盾构机液压系统原理03

合集下载

盾构机液压系统原理

盾构机液压系统原理

盾构机液压系统原理一.液压系统原理盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说就是盾构机的心脏,起着非常重要的作用。

这些系统按其机构的工作性质可分为:1. 盾构机液压推进及铰接系统2. 刀盘切割旋转液压系统3. 管片拼装机液压系统4. 管片小车及辅助液压系统5. 螺旋输送机液压系统6. 液压油主油箱及冷却过滤系统7. 同步注浆泵液压系统8. 超挖刀液压系统以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。

有的系统还相互有联系。

下面就分别介绍一下以上8个液压系统的作用及工作原理。

(一)盾构机液压推进及铰接系统1. 盾构机液压推进(1)盾构机液压推进系统的组成盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的转弯调向及纠偏功能。

铰接系统的主要作用就是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。

(2)推进系统液压泵站:推进系统的液压泵站就是由一恒压变量泵(1P001)与一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。

恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调整,流量在0-q ma x范围内变化时,调整后的泵供油压力保持恒定。

恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。

由恒压变量泵输出的高压油分别送达A、B、C、D四组并联的推进方向控制阀组,经过阀组的流量、压力调整与换向后再去控制推进油缸,从而使推进油缸的推进速度、推力大小及方向得到准确控制。

因每组油缸的控制原理都一样,下面就以B组中的第一个油缸控制为例,介绍其作用与工作原理。

盾构机液压系统原理之欧阳法创编

盾构机液压系统原理之欧阳法创编

盾构机液压系统原理一.二.液压系统原理盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。

这些系统按其机构的工作性质可分为:1. 盾构机液压推进及铰接系统2. 刀盘切割旋转液压系统3. 管片拼装机液压系统4. 管片小车及辅助液压系统5. 螺旋输送机液压系统6. 液压油主油箱及冷却过滤系统7. 同步注浆泵液压系统8. 超挖刀液压系统以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。

有的系统还相互有联系。

下面就分别介绍一下以上8个液压系统的作用及工作原理。

(一)盾构机液压推进及铰接系统1. 盾构机液压推进(1)盾构机液压推进系统的组成盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的转弯调向及纠偏功能。

铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。

(2)推进系统液压泵站:推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。

恒压泵的压力可通过油泵上的电液比范围内变例溢流阀(A300)调整,流量在0-qm ax化时,调整后的泵供油压力保持恒定。

恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。

由恒压变量泵输出的高压油分别送达A、B、C、D四组并联的推进方向控制阀组,经过阀组的流量、压力调整和换向后再去控制推进油缸,从而使推进油缸的推进速度、推力大小及方向得到准确控制。

因每组油缸的控制原理都一样,下面就以B组中的第一个油缸控制为例,介绍其作用和工作原理。

盾构机各系统原理浅析

盾构机各系统原理浅析

盾构机各系统原理浅析本文针对分析海瑞克EPB土压平衡盾构机的各个系统及其工作原理,及整个盾构施工介绍。

海瑞克盾构机由西门子公司的S7-PLC自动控制系统控制,配备了机电一体化的液压驱动系统、同步注浆设备、泡沫设备、膨润土设备及SLS-T隧道激光导向设备,并可在地面监控室对盾构机的掘进进行实时监控。

本文将就盾构机的工作原理、盾构机的组成、及各组成部分的功能结合实际施工情况做一简要阐述。

1盾构机的工作原理1.1盾构机的掘进液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。

1.2掘进中控制排土量与排土速度当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。

1.3管片拼装盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。

盾构机的组成及各组成部分在施工中的作用盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1 577kW,最大掘进扭矩5 300kN·m,最大推进力为36400 kN,最陕掘进速度可达8cm/min。

