平面向量的线性运算平面向量的加减法唐月华共22页文档

合集下载

高中数学第2章平面向量2.2.1向量加法运算及其几何意义aa高一数学

高中数学第2章平面向量2.2.1向量加法运算及其几何意义aa高一数学

层 作







12/11/2021
第十二页,共五十二页。










新 知
合作
探究
释疑

素 养
















12/11/2021
第十三页,共五十二页。
向量加法(jiāfǎ)的三角形法则和平行四边形法则



主 预
[探究问题]
小 结


探 新
1.求作两个向量和的法则有哪些?这些法则的物理模型是什 素


么?

合 作
提示:(1)平行四边形法则,对应的物理模型是力的合成等.
时 分


究 释
(2)三角形法则,对应的物理模型是位移的合成等.
作 业





12/11/2021
第十四页,共五十二页。

自 主
2.设 A1,A2,A3,…,An(n∈N,且 n≥3)是平面内的点,则一
堂 小


习 探 新
般情况下,A→1A2+A→2A3+A→3A4+…+An→-1An的运算结果是什么?
第二十八页,共五十二页。



主 预 习
(2)①D→G+E→A+C→B=G→C+B→E+C→B=G→C+C→B+B→E=G→B+B→E=
小 结

平面向量的加法减法与数乘运算课件

平面向量的加法减法与数乘运算课件

数乘的运算性 质
结合律
$\lambda(\mu\mathbf{a})=(\lambda\mu)\mathbf{a}$。
分配律
$\lambda(\mathbf{a}+\mathbf{b})=\lambda\mathbf{a}+\lambd a\mathbf{b}$。
反交换律
$\lambda\mathbf{a}\cdot\mathbf{b}=\lambda(\mathbf{a}\cdot \mathbf{b})$。
2023
PART 04
平面向量的加法减法与数 乘运算的应用
REPORTING
在物理学中的应用
力的合成
电磁学中的向量表示
在物理中,向量加法可以应用于力的 合成,例如两个力的向量和可以表示 为它们的加法运算。
在电磁学中,向量加法可以用于表示 电磁场中的向量,例如电场强度和磁 场强度。
速度和加速度
速度和加速度是物理学中重要的向量 概念,通过向量加法可以计算出物体 在不同方向上的速度和加速度。
详细描述
2. 这类题目需要学生灵活运用所学知识,进行深入思考 和细致计算。
2023
REPORTING
THANKS
感谢观看
求解向量与轴的夹角
通过数乘运算可以求得向量与 轴之间的夹角。
投影问题
通过数乘运算可以求得一个向 量在另一个向量上的投影。来自 2023PART 03
平面向量的加法减法与数 乘运算的几何意 义
REPORTING
平面向量的几何意 义
01
02
03
04
向量表示为有向线段
向量的起点为线段的起点,终 点为线段的终点
向量的长度和方向

平面向量的线性运算(解析版)

平面向量的线性运算(解析版)

