金融数学习题部分答案
金融数学-课后习题答案4
16. 某贷款为期 5 年,每半年末还款额为 1,每年计息 2 次的年名义利率为 i,计算第 8 次还款中的 本金部分。
i P8 = Rv10+1−8 = v 3 = (1 + ) −3 2
17. 甲借款人每年末还款 3000 元。若第三次还款中的利息部分为 2000 元,每年计息 4 次的年名义利 率为 10%,计算第 6 次还款中的本金部分。
12. 某借款人每年末还款额为 1,为期 20 年,在第 7 次还款时,该借款人额外偿还一部分贷款,额 外偿还的部分等于原来第 8 次偿还款中的本金部分, 若后面的还款照原来进行, 直到贷款全部清偿, 证明整个贷款期节约的利息为 1- v 。
13
P = P8 = Rv13 = v13 B7 = a13 − v13 = a12 I1 = 13 − a13 ⇒ ∆I = I1 − I 2 = 1 − (a13 − a12 ) = 1 − v13 I = 12 − a 2 12
g = 1.002 1.002 = 0.9979 1 1 ⇒ gv = 12 = 12 1.05 v = 1.05 1 + i 361 125000 = Pv + Pgv 2 + L + Pg 359 v 360 = P × gv − ( gv) g 1 − gv ⇒ P = 125000 × 1.002 × 1 − 0.9979 = 493.85 0.9979 − 0.9979361
5. 某贷款期限为 15 年,每年末还款一次,钱 5 次还款每次换 4000 元,中间 5 次还款每次还 3000 元, 后 5 次还款每次换 2000 元,分别按过去发和未来发,给出第二次 3000 元还款之后的贷款余额表达
(完整版)金融数学课后习题答案
(完整版)金融数学课后习题答案第一章习题答案1. 设总量函数为A(t) = t2 + 2t + 3 。
试计算累积函数a(t) 和第n 个时段的利息In 。
解: 把t = 0 代入得A(0) = 3 于是:a(t) =A(t)A(0)=t2 + 2t + 33In = A(n) ? A(n ?1)= (n2 + 2n + 3) ?((n ?1)2 + 2(n ?1) + 3))= 2n + 12. 对以下两种情况计算从t 时刻到n(t < n) 时刻的利息: (1)Ir(0 < r <n); (2)Ir = 2r(0 < r < n).解:(1)I = A(n) ? A(t)= In + In?1 + + It+1=n(n + 1)2t(t + 1)2(2)I = A(n) ? A(t)=Σnk=t+1Ik =Σnk=t+1Ik= 2n+1 ?2t+13. 已知累积函数的形式为: a(t) = at2 + b 。
若0 时刻投入的100 元累积到3 时刻为172 元,试计算:5 时刻投入的100 元在10 时刻的终值。
第1 页解: 由题意得a(0) = 1, a(3) =A(3)A(0)= 1.72a = 0.08,b = 1∴A(5) = 100A(10) = A(0) ? a(10) = A(5) ? a(10)a(5)= 100 × 3 = 300.4. 分别对以下两种总量函数计算i5 和i10 :(1) A(t) = 100 + 5t; (2) A(t) = 100(1 + 0.1)t. 解:(1)i5 =A(5) ? A(4)A(4)=5120≈4.17%i10 =A(10) ? A(9)A(9)=5145≈3.45%(2)i5 =A(5) ? A(4)A(4)=100(1 + 0.1)5 ?100(1 + 0.1)4100(1 + 0.1)4= 10%i10 =A(10) ? A(9)A(9)=100(1 + 0.1)10 ?100(1 + 0.1)9100(1 + 0.1)9= 10%第2 页5.设A(4) = 1000, in = 0.01n. 试计算A(7) 。
《_金融数学-课后习题答案》
金融数学-课后习题答案本文档为金融数学课后习题的参考答案。
在解答问题时,我会尽量给出详细的步骤和推导过程,帮助读者更好地理解金融数学的概念和方法。
1. 第一章:时间价值1.1 问题一题目:如果我现在存入1000元,年利率是5%,请问5年后我能得到多少钱?解答:首先需要计算每年的复利,即每年利息和本金的总和。
根据复利计算公式:年末总金额 = 本金 * (1 + 年利率)^时间年数代入数据进行计算:年末总金额 = 1000 * (1 + 0.05)^5 = 1000 * 1.2762815625 ≈ 1281.28元因此,5年后你能得到大约1281.28元。
1.2 问题二题目:如果我希望在5年后拥有2000元,年利率是5%,请问我需要存入多少钱?解答:首先需要计算本金与利息的比例,然后根据比例计算需要的本金。
根据复利计算公式:年末总金额 = 本金 * (1 + 年利率)^时间年数可以将该式转化为:本金 = 年末总金额 / (1 + 年利率)^时间年数代入数据进行计算:本金 = 2000 / (1 + 0.05)^5 = 2000 / 1.2762815625 ≈ 1567.45元因此,你需要存入大约1567.45元。