盾构机主要由9大部分组成,他们分别是盾休、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。

2.1盾体盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。

前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。

盾构机液压系统说明

盾构机液压系统说明

盾构机液压系统说明盾构机液压系统说明1、系统概述1.1 功能描述本文档旨在对盾构机液压系统进行详细说明,包括系统的功能、工作原理、组成部分以及操作维护等内容。

1.2 适用范围本文档适用于所有型号和规格的盾构机液压系统。

2、工作原理2.1 液压传动原理盾构机液压系统采用液压传动原理,通过液压油泵提供的高压油液,驱动液压缸、液压马达等液压元件完成各项工作。

2.2 工作过程盾构机液压系统工作过程包括起始阶段、推进阶段、注浆阶段和停机阶段。

在每个阶段,液压系统根据具体的工作要求,调节油液流量、压力等参数。

3、组成部分3.1 液压油泵盾构机液压系统中的液压油泵负责提供高压油液,通常采用可调节排量液压泵。

3.2 液压油箱液压油箱用于存放液压油液,并通过滤油器过滤油液,保证其清洁。

3.3 液压缸液压系统中的液压缸负责产生推力,推动盾构机前进。

液压缸根据具体的工作需求,可分为主推力液压缸和辅助液压缸。

3.4 液压马达液压马达负责驱动其他工作装置的旋转运动,如刀盘的旋转。

3.5 液压阀盾构机液压系统中的液压阀负责控制油液的流量和压力,保证系统正常工作。

4、操作维护4.1 操作说明在操作盾构机液压系统前,需要对系统进行操作前的准备工作,包括检查油液、检查液压元件等。

4.2 维护保养盾构机液压系统需要定期进行维护保养工作,包括更换液压油、清洗液压元件、检查液压管路等。

5、附件本文档涉及的附件包括液压系统结构图、液压系统工作流程图以及液压系统维护记录表。

6、法律名词及注释6.1 液压传动原理:指利用液力传动作用,通过流体的流动和压力变化来实现能量传递和控制的原理。

6.2 液压油泵:指将液体能量,即流体动能和压力能转化为机械能的液压元件。

6.3 液压缸:指转化液压能量为机械能,产生线性运动的装置。

盾构机液压系统原理(海瑞克)

盾构机液压系统原理(海瑞克)

盾构机液压系统原理(海瑞克)盾构机液压系统原理一.液压系统原理盾构机得绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说就是盾构机得心脏,起着非常重要得作用。

这些系统按其机构得工作性质可分为:1.盾构机液压推进及铰接系统2.刀盘切割旋转液压系统3.管片拼装机液压系统4.管片小车及辅助液压系统5.螺旋输送机液压系统6.液压油主油箱及冷却过滤系统7.同步注浆泵液压系统8.超挖刀液压系统以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立得系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站、有得系统还相互有联系。

下面就分别介绍一下以上8个液压系统得作用及工作原理。

(一)盾构机液压推进及铰接系统1.盾构机液压推进(1)盾构机液压推进系统得组成盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布得安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力得区域,为盾构机前进提供推进力、推进速度,通过调整四个区域得压力差来实现盾构机得转弯调向及纠偏功能、铰接主就盾弯时半直而尾片、盾体与围岩间得摩擦阻力。

(2)推进系统液压泵站:推进系统得液压泵站就是由一恒压变量泵(1P001)与一定量泵(1P002)组成得双联泵,功率为75KW,恒压变量泵为盾构得前进供给恒定得动力。

恒压泵得压力可经由过程油泵上得电液比例溢流阀(A300)调解,流量在0-qmax范围内变化时,调整后得泵供油压力保持恒定。

恒压式变量泵常用于阀控系统得恒压油源以避免溢流损失。

系统得要作用是减小构机转或纠偏得曲率径上得线段,从减少盾与管由恒压变量泵输出得高压油分别送达A、B、C、D四组并联得推进方向控制阀组,经过阀组得流量、压力调整与换向后再去控制推进油缸,从而使推进油缸得推进速度、推力大小及方向得到准确控制。