专题一 平面向量的线性运算1.向量的线性运算首尾相接 指向终点起点重合 指向对顶点起点重合 指向被减向量2.多边形法则一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →,特别地,一个封闭图形,首尾连接而成的向量和为零向量.3.平面向量基本定理定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,存在唯一的一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中,不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底,记为{e 1,e 2}.4.“爪”子定理形式1:在△ABC 中,D 是BC 上的点,如果|BD |=m ,|DC |=n ,则AD →=m m +n AC →+n m +n AB →,其中AD →,AB →,AC →知二可求一.特别地,若D 为线段BC 的中点,则AD →=12(AC →+AB →).形式2:在△ABC 中,D 是BC 上的点,且BD →=λBC →,则AD →=λAC →+(1-λ)AB →,其中AD →,AB →,AC →知二可求一.特别地,若D 为线段BC 的中点,则AD →=12(AC →+AB →).形式1与形式2中AC →与AB →的系数的记忆可总结为:对面的女孩看过来(歌名,原唱任贤齐) 考点一 向量的线性运算C 形式1C形式2【方法总结】利用平面向量的线性运算把一个向量表示为两个基向量的一般方法向量AD →=f (AB →,AC →)的确定方法(1)在几何图形中通过三点共线即可考虑使用“爪”子定理完成向量AD →用AB →,AC →的表示.(2)若所给图形比较特殊(正方形、矩形、直角梯形、等边三角形、等腰三角形或直角三角形等),则可通过建系将向量坐标化,从而得到AD →=f (AB →,AC →)与AD →=g (AB →,AC →)的方程组,再进行求解.【例题选讲】[例1](1)(2015·全国Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A .AD →=-13AB →+43AC → B .AD →=13AB →-43AC →C .AD →=43AB →+13AC → D .AD →=43AB →-13AC →答案 A 解析 AD →=AC →+CD →=AC →+13BC →=AC →+13(AC →-AB →)=43AC →-13AB →=-13AB →+43AC →,故选A .(2) (2014·全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( ) A .AD → B .12AD → C .BC →D .12BC →答案 A 解析 EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →,故选A .(3) (2018·全国Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( ) A .34AB →-14AC → B .14AB →-34AC → C .34AB →+14AC → D .14AB →+34AC →答案 A 解析 ∵E 是AD 的中点,∴EA →=-12AD →,∴EB →=EA →+AB →=-12AD →+AB →,又知D 是BC 的中点,∴AD →=12(AB →+AC →),因此EB →=-14(AB →+AC →)+AB →=34AB →-14AC →.(4)如图,在△ABC 中,点D 在BC 边上,且CD =2DB ,点E 在AD 边上,且AD =3AE ,则用向量AB →,AC →表示CE →为( )A .29AB →+89AC → B .29AB →-89AC → C .29AB →+79AC →D .29AB →-79AC →答案 B 解析 由平面向量的三角形法则及向量共线的性质可得CE →=AE →-AC →=13AD →-AC →=13(AB →+13BC →)-AC →=13⎣⎡⎦⎤AB →+13(AC →-AB →)-AC →=29AB →-89AC →. (5)如图所示,下列结论正确的是( )①PQ →=32a +32b ;②PT →=32a -b ;③PS →=32a -12b ;④PR →=32a +b .A .①②B .③④C .①③D .②④答案 C 解析 ①根据向量的加法法则,得PQ →=32a +32b ,故①正确;②根据向量的减法法则,得PT→=32a -32b ,故②错误;③PS →=PQ →+QS →=32a +32b -2b =32a -12b ,故③正确;④PR →=PQ →+QR →=32a +32b -b =32a +12b ,故④错误,故选C . (6)如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于M ,设OA →=a ,OB →=b .则用a和b 表示向量OM →=___________.答案 OM =17a +37b 解析 设OM =m a +n b ,则AM =OM -OA =m a +n b -a =(m -1)a +n b .AD =OD -OA =12OB -OA =-a +12b .又∵A 、M 、D 三点共线,∴AM 与AD 共线.∴存在实数t ,使得AM =t AD ,即(m -1)a +n b =t ⎝⎛⎭⎫-a +12b .∴(m -1)a +n b =-t a +12t b .∴⎩⎪⎨⎪⎧m -1=-t ,n =t 2,消去t得,m -1=-2n ,即m +2n =1.①.又∵CM =OM -OC =m a +n b -14a =⎝⎛⎭⎫m -14a +n b ,CB =OB -OC =b -14a =-14a +b .又∵C 、M 、B 三点共线,∴CM 与CB 共线.∴存在实数t 1,使得CM =t 1CB ,∴⎝⎛⎭⎫m -14a +n b =t 1⎝⎛⎭⎫-14a +b ,∴⎩⎪⎨⎪⎧m -14=-14t 1,n =t 1.消去t 1得,4m +n =1,②.由①②得m =17,n =37,∴OM =17a +37b . 另解 因为A ,M ,D 三点共线,所以OM →=λ1OD →+(1-λ1)OA →=12λ1b +(1-λ1)a ,①,因为C ,M ,B三点共线,所以OM →=λ2OB →+(1-λ2)OC →=λ2b +(1-λ24)a ,②,由①②可得⎩⎨⎧12λ1=λ2,1-λ1=1-λ24,解得⎩⎨⎧λ1=67,λ2=37.故OM →=17a +37b .(7)在平行四边形ABCD 中,AC 与BD 相交于点O ,点E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC →=a ,BD →=b ,则AF →=( )A .14a +12bB .23a +13bC .12a +14bD .13a +23b答案 B 解析 如图,根据题意,得AB →=12AC →+12DB →=12(a -b ),AD →=12AC →+12BD →=12(a +b ).令AF →=tAE →,则AF →=t (AB →+BE →)=t ⎝⎛⎭⎫AB →+34 BE → =t 2a +t 4b .由AF →=AD →+DF →,令DF →=sDC →,又AD →=12(a +b ),DF →=s2a -s 2b ,所以AF →=s +12a +1-s2b ,所以⎩⎨⎧t 2=s +12,t 4=1-s2,解方程组得⎩⎨⎧s =13,t =43,把s 代入即可得到AF →=23a +13b ,故选B .另解 如图,AF →=AD →+DF →,由题意知,DE ∶BE =1∶3=DF ∶AB ,故DF →=13AB →,则AF →=12a +12b +13 (12a -12b )=23a +13b .(8)在平行四边形ABCD 中,E ,F 分别是BC ,CD 的中点,D E 交AF 于H ,记AB →,BC →分别为a ,b ,则AH →=( )A .25a -45bB .25a +45bC .-25a +45bD .-25a -45b答案 B 解析 如图,过点F 作BC 的平行线交DE 于G ,则G 是DE 的中点,且GF →=12EC →=14BC →,∴GF →=14AD →,易知△AHD ∽△FHG ,从而HF →=14AH →,∴AH →=45AF →,AF →=AD →+DF →=b +12a ,∴AH →=45⎝⎛⎭⎫b +12a =25a +45b ,故选B .(9)如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC 边上一点,BC →=3EC →,F 为AE 的中点,则BF →=( )A .23AB →-13AD → B .13AB →-23AD →C .-23AB →+13AD → D .-13AB →+23AD →答案 C 解析 BF →=BA →+AF →=BA →+12AE →=-AB →+12(AD →+12AB →+CE →)=-AB →+12(AD →+12AB →+13CB →)=-AB →+12AD →+14AB →+16(CD →+DA →+AB →)=-23AB →+13AD →.(10)如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB =a ,AC =b ,则AD 等于( )A .a -12bB .12a -bC .a +12bD .12a +b答案 D 解析 连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .【对点训练】1.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,则OC →等于( ) A .2OA →-OB → B .-OA →+2OB →C .23OA →-13OB →D .-13OA →+23OB →1.答案 A 解析 由2AC →+CB →=0得2OC →-2OA →+OB →-OC →=0,故OC →=2OA →-OB →. 2.如图,在△ABC 中,点D 是BC 边上靠近B 的三等分点,则AD →等于( )A .23AB →-13AC → B .13AB →+23AC → C .23AB →+13AC →D .13AB →-23AC →2.答案 C 解析 由平面向量的三角形法则,得AD →=AB →+BD →.又因为点D 是BC 边上靠近B 的三等分 点,所以AD →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →.3.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,若将b 与c 作为基底,则AD →等于( ) A .23b +13c B .35c -23b C .23b -13c D .13b +23c3.答案 A 解析 ∵BD →=2DC →,∴AD →-AB →=2(AC →-AD →),∴AD →-c =2(b -AD →),∴AD →=13c +23b .4.如图所示,在△ABC 中,若BC →=3DC →,则AD →=( )A .23AB →+13AC → B .23AB →-13AC → C .13AB →+23AC →D .13AB →-23AC →4.答案 C 解析 AD →=CD →-CA →=13CB →-CA →=13(AB →-AC →)+AC →=13AB →+23AC →.故选C .5.设D ,E ,F 分别为△ABC 三边BC ,CA ,AB 的中点,则DA →+2EB →+3FC →=( ) A .12AD → B .32AD → C .12AC → D .32AC →5.答案 D 解析 因为D ,E ,F 分别为△ABC 三边BC ,CA ,AB 的中点,所以DA →+2EB →+3FC →=12(BA →+CA →)+2×12(AB →+CB →)+3×12×(AC →+BC →)=12BA →+AB →+CB →+32BC →+32AC →+12CA →=12AB →+12BC →+AC →=12AC →+AC →=32AC →.6.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC →=2AE →,则EM →=( ) A .12AC →+13AB → B .12AC →+16AB → C .16AC →+12AB → D .16AC →+32AB →6.答案 C 解析 如图,∵EC →=2AE →,∴EM →=EC →+CM →=23AC →+12CB →=23AC →+12(AB →-AC →)=12AB →+16AC →.7.在△ABC 中,P ,Q 分别是边AB ,BC 上的点,且AP =13AB ,BQ =13BC .若AB →=a ,AC →=b ,则PQ →=( )A .13a +13bB .-13a +13bC .13a -13bD .-13a -13b7.答案 A 解析 PQ →=PB →+BQ →=23AB →+13BC →=23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b ,故选A .8.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC →=a ,CA →=b ,给出下列命题:①AD →=12a -b ;②BE →=a +12b ;③CF →=-12a +12b ;④AD →+BE →+CF →=0.其中正确命题的序号为________.8.