2. 第二章:贴现与现值2.1 问题一题目:如果一笔未来支付3000元的现金流在5年后,年利率是6%,请问它的现值是多少?解答:为了计算现值,我们需要使用贴现率(年利率)和时间年数。
根据贴现计算公式:现值 = 未来支付金额 / (1 + 年利率)^时间年数代入数据进行计算:现值= 3000 / (1 + 0.06)^5 = 3000 / 1.33822557689 ≈ 2241.53元所以,该未来支付的现金流的现值大约为2241.53元。
2.2 问题二题目:如果我希望在5年后得到3000元的现金流,年利率是6%,请问我愿意支付多少现值?解答:为了计算现值,我们使用贴现率(年利率)和时间年数。
金融数学附答案
1、给定股票价格的二项模型,在下述情况下卖出看涨期权 S 0 S u S d X r τ 股数50 60 40 55 0.55 1/2 1000(1)求看涨期权的公平市场价格。
(2)假设以公平市场价格+0.10美元卖出1000股期权,需要买入多少股股票进行套期保值,无风险利润是多少?答案:(1)d u d r S S S e S q --=τ0=56.0406040505.005.0=--⨯⨯e (2)83.2>73.2,τr e S V -∆+∆='0083.2> τr e S -∆+∆'0406005--=--=∆d u S S D U =25.0股 104025.00'-=⨯-=∆-=∆d S D 753.9975.0105.005.0'-=⨯-=∆⨯-e 美元则投资者卖空1000份看涨期权,卖空250股股票,借入9753美元所以无风险利润为1.85835.005.0=⨯e 美元2、假定 S 0 = 100,u=1.1,d=0.9,执行价格X=105,利率r=0.05,p=0.85,期权到期时间t=3,请用连锁法则方法求出在t=0时该期权的价格。
(答案见课本46页)3、一只股票当前价格为30元,六个月期国债的年利率为3%,一投资者购买一份执行价格为35元的六个月后到期的美式看涨期权,假设六个月内股票不派发红利。
波动率σ为0.318.问题:(1)、他要支付多少的期权费?【参考N(0.506)=0.7123;N(0.731)=0.7673 】{提示:考虑判断在不派发红利情况下,利用美式看涨期权和欧式看涨期权的关系}解析:在不派发红利情况下,美式看涨期权等同于欧式看涨期权!所以利用B—S公式,就可轻易解出来这个题!同学们注意啦,N(d1)=N(-0.506),N(d2)=N(-0.731)。
给出最后结果为0.6084、若股票指数点位是702,其波动率估计值σ=0.4,指数期货合约将在3个月后到期,并在到期时用美元按期货价格计算,期货合约的价格是715美元。
金融习题答案
习题答案1、某日纽约USD1=HKD7、7820—7、7830伦敦GBP1= USD1、5140---1、5150 问英镑与港元的汇率是多少?解:GBP1=HKD7.7820 X 1.5140-----7.7830 X 1.5150 GBP1=HKD11.7819-----11.79122、某日苏黎士USD1= SF1、2280----1、2290法兰克福USD1= E0、9150----0、9160 问法兰克福市场欧元与瑞士法郎的汇率是多少?解:E1=SF1.2280/0.9160------SF1.2290/0.9150E1=SF1.3406------1.34323、某日GBP1=HKD12、6560----12、6570USD1=HKD 7、7800---- 7、7810 问英镑与美元的汇率是多少?解:GBP1=USD12.6560/7.7810--------12.6570/7.7800 GBP1=USD1.6265--------1.62694、某日巴黎即期汇率USD1=E0、8910----0、89201个月远期20-----------30 问巴黎市场美元与欧元1个月远期汇率是多少?解:一个月远期USD1=E0.8930-------0.89505、某日香港即期汇率USD1=HKD7、7800---7、78103个月远期70-----------50 问香港市场美元与港元3个月远期汇率是多少?解:三人月远期USD1=HKD7.7730---------7.77606、某日纽约即期汇率USD1=SF1、1550----1、15606个月远期60------------80 问纽约市场美元与瑞士法郎6个月远期汇率是多少?解:六个月远期USD1=SF1.1610-------1.16407、某日伦敦即期汇率GBP1=E 1、2010-----1、20203个月远期40-------------50 问伦敦市场英镑与欧元3个月远期汇率是多少?解:三个月远期GBP1=E1.2050---------1.20708、某企业出口铝材,人民币报价为15000元/吨,现改用美元报价,其价格应为多少?