因每组油缸得控制原理都一样,下面就以B组中得第一个油缸控制为例,介绍其作用与工作原理。

盾构机液压系统说明

盾构机液压系统说明

盾构机液压系统说明盾构机是一种广泛应用于隧道挖掘的工程机械,其液压系统是实现其高效运作的重要部分。

本文将详细介绍盾构机液压系统的构成、工作原理及特点。

一、盾构机液压系统的构成盾构机液压系统主要由液压泵、液压缸、液压阀和其他辅助元件组成。

1、液压泵:是液压系统的核心部件,它负责将机械能转化为液压能。

在盾构机中,液压泵通常由电动机或柴油机驱动。

2、液压缸:是执行元件,负责将液压能转化为机械能,推动盾构机的刀盘进行挖掘。

3、液压阀:控制液压油的流向和压力,从而控制液压缸的动作。

4、辅助元件:包括油箱、滤油器、密封件、管道等,它们分别负责储存液压油、过滤杂质、保持密封和输送液压油。

二、盾构机液压系统的工作原理盾构机液压系统的工作原理可以概括为“压力传递”。

当液压泵运转时,它从油箱中吸入液压油,然后通过高压管道将液压油输送到液压缸。

在液压缸内,液压油的压力被转化为推动刀盘运动的机械能。

这个过程不断重复,从而实现了盾构机的连续挖掘。

三、盾构机液压系统的特点盾构机液压系统具有以下特点:1、高压大流量:盾构机在进行隧道挖掘时需要大量的机械能,因此其液压系统通常具有高压大流量的特点。

2、可靠性高:由于隧道挖掘工作的连续性和高强度性,盾构机的液压系统必须具有极高的可靠性。

3、耐高温:由于长时间的连续工作,盾构机的液压系统可能会产生高温,因此其设计和材料必须能够承受高温。

4、维护简便:为了降低运营成本和提高工作效率,盾构机的液压系统应易于维护和保养。

5、节能环保:现代盾构机的液压系统越来越注重节能和环保,例如采用能量回收技术、降低噪音和振动等措施。

6、远程控制:为了提高操作精度和安全性,一些先进的盾构机液压系统采用了远程控制技术,操作者可以在控制室中对设备进行远程操作。

四、总结盾构机的液压系统是实现其高效运作的重要部分。

本文通过对盾构机液压系统的构成、工作原理及特点的详细介绍,使读者对这种广泛应用于隧道挖掘的工程机械有了更深入的了解。

盾构机液压系统原理

盾构机液压系统原理

盾构机液压系统原理一.液压系统原理盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。

这些系统按其机构的工作性质可分为:1. 盾构机液压推进及铰接系统2. 刀盘切割旋转液压系统3. 管片拼装机液压系统4. 管片小车及辅助液压系统5. 螺旋输送机液压系统6. 液压油主油箱及冷却过滤系统7. 同步注浆泵液压系统8. 超挖刀液压系统以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。

有的系统还相互有联系。

下面就分别介绍一下以上8个液压系统的作用及工作原理。

(一)盾构机液压推进及铰接系统1. 盾构机液压推进(1)盾构机液压推进系统的组成盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的转弯调向及纠偏功能。

铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。

(2)推进系统液压泵站:推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。

恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调整,流量在0-q ma x 范围内变化时,调整后的泵供油压力保持恒定。

恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。

由恒压变量泵输出的高压油分别送达A、B、C、D四组并联的推进方向控制阀组,经过阀组的流量、压力调整和换向后再去控制推进油缸,从而使推进油缸的推进速度、推力大小及方向得到准确控制。

因每组油缸的控制原理都一样,下面就以B组中的第一个油缸控制为例,介绍其作用和工作原理。

盾构机液压系统分

盾构机液压系统分

2、注浆系统

上图为注浆系统的砂浆罐及注浆泵,砂浆由砂浆罐流入 注浆泵,然后经注塞泵的工作将砂浆注入管片外的空隙。该 注浆系统共有四条注浆管道,
注浆系统泵站

对应图纸编号:1870-501-008-00/1(1m001+1p001) 主 要 功 能:向注浆泵提供动力液压油,同时具有供油量自动调节功 能。 所 处 位 置:2号拖车

对应图纸编号:1870-501-005-00/1(1c003) 主 要 功 能:控制连接桥铰接油缸的伸缩,该阀组包括有电磁阀、溢 流阀、单向阀、节流阀等。 所 处 位 置:连接桥

对应图纸编号:1870-501-006-00/1(1c007) 主 要 功 能:控制二级螺旋输送机舱门油缸的伸缩,该阀组包括有电 磁阀、溢流阀、单向阀、节流阀等。 所 处 位 置:连接桥
液压泵站图
1、推进及铰接系统:

盾构机的前进通过推进油缸的工作来完成,推进油缸 的工作由液压泵站提供的动力液压油在液压阀件的控制下 完成;铰接油缸用来连接中盾和盾尾,在盾构转弯或进行 纠偏时,需要通过铰接油缸的伸缩达到纠偏或转弯的目的, 铰接油缸只能在被动力作用下工作。
推进油缸
推进及铰接油缸泵站

对应图纸编号:1870-501-008-00/1(1p002) 主 要 功 能:控制注浆泵闸阀的开闭及注浆泵油缸的伸缩。 所 处 位 置:1号拖车
3、管片移运系统

对应图纸编号:1870-501-005-00/1(1m001+1p001+1s002) 主 要 功 能:向管片运输小车及螺旋输送机的两个舱门油缸伸缩提供 动力液压油,同时具有供油量及油压自动调节功能。 所 处 位 置:2号拖车

盾构机液压系统原理之欧阳歌谷创作

盾构机液压系统原理之欧阳歌谷创作

盾构机液压系统原理一.欧阳歌谷(2021.02.01)二.液压系统原理盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。

这些系统按其机构的工作性质可分为:1. 盾构机液压推进及铰接系统2. 刀盘切割旋转液压系统3. 管片拼装机液压系统4. 管片小车及辅助液压系统5. 螺旋输送机液压系统6. 液压油主油箱及冷却过滤系统7. 同步注浆泵液压系统8. 超挖刀液压系统以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。

