金融数学课后答案

合集下载

金融数学引论答案第一章--北京大学出版[1]

金融数学引论答案第一章--北京大学出版[1]

第一章习题答案1.解: 把t = 0 代入得A(0) = 3 于是:a(t) =A(t)/A(0)=(t 2 + 2t + 3)/3In = A(n) − A(n − 1)= (n 2 + 2n + 3) − ((n − 1)2 + 2(n − 1) + 3))= 2n + 12. 解:()n n-1t 11I A(n)A(t)I I I n(n 1)/2t(t 1)/2+=-=+++=+-+・・・(2)1t 11I A(n)A(t) 22n n k k t I ++=+=-==-∑3.解: 由题意得a(0) = 1, a(3) =A(3)/A(0)= ⇒ a = , b = 1~∴ A(5) = 100A(10) = A(0) ・ a(10) = A(5) ・ a(10)/a(5)= 100 × 3 = 300.4. 解:(1)i5 =(A(5) − A(4))/A(4)=5120≈ %i10 =(A(10) − A(9))/A(9)=5145≈ %(2)i5 =(A(5) − A(4))/A(4)()()()544109109100(1 0.1)100(1 0.1) 10%100(1 0.1)100(1 0.1)100(1 0.1)i (A 10A 9)/A 9 10%100(1 0.1)+-+==++-+=-==+5.解:A(7) = A(4)(1 + i5)(1 + i6)(1 + i7);= 1000 × × ×=6.解: 设年单利率为i500(1 + = 615解得i = %设500 元需要累积t 年500(1 + t × %) = 630解得t = 3 年4 个月}7.解: 设经过t 年后,年利率达到%t 1 4%t (1 2.5%)+⨯=+ t ≈8. 解:(1 + i)11 = (1 + i)5+2*3 = XY 39. 解: 设实利率为i600[(1 + i)2 − 1] = 264解得i = 20%∴ A(3) = 2000(1 + i)3 = 3456 元10.解: 设实利率为i{ 2111(1)(1)n n i i +=++ 解得(1 + i)-n =51- 所以(1 + i)2n = 251()--35+= 11.解:由500×(1 + i)30 = 4000 ⇒ (1 + i)30 = 8于是PV =204060100001000010000 (1 i)(1 i)(1 i)+++++ = 1000 × 24233(888)---++=12解:(1 + i)a = 2 (1);(1 + i)b =32(2) (1 + i)c = 5 (3)(1 + i)n =32(4) (4) ⇒ n ・ ln (1 + i) = ln 5 − ln 3(3) ⇒ ln 5 = c × ln (1 + i)(1) × (2) ⇒ ln 3 = (a + b) ・ ln (1 + i)故n = c − (a + b)13.解: A ・ i = 336?A ・ d = 300i − d = i ・ d⇒ A = 280014.解: (1)d 5 =()()()a 5a 4a 5- =10%1 510%+⨯ = %(2)a -1(t) = 1 −.⇒ a(t) ==110.1t - ⇒ d 5 =()()()a 5a 4a 5- = %15.解:由(3)(4)3(4)3(3)(4)4(1)(1)344[1(1)]3i d i d --+=-⇒=⋅-+ 由(6)(12)6(12)(12)(6)2(1)(1)6126[(1)1]12i d d i --+=-⇒=⋅-- -16.解: (1) 终值为100 × (1 + i(4)/4 )4*2 = 元(2) 终值为100 × [(1 − 4d ( 1/4 ))1/4 ]-2 = 元17.解: 利用1/d (m)− 1/i (m) = 1/m ⇒ m = 818. 解:a A (t) = 1 + ⇒ δA (t) A A 11B A 1B a'(t)0.1a (t)10.1(a (t))'0.05a (t)10.05a (t)10.05B tt t δ---==+=-⇒==-由δA(t) = δB(t)得t = 5)19.解: 依题意,累积函数为a(t) = at2 + bt + 1a = 0.25a + + 1 =a(1) = a + b + 1 =⇒a =b =于是δ =a'(0.5) 0.068a(0.5)= 20.解: 依题意,δA (t) =22t 1t +, B 2(t) 1t δ=+ 由A B (t)(t)δδ>⇒ 22t 21 t 1 t>++⇒ t > 1 21.解:()4d 8%=,设复利下月实贴现率为d ,单利下实利率为d 0。