答案 ②③④ 解析 BC →=a ,CA →=b ,AD →=12CB →+AC →=-12a -b ,BE →=BC →+12CA →=a +12b ,CF →=12(CB →+CA →)=12(-a +b )=-12a +12b ,所以AD →+BE →+CF →=-b -12a +a +12b +12b -12a =0.所以正确命题的序号为②③④.9.(多选)在△ABC 中,D ,E ,F 分别是边BC ,CA ,AB 的中点,AD ,BE ,CF 交于点G ,则( ) A .EF →=12CA →-12BC → B .BE →=-12BA →+12BC → C .AD →+BE →=FC → D .GA →+GB →+GC →=09.答案 CD 解析 如图,因为点D ,E ,F 分别是边BC ,CA ,AB 的中点,所以EF →=12CB →=-12BC →,故A 不正确;BE →=BC →+CE →=BC →+12CA →=BC →+12(CB →+BA →)=BC →-12BC →-12AB →=-12AB →+12BC →,故B 不正确;FC →=AC →-AF →=AD →+DC →+F A →=AD →+12BC →+F A →=AD →+FE →+F A →=AD →+FB →+BE →+F A →=AD →+BE →,故C正确;由题意知,点G 为△ABC 的重心,所以AG →+BG →+CG →=23AD →+23BE →+23CF →=23×12(AB →+AC →)+23×12(BA→+BC →)+23×12(CB →+CA →)=0,即GA →+GB →+GC →=0,故D 正确.故选CD .10.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,则用a ,b 表示向量AO →为____________.10.答案 AO →=13(a +b ) 解析 由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝⎛⎭⎫b -12a =-12k 1a +k 1b (k 1为实数),同理,可设BO →=k 2BF →=k 2(AF →-AB →)=k 2⎝⎛⎭⎫12b -a =-k 2a +12k 2b (k 2为实数),①,又BO →=BD →+DO →=-12a +⎝⎛⎭⎫-12k 1a +k 1b =-12(1+k 1)a +k 1b ,②,所以由①②,得-k 2a +12k 2b =-12(1+k 1)a BCA EF G+k 1b ,即12(1+k 1-2k 2)a +⎝⎛⎭⎫12k 2-k 1b =0.又a ,b 不共线,所以⎩⎨⎧12(1+k 1-2k 2)=0,12k 2-k 1=0,解得⎩⎨⎧k 1=13,k 2=23.所以BO →=-23a +13b .所以AO →=AB →+BO →=a +⎝⎛⎭⎫-23a +13b =13(a +b ). 另解 因为B ,O ,F 三点共线,所以AO →=λ1AB →+(1-λ1)AF →=λ1a +12(1-λ1)b ,①,因为D ,O ,C 三点共线,所以AO →=λ2AC →+(1-λ2)AD →=λ2b +12(1-λ2)a ,②,由①②可得⎩⎨⎧12(1-λ1)=λ2,λ1=1-λ22,解得⎩⎨⎧λ1=13,λ2=13.故AO →=13(a +b ).11.如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF 等于( )A .12AB -13AD B .14AB +12ADC .13AB +12DAD .12AB -23AD11.答案 D 解析 在△CEF 中,有EF →=EC →+CF →.因为点E 为DC 的中点,所以EC →=12DC →.因为点F为BC 的一个三等分点,所以CF →=23CB →.所以EF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →,故选D .12.如图,在平行四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE →=( )A .12b -aB .12a -bC .-12a +bD .12b +a12.答案 C 解析 BE →=BA →+AD →+12DC →=-a +b +12a =b -12a ,故选C .13.在平行四边形ABCD 中,AB =a ,AD =b ,AN =3NC ,M 为BC 的中点,则MN =____________.(用a ,b 表示)13.答案 -14a +14b 解析 由AN →=3NC →得,AN →=34AC →=34(a +b ),AM →=a +12b ,所以MN →=AN →-AM →=34(a+b )-⎝⎛⎭⎫a +12b =-14a +14b . 14.在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=_________.(用e 1,e 2表示)14.答案 -23e 1+512e 2 解析 如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.15.在平行四边形ABCD 中,E ,F 分别是BC ,CD 的中点,DE 交AF 于H ,记AB →,BC →分别为a ,b ,则AH →=( )A .25a -45bB .25a +45bC .-25a +45bD .-25a -45b15.答案 B 解析 设AH →=λAF →,DH →=μDE →.而DH →=DA →+AH →=-b +λAF →=-b +λ⎝⎛⎭⎫b +12a ,DH →=μDE →= μ⎝⎛⎭⎫a -12b .因此,μ⎝⎛⎭⎫a -12b =-b +λ⎝⎛⎭⎫b +12a .由于a ,b 不共线,因此由平面向量的基本定理,得⎩⎨⎧μ=12λ,-12μ=-1+λ.解之得λ=45,μ=25.故AH →=λAF →=λ⎝⎛⎭⎫b +12a =25a +45b .16.在梯形ABCD 中,AB →=3DC →,则BC →=( )A .-23AB →+AD → B .-23AB →+43AD →C .-13AB →+23AD → D .-23AB →-AD →16.答案 A 解析 因为在梯形ABCD 中,AB →=3DC →,所以BC →=BA →+AD →+DC →=-AB →+AD →+13AB →=-23AB →+AD →,故选A .考点二 根据向量线性运算求参数 【方法总结】利用平面向量的线性运算求参数的一般方法向量方程AD →=xAB →+yAC →中x ,y 的确定方法(1)在几何图形中通过三点共线即可考虑使用“爪”子定理完成向量的表示,进而确定x ,y . (2)若所给图形比较特殊(正方形、矩形、直角梯形、等边三角形、等腰三角形或直角三角形等),则可通过建系将向量坐标化,从而得到关于x ,y 的方程组,再进行求解.(3)若题目中某些向量的数量积已知,则对于向量方程AD →=xAB →+yAC →,可考虑两边对同一向量作数量积运算,从而得到关于于x ,y 的方程组,再进行求解.(4)对于求x +y 的值的有关问题可考虑平面向量的等和线定理法,见《平面向量特训之满分必杀篇》第一讲平面向量的等和线.【例题选讲】[例1](1)如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2P A →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14答案 A 解析 由题意知OP →=OB →+BP →,又BP →=2P A →,所以OP →=OB →+23BA →=OB →+23(OA →-OB →)=23OA →+13OB →,所以x =23,y =13. (2)(2013·江苏)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC→(λ1,λ2为实数),则λ1+λ2的值为________.答案 12 解析 由题意,得DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,则λ1=-16,λ2=23,即λ1+λ2=12.(3)如图,在△ABC 中,点D 在线段BC 上,且满足BD =12DC ,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AM →=mAB →,AN →=nAC →,则( )A .m +n 是定值,定值为2B .2m +n 是定值,定值为3C .1m +1n 是定值,定值为2D .2m +1n是定值,定值为3答案 D 解析 法一:如图,过点C 作CE 平行于MN 交AB 于点E .由AN →=nAC →可得AC AN =1n ,所以AE EM =AC CN =1n -1,由BD =12DC 可得BM ME =12,所以AM AB =n n +n -12=2n 3n -1,因为AM →=mAB →,所以m =2n 3n -1,整理可得2m +1n=3.故选D .法二:因为M ,D ,N 三点共线,所以AD →=λAM →+(1-λ)·AN →.又AM →=mAB →,AN →=nAC →,所以AD →=λmAB →+(1-λ)·nAC →.又BD →=12DC →,所以AD →-AB →=12AC →-12AD →,所以AD →=13AC →+23AB →.比较系数知λm =23,(1-λ)n=13,所以2m +1n=3,故选D . (4)如图,在△ABC 中,AD →=23AC →,BP →=13BD →,若AP →=λAB →+μAC →,则λ+μ的值为( )A .89B .49C .83D .43答案 A 解析 AP →=AB →+BP →=AB →+13BD →=AB →+13(AD →-AB →)=23AB →+13×23AC →=23AB →+29AC →.因为AP →=λAB →+μAC →,所以λ=23,μ=29,则λ+μ=23+29=89.(5)已知在Rt △ABC 中,∠BAC =90°,AB =1,AC =2,D 是△ABC 内一点,且∠DAB =60°,设AD →=λAB →+μAC →(λ,μ∈R ),则λμ=( )A .233B .33C .3D .23答案 A 解析 如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,则B 点的坐标为(1,0),C 点的坐标为(0,2),因为∠DAB =60°,所以设D 点的坐标为(m ,3m )(m ≠0).AD →=(m ,3m )=λAB →+μAC →=λ(1,0)+μ(0,2)=(λ,2μ),则λ=m ,且μ=32m ,所以λμ=233.(6)如图,在△ABC 中,设AB →=a ,AC →=b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点为P ,若AP →=m a +nb ,则m +n =________.答案 67 解析 根据已知条件得,BQ →=AQ →-AB →=12AP →-AB →=12(m a +n b )-a =⎝⎛⎭⎫m 2-1a +n 2b ,CR →=BR →-BC →=12BQ →-AC →+AB →=12⎣⎡⎦⎤⎝⎛⎭⎫m 2-1a +n 2b -b +a =⎝⎛⎭⎫m 4+12a +⎝⎛⎭⎫n 4-1b ,∴QP →=m 2a +n 2b ,RQ →=⎝⎛⎭⎫m 4-12a +n 4b ,RP →=-⎝⎛⎭⎫m 8+14a +⎝⎛⎭⎫12-n 8b .∵RQ →+QP →=RP →,∴⎝⎛⎭⎫3m 4-12a +3n 4b =⎝⎛⎭⎫-m 8-14a +⎝⎛⎭⎫12-n 8b ,∴⎩⎨⎧3m 4-12=-m 8-14,3n 4=12-n 8,解得⎩⎨⎧m =27,n =47,故m +n =67.(7)如图所示,点P 在矩形ABCD 内,且满足∠DAP =30°,若|AD →|=1,|AB →|=3,AP →=mAD →+nAB →(m ,n ∈R ),则mn等于( )A .13B .3C .33D .3答案 B 解析 如图,过点P 作P E ⊥AB 于点E ,作PF ⊥AD 于点F ,则结合图形及题设得AP →=AF →+AE →=mAD →+nAB →,所以可得|AF →|=m ,|PF →|=|AE →|=3n .又∠DAP =30°,在Rt △APF 中,t a n ∠F AP =t a n 30°=|PF →||AF →|=33,则33=3n m ,化简得m n =3.故选B .优解:如图所示,假设点P 在矩形的对角线BD 上,由题意易知|DB →|=2,∠ADB =60°,又∠DAP =30°,所以∠DP A =90°.由|AD →|=1,可得|DP →|=12=14|DB →|,从而可得AP →=AD →+DP →=AD →+14DB →=AD →+14(AB →-AD →)=34AD →+14AB →.又AP →=mAD →+n AB →,所以m =34,n =14,则m n=3.故选B .(8)在平行四边形ABCD 中,点E 和F 分别是边CD 和BC 的中点.若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=__________.答案 43 解析 选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=⎝⎛⎭⎫12λ+μAB →+⎝⎛⎭⎫λ+12μAD →,于是得⎩⎨⎧12λ+μ=1,λ+12μ=1,即⎩⎨⎧λ=23,μ=23,故λ+μ=43.(9)如图,在直角梯形ABCD 中,DC →=14AB →,BE →=2EC →,且AE →=rAB →+sAD →,则2r +3s =( )A .1B .2C .3D .4答案 C 解析 根据图形,由题意可得AE →=AB →+BE →=AB →+23BC →=AB →+23(BA →+AD →+DC →)=13AB →+23(AD →+DC →)=13AB →+23⎝⎛⎭⎫AD →+14AB →=12AB →+23AD →.