有的系统还相互有联系。

下面就分别介绍一下以上8个液压系统的作用及工作原理。

(二)盾构机液压推进及铰接系统1. 盾构机液压推进(1)盾构机液压推进系统的组成盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的转弯调向及纠偏功能。

铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。

(2)推进系统液压泵站:推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。

恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调整,流量在0qmax范围内变化时,调整后的泵供油压力保持恒定。

恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。

由恒压变量泵输出的高压油分别送达A、B、C、D四组并联的推进方向控制阀组,经过阀组的流量、压力调整和换向后再去控制推进油缸,从而使推进油缸的推进速度、推力大小及方向得到准确控制。

因每组油缸的控制原理都一样,下面就以B组中的第一个油缸控制为例,介绍其作用和工作原理。

盾构液压系统的设计与性能分析

盾构液压系统的设计与性能分析

盾构液压系统的设计与性能分析一、引言盾构液压系统作为盾构机主要控制系统之一,在隧道施工中扮演着重要角色。

本文将着重探讨盾构液压系统的设计原理和性能分析,以帮助读者更好地了解和应用盾构液压系统。

二、盾构液压系统的设计原理1. 系统组成盾构液压系统主要由液压控制单元、工作流体、执行器和控制元件等组成。

液压控制单元包括主控制阀、液压泵、油箱和油液过滤器等。

工作流体通常使用油作为介质,它承担着传递动力和控制信号的功能。

执行器包括液压缸和液控换向阀等,用于控制盾构机的开、关、转动等操作。

控制元件包括传感器、液压阀和操纵台等,用于感知运行状态并进行相应控制。

2. 系统工作原理盾构液压系统的工作原理是通过控制液压泵的运行产生的液压力来实现盾构机运动的控制。

当操纵台上的操作杆操作时,操纵台上的传感器会感知到并将信号传递给主控制阀,主控制阀会按照信号指令控制液压泵的运行和泵送的油量。

油液通过液压泵进入液压缸,推动盾构机运动。

同时,液控换向阀根据传感器的信号控制液压缸的转向和速度。

三、盾构液压系统的性能分析1. 系统的传动效率盾构液压系统的传动效率是衡量系统性能的重要指标之一。

传动效率高意味着系统能够更好地将能量传递给执行器,并保持较低的能量损失。

为提高传动效率,设计中应选择高效的液压泵、控制阀和执行器,并采取有效的密封措施来减少泄漏。

2. 系统的稳定性盾构液压系统的稳定性直接影响盾构机的运行效果和工作安全性。

在系统设计中,应考虑合适的工作流体的粘度和温度,以确保系统在不同工况下的稳定性。

此外,合理的系统结构和控制参数设置也对系统稳定性至关重要。

3. 系统的响应速度盾构液压系统的响应速度主要受液压泵的流量输出和执行器的尺寸等因素影响。

高响应速度意味着系统能够更快地实现操作指令,提高盾构机的工作效率。

在液压泵和执行器的选型中,应考虑系统所需的最大流量和操作速度,并适当增加液控换向阀的数量以提高响应速度。

4. 系统的负荷能力盾构液压系统的负荷能力是指系统能够承担的最大工作负荷。

盾构机液压推进系统

盾构机液压推进系统

盾构机推进液压系统仿真分析(图)摘要:推进系统是盾构机的关键系统之一。

本文阐述了盾构机推进液压系统的原理。

利用AMESim 仿真工具对该系统进行了仿真。

仿真结果表明常规压力控制会引起流量的剧烈波动,常规流量控制又会引起压力波动,而压力流量复合控制方式既可以进行压力闭环控制又可是进行流量闭环控制,从而减小压力和流量的波动,达到对推进压力和推进速度的实时控制的目的。

关键词:盾构机,推进液压系统,压力流量复合控制;AMESim仿真1. 前言盾构掘进机是一种用于地下隧道工程开挖的复杂机电系统,具有开控切削土体、输送土碴、拼装隧道衬砌、测量导向纠偏等功能。

盾构掘进机已广泛用于地铁、铁路、公路、市政、水电隧道工程。

具有开挖速度快、质量高、人员劳动强度小、安全性高、对地表沉降和环境影响小等优点,比之传统的钻爆法隧道施工具有明显的优势,有着良好的综合效益。

推进系统承担着整个盾构机械的顶进任务,要求完成盾构掘进机的转弯、曲线行进、姿态控制、纠偏以及同步运动,使得盾构掘进机能沿着事先设定好的路线前进,是盾构机的关键系统之一。