(即期汇率USD1=RMB6、8310—6、8380)解:15000÷6.8310=2196美元9、某企业进口商品人民币报价为11000元/件,现改用美元报价,应为多少?(汇率同上)解:11000÷6.8380=1609美元10、某企业出口商品美元报价为2500美元/件,现改用人民币报价,应为多少?(汇率同上)解:2500 X 6.8380=17095元11、某企业进口商品报价为5700美元/吨,现改用人民币报价,应为多少?(汇率同上)解:5700 X 6.8310=38937元12、某出口商品的报价为SF8500/件,现改用美元报价,应为多少?(即期汇率USD1=SF1、1830—1、1840)解:8500÷1.1830=7185美元13、某进口商品的报价为SF21500/吨,现改用美元报价,应为多少?(汇率同上)解:21500÷1.1840=18159美元14.某日:即期汇率USD1=EUR0.9150 — 0.9160•3个月40 - ----- 60某出口商3个月后将收入1000万美元,届时需兑换成欧元,问该出口商应如何通过远期交易进行套期保值?解:3个月远期USD1=EUR0.9190------0.9220签3个月远期合约卖出1000万美元,买入919万欧元.15、某日:即期汇率USD1=SF1.3210 —1.3220•6个月80 -----60该进口商6个月后将向出口商支付1000万美元,届时需用瑞士法郎兑换,问该进口商将如何利用远期外汇交易进行套期保值?解:6个月远期USD1=SF1.3130-------1.3160签6个月远期合约卖出瑞士法郎1316万,买入1000万美元。
金融数学引论答案 .docx
第一章习题答案1.设总量函数为A(t) = t2 + 2/ + 3 o试计算累积函数a(t)和第n个吋段的利息【仇°解:把t =()代入得4(()) = 3于是:4(t) t? + 2t + 3啲=丽=3In = 4(北)一A(n一1)=(n2 + 2n + 3) — ((n — I)2 + 2(n — 1) + 3))= 2n+l2.对以下两种情况计算从t时刻到冗(£ < n)时刻的利息:(1)厶(0 < r < n);(2)/r =2r(0<r <n).解:(1)I = A(n) - A(t)—In + in-1+ • • • + A+l n(n + 1) t(t + 1)=2 2I = A(n) - A(t)n n=乞h = 土hk=t+l A:=t+13.已知累积函数的形式为:Q(t) = at2 +几若0时刻投入的100元累积到3吋刻为172元,试计算:5时刻投入的10()元在10时刻的终值。
解:由题意得。
(0) = 1, «(3) = = L72=> a = 0.0& 6=14(5) = 100>1(10) = 4(0) • «(10) = 4⑸• W = 100 x 3 = 300.a(5)4.分别对以下两种总量函数计算订和讪:(1) A(t) = 100 + 5t; (2) A(t) = 100(1 + 0.1尸・解:(1)_ 4(5) - 4(4)5 _ 4(4)5二面-.17% . 4(10)-4(9)210 =—4(9)—5=—^ 3.45%145⑵_ 4(5) - 4(4)5 - 4⑷_ 100(1 + 0.1)5 - 100(1 + 0.1)4 = 100(1+ 0.1)4=10%. 4(10) —4(9)皿=_ 100(1+ O.1)10-100(1+ 0.1)9 = 100(1 + 0.1)9=10%5•设4(4) = 1000, i n = O.Oln.试计算4(7)。
徐景峰《金融数学》1-4章习题解答
《利息理论》习题详解 第一章 利息的基本概念1.解:(1))()0()(t a A t A =又()25A t t =+(0)5()2()1(0)55A A t a t t A ∴===++ (2)3(3)(2)11(92 2.318I A A =-=== (3)4(4)(3)0.178(3)A A i A -===2.解:15545(4)(3)(1)100(10.04)0.05 5.2nn n I i A I A i A i i -=∴==+=+⨯=3.证明: (1)123(1)()(2)(1)(3)(2)()(1)m m m m k I A m A m I A m A m I A m A m I A m k A m k ++++=+-=+-+=+-+=+-+-123123()()()()()m m m m k m m m n I I I I A m k A m n m k A n A m I I I I m n +++++++∴++++=+-=+-=++++<令有(2)()(1)()1(1)(1)n A n A n A n i A n A n --==---()1(1)()(1)(1)n n A n i A n A n i A n ∴+=-∴=+-4.