因为AE →=rAB →+sAD →,所以r =12,s =23,则2r +3s =1+2=3,故选C .优解:如图,建立平面直角坐标系xAy ,依题意可设点B (4m ,0),D (3m ,3h ),E(4m ,2h ),其中m >0,h >0.由AE →=rAB →+sAD →,得(4m ,2h )=r (4m ,0)+s (3m ,3h ),∴⎩⎪⎨⎪⎧4m =4mr +3ms 2h =3hs ,解得⎩⎨⎧r =12,s =23.∴2r +3s =3.(10) (2017·江苏)如图,在同一个平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R ),则m +n =__________.答案 3 解析 以O 为坐标原点,OA 所在直线为x 轴建立平面直角坐标系,则A (1,0),由tan α=7,α∈⎝⎛⎭⎫0,π2,得sin α=752,cos α=152,设C (x C ,y C ),B (x B ,y B ),则x C =|OC →|cos α=2×152=15,y C =|OC →|sin α=2×752=75,即C ⎝⎛⎭⎫15,75.又cos(α+45°)=152×12-752×12=-35,sin(α+45°)=45,则x B=|OB →|cos(α+45°)=-35,y B =|OB →|sin(α+45°)=45,即B ⎝⎛⎭⎫-35,45,由OC →=mOA →+nOB →,可得⎩⎨⎧15=m -35n ,75=45n ,解得⎩⎨⎧m =54,n =74,所以m +n =54+74=3.【对点训练】1.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.1.答案 23 解析 由图知CD →=CA →+AD →,①.CD →=CB →+BD →,②.且AD →+2BD →=0.①+②×2得:3CD →=CA →+2CB →,∴CD →=13CA →+23CB →,∴λ=23.2.如图所示,在△ABC 中,D 为BC 边上的一点,且BD =2DC ,若AC →=mAB →+nAD →(m ,n ∈R ),则m -n =________.2.答案 -2 解析 由于BD =2DC ,则BC →=-3CD →,其中BC →=AC →-AB →,CD →=AD →-AC →,那么BC →=- 3CD →可转化为AC →-AB →=-3(AD →-AC →),可以得到-2AC →=-3AD →+AB →,即AC →=-12AB →+32AD →,则m =-12,n =32,那么m -n =-12-32=-2. 3.已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( ) A .23 B .43C .-3D .03.答案 D 解析 ∵DB →=AB →-AD →,∴CD →=AB →-DB →-AC →=AB →-12CD →-AC →,∴32CD →=AB →-AC →,∴CD →=23AB →-23AC →.又CD →=rAB →+sAC →,∴r =23,s =-23,∴r +s =0,故选D . 4.在锐角△ABC 中,CM →=3MB →,AM →=xAB →+yAC →(x ,y ∈R ),则x y=________.4.答案 3 解析 由题设可得AM →=CM →-CA →=34CB →+AC →=34(AB →-A C →)+AC →=34AB →+14AC →,则x =34,y=14.故xy=3.5.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =______. 5.答案 12 -16 解析 MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →=xAB →+yAC →,∴x=12,y =-16.6.如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB 、AC 于不同的两点M 、N , 若AB →=mAM →,AC →=nAN →,则m +n 的值为________.6.答案 2 解析 ∵O 是BC 的中点,∴AO →=12(AB →+AC →).又∵AB →=mAM →,AC →=nAN →,∴AO →=m 2AM →+n2AN →.∵M ,O ,N 三点共线,∴m 2+n 2=1.则m +n =2.7.已知点G 是△ABC 的重心,过G 作一条直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则xy x +y的值为( )A .12B .13C .2D .37.答案 B 解析 由已知得M ,G ,N 三点共线,∴AG →=λAM →+(1-λ)AN →=λxAB →+(1-λ)yAC →.∵ 点G 是△ABC 的重心,∴AG →=23×12(AB →+AC →)=13·(AB →+AC →),∴⎩⎨⎧λx =13,(1-λ)y =13,即⎩⎨⎧λ=13x,1-λ=13y,得13x+13y =1,即1x +1y =3,通分变形得,x +y xy =3,∴xy x +y =13. 8.如图所示,AD 是△ABC 的中线,O 是AD 的中点,若CO →=λAB →+μAC →,其中λ,μ∈R ,则λ+μ的值为 ( )A .-12B .12C .-14D .148.答案 A 解析 由题意知,CO →=12(CD →+CA →)=12×⎝⎛⎭⎫12CB →+CA →=14(AB →-AC →)+12CA →=14AB →-34AC →,则λ= 14,μ=-34,故λ+μ=-12. 9.如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.9.答案311 解析 设BP →=kBN →,k ∈R .因为AP →=AB →+BP →=AB →+kBN →=AB →+k (AN →-AB →)=AB →+k (14AC →-AB →) =(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.10.在△ABC 中,AN →=14NC →,若P 是直线BN 上的一点,且满足AP →=mAB →+25AC →,则实数m 的值为( )A .-4B .-1C .1D .410.答案 B 解析 根据题意设BP →=nBN →(n ∈R ),则AP →=AB →+BP →=AB →+nBN →=AB →+n (AN →-AB →)=AB →+n (25AC →-AB →)=(1-n )AB →+n 5AC →.又AP →=mAB →+25AC →,∴⎩⎪⎨⎪⎧1-n =m ,n 5=25,解得⎩⎪⎨⎪⎧n =2,m =-1. 11.在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN →=λAB →+μAC →,则λ+μ的值为( )A .12B .13C .14D .111.答案 A 解析 设BM →=tBC →,则AN →=12AM →=12(AB →+BM →)=12AB →+12BM →=12AB →+t 2BC →=12AB →+t 2(AC →-AB →)=⎝⎛⎭⎫12-t 2AB →+t 2AC →,∴λ=12-t 2,μ=t 2,∴λ+μ=12,故选A . 12.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若AO →=λAB →+μBC →,则λ+μ等于( )A .1B .12C .13D .2312.答案 D 解析 ∵AD →=AB →+BD →=AB →+13BC →,∴2AO →=AB →+13BC →,即AO →=12AB →+16BC →.故λ+μ=12+16=23.13.在△ABC 中,D 为三角形所在平面内一点,且AD →=13AB →+12AC →.延长AD 交BC 于E ,若AE →=λAB →+μAC →,则λ-μ的值是________.13.答案 -15 解析 设AE →=xAD →,∵AD →=13AB →+12AC →,∴AE →=x 3AB →+x 2AC →.由于E ,B ,C 三点共线,∴x 3+x 2=1,x =65.根据平面向量基本定理,得λ=x 3,μ=x 2.因此λ-μ=x 3-x 2=-x 6=-15. 14.如图,正方形ABCD 中,E 为DC 的中点,若AE →=λAB →+μAC →,则λ+μ的值为( )A .12B .-12C .1D .-114.答案 A 解析 由题意得AE →=AD →+12AB →=BC →+AB →-12AB →=AC →-12AB →,∴λ=-12,μ=1,∴λ+μ=12,故选A .15.如图所示,正方形ABCD 中,M 是BC 的中点,若AC →=λAM →+μBD →,则λ+μ=( )A .43B .53C .158D .215.答案 B 解析 因为AC →=λAM →+μBD →=λ(AB →+BM →)+μ(BA →+AD →)=λ (AB →+12AD →)+μ(-AB →+AD →)=(λ-μ) AB →+⎝⎛⎭⎫12λ+μAD →,且AC →=AB →+AD →,所以⎩⎪⎨⎪⎧λ-μ=1,12λ+μ=1,得⎩⎨⎧λ=43,μ=13,所以λ+μ=53,故选B .16.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2等于( )A .58B .14C .1D .51616.答案 A 解析 DE →=12DA →+12DO →=12DA →+14DB →=12DA →+14(DA →+AB →)=14AB →-34AD →,所以λ=14,μ=-34,故λ2+μ2=58,故选A .17.如图,直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E ,F 两点,且与对角线AC 交于点K ,其中,AE →=25AB →,AF →=12AD →,AK →=λAC →,则λ的值为______.17.答案 29 解析 ∵AE →=25AB →,AF →=12AD →,∴AB →=52AE →,AD →=2AF →.由向量加法的平行四边形法则可知,AC →=AB →+AD →,∴AK →=λAC →=λ(AB →+AD →)=λ(52AE →+2AF →)=52λAE →+2λAF →,∵E ,F ,K 三点共线,∴52λ+2λ=1,∴λ=29. 18.如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ等于( )A .1B .34C .23D .1218.答案 B 解析 ∵E 为线段AO 的中点,∴BE →=12BA →+12BO →=12BA →+12×12BD →=12BA →+14BD →=λBA →+μBD →,∴λ+μ=12+14=34.19.一直线l 与平行四边形ABCD 中的两边AB ,AD 分别交于点E ,F ,且交其对角线AC 于点M ,若AB →=2AE →,AD →=3AF →,AM →=λAB →-μAC →(λ,μ∈R ),则52μ-λ=( )A .-12B .1C .32D .-319.答案 A 解析 AM →=λAB →-μAC →=λAB →-μ(AB →+AD →)=(λ-μ)AB →-μAD →=2(λ-μ)AE →-3μAF →.因为E ,M ,F 三点共线,所以2(λ-μ)+(-3μ)=1,即2λ-5μ=1,∴52μ-λ=-12.20.如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=________.20.答案 12解析 由题意可设CG →=xCE →(0<x <1),则CG →=x (CB →+BE →)=x ⎝⎛⎭⎫CB →+12CD →=x 2CD →+xCB →.因为 CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.21.如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若CA →=λCE →+μDB →(λ,μ∈R ),则λ+μ的值为( )A .65B .85C .2D .8321.答案 B 解析 建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD =2,所以C (2,0),A (0,2),B (1,2),E (0,1),∴CA →=(-2,2),CE →=(-2,1),DB →=(1,2),∵CA →=λCE →+μDB →,∴(-2,2)=λ(-2,1)+μ(1,2),∴⎩⎪⎨⎪⎧-2λ+μ=-2,λ+2μ=2,解得⎩⎨⎧λ=65,μ=25,则λ+μ=85.22.在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB →=λAM →+μAN →,则λ+μ的值为( )A .14B .15C .45D .5422.答案 C 解析 法一:连接AC (图略),由AB →=λAM →+μAN →,得AB →=λ·12(AD →+AC →)+μ·12(AC →+AB →),则⎝⎛⎭⎫μ2-1AB →+λ2AD →+⎣⎡⎭⎫λ2+μ2AC →=0,得⎝⎛⎭⎫μ2-1AB →+λ2AD →+⎣⎡⎭⎫λ2+μ2 [AD →+12AB →]=0,得⎝⎛⎭⎫14λ+34μ-1AB →+⎝⎛⎭⎫λ+μ2AD →=0.又AB →,AD →不共线,所以由平面向量基本定理得⎩⎨⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎨⎧λ=-45,μ=85.