金融数学-课后习题答案4

金融数学-课后习题答案4

16. 某贷款为期 5 年,每半年末还款额为 1,每年计息 2 次的年名义利率为 i,计算第 8 次还款中的 本金部分。
i P8 = Rv10+1−8 = v 3 = (1 + ) −3 2
17. 甲借款人每年末还款 3000 元。若第三次还款中的利息部分为 2000 元,每年计息 4 次的年名义利 率为 10%,计算第 6 次还款中的本金部分。
12. 某借款人每年末还款额为 1,为期 20 年,在第 7 次还款时,该借款人额外偿还一部分贷款,额 外偿还的部分等于原来第 8 次偿还款中的本金部分, 若后面的还款照原来进行, 直到贷款全部清偿, 证明整个贷款期节约的利息为 1- v 。
13
P = P8 = Rv13 = v13 B7 = a13 − v13 = a12 I1 = 13 − a13 ⇒ ∆I = I1 − I 2 = 1 − (a13 − a12 ) = 1 − v13 I = 12 − a 2 12
g = 1.002 1.002 = 0.9979 1 1 ⇒ gv = 12 = 12 1.05 v = 1.05 1 + i 361 125000 = Pv + Pgv 2 + L + Pg 359 v 360 = P × gv − ( gv) g 1 − gv ⇒ P = 125000 × 1.002 × 1 − 0.9979 = 493.85 0.9979 − 0.9979361
5. 某贷款期限为 15 年,每年末还款一次,钱 5 次还款每次换 4000 元,中间 5 次还款每次还 3000 元, 后 5 次还款每次换 2000 元,分别按过去发和未来发,给出第二次 3000 元还款之后的贷款余额表达

(完整版)金融数学课后习题答案

(完整版)金融数学课后习题答案

(完整版)金融数学课后习题答案第一章习题答案1. 设总量函数为A(t) = t2 + 2t + 3 。

试计算累积函数a(t) 和第n 个时段的利息In 。

解: 把t = 0 代入得A(0) = 3 于是:a(t) =A(t)A(0)=t2 + 2t + 33In = A(n) ? A(n ?1)= (n2 + 2n + 3) ?((n ?1)2 + 2(n ?1) + 3))= 2n + 12. 对以下两种情况计算从t 时刻到n(t < n) 时刻的利息: (1)Ir(0 < r <n); (2)Ir = 2r(0 < r < n).解:(1)I = A(n) ? A(t)= In + In?1 + + It+1=n(n + 1)2t(t + 1)2(2)I = A(n) ? A(t)=Σnk=t+1Ik =Σnk=t+1Ik= 2n+1 ?2t+13. 已知累积函数的形式为: a(t) = at2 + b 。

若0 时刻投入的100 元累积到3 时刻为172 元,试计算:5 时刻投入的100 元在10 时刻的终值。

第1 页解: 由题意得a(0) = 1, a(3) =A(3)A(0)= 1.72a = 0.08,b = 1∴A(5) = 100A(10) = A(0) ? a(10) = A(5) ? a(10)a(5)= 100 × 3 = 300.4. 分别对以下两种总量函数计算i5 和i10 :(1) A(t) = 100 + 5t; (2) A(t) = 100(1 + 0.1)t. 解:(1)i5 =A(5) ? A(4)A(4)=5120≈4.17%i10 =A(10) ? A(9)A(9)=5145≈3.45%(2)i5 =A(5) ? A(4)A(4)=100(1 + 0.1)5 ?100(1 + 0.1)4100(1 + 0.1)4= 10%i10 =A(10) ? A(9)A(9)=100(1 + 0.1)10 ?100(1 + 0.1)9100(1 + 0.1)9= 10%第2 页5.设A(4) = 1000, in = 0.01n. 试计算A(7) 。

金融数学引论答案第一章--北京大学出版[1]

金融数学引论答案第一章--北京大学出版[1]

