P1P2 Pl ( Pi 为初等矩阵,i 1, 2, , l ) .
Amn ~ Bmn 存在可逆阵 P 、Q ,使 PAQ B. 2.逆矩阵的求法 (A, E) 初 等 行变换 (E, A1) .
二、典型例题举例
(一)填空题
【例1】 给mn 矩阵 A 左乘一个初等方阵,相当于对 A 施行
一次相应的 ;给 m n 矩阵A 右乘一个初等方阵,相当于
对 A 施行一次相应的
.
分析 本题是考查初等方阵的性质. 解 初等行变换;初等列变换.
【例2】 E(i, j)2 ,E(i, j(k))2 , E(i(k))2 .
(二)选择题【例1】Fra bibliotekA是n 阶方阵,则下列各式中正确的是
(A) AE(1, 2(8))2 A .
(B) E(1, 2(6))E(1, 2(6))A A .
(C) AE(i(3))E(i(3)) A . (D) E(i(3))2 A A . 【 】
分析 本题是考查初等方阵的性质及逆.由于 E(1, 2(6)) 与 E(1, 2(6))
【例4】设 4 阶方阵A 的秩为2,则其伴随矩阵 A*的秩为 .
分析 本题是考查矩阵和伴随矩阵秩之间的关系.由 R(A) 2
可知,A 的任何 3 阶子式均为 0 ,故此时 A* 0 ,所以 R(A* ) 0
解 0.
n, R(A) n
注 A 与 A* 的秩的一般关系是 R(A* ) 1, R(A) n 1 .
线性代数习题课
第三章 矩阵的初等变 换与线性方程组
一、内容提要
(一)初等变换 定义1 下面三种变换称为矩阵的初等行变换: (i)对调两行(对调两行 i, j,记作 ri rj ); (ii)以数 k 0乘某一行中的所有元素(第i 行乘 k ,记作ri k ) (iii)把某一行所有元素的 k倍加到另一行对应的元素上去;
相关文档
最新文档