所以λ+μ=45.法二:因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.法三:根据题意作出图形如图所示,连接MN 并延长,交AB 的延长线于点T ,由已知易得AB =45AT ,所以45AT →=AB →=λAM →+μAN →,因为T ,M ,N 三点共线,所以λ+μ=45.23.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则mn的值为( )A .2B .52C .3D .423.答案 C 解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA →所在直线为x 轴,OB →所在直线为y 轴建立平面直角 坐标系(图略),OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m=3n ,即mn=3,故选C .考点三 根据向量线性运算求参数的取值范围(最值) 【方法总结】向量线性运算求参数的取值范围(最值)问题的2种求解方法(1)几何法:即临界位置法,结合图形,确定临界位置的动态分析求出范围.(2)代数法:即目标函数法,将参数表示为某一个变量或两个变量的函数,建立函数关系式,再利用三角函数有界性、二次函数或基本不等式求最值或范围.【例题选讲】[例1](1)已知在△ABC 中,点D 满足2BD →+CD →=0,过点D 的直线l 与直线AB ,AC 分别交于点M ,N ,AM →=λAB →,AN →=μAC →.若λ>0,μ>0,则λ+μ的最小值为________.答案3+223 解析 连接AD .因为2BD →+CD →=0,所以BD →=13BC →,AD →=AB →+BD →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →.因为D ,M ,N 三点共线,所以存在x ∈R ,使AD →=xAM →+(1-x )AN →,则AD →=xλAB →+(1-x )μAC →,所以xλAB →+(1-x )μAC →=23AB →+13AC →,所以xλ=23,(1-x )μ=13,所以x =23λ,1-x =13μ,所以23λ+13μ=1,所以λ+μ=13(λ+μ)⎝⎛⎭⎫2λ+1μ=13⎝⎛⎭⎫3+2μλ+λμ≥3+223,当且仅当λ=2μ时等号成立,所以λ+μ的最小值为3+223.(2)如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM →=xBA →+yBD →(x ,y ∈R ),则2x +y 的最大值为( )A .2B .3C .2D .22答案 C 解析 方法一 如图,连接DA ,以D 点为原点,BC 所在直线为x 轴,DA 所在直线为y 轴,建立如图所示的平面直角坐标系.设内切圆的半径为r ,则圆心为坐标(0,r ),根据三角形面积公式,得12×l △ABC ×r =12×AB ×AC ×sin 60°(l △ABC 为△ABC 的周长),解得r =1.易得B (-3,0),C (3,0),A (0,3),D (0,0),设M (cos θ,1+sin θ),θ∈[0,2π),则BM →=(cos θ+3,1+sin θ),BA→=(3,3),BD →=(3,0),故BM →=(cos θ+3,1+sin θ)=(3x +3y ,3x ),故⎩⎨⎧cos θ=3x +3y -3,sin θ=3x -1,则⎩⎨⎧x =1+sin θ3,y =3cos θ3-sin θ3+23,所以2x +y =3cos θ3+sin θ3+43=23sin ⎝⎛⎭⎫θ+π3+43≤2.当θ=π6时等号成立.故2x +y 的最大值为2.方法二 因为BM →=xBA →+yBD →,所以|BM →|2=3(4x 2+2xy +y 2)=3[(2x +y )2-2xy ].由题意知,x ≥0,y ≥0,|BM →|的最大值为(23)2-(3)2=3,又(2x +y )24≥2xy ,即-(2x +y )24≤-2xy ,所以3×34(2x +y )2≤9,得2x +y ≤2,当且仅当2x =y =1时取等号.(3) (2017·全国Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .22C .5D .2答案 A 解析 建立如图所示的直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连接CE ,则CE ⊥BD .因为CD =1,BC =2,所以BD =12+22=5,EC =BC ·CD BD =25=255,所以P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0),则⎩⎨⎧x 0=2+255cos θ,y 0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0).因为AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ),所以μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤3⎝⎛⎭⎫其中sin φ=55,cos φ=255,当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.故选A .(4)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC →=xOA →+yOB →,则x +3y 的取值范围是________.答案 [1,3] 解析 设扇形的半径为1,以OB 所在直线为x 轴,O 为坐标原点建立平面直角坐标系(图略),则B (1,0),A ⎝⎛⎭⎫12,32,C (cos θ,sin θ)⎝⎛⎭⎫其中∠BOC =θ,0≤θ≤π3.则OC →=(cos θ,sin θ)=x ⎝⎛⎭⎫12,32+y (1,0),即⎩⎨⎧x2+y =cos θ,32x =sin θ,解得x =23sin θ3,y =cos θ-3sin θ3,故x +3y =23sin θ3+3cos θ-3sin θ=3cos θ-33sin θ,0≤θ≤π3.令g (θ)=3cos θ-33sin θ,易知g (θ)=3cos θ-33sin θ在⎣⎡⎦⎤0,π3上单调递减,故当θ=0时,g (θ)取得最大值为3,当θ=π3时,g (θ)取得最小值为1,故x +3y 的取值范围为[1,3].【对点训练】1.在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( )A .⎝⎛⎭⎫0,12B .⎝⎛⎭⎫0,13C .⎝⎛⎭⎫-12,0D .⎝⎛⎭⎫-13,0 1.答案 D 解析 设CO →=yBC →,∵AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →)=-yAB →+(1+y )AC →.∵BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),∴y ∈⎝⎛⎭⎫0,13,∵AO →=xAB →+(1-x )AC →,∴x =-y ,∴x ∈⎝⎛⎭⎫-13,0. 2.在△ABC 中,点D 满足BD →=DC →,当点E 在线段AD 上移动时,若AE →=λAB →+μAC →,则t =(λ-1)2+μ2的最小值是________.2.答案 12 解析 因为BD →=DC →,所以AD →=12AB →+12AC →.又AE →=λAB →+μAC →,点E 在线段AD 上移动,所以AE →∥AD →,则12λ=12μ,即λ=μ⎝⎛⎭⎫0≤λ≤12.所以t =(λ-1)2+λ2=2λ2-2λ+1=2⎝⎛⎭⎫λ-122+12.当λ=12时,t 的最小值是12.3.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N , 若AB →=mAM →,AC →=nAN →,则mn 的最大值为__________.3.答案 解析 因为点O 是BC 的中点,所以AO →=12(AB →+AC →).又因为AB →=mAM →,AC →=nAN →,所以AO →=m 2AM →+n 2AN →.又因为M ,O ,N 三点共线,所以m 2+n2=1,即m +n =2,所以mn ≤⎝⎛⎭⎫m 2+n 22=1,当且仅当m =n =1时,等号成立,故mn 的最大值为14.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点O 为△ABC 的外接圆的圆心,A =π3,且AO →=λAB →+μAC →,则λμ的最大值为________.4.答案 19 解析 ∵△ABC 是锐角三角形,∴O 在△ABC 的内部,∴0<λ<1,0<μ<1.由AO →=λ(OB →-OA →)+μ(OC →-OA →),得(1-λ-μ)AO →=λOB →+μOC →,两边平方后得,(1-λ-μ)2AO →2=(λOB →+μOC →)2=λ2OB →2+μ2OC →2+2λμOB →·OC →,∵A =π3,∴∠BOC =2π3,又|AO →|=|BO →|=|CO →|.∴(1-λ-μ)2=λ2+μ2-λμ,∴1+3λμ=2(λ+μ),∵0<λ<1,0<μ<1,∴1+3λμ≥4λμ,设λμ=t ,∴3t 2-4t +1≥0,解得t ≥1(舍)或t ≤13,即λμ≤13⇒λμ≤19,∴λμ的最大值是19.5.在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =52,若AP →=λAB →+μAD →(λ,μ∈R ),则 5λ+3μ的最大值为______. 5.答案102解析 建立如图所示的平面直角坐标系,设P (x ,y ),B (5,0),C (5,3),D (0,3).∵ AP =52,∴x 2+y 2=54.点P 满足的约束条件为⎩⎪⎨⎪⎧0≤x ≤5,0≤y ≤3,x 2+y 2=54,∵AP →=λAB →+μAD →(λ,μ∈R ),∴(x ,y )=λ(5,0)+μ(0,3),∴⎩⎨⎧x =5λ,y =3μ,∴x +y =5λ+3μ.∵x +y ≤2(x 2+y 2)=2×54=102,当且仅当x =y 时取等号,∴5λ+3μ的最大值为102.6.平行四边形ABCD 中,AB =3,AD =2,∠BAD =120°,P 是平行四边形ABCD 内一点,且AP =1,若 AP →=xAB →+yAD →,则3x +2y 的最大值为________.6.答案 2 解析 |AP →|2=(xAB →+yAD →)2=9x 2+4y 2+2xy ×3×2×⎝⎛⎭⎫-12=(3x +2y )2-3(3x )·(2y )≥(3x +2y )2-34 (3x +2y )2=14(3x +2y )2.又|AP →|2=1,因此14(3x +2y )2≤1,故3x +2y ≤2,当且仅当3x =2y ,即x =13,y =12时,3x +2y 取得最大值2.7.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →, 则μ的取值范围是________.7.答案 ⎣⎡⎦⎤0,12 解析 由题意可求得AD =1,CD =3,所以AB →=2DC →.∵点E 在线段CD 上,∴DE →= λDC → (0≤λ≤1).∵AE →=AD →+DE →,又AE →=AD →+μAB →=AD →+2μDC →=AD →+2μλDE →,∴2μλ=1,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12,即μ的取值范围是⎣⎡⎦⎤0,12. 8.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.8.答案 (-1,0) 解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0.又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).9.给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB ︵上 运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A .1B .2C .3D .29.答案 B 解析 因为点C 在以O 为圆心的圆弧AB ︵上,所以|OC →|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB →= x 2+y 2,∴x 2+y 2=1,则2xy ≤x 2+y 2=1.又(x +y )2=x 2+y 2+2xy ≤2,故x +y 的最大值为2. 10.给定两个长度为1的平面向量OA 和OB ,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆弧AB 上运动.若OC =x OA +y OB ,其中x ,y ∈R ,则x +y 的最大值为________..10.答案 2 解析 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32),设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得1cos 2sin x y y αα⎧=-⎪⎪⎨⎪=⎪⎩,所以x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin(α+π6),又α∈[0,2π3], 所以当α=π3时,x +y 取得最大值2.。