第一章习题答案1.解: 把t = 0 代入得A(0) = 3 于是:a(t) =A(t)/A(0)=(t 2 + 2t + 3)/3In = A(n) − A(n − 1)= (n 2 + 2n + 3) − ((n − 1)2 + 2(n − 1) + 3))= 2n + 12. 解:()n n-1t 11I A(n)A(t)I I I n(n 1)/2t(t 1)/2+=-=+++=+-+・・・(2)1t 11I A(n)A(t) 22n n k k t I ++=+=-==-∑3.解: 由题意得a(0) = 1, a(3) =A(3)/A(0)= 1.72⇒ a = 0.08, b = 1∴ A(5) = 100A(10) = A(0) ・ a(10) = A(5) ・ a(10)/a(5)= 100 × 3 = 300.4. 解:(1)i5 =(A(5) − A(4))/A(4)=5120≈ 4.17%i10 =(A(10) − A(9))/A(9)=5145≈ 3.45%(2)i5 =(A(5) − A(4))/A(4)()()()544109109100(1 0.1)100(1 0.1) 10%100(1 0.1)100(1 0.1)100(1 0.1)i (A 10A 9)/A 9 10%100(1 0.1)+-+==++-+=-==+5.解:A(7) = A(4)(1 + i5)(1 + i6)(1 + i7)= 1000 × 1.05 × 1.06 × 1.07= 1190.916.解: 设年单利率为i500(1 + 2.5i) = 615解得i = 9.2%设500 元需要累积t 年500(1 + t × 7.8%) = 630解得t = 3 年4 个月7.解: 设经过t 年后,年利率达到2.5%t 1 4%t (1 2.5%)+⨯=+ t ≈ 36.3678. 解:(1 + i)11 = (1 + i)5+2*3 = XY 39. 解: 设实利率为i600[(1 + i)2 − 1] = 264解得i = 20%∴ A(3) = 2000(1 + i)3 = 3456 元10.解: 设实利率为i2111(1)(1)n n i i +=++解得(1 + i)-n =512- 所以(1 + i)2n = 251()2--352+= 11.解:由500×(1 + i)30 = 4000 ⇒ (1 + i)30 = 8于是PV =204060100001000010000 (1 i)(1 i)(1 i)+++++ = 1000 × 24233(888)---++= 3281.2512解:(1 + i)a = 2 (1)(1 + i)b =32(2) (1 + i)c = 5 (3)(1 + i)n =32(4) (4) ⇒ n ・ ln (1 + i) = ln 5 − ln 3(3) ⇒ ln 5 = c × ln (1 + i)(1) × (2) ⇒ ln 3 = (a + b) ・ ln (1 + i)故n = c − (a + b)13.解: A ・ i = 336A ・ d = 300i − d = i ・ d⇒ A = 280014.解: (1)d 5 =()()()a 5a 4a 5- =10%1 510%+⨯ = 6.67%(2)a -1(t) = 1 − 0.1t⇒ a(t) ==110.1t- ⇒ d 5 =()()()a 5a 4a 5- = 16.67%15.解:由(3)(4)3(4)3(3)(4)4(1)(1)344[1(1)]3i d i d --+=-⇒=⋅-+ 由(6)(12)6(12)(12)(6)2(1)(1)6126[(1)1]12i d d i --+=-⇒=⋅-- 16.解: (1) 终值为100 × (1 + i(4)/ 4 )4*2 = 112.65元(2) 终值为100 × [(1 − 4d ( 1/4 ))1/4 ]-2 = 114.71元17.解: 利用1/d (m)− 1/i (m) = 1/m ⇒ m = 818. 解:a A (t) = 1 + 0.1t ⇒ δA (t)A A 11BA 1B a'(t)0.1a (t)10.1(a(t))'0.05a (t)10.05a (t)10.05B tt t δ---==+=-⇒==-由δA(t) = δB(t)得t = 519.解: 依题意,累积函数为a(t) = at2 + bt + 1a(0.5) = 0.25a + 0.5b + 1 = 1.025a(1) = a + b + 1 = 1.07⇒a = 0.04b = 0.03于是δ0.5 =a'(0.5) 0.068a(0.5)= 20.解: 依题意,δA (t) =22t 1t +, B 2(t) 1t δ=+ 由A B (t)(t)δδ>⇒22t 21 t 1 t>++ ⇒ t > 1 21.解:()4d 8%=,设复利下月实贴现率为d ,单利下实利率为d 0。