证明: (1)112123123(1)(0)(0)(2)(0)(0)(0)(3)(0)(0)(0)(0)()(0)(0)(0)(0)(0)k nk i a a a i a a a i a i a a a i a i a i a n a a i a i a i a i ∴=+=++=+++=+++++第期的单利利率是又(0)1a =123123()1()(0)()1nna n i i i i a n a a n i i i i ∴=+++++∴-=-=++++(2)由于第5题结论成立,当取0m =时有12()(0)n A n A I I I -=+++5.解:(1)以单利积累计算1205003i =⨯1200.085003i ∴==⨯800(10.085)1120∴+⨯=(2)以复利积累计算3120500500(1)i +=+0.074337i ∴=5800(10.074337)1144.97∴+=6.解:设原始金额为(0)A 有(0)(10.1)(10.08)(10.06)1000A +++=解得 (0)794.1A =7.证明:设利率是i ,则n 个时期前的1元钱的当前值为(1)ni +,n 个时期后的1元钱的当前值为1(1)ni +又22211[(1)](1)20(1)(1)n n n ni i i i +-=++-≥++,当且仅当221(1)(1)1(1)n n n i i i +=⇒+=+,0i =即或者n=0时等号成立。
金融数学_中国人民大学中国大学mooc课后章节答案期末考试题库2023年
金融数学_中国人民大学中国大学mooc课后章节答案期末考试题库2023年1.一个合约的回收是指合约到期时可以实现的现金价值,不考虑合约签订时发生的初始费用。
答案:正确2.在利率互换合约中,互换利率等于浮动利率的加权平均数。
答案:正确3.假设当前的期货价格为30,年波动率为30%,无风险连续复利为5%。
用两步二叉树计算6个月期的执行价格为31的欧式看涨期权的价格答案:大于24.股票当前的价格为50元,波动率为每年10%。
一个基于该股票的欧式看跌期权,有效期为2个月,执行价格为50元。
连续复利的无风险年利率为5%。
构造一个二步(每步为一个月)的二叉树为该期权定价。
答案:小于0.65.期权价格也称作执行价格答案:错误6.美式看涨期权多头的盈利可以无限大答案:正确7.假设股票的现价为100元,一年期看涨期权的执行价格为105元,期权费为9.4元,年有效利率为5%。
如果一年后的股票价格为115元,则该看涨期权的盈亏为0.13元。
答案:正确8.假设股票的现价为100元,一年期看跌期权的执行价格为105元,期权费为8元,年有效利率为5%。
如果一年后的股票价格为105元,则该看跌期权的盈亏为3元。
答案:错误9.债券的面值为1000元,息票率为6%,期限为5年,到期按面值偿还,到期收益率为8%。
应用理论方法计算该债券在购买9个月后的账面值。
答案:大于93010.一份股票看涨期权的执行价格为40元,期权费为2元,期权的有效期是半年,无风险的连续复利为5%。
假设期权到期时的股票价格为43元,在期权到期时,多头可以达到盈亏平衡点的股票价格为多少?答案:大于40,小于5011.股票现价为60,一份2个月到期的该股票美式看涨期权的交割价格为60,连续复利为5%,股票无红利支付,波动率为30%,应用两阶段二叉树模型计算该期权的价值。
答案:2.8412.期权的回收小于期权的盈亏答案:错误13.美式看涨期权和看跌期权的价格之间存在一种平价关系答案:错误14.标的资产的现价越高,欧式看涨期权与看跌期权的价格之差越大答案:正确15.债券的面值,为1000,期限为20年,到期偿还值为1050元,每年末支付一次利息。
金融数学引论答案第一章__北京大学出版[1]
第一章习题答案1. 设总量函数为A(t) = t 2 + 2t + 3 。
试计算累积函数a(t) 和第n 个时段的利息I n 。
解: 把t = 0 代入得A(0) = 3 于是:a(t) =A(t)/A(0)=(t 2 + 2t + 3)/3I n = A(n) − A(n − 1)= (n 2 + 2n + 3) − ((n − 1)2+ 2(n − 1) + 3))= 2n + 12. 对以下两种情况计算从t 时刻到n(t < n) 时刻的利息: (1)I r (0 < r <n); (2)I r = 2r (0 < r < n).解: ()n n-1t 11I A(n)A(t)I I I n(n 1)/2t(t 1)/2+=-=+++=+-+・・・ (2)1t 11I A(n)A(t) 22n n k k t I ++=+=-==-∑3. 已知累积函数的形式为: 2a(t) at b =+。
若0 时刻投入的100 元累积到3 时刻为172 元,试计算:5 时刻投入的100 元在10 时刻的终值。