平面向量的加法和减法运算

平面向量的加法和减法运算

交换律:向量加法满足交换律,即a+b=b+a
向量加法的几何意义:表示平行四边形的对角线
向量加法的代数表示:表示两个向量的坐标之和
结合律:向量加法满足结合律,即(a+b)+c=a+(b+c)
02
平面向量的减法运算
向量减法的定义
向量减法满足三角形法则,即任意两个向量的差等于第三个向量加上与第三个向量共线的向量
在物理中的应用
力的合成与分解
电磁学中的洛伦兹力
速度与加速度的合成与分解
力的平衡与扭矩
在解析几何中的应用
平面向量加法和减法在解析几何中用于表示点的移动和变化
平面向量加法和减法可以用于表示和解决一些几何变换问题,如平移、旋转等
平面向量加法和减法可以用于解决解析几何中的一些问题,如求交点、求轨迹等
平面向量加法和减法可以用于计算两点之间的距离和方向
在日常生活中的应用
物理中的向量加法和减法:解释力和运动的合成与分解
经济学中的成本和收益分析:通过向量加法和减法进行优化
地理学中的风向和风速测量:利用向量加法和减法计算风向角和风速大小
生物学中的遗传和变异研究:通过向量加法和减法分析基因型和表现型之间的关系
汇报人:XX
感谢观看
向量减法可以表示为连接起点和终点的有向线段
向量减法的结果与减数的方向有关
向量减法的运算律
பைடு நூலகம்
向量减法满足结合律:a-b-c=a-(b+c)
向量减法满足数乘分配律:λ(a-b)=λa-λb
向量减法满足向量的模运算律:|a-b|≤|a|+|b|
向量减法满足交换律:a-b=-b+a
03

高中数学第二章平面向量2.2平面向量的线性运算2.2.1向量加法运算及其几何意义课件新人教A版必修4 (1)

高中数学第二章平面向量2.2平面向量的线性运算2.2.1向量加法运算及其几何意义课件新人教A版必修4 (1)

12
知识拓展1.向量加法的多边形法则:n个向量经过平移,顺次使前 一个向量的终点与后一个向量的起点重合,组成一组向量折线,这n 个向量的和等于从折线起点到终点的向量.这个法则叫做向量加法 的多边形法则.多边形法则的实质就是三角形法则的连续应用.
2.三角形法则和平行四边形法则就是向量加法的几何意义. (4)规定:a+0=0+a=a. (5)结论:|a+b|≤|a|+|b|.
A.3
B.4
答案:D
C.7
D.5
【做一做 1-3】在边长为 1 的正方形 ABCD 中,|������������ + ������������ + ������������|
等于( )
A.0
B.1
C. 2D. 3
解析: |������������ + ������������ + ������������| = |������������ + ������������| = |������������| = 1.
∴(a+b)+c=a+(b+c).
(3)运算的意义:向量加法的几何意义是向量加法的三角形法则和 平行四边形法则;实数加法的意义是实数的加法法则.
由此可见,向量的加法与实数的加法不相同,其根本原因是向量 不仅有大小而且还有方向,而实数仅有大小,是数量,所以向量的运 算不能按实数的运算法则来进行.
题型一
图①
图②
再以 OD,OC 为邻边作▱ODEC,连接 OE,则������������ = ������������ +
������������ =a+b+c 即为所求.

(完整版)平面向量的线性运算

(完整版)平面向量的线性运算

ABabbaa a O =−→−OBA B O B a abb=−→−OB a +b ABAa +b向量的线性运算(一)1.向量的加法向量的加法:求两个向量和的运算叫做向量的加法。

表示:→--AB −→−+BC =→--AC .规定:零向量与任一向量a ,都有00a a a +=+=.【注意】:两个向量的和仍旧是向量(简称和向量)作法:在平面内任意取一点O ,作→--OA =a →--→--OB =→--OA +→--AB a +b2.向量的加法法则(1)共线向量的加法:同向向量反向向量(2)不共线向量的加法几何中向量加法是用几何作图来定义的,一般有两种方法,即向量加法的三角形法则(“首尾相接,首尾连”)和平行四边形法则(对于两个向量共线不适应)。

三角形法则:根据向量加法定义得到的求向量和的方法,称为向量加法的三角形法则。

表示:→--AB −→−+BC=→--AC .平行四边形法则:以同一点A 为起点的两个已知向量a ,b 为邻边作平行四边形ABCD ,则以A 为起点的对角线→--AC 就是a 与b 的和,这种求向量和的方法称为向量加法的平行四边形法则。

如图,已知向量a 、b 在平面内任取一点A ,作→--AB =a ,=−→−BC b ,则向量−→−AC 叫做a与b 的和,记作a +b ,即a +b +=−→−AB =−→−BC −→−AC【说明】:教材中采用了三角形法则来定义,这种定义,对两向量共线时同样适用,当向量不共线时,向量加法的三角形法则和平行四边形法则是一致的 特殊情况:探究:(1)两相向量的和仍是一个向量;(2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |; (3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b |=|b |-|a |.(4)“向量平移”:使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加3.向量加法的运算律(1)向量加法的交换律:a +b =b +a(2)向量加法的结合律:(a +b ) +c =a +(b +c ) 证明:如图:使=−→−AB a , =−→−BC b , =−→−CD c 则(a +b )+c =−→−AC +=−→−CD −→−AD ,a + (b +c )=−→−AB −→−+BD −→−=AD ,∴(a +b )+c =a +(b +c )从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行例如:()()()()a b c d b d a c +++=+++;[()]()a b c d e d a c b e ++++=++++.例题:例1. O 为正六边形的中心,作出下列向量:(1)−→−OA +−→−OC (2)−→−BC +−→−FE (3)−→−OA +−→−FE例2.如图,一艘船从A 点出发以h km /32的速度向垂直于对岸的方向行驶,同时水aaab bba +ba +b ABC ABCD三角形法则平行四边形法则的流速为h km /2,求船实际航行的速度的大小与方向。