考虑到盾构掘进机具有大功率、变负载和动力远距离传递及控制特点,其推进系统都采用液压系统来实现动力的传递、分配及控制。

本文针对盾构推进液压系统的工况要求采用AMESim 仿真工具进行了系统的相关分析研究。

仿真结果对实际系统的设计具有重要意义。

2 推进液压系统原理介绍盾构机推进液压系统原理图如图1 所示。

比例溢流阀 3 调节液压缸压力,达到压力控制;比例调速阀14 来调节进入系统的流量,达到速度控制;三位四通电磁阀12 实现推进缸的推进、后退和停止状态;插装阀1 可以为推进油缸的快速运动时提供快速流通通道,减少液压油进入液压缸的沿程压力损失。

插装13可以实现为推进缸快速退回提供快速流通通道,减小液压油回程阻力。

溢流阀10 可以对系统起缓冲作用,当液压缸进行推进的瞬间进油口会出现瞬时的过载,这样溢流阀就会立即开启形成短路,使进、回油路自循环,过载油液得到缓冲;二位二通阀7 通电可以对故障中液压缸进行卸载检修,减小卸载中的压力冲击。

地铁盾构施工中的液压系统维护与故障处理

地铁盾构施工中的液压系统维护与故障处理

地铁盾构施工中的液压系统维护与故障处理一、引言随着城市规模不断扩大,地铁交通成为了现代城市发展中的重要组成部分。

而地铁盾构施工作为地铁线路建设的关键环节,其液压系统的维护与故障处理显得尤为重要。

本文将从液压系统的基本原理、维护技巧以及故障处理等方面进行阐述。

二、液压系统的基本原理液压系统以液体作为动力传递媒介,通过压力传递和控制来实现机械运动的一种系统。

地铁盾构机的液压系统由油箱、液压泵、液压缸、控制阀等组成。

其工作原理是利用液体在密闭管路中传递增大的压力,从而推动并控制盾构机的各个部件运动。

三、液压系统的维护技巧1. 定期检查液压油:液压系统的稳定运行离不开合格的液压油。

因此,定期对液压油进行检查,包括油质清洁度、温度、黏度等指标,确保液压油处于最佳状态。

2. 注意液压油中水分的处理:水分对液压油的影响是很大的,会导致液压油发生泡沫、加速氧化等问题。

因此,对含水液压油进行处理,可采用离心油水分离器等设备,去除其中的水分。

3. 保持液压系统的清洁:定期清洗液压系统,去除其中的杂质,防止它们进入油液中引起堵塞、磨损等问题。

此外,还需要注意保持液压系统的密封性能,避免系统内部的污染。

4. 调整液压系统的压力:液压系统的工作压力对设备的性能和寿命有着重要影响。

因此,在施工过程中需要合理设置液压系统的工作压力,避免过高或过低对系统造成不利影响。

四、液压系统故障的常见原因1. 液压泵故障:液压泵是液压系统的核心部件,一旦故障,会导致整个系统瘫痪。

常见的故障原因包括泵内部损坏、泵腔中气体积聚以及泵配合间隙过大等。

2. 液压缸漏油:液压缸漏油会导致液压系统无法正常工作,常见原因有密封件老化、磨损、机械碰撞等。

3. 控制阀故障:控制阀是液压系统的调节和控制中枢,如果出现故障,将无法实现对其他液压元件的正常控制。

4. 液压油泥化:液压油长时间使用后,会积累各种杂质和污垢,形成泥化现象,导致液压系统运行不稳定。

5. 管路堵塞:管路堵塞会阻碍液体的正常流动,造成液压系统压力升高、温度升高等问题。

盾构机液压系统原理

盾构机液压系统原理

盾构机液压系统原理液压系统原理盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。

这些系统按其机构的工作性质可分为:1. 盾构机液压推进及铰接系统2. 刀盘切割旋转液压系统3. 管片拼装机液压系统4. 管片小车及辅助液压系统5. 螺旋输送机液压系统6. 液压油主油箱及冷却过滤系统7. 同步注浆泵液压系统8. 超挖刀液压系统以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。

有的系统还相互有联系。

下面就分别介绍一下以上8个液压系统的作用及工作原理。

(一)盾构机液压推进及铰接系统1. 盾构机液压推进(1)盾构机液压推进系统的组成盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的转弯调向及纠偏功能。

铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。

(2)推进系统液压泵站:推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。

恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调整,流量在O-q max范围内变化时,调整后的泵供油压力保持恒定。

恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。

由恒压变量泵输岀的高压油分别送达A、B、C、D四组并联的推进方向控制阀组,经过阀组的流量、压力调整和换向后再去控制推进油缸,从而使推进油缸的推进速度、推力大小及方向得到准确控制。