解: 由题意得a(0) = 1, a(3) =A(3)/A(0)= 1.72⇒ a = 0.08, b = 1∴ A(5) = 100A(10) = A(0) ・ a(10) = A(5) ・ a(10)/a(5)= 100 × 3 = 300.4. 分别对以下两种总量函数计算i 5 和i 10 :(1) A(t) = 100 + 5t; (2)t A(t) 100(1 0.1)=+.解:(1)i 5 =(A(5) − A(4))/A(4)=5120≈ 4.17%i 10 =(A(10) − A(9))/A(9)=5145≈ 3.45%(2)i 5 =(A(5) − A(4))/A(4)()()()544109109100(1 0.1)100(1 0.1) 10%100(1 0.1)100(1 0.1)100(1 0.1)i (A 10A 9)/A 9 10%100(1 0.1)+-+==++-+=-==+5.设()n A 4 1000, i 0.01n ==. 试计算A(7) 。
金融数学试题和参考答案(2017秋)
金融数学试题和参考答案(2017秋)一、选择题:1-10小题,每小题4分,共40分1. () [单选题] *A.0B.1(正确答案)C.2D.∞2. 设函数f(x)在x=1处可导,且f’’(1)=2,则() [单选题] *A. -2(正确答案)B. -1/2C. 1/2D. 23. d(sin2x)=() [单选题] *A.2cos2xdx(正确答案)B.cos2xdxC.-2cos2xdxD.-cos2xdx4. 设函数f(x)在区间[a,b]连续且不恒为零,则下列各式中不恒为常数的是(D)[单选题] *A. f(b)-f(a)选项76选项77选项78(正确答案)5. 设g(x)为连续函数,且,则f(x)=(A) [单选题] *(正确答案)6. 设函数f(x)在区间[a,b]连续,且,a [单选题] *恒大于零(正确答案)恒小于零恒等于零可正,可负7. 设二元函数Z=Xy,=() [单选题] *A.xyB.xylnyC.xylnx(正确答案)D.yxy-18. 设函数f(x)在区间[a,b]连续,则曲线y=(x)与直线X=a,X=b及X轴所围成的平面图形的面积为(C) [单选题] *(正确答案)9. 设二元函数z=xcosy,则(D) [单选题] *xsiny(正确答案)-xsinysiny-siny10. 设事件A,B相互独立,A,B发生的概率为别为0.6和0.9,则A,B都不发生的概率为() [单选题] *A.0.54B.0.04(正确答案)C.0.1D.0.411. () [单选题] *A.0B.1C.2(正确答案)D.312. 设函数,在X=0处连续,则a=() [单选题] *A.-1B.0C.1(正确答案)D.213. .设函数y=2+sinx,则y’ =() [单选题] *A.cosX(正确答案)B.-cosxC.2+cosXD.2-cosX14. 设函数y=ex-1+1,则dy=()exdx [单选题] *B.ex-1dx(正确答案)C.(ex+1)dxD.(ex-1+1)dx15. () [单选题] *A.1B.3(正确答案)C.5D.716. () [单选题] *A.(正确答案)B.C.D.117. 设函数y=x4+2X2+3,则() [单选题] *A.4X3+4XB.4X3+4C.12X2+4XD.12X2+4(正确答案)18. ()-1 [单选题] *B.0C.1(正确答案)D.219. 设函数Z=X2+y,则dz=() [单选题] *A.2xdx+dy(正确答案)B.x2dx+dyC.x2dx+ydyD.2xdx+ydy20. 若,则a=() [单选题] *A.1/2B.1C.3/2D.2(正确答案)。
金融数学引论答案第一章--北京大学出版[1]
第一章习题答案1.解: 把t = 0 代入得A(0) = 3 于是:a(t) =A(t)/A(0)=(t 2 + 2t + 3)/3In = A(n) − A(n − 1)= (n 2 + 2n + 3) − ((n − 1)2 + 2(n − 1) + 3))= 2n + 12. 解:()n n-1t 11I A(n)A(t)I I I n(n 1)/2t(t 1)/2+=-=+++=+-+・・・(2)1t 11I A(n)A(t) 22n n k k t I ++=+=-==-∑3.解: 由题意得a(0) = 1, a(3) =A(3)/A(0)= 1.72⇒ a = 0.08, b = 1∴ A(5) = 100A(10) = A(0) ・ a(10) = A(5) ・ a(10)/a(5)= 100 × 3 = 300.4. 解:(1)i5 =(A(5) − A(4))/A(4)=5120≈ 4.17%i10 =(A(10) − A(9))/A(9)=5145≈ 3.45%(2)i5 =(A(5) − A(4))/A(4)()()()544109109100(1 0.1)100(1 0.1) 10%100(1 0.1)100(1 0.1)100(1 0.1)i (A 10A 9)/A 9 10%100(1 0.1)+-+==++-+=-==+5.解:A(7) = A(4)(1 + i5)(1 + i6)(1 + i7)= 1000 × 1.05 × 1.06 × 1.07= 1190.916.解: 设年单利率为i500(1 + 2.5i) = 615解得i = 9.2%设500 元需要累积t 年500(1 + t × 7.8%) = 630解得t = 3 年4 个月7.