22 平面向量的线性运算PPT课件

22 平面向量的线性运算PPT课件
相反向量,记作-a,显然-(-a)=a,
规定,零向量的相反向量仍是零向量。
必修4
首页
上一页 下一页
2020年9月27日星期日
向量减法的定义
向量的减法
任一向量与其相反向量的和是零向量, 即
a+(-a)=(-a)+a=0,所以,如果a、b是互为相反的 向量,那么a=-b,b=-a,a+b=0,
定义:a-b=a+(-b),即减去一个向量相当于
第二章 平面向量
2.2 平面向量的线性运算
2.2.1 向量加法运算及其几何意义 2.2.2 向量减法运算及其几何意义 2.2.3 向量数乘运算及其几何意义
必修4
下一页
2020年9月27日星期日
2.2.1向量加法运算 及其几何意义
必修4
首页
上一页 下一页
2020年9月27日星期日
思考
1. 物理学中,两次位移 OA, AB 的结果和位移 O B 是相 同的。
加上这个向量的相反向量。
必修4
首页
上一页 下一页
2020年9月27日星期日
运算法则
向量的减法
已知a、b, a-b可以表示为从向量b的终点指向被减
向量a的终点的向量.
例题
已知向量a、b、c、d,求作向量a-b,c-d.
解:
同起点 连终点 指被减
必修4
首页
上一页 下一页
2020年9月27日星期日
例题
同起点,对角线上有终点
我们把这种作两个向量和的方法叫做向量加 法的平行四边形法则。
必修4
首页
上一页 下一页
2020年9月27日星期日
向量的加法
对于零向量与任一向量a, 规定a+0=0+a=a

高中数学 第二章 平面向量 2_2 平面向量的线性运算 2_2_2 向量减法运算及其几何意义备课素材

高中数学 第二章 平面向量 2_2 平面向量的线性运算 2_2_2 向量减法运算及其几何意义备课素材

高中数学第二章平面向量 2_2 平面向量的线性运算 2_2_2 向量减法运算及其几何意义备课素材2.2.2 向量减法运算及其几何意义备课资料一、向量减法法则的理解向量减法的三角形法则的式子内容是:两个向量相减,则表示两个向量起点的字母必须相同(否则无法相减),这样两个向量的差向量是以减向量的终点的字母为起点,以被减向量的终点的字母为终点的向量.只要学生理解法则内容,那么解决起向量加减法的题来就会更加得心应手,尤其遇到向量的式子运算题时,一般不用画图就可迅速求解,如下面例题:例1 化简:-+-.解:原式=+-=-=0.例2 化简OA +OC +BO +CO .解:原式=(OA +BO )+(CO OC +)=(OA -OB )+0=BA .二、备用习题1.下列等式中,正确的个数是( )①a +b =b +a ②a -b =b ③0-a =-a ④-(-a )=a⑤a +(-a )=0 A.5 B.4 C.3D.2图72.如图7,D 、E 、F 分别是△A BC 的边、、的中点,则-等于( ) A B. C.D.3.下列式子中不能化简为的是( ) A.(AB +CD )+BCB.(AD +MB )+(BC +CM )C.BM AD MB -+D.OC -OA +CD4.已知 A 、B 、C 三点不共线,O 是△A BC 内一点,若++=0,则O是△A BC 的( )A.重心B.垂心C.内心D.外心5.已知两向量a 和b,求证:|a+b|=|a-b|的充要条件是a 的方向与b 的方向垂直. 参考答案:1.C2.D3.C4.A5.证明:(1)充分性:设OA=a,OB=b,使OA⊥OB,以OA、OB为邻边作矩形OBCA,则|a+b|=||,|a-b|=||.∵四边形OBCA为矩形,∴|OC|=|BA|,故|a+b|=|a-b|.(2)必要性:设OA=a,OB=b,以OA、OB为邻边作平行四边形,则|a+b|=|OC|,|a-b|=|BA|.∵|a+b|=|a-b|,∴||=||.∴OBCA为矩形.∴a的方向与b的方向垂直.。

平面向量的线性运算平面向量的加减法唐月华23页文档

平面向量的线性运算平面向量的加减法唐月华23页文档
• 向量的加法具备吗?你能否画图解释?
向量加法满足交换律和结合律:
abba ( a + b ) + c a ( b c )
以上两个运算律可以推广到任意多个向量.
运用知识 强化练习
计算:
1 A B B C C D ;2 O BB CC A .
1AD ; 2OA .
平面向量的线性运算
向量的减法
•特殊情况
1.共线同向
a
b
ab
AC
B
2.共线反向 a
b
ab
B
AC
例2:选择题
( 1) ABBCADD
(A)AD (B)C D (C)D B (D )D C
( 2) ABACD BC
(A)AD (B)AC (C)C D (D )D C
运用知识 强化练习
计算:
1 ABAD ; 2 BCBA .
平面向量的线性运算平面向量的 加减法唐月华
怎样思想,就有怎样的生活
温故知新
零向量 长度等于 零 的向量,记作 0 单位向量 长度等于 1个单位 的向量
方向 相同或相反 的非零向量. 平行向量
向量a,b平 行,记作 a∥b . (共线向量) 规定:零向量与任一向量 平行
长度 相等 且方向 相同 的向量. 相等向量
• 三角形法则推广为多边形法则:
多个向量相加,如:AB BC CD DE EF AF ,
这时也必须“首尾相连”.
探究一:当向量共线时,如何相加?
(1)同向
(
A
B
C
AC a b
B
CA
AC a b
规定 a0: 0aa
探究二:向量的加法是否具备交换律和结合律?