因每组油缸的控制原理都一样,下面就以B组中的第一个油缸控制为例,介绍其作用和工作原理。

海瑞克盾构机液压系统说明附电路图

海瑞克盾构机液压系统说明附电路图

一、液压系统元件1液压泵液压泵是液压系统的动力元件,按结构可以分为柱塞泵、齿轮泵、叶片泵,按排量可以分为定量泵、变量泵,按输出出口方向又可以分为单向泵、双向泵。

泵都是由电动机或其他原动机带动旋转,通过这种往复的旋转将油不断地输送到管路中,通过各种阀的作用,控制着执行元件的运行。

在大连地铁盾构机中,螺旋输送机使用一个双向变量泵和一个定量泵,推进系统中使用一个大排量的单向变量泵,管片安装机种使用两个单向变量泵,注浆系统中使用一个单向变量泵,辅助系统使用一个单向变量泵。

a.定量齿轮泵注:右侧油液进入泵内,齿轮旋转带动油液从左侧出口流出,排量是一定的c.定量叶片泵注:转子转动,带动叶片推动油液1、2进油,3、4出油,排量一定d.斜盘式柱塞泵注:斜盘由联轴器带动转动,往复吸油、压油,斜盘角度是可以调控的2液压阀液压阀根据作用可以分为压力控制阀、流量控制阀、方向控制阀。

压力控制阀可以控制液压回路的压力,如当液压回路中压力过大时,溢流阀或卸荷阀打开泄压。

流量控制阀可以控制液压回路中的流量大小,根据流量的不同可以控制执行元件的速度。

方向控制阀主要控制液压回路中液压油的流动方向,由此可以改变液压油缸的伸缩。

各种阀一般安装在靠近泵的油液管路中,相对来说比较集中,便于检查和维修。

a.单向阀注:油液从P1口进入,克服弹簧力推开单向阀的阀芯,经孔隙从p2口流出,油液只能从p1流向p2b.溢流阀注:油从压力口进入,通过阻尼孔进入后腔,克服弹簧压力,推开阀芯,油液从溢流口c.液控单向阀注:x口接压力油时,阀芯将a与b口堵死,当x口接油箱时,若Pa大于Pb,则从a口进油,打开阀芯,流向b口,若Pb 大于Pa时,则油液从b口流向a口,d.插装阀注:控制油路克服弹簧力,接通进出口,该阀一般用于主油路e.减压阀注:主要用于控制出口压力3液压马达液压马达属于液压系统的执行元件,与液压泵的工作原理相反,液压泵是将其他形式的能(如电能、风能)转化为液压油的动能,而液压马达是将液压油的动能转化为机械能,从而实现马达的旋转带动执行元件的转动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盾构机液压系统原理一.液压系统原理盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。

这些系统按其机构的工作性质可分为:1. 盾构机液压推进及铰接系统2. 刀盘切割旋转液压系统3. 管片拼装机液压系统4. 管片小车及辅助液压系统5. 螺旋输送机液压系统6. 液压油主油箱及冷却过滤系统7. 同步注浆泵液压系统8. 超挖刀液压系统以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。

有的系统还相互有联系。

下面就分别介绍一下以上8个液压系统的作用及工作原理。

(一)盾构机液压推进及铰接系统1. 盾构机液压推进(1)盾构机液压推进系统的组成盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的转弯调向及纠偏功能。

铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。

(2)推进系统液压泵站:推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。

恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调整,流量在0-q ma x范围内变化时,调整后的泵供油压力保持恒定。

恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。

由恒压变量泵输出的高压油分别送达A、B、C、D四组并联的推进方向控制阀组,经过阀组的流量、压力调整和换向后再去控制推进油缸,从而使推进油缸的推进速度、推力大小及方向得到准确控制。

因每组油缸的控制原理都一样,下面就以B组中的第一个油缸控制为例,介绍其作用和工作原理。

油泵输出的高压油经高压管路由B组的P口进入,一路径F1(过滤)→A111(流量调整)→A101(压力调整)→经电液换向阀进入推进油缸。

缸的快进快退,提高工作效率。

A783控制的插装阀。

A403为推进油缸底端预卸荷阀。

阀组中还有液控单向阀、载荷溢流阀,以及A256压力传感器和油缸行程传感器。

四组阀组中的电液换向阀的液控油由定量泵(1P002)经减压阀(1V034)提供。

2. 铰接装置工作模式分三种:铰接装置的动力来源于推进系统的液压泵站中的定量泵(1P002),两位两通电液阀控制。

(1)铰接回收(PULL或RETRACTION)模式(减小铰接间隙),定量泵输送来的高压油从阀快(2C001)P口进入,此时(H001)不得电截止,(H002)得电导通,高压油进入铰接油缸的有杆腔使铰接油缸回收。