解: 设经过t 年后,年利率达到2.5%t 1 4%t (1 2.5%)+⨯=+ t ≈ 36.3678. 解:(1 + i)11 = (1 + i)5+2*3 = XY 39. 解: 设实利率为i600[(1 + i)2 − 1] = 264解得i = 20%∴ A(3) = 2000(1 + i)3 = 3456 元10.解: 设实利率为i2111(1)(1)n n i i +=++解得(1 + i)-n =512- 所以(1 + i)2n = 251()2--352+= 11.解:由500×(1 + i)30 = 4000 ⇒ (1 + i)30 = 8于是PV =204060100001000010000 (1 i)(1 i)(1 i)+++++ = 1000 × 24233(888)---++= 3281.2512解:(1 + i)a = 2 (1)(1 + i)b =32(2) (1 + i)c = 5 (3)(1 + i)n =32(4) (4) ⇒ n ・ ln (1 + i) = ln 5 − ln 3(3) ⇒ ln 5 = c × ln (1 + i)(1) × (2) ⇒ ln 3 = (a + b) ・ ln (1 + i)故n = c − (a + b)13.解: A ・ i = 336A ・ d = 300i − d = i ・ d⇒ A = 280014.解: (1)d 5 =()()()a 5a 4a 5- =10%1 510%+⨯ = 6.67%(2)a -1(t) = 1 − 0.1t⇒ a(t) ==110.1t- ⇒ d 5 =()()()a 5a 4a 5- = 16.67%15.解:由(3)(4)3(4)3(3)(4)4(1)(1)344[1(1)]3i d i d --+=-⇒=⋅-+ 由(6)(12)6(12)(12)(6)2(1)(1)6126[(1)1]12i d d i --+=-⇒=⋅-- 16.解: (1) 终值为100 × (1 + i(4)/ 4 )4*2 = 112.65元(2) 终值为100 × [(1 − 4d ( 1/4 ))1/4 ]-2 = 114.71元17.解: 利用1/d (m)− 1/i (m) = 1/m ⇒ m = 818. 解:a A (t) = 1 + 0.1t ⇒ δA (t)A A 11BA 1B a'(t)0.1a (t)10.1(a(t))'0.05a (t)10.05a (t)10.05B tt t δ---==+=-⇒==-由δA(t) = δB(t)得t = 519.解: 依题意,累积函数为a(t) = at2 + bt + 1a(0.5) = 0.25a + 0.5b + 1 = 1.025a(1) = a + b + 1 = 1.07⇒a = 0.04b = 0.03于是δ0.5 =a'(0.5) 0.068a(0.5)= 20.解: 依题意,δA (t) =22t 1t +, B 2(t) 1t δ=+ 由A B (t)(t)δδ>⇒22t 21 t 1 t>++ ⇒ t > 1 21.解:()4d 8%=,设复利下月实贴现率为d ,单利下实利率为d 0。
金融数学附答案修订版
金融数学附答案修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】1、给定股票价格的二项模型,在下述情况下卖出看涨期权 S 0 S u S d X r τ 股数50 60 40 55 0.55 1/2 1000(1)求看涨期权的公平市场价格。
(2)假设以公平市场价格+0.10美元卖出1000股期权,需要买入多少股股票进行套期保值,无风险利润是多少?答案:(1)d u d r S S S e S q --=τ0=56.0406040505.005.0=--⨯⨯e (2)83.2>73.2,τr e S V -∆+∆='0083.2> τr e S -∆+∆'0 406005--=--=∆d u S S D U =25.0股 104025.00'-=⨯-=∆-=∆d S D 753.9975.0105.005.0'-=⨯-=∆⨯-e 美元则投资者卖空1000份看涨期权,卖空250股股票,借入9753美元所以无风险利润为1.85835.005.0=⨯e 美元2、假定 S 0 = 100,u=1.1,d=0.9,执行价格X=105,利率r=0.05,p=0.85,期权到期时间t=3,请用连锁法则方法求出在t=0时该期权的价格。
(答案见课本46页)3、一只股票当前价格为30元,六个月期国债的年利率为3%,一投资者购买一份执行价格为35元的六个月后到期的美式看涨期权,假设六个月内股票不派发红利。
波动率σ为0.318.问题:(1)、他要支付多少的期权费?【参考N(0.506)=0.7123;N(0.731)=0.7673 】{提示:考虑判断在不派发红利情况下,利用美式看涨期权和欧式看涨期权的关系}解析:在不派发红利情况下,美式看涨期权等同于欧式看涨期权!所以利用B—S公式,就可轻易解出来这个题!同学们注意啦,N(d1)=N(-0.506),N(d2)=N(-0.731)。