平面向量的线性运算.doc

平面向量的线性运算.doc

Ca +b b A a B 第一课时 2.2. 1 向量的加(减)法运算及其几何意义教学要求:掌握向量的加法与减法的意义与几何运算,会运用三角形法则、平行四边形法则进行向量的加(减)法运算教学重点:运用三角形法则、平行四边形法则运算教学难点:向量加法、减法的几何意义教学过程:一、复习准备:1. 如何定义相等向量和共线向量? 2.如图:O 是正方形ABCD 的中心,①向量AB 与BC 相等吗?② 向量AO 与是平行向量吗? ③ 求AD :AC 的值. 3.回顾思考:力是向量,如何求、这两个力的合力呢?用什么方法? 二、讲授新课: 1. 教学向量的加(减)法运算:① 向量的加(减)法:求两向量和(差)的运算叫向量的加(减)法运算② 三角形法则:向量AB 与BC 相加时,AB 的终点B 作为BC 的起点,这时起点A 到终点C的向量AC 就是这两个向量的和向量,即 AB BC AC +=. 这种求向量和的方法叫三角形法则. (AB AC CB -=) (注意:两个向量要“首尾”相接) ③平行四边形法则:由同一点A 为起点的两个已知向量b a ,为邻边作平行四边形ABCD ,则以A 为起点的向量就是向量b a ,的和. 这种作两个向量和的方法叫做平行四边形法则,如右图: ④讨论:三角形法则、平行四边形法则是否对所有向量b a ,求和都适用? (注意:平行四边形法则对于两个向量共线时不适用. )⑤定义相反向量:与向量a 的长度相等、方向相反的向量叫做向量a 的相反向量,记作:a -规定零向量的相反向量仍是零向量.注:向量a b -可以看成是()a b +-2. 教学例题:① 课本90P 例1、95P 例3,96P 例4. (师生共同完成,注意两种法则的区别,然后变式——加变减、减变加) ② 练习:课本93页第1、2题.③ 讨论:a b -与a b +、a b +与a b +有何关系.④ 用三角形法则、平行四边形法则探讨向量的加减运算是否满足交换律、结合律.⑤ 90P 例2. (向量的实际应用,师生共同完成;变式:若船行走的路线是垂直于河岸,求速度)三、巩固练习:1.如右图,画出a b -.2.如图,D 、E 、F 分别为三边的中点,试画出AB -BC 、BC AB +、DE DF +3.作业:93页第1、2题.第二课时 2.2. 3 向量数乘运算及其几何意义第2题A BE FA B教学要求:理解向量的数乘运算及其几何意义,会进行向量的数乘运算.教学重点:向量的数乘运算教学难点:向量的数乘运算的几何意义教学过程:一、复习准备: 1. a b -与a b +、a b +与a b +有何关系?什么时候等号成立?2.如图:O 是正方形ABCD 的中心,求下列各式的值①+BC ② AB - 3.a 为非零向量,试求a a a a ----和a a a a a ++++的值.二、讲授新课:1. 教学向量的数乘运算:① 向量的数乘:求实数λ与向量a 的乘积的运算叫向量的数乘,记作:a λ规定:(Ⅰ) a λ仍然是个向量 (Ⅱ)、a a λλ= (Ⅲ) 当0λ>时向量a λ的方向与a 的方向相同,当0λ<时,向量a λ与a 的方向相反, 当0λ=时,0a λ=② 练习:a 为单位向量,试求3()a 、2a 、6a 、2(3())a 的值:变式:a 为非零向量. ③ 讨论验证下列等式:λ、μ为实数,a 、b 为向量.⑴ ()()a a λμλμ= ⑵ ()a a a λμλμ+=+ ⑶ ()a b a b λλλ+=+(数乘运算满足交换律、结合律、分配律)2、教学例题:① 例5:计算:⑴(3)4a -⨯ ⑵ 3()2()a b a b a +--- ⑶(23)2(32)a b c a b c +---+(去括号,实数与实数运算后再与向量运算)② 定理:向量a 与b 共线(0b ≠),当且仅当有唯一一个实数λ,使a b λ=.③ 出示例题6:(分析:三点可分共线与不共线两种情形,可以通过判断以这三点为端点的向 量是否共线来判断点是否共线) ④ ⑤ 出示例题7. (先找出与a 、b ⑥ 练习:如图,试用向量方法证明:对角线互相平分的四边形是平行四边形 3.小结:向量的数乘运算;两向量(0)a a ≠与b 共线满足a b λ= 三、巩固练习1. 计算:(1)322(2)6(3)43a b c a b c +---+ (2)12()2()23a b a b a +---2. 已知向量,求作向量c ,使0a b c ++=,表示的有向线段能构成三角形吗?3.求证:M 是线段AB 的中点,对于任意一点O ,都有1()2om OA OB =+ 4.在三角形ABC 中,15AE AB =,EF ∥BC 交AC 于F 点,试用AB 、AC 表示BF . 5.作业:课本第100页第4、5题.第三课时 2.2. 3 向量的相关概念及向量线性运算(练习)教学要求:掌握向量的相关概念,能熟练进行向量的线性运算.教学重点:向量的线性运算,掌握向量运算的几何作图.教学难点:向量的线性运算.教学过程:一、相关概念:1. 回顾向量、零向量、单位向量、平行向量、、共线向量、相反向量相等向量是如何定义的. (是否是零向量、单位向量只需判断长度,要判断是否为相等向量、共线向量、相反向量则还要看方向)2.向量的加、减、数乘运算统称为向量的线性运算.3.要判断两向量是否共线,只需证明a b λ=(0)a ≠.4.回答下列问题:① 平行向量是否一定方向相同?② 不相等的向量一定不平行吗? ③ 与零向量相等的向量必定是什么向量?④ 与任何向量都平行的向量是什么向量?⑤ 若两个向量在同一直线上,则这个向量一定是什么向量? ⑥ 两个非零向量相等的充要条件是什么?⑦ 共线向量一定在同一条直线上吗?(向量是仅由其大小与方向确定,特别要注重方向)⑧ 指出右图出的平行向量、相等向量、共线向量、相反向量. 5.求两向量的和、差我们一般用三角形法则和平行四边形法则.(注意,运用三角形法则时要注意两向量首尾相接,共线的两向量不适用)二、教学例题:例1. 已知单位向量d c b a ,,,(方向分别为:东、南、西、北)求作向量b a -、d c -. 变式:减变成加. (减法运算是加法运算的逆运算) 例2. 计算:(1)322(2)6(3)43a b c a b c +---+ (2)12()2()23a b a b a +--- (向量的数乘运算满足交换律、结合律、分配律)三、巩固练习: 1.平行四边形ABCD 中,b AD a AB ==,,试用a 、b 表示向量DB AC ,2.证明:b a b a b a +≤±≤-并说明什么时候取等号?(提示:用三角形法则画图证明)3.四边形ABCD 的两条对角线相交于点M (1)若12,AB e AD e ==,12.e e MA MB MD 用表示、、(2)若==.用a 、b 表示 4. 如图,知三角形ABC 的两边AB 、AC 的中点分别为M 、N ,在BN 的延长线上取点P ,使得NP=BN ,在CM 的延长线上取点Q ,使MQ=CM. 试证明:P 、A 、Q 共线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 向量的加法:求两个向量和的运算,叫做向量的加法 • 向量的加法法则:三角形法则、平行四边形法则
向量加法法则
b
已知 a ,b 向 ,求量 作 a 向 b a 量
A· a
B
ab
b
作法:
C
1.在平面内任取一点 A
2.作 AB a , BC b
则向量 AC a b
o· a
A
b ab
B
C
作法:
3则向量BA a b
.a
O
ab
B
b
注意: 1、两个向量相减,则表示两个向量起点的字母必须相同 2、差向量的终点指向被减向量的终点
向量的减法
•特殊情况
1.共线同向
ar b
ab
AC
B
2.共线反向
a
r b
ab
B
AC
例2:选择题
uuu r uuu r uuu r
( 1) ABBCADD
uuu r uuu r uuu r uuur (A)AD (B)C D (C)D B (D )D C
平面向量的线性运算
——向量的加法运算
从运动的合成看向量运算
• 在大陆和台湾没有直航之前,台湾同胞要到上海 探亲,得乘飞机要先从台北到香港,再从香港到 上海,那么这两次位移之和是什么?
位移 AB + BC = AC
上海
台北 香港
C A
B
从力的合成看向量运算
• 橡皮条在力F1与F2的作用下,从E点伸长到了O点; 同时橡皮条在力F的作用下也从E点伸长到了O点.
• 问:合力F与力F1、F2有怎样的关系?
F1+F2=F
E
O
E
O
F
F
F是以F1与F2为邻边所形成的 平行四边形的对角线
向量的加法运算 C
• 运动的合成 AB + BC = AC A
• 力的合成 F1 + F2 = F
F1 B
F2
F
数的加法启发我们,从运算的角度看, AC可以认为 是AB与BC的和,F可以认为是F1与F2的和,即位移、力的 合成可以看作向量的加法。
uuu r uuu r uuu r
( 2) ABACD BC
uuu r uuu r uuu r uuur (A)AD (B)AC (C)C D (D )D C
运用知识 强化练习
计算: uuur uuur
1 ABAD ;
uuur uuu r
2 BCBA .
uuur
uuur
1DB; 2AC .
• 向量加法的平行四边形法则: 1.将向量平移到同一起点 2.和向量即以它们作为邻边平行四边形的共起点的对 角线
• 三角形法则推广为多边形法则:
uuur uuur uuur uuur uuur uuur 多个向量相加,如:AB BC CD DE EF AF ,
这时也必须“首尾相连”.
探究一:当向量共线时,如何相加?
表 示 :aba(b),
说明: r 1、与 b 长r 度相等、方向相反的向量,
叫做 b 的相反向量
2、零向量的相反向量仍是零向量 3、任一向量和它相反向量的和是零向量
练习
r (1) (a) ____ar __
(2)a (a) __0___
r (a) a _0 ____
(a3)如__果_ _abr _,b_互,b为 相__反_ar_的__向, a量 b,那__么_0r ___
向量加r法r满足r交换r律和r结r合律r:r rr abba ( a + b ) + c a ( b c )
以上两个运算律可以推广到任意多个向量.
运用知识 强化练习
计算:
u u u r u u u r u u u r
uuu r uuu r uu u r
1 A B B C C D ;2 O BB CC A .
已知a,b,根据减法的定义,作如出a何 b呢?
a
b
B
b
ab
b O a
A
C
rrD
方 法 : 平 移 向 量 a ,b ,使 它 们 起 点 相 同 , 那 么
r
r
rr
b 的 终 点 指 向 a 的 终 点 的 向 量 就 是 a b .
二、向量减法的三角形法则
1在平面内任取一点O A
2作OA a,OB b
uuur
uuu r
1AD ; 2O A .
平面向量的线性运算
——向量的减法运算
2.2.2向量的减法
走进新课
u ur 已知:两个力的合力为 F
u ur 求:另一个力 F 2
u ur 其中一个力为 F 1
F F2
F1
减去一个向量等于加上这个向量的相反向量
aba(b)
定 义 : 求 两 个 向 量 差 的 运 算 叫 向 量 的 减 法 。 rr r r
Thank you
1.在平面内任取一点 O
2.作 OA a , OB b
则向量 OC a b
位移的合成可以看作向量 加法三角形法则的物理模型
力的合成可以看作向量加法的 平行四边形法则的物理模型
向量加法法则总结与拓展
• 向量加法的三角形法则: 1.将向量平移使得它们首尾相连 2.和向量即是第一个向量的首指向第二个向量的尾
(1)同向
(2)反向
a
b
a
b
A
B
C
uuur r r
AC=a+b
B
CA
uuur r r AC=a+b
规 定 a0: 0aa
探究二:向量的加法是否具备交换律和结合律?
• 数的加法满足交换律与结合律,即对任意a,b∈R, 有a+b=b+a, (a+b)+c=a+(b+c)
• 向量的加法具备吗?你能否画图解释?
相关文档
最新文档