(2)铰接保持(HOLD或FREE)模式(浮动模式),该模式下(H001、H002)都不得电截止。

铰接油缸有杆腔的油被封闭,油量保持不变,被封闭的油在所有相互并联的有杆腔内互相补偿,直线推进时保持铰接间隙,转弯时处于浮动状态。

(3)铰接释放(RELEASE或LOOSE)模式(伸长模式),当(H001)得电导通,(H002)无电截止时,铰接油缸有杆腔的油接通低压,在盾构机推进时,因盾尾的阻力使铰接油缸被拉长,达到增大铰接间隙的目的。

该油路中还设有负载溢流阀(V2)、压力传感器(H005)及铰接间隙长度传感器。

另外可以通过(2V003、2V004、)的导通和截止达到铰接保持和铰接释放功能。

但当(2V003、2V004)两个阀的截止,在铰接油缸有杆腔的压力过高时(盾构机推进时,盾尾如果被卡住),因无压力传感器的压力显示和载荷溢流阀的溢流,可能会使铰接油缸损坏或油管爆裂。

(二)刀盘旋转液压系统刀盘旋转系统可分为补油回路、主工作回路、外部控制供油泵、主泵外部控制回路、马达外部控制回路。

刀盘旋转系统是为刀盘切割岩石或土壤时提供转速和扭矩,要求根据岩石地质的变化转速能够方便的调整。

为了得到较大的功率和扭矩,该系统采用3台315KW的双向变量液压泵并联,带动8台双向两速低速大扭矩液压马达。

下面分别介绍各回路的作用及工作原理。

补油回路:因主工作回路是闭式回路,加之系统功率大,需要进行补油和散热,所以设置了一套补油回路对其进行补油和散热。

为增大散热效率,补油回路采用了55KW低压大流量的定量泵来带走闭式回路中的大量热量,同时也对其进行了补油。

补油泵从油箱泵出的油经两个滤清器(1F001、1F002)进入3个主泵的E口,并通过两个单向阀分别对闭式回路的低压端进行补油,然后经主泵的高压端为液压马达提供动力油。

从马达返回的携带热量的低压油又回到主泵,一部分又进入主泵的高压端,一部分经排放阀从主泵的K1口流出,并经一节流阀流回油箱进行冷却。

补油回路中还设有蓄能器和压力传感器,蓄能器是保证回路的压力平稳。

主工作回路由主泵和液压马达组成,主泵是一315KW 的双向变量泵,在主泵的主回路中有补油单向阀、载荷溢流阀、及低压排放阀,主泵的控制回路有主泵斜盘伺服油缸及双向伺服控制阀,司服阀由外部控制回路调压控制,以便实现换向和无级调速。

两个补油单向阀分别向低压侧进行补油,另一个带弹簧符号的单向阀是当两侧回路都较高或相等时(如:主泵斜盘角度为0时),补油直接通过它,并经节流阀(1Z017)返回油箱。

载荷溢流阀当载荷过大时使过高的压力油泄至低压侧,以达到保护系统不受损坏。

排放阀用于闭式系统多余的热油经低压侧排放回油箱。

节流阀(1Z017)是保证排放出的压力油与油箱之间形成约20bar的压差。

主泵控制回路用于控制其斜盘的±角度,以实现刀盘的正反转及转速的无级调整。

外来控制油经换向阀(1V002)到达司服阀的左右端,使司服油缸的无杆腔进油和排油来实现活塞杆的左右移动,从而完成斜盘角度的控制。

外来控制油是通过外部控制回路中的电比例溢流阀(B006)提供,调整范围0-45bar。

马达回路含有司服油缸、司服阀及低压排放阀,司服阀由主回路压力及外部控制回路控制,当马达外载荷增大时,主回路高压侧的油压随之升高,高压油经过单向阀,一路到达司服阀左端,使司服阀右移,一路到达司服阀P口经减压阀进入司服油缸无杆腔使斜盘角度增大,从而降低转速增加扭矩,外部控制回路由控制油泵提供控制油压,当无控制油压时,马达处于高速档,当外部提供油压时,司服阀右移,使马达处于低速档,从而实现了两速控制。