金融数学智慧树知到课后章节答案2023年下宁波大学
金融数学智慧树知到课后章节答案2023年下宁波大学宁波大学第一章测试1.利息是资金的 ( ) 。
A:指标B:水平C:价格D:价值答案:价格2.现值也叫 ( ) 。
A:贴现值B:贴现C:终值D:贴现系数答案:贴现值3.假定满足下列条件(i) 10 年末支付 X 和20 年末支付 Y 的现值之和等于 15 年末 X + Y 付款的现值。
(ii) X + Y = 100(iii) 年利率i = 5%则X=()A:44B:48C:52D:50答案:444.杰夫将10元存入一个基金,15 年后又存入20元。
利息以名义贴现率d计息,前 10 年每季度复利一次,名义利率为6%,此后每半年一次。
该基金在30年末的累计余额为100。
则名义贴现率()A:4.43%B:4.63%C:4.53%D:4.33%答案:4.53%5.六个月后到期的$1.00 的现值为$0.97。
则按每年贴现4次的名义年贴现率为()A:6.05%B:6.55%C:6.75%D:5.95%答案:6.05%第二章测试1.一项投资需要首付1万元,前10年每年年底支付1000元。
从第11年年底开始,该投资连续5年在每年底回报相等的金额X。
试确定X使得在15年期间产生10%的年回报率()。
A:10,900B:11,050C:11,200D:10,750答案:11,0502.若年利率为6.3%,每年末付款1000元的4N期年金现值为14113,试确定第一个N年付款的现值和第三个N年付款的现值的百分比为()。
A:66%B:57%C:60%D:63%答案:63%3.如果2010年至2021年(含)每年1月1日缴存1500元,实际利率为每年1.75%,试确定这些存款在2030年1月1日的累计价值为()。
A:23,290B:23,390C:23,490D:23,190答案:23,1904.李明将在每季度末存入账户450元,为期10年。
15年后,李明使用账户资金在每年年初支付Y,为期4年,之后账户余额为0,假设年利率为7%。
O《金融数学》练习题参考答案
(1+ i)n +1
(1+ i)n +1
s
(1 + )i 3n −1 (1 + i)2n −1+ (1+ )i 3n −1
1+ 3n = 1+
=
s 2n
(1 + i )2n −1
(1 + )i 2n −1
(1+ i)n +1+ (1+ )i 2n + (1+ i)n +1 (1+ i)2n + 2 (1+ i)n + 2
n
=
2 n
d = a(n + 1) − a(n) = n2 − (n −1)2
a(n +1)
n2
第2章
等额年金
2.1 1363 元
ห้องสมุดไป่ตู้
2.2 27943 元
2.3 月实际利率为 0.5%,年金的领取次数为 123,截至 2005 年 12 月 31 日,领取次数为
70。因此
200a =18341 123 0.5%
2.17 100a = 4495.5038 = 6000vk ⇒ vk = 0.7493 ⇒ k = 29 60
( ) ( ) 2.18 a 1+ v15 + v30 = 1− v15 1+ v15 + v30 = 1+ v15 + v30 − v15 − v30 − v45 = 1− v45 = a
= ⎡⎣(1+ i)n −1⎤⎦2 ⋅ ⎡⎣(1+ i)n + 1⎤⎦2 + ⎡⎣(1+ i)n −1⎤⎦2 ⎡⎣(1+ i)n −1⎤⎦ ⋅ ⎡⎣(1+ i)n −1⎤⎦ ⋅ ⎡⎣(1+ i)n + 1⎤⎦
中国精算师金融数学第9章 金融衍生工具定价理论综合练习与答案
中国精算师金融数学第9章金融衍生工具定价理论综合练习与答案一、单选题1、某一股票当前的交易价格为10美元,3个月末,股票的价格将是11美元或者9美元。
连续计复利的无风险利率是每年3.5%,执行价格为10美元的3个月期欧式看涨期权的价值最接近于()美元。
A.1.07B.0.54C.0.81D.0.95E.0.79【参考答案】:B【试题解析】:在这种情形下,u=1.1,d=0.9,r=0.035,如果股票价格上升,则期权价值为1美元,如果股票价格下降,则期权价值为0。
价格上升的概率p 可以计算为(e0.035×3/12-0.9)/(1.1-0.9)=0.5439。
因此,该看涨期权的价值是e0.035×3/12×(0.5439×1)=0.54(美元)。
2、一只不分红的股票现价为37美元。
在接下来的6个月里,每3个月股价要么上升5%,要么下降5%。
连续复合收益率为7%。
计算期限为6个月,执行价格为38美元的欧式看涨期权的价值为()美元。
A.1.2342B.1.1236C.1.0965D.1.0864E.1.0145【参考答案】:A【试题解析】:3、某股票的当前价格为50美元,在今后两个3个月时间内,股票价格或上涨6%,或下跌5%,无风险利率为每年5%(连续复利)。