外部控制供油泵(2P001):控制油泵是一台 5.5KW的恒压变量泵,泵中的两个司服阀上面一个与溢流阀联合控制泵的压力,下面一个以控制流量为主。

(B040)为加载电磁阀。

该泵的油通过滤清器(2F001)向刀盘旋转系统的主泵和液压马达以及螺旋输送机的控制回路供油。

一路去旋转主泵回路的控制阀,一路去旋转马达控制阀,另两路去两台螺旋输送机的主泵控制阀。

进入旋转主泵控制阀的油经节流和减压后在经电液比例溢流阀(B006)向旋转主泵司服阀提供0-45bar的可变压控制油压,以实现转速的无级调整。

另外从主泵P口(H88)和梭阀(V030、H92)反馈到控制阀(2C003)并汇集到两组溢流阀和载荷感知阀,两组溢流阀由手动两位四通阀转换,正常工作时使用左边溢流阀,增大扭矩时使用右边溢流阀(只能短时间使用),手动阀自动回位。

感知阀是在扭矩突然增大时,反馈的油压将减低其溢流压力,使控制主泵伺服的压力降低,从而减小主泵斜盘角降低刀盘转速。

进入旋转马达控制阀P口的油经节流阀(M10)又分两路,一路经减压阀、两位四通电磁阀(B032)到(H86)旋转马达控制马达的高低速。

另一路经减压阀、两位四通阀(B033)、单向节流阀去控制马达(1A002)的刹车(1G002)。

在(1A002)马达上装有旋转方向传感器(1S026、B035)、马达高低速传感器(1S025、B038)和油温传感器(1S023、B050)。

在刹车回路中设有蓄能器(2C002),与单向节流阀一起保证了刹车时的快杀慢放。

(三)管片拼装机液压系统为了提高管片的拼装效率及避免拼装中的管片损坏,要求系统要有一定的速度、准确的移动位置精度、足够的活动自由度及可靠的安全度。

速度由一55KW的双联恒压变量泵提高的流量控制,精度靠电液比例司服阀控制,自由度有:管片的左右旋转、提升(可左右分别提升及同时提升)、前后水平六个自由度,并有管片的抓紧及绕抓举头水平微转、前后微倾的微调功能。

55KW的双联恒压变量泵为拼装机提供动力。

当用快速档时,双泵同时工作。

低速档时,只(1P002)工作。

加载阀(C003、C004)由PLC控制,根据拼装机的工作速度可对其进行分别控制或同时控制。

旋转控制:油泵输出的高压油一路经减压阀(DM)减至30bar到达电液比例阀然后控制司服阀以达到控制流量来控制马达旋转速度。

各阀的功能如下,DM为控制油减压阀,DBV2为控制油溢流阀,DBV1与插装阀组成主溢流阀,进入司服阀前的减压阀经DUE4、DUE7节流阀后的反馈油控制,以达到动作启动时的平稳。

D1、D4为反馈油溢流阀,F1、DUE2是停止动作时起泄油的作用。

经控制阀控制后压力油分别进入两个并联的回转马达,高压侧的油一路经减压阀(1V001)减压后去控制刹车,减压阀旁的单向阀起回转停止时刹车的泄油回路。

进入马达的油先经平衡阀(此阀进油时不起作用),驱动马达旋转,马达出来的油进入下一个平衡阀,该阀在进油有一定压力后经X口其慢慢打开回油通路,并保证一定的背压,避免马达因惯性吸空,当旋转惯性过大时平衡阀右边的压力会增加,使阀芯左移以减少回油来减小惯性产生的转速,当回油压力增大到最大设定值时平衡阀中的溢流阀工作,避免了液压元件被损坏。

水平移动的控制与回转控制一样,从控制阀出来的油经平衡阀(1C004)进入水平移动油缸,控制油缸的前后移动。

提升控制:控制阀原理与回转控制相同,但在司服阀反馈油出口处只在提升回路中设置了节流阀,下降反馈口没有设置,其目的是为了较快的提高司服阀进口处减压阀的减压压力以增加下降时的反应速度,同时也反映一个功率平衡问题。

两个提升油缸即可以单控,也可以同时控制,所以有两套单独得司服控制阀,。

从控制阀出来的压力油先通过一个两位两通随动阀进入提升油缸,当达到一定压力后,油缸出油口的两位两通随动阀在进口压力的推动下打开,导通回油通道形成回路。

反之亦然。

管片抓紧控制:压力油经减压阀减压,在经三位四通电磁换向阀换向,经液压锁、单向节流阀、B口端还有溢流阀。

抓紧时,从A1口出来的油经过抓举油缸进口处的液压锁进入抓举缸的有杆腔,当达到设定的抓紧力时油缸旁的溢流阀溢流,并使油缸旁的两位两通阀换向,切断通往压力开关(1S001)的油压,使压力开关信号改变。

相关文档
最新文档