执行价格为51美元,6个月期限的看涨期权的价格为()美元。
A.1.653B.1.635C.1.615D.1.605E.1.561【参考答案】:B【试题解析】:①图的二叉树图描述了股票价格的变化行为。
向上趋势的风险中性概率p由下式给出:对于最高的末端节点(两个向上的复合),期权收益为56.18-51=5.18(美元),而在其他情况中的收益为零。
因此,期权的价值为:5.18×0.56892×e-0.05×0.5=1.635(美元)②结果同样可以通过价格树计算出来。
看涨期权的价值为图9-2中每个节点的下面的数值。
数理金融步习题答案
1(证明)请使用一价律证明看跌-看涨期权平价公式。
证明:构造两个投资组合:(1)0时刻买入一股股票及一个看跌期权,成本S+P 。
(2)0时刻买入一份看涨期权并加上金额为rt Ke -,现金成本rt Ke C -+,在t 时刻,假定股票价格为S (t ),当S (t )》K ,对投资(1)来说价值S (t ),对投资(2)价值以rt rt e Ke ⋅-=K 买入一股股票,价值为S (t )。
当S (t )<K 时,投资(1)价值为K ,综上所述由一价律值知:S+P=C+rt Ke -。
2(证明)证明:如果S+P-C>K rt e -,那么以下的投资策略总可以得到正的收益:卖出一股股票,卖出一个看跌期权,并买入一个看涨期权。
证明:如果S+P-C>K rt e -,那么我们通过在0时刻购买一份股票,同时买入一个看涨期权,并卖出一个看跌期权,这个初始的投入S+P-C ,在t 时刻卖出如果S(t)<=k,那么买入的看涨期权无价值,可以执行看跌期权,以价格K 卖出。
如果S(t)>=k ,那么卖出的看跌期权无价值,则执行看涨期权,迫使以K 卖出,由于S<(S+P-C)rt e ,我们都有正的利润,所以S+P-C>K rt e -。
4成年男子的血液收缩压服从均值为127.7,标准差为19.2的正态分布,求:a)68%b)95%c)99.9%解:a)设陈年男子血液收缩压为X, E 为对应的正态随机变量,即E=(X-127)/19.2, u=127.7,&=19.2, 所以|&|<=19=0.682,所以-1<=(E-127.7)/19.2<=1,即108.5<=E,所以取值范围为 [108.5,146.9]b)由表可得p{|E|<=2}=0.9544,即-2<=(E-127.7)/19.2<=2,89.3<=E<=166.1,所以取值范围[89.3,166.1] c) p{|E|<=3}=0.9974,即-3<=(E-127.7)/19.2<=3,解得70.1<=E<=185.3,所以取值范围[70.1,185.3]. 4一个打算20后退休人,今后240个月月初存款A ,随后360个月月初提款1000,名义利率6%,求A 。
数理金融练习及参考答案
附录:练习题目 第一章练习及参考答案1. 假设1期有两个概率相等的状态a 和b 。
1期的两个可能状态的状态价格分别为a φ和b φ。
考虑一个参与者,他的禀赋为(011;;a b e e e )。
其效用函数是对数形式0110111(;;)log (log log )2a b a b U c c c c c c =++问:他的最优消费/组合选择是什么?解答:给定状态价格和他的禀赋,他的总财富是011a a b b w e e e φφ=++。
他的最优化问题是011011,,0110111maxlog (log log )2s.t.()0,,0a b a b c c c a a b b a b c c c w c c c c c c φφ++-++=≥ 其一阶条件为:00110111/1(1/)21(1/)20,0,,a a a b b b a a b b i i c c c c c c wc i a bλμλφμλφμφφμ=+=+=+++===给定效用函数的形式,当消费水平趋近于0时,边际效用趋近于无穷。
因此,参与者选择的最优消费在每一时期每一状态都严格为正,即所有状态价格严格为正。
在这种情况下,我们可以在一阶条件中去掉这些约束(以及对应的乘子)而直接求解最优。
因此,0(0,,)i i c i a b μ==。
对于c 我们立即得到如下解:1c λ=, 11112a a c λφ=, 21112b bc λφ=把c 的解代人预算约束,我们可以得到λ的解: 2λω=最后,我们有12c w =, 114a a w c φ=, 114b aw c φ= 可以看出,参与者把一半财富用作现在的消费,把另外一半财富作为未来的消费。
某一状态下的消费与对应的状态价格负相关。
状态价格高的状态下的消费更昂贵。
结果,参与者在这些状态下选择较低的消费。
2. 考虑一个经济,在1期有两个概率相等的状态a 和b 。
经济的参与者有1和2,他们具有的禀赋分别为:10:1000e --- ,2200:050e ---两个参与者都具有如下形式的对数效用函数:01()log (log log )2a b U c c c c =++在市场上存在一组完全的状态或有证券可以交易。