金融数学引论答案第一章--北京大学出版[1]

金融数学引论答案第一章--北京大学出版[1]

第一章习题答案1•解:JEt = O 代入得A(O) = 3 于是:a(t) =A(t)/A(O)= (t 2 + 2t + 3) /3 In =A(n) 一 A(n 一 1)= (n 2 + 2n + 3) - ((n - I)2 + 2(n - 1) + 3))= 2n + l 2.解:(1)1 = A(n)-A(t) = I n +I nl + ∙ ∙ ÷I t+1 =n(n+ l)∕2-t(t+ 1)/2 (2)I = A(n)-A(t)= Y J l k = 2π+, -2,+,A-r÷l3•解:由题意得a(0) = I Z a(3) =A(3)/A(O)= => a = , b = 1 ∕∙ A(5) = 100A(IO)=A(O) ∙ a(10) = A(5) ∙ a(10)/ a(5)= 100 X 3 = 300.4.解:(l)i5 =(A(5) - A(4))∕A(4)=5120^ % ilθ =(A(IO) - A ⑼)∕A(9)=5145≈ %(2)i5 =(A(5) 一 A(4))∕A(4)IOO(I + 0.1)5-l∞(l + 0.1)4IOo(I + o.ιy l5•解:A(7) = A(4)(l + i5)(l + i6)(l + i7) =1000 XXX6•解:设年单利率为i500(1 + = 615解得i = %设500元需要累积t 年500(1 + t × %) = 630解得t = 3年4个月 }7•解:设经过t 年后,年利率达到%1 + 4%×t= (1 + 2.5%)1 t Q8. 解ι(l + i)11 = (l + i)5+2*3 = XY 39. 解:设实利辜为i600[(l + i)2 一 1] = 264解彳gi = 20%:• A(3) = 2000(1 + i)3 = 3456 元10•解:设实利站为i10% i K)=(A(10)-A(9))∕A(9) =1∞(1 + 0.1)10-100(1 + 0.1)9 IOO(I + 0.1)910%---------- 1 ------- ~ (l + z)n (l + ∕)2n所以"=导》右11•解:由500×(l+ i)30 = 4∞0 => (l + i)30 = 8IOOOO I(XX)O IOOOo++ i)2°(1 +i)40 (1 +i)60=IOOO ×2 4 (8~+8~+8^2)12 解:(1 + i)a = 2(l + i)b =j (2)(l + i)c = 5 (3)3 + i)n =- (4) 2=> n ∙ In(I. + i) = In 5 -In 3⅝l∕ ⅝l∕11/ /k 牧→ In5 = c × ln(l + i) × (2) => In3 = (a + b) ■ In (1 + i) =C -(a + b)13•解:A ∙ i = 336 A ∙ d = 300 i —d = i ∙ d => A =2800 14•解:(1)10%'1 + 5x10%=%⑵ a-1(t) = 1 一=> a(t) = a(5)III δ A(t)= δ B(t)得t = 5)19・解:依题意,累积函数为a(t) = at2 + bt + 1 a = 0.25a ++ 1 =a(l) = a + b + 1 ==> a =b =于是 δ =≤222= 0.068a(0.5)20∙解:依题意,§ A (t) = J 「J B (t)= ----------------1 + L 1 + tIllJ A (t)> ¾ (t) 1一 1-0.1/=dS = ΦH√1) a(5)=%15∙解:由(l + -r )3=(l-£-)7 3 4i⑶-3二> 〃⑷=4・[1一(1 +寸)-可:⑶ Itl:⑹ z ∕(12)(1 + L_)6=(1_L_)3) 6 12〃(⑵=> 严>=6∙[(1 -------- Γ2-l]1216•解:⑴ 终值为IOO × (1 + i(4)/4 F?=元⑵ 终值为Ioo × [(1 -4d<V4))1/4 ]-2=元17. 解:利用 1/d (FTl)- 1/i (Fn) = I∕m=> m = 818. 解:aA (t) = 1 + => δ A (t)a"1A (t) = l-0.05r=>¾ (a"1B (t))1 aΛ(t) 0.05"l-0.05ra A (I) 1 + 0」/2t 2=> -------- > ---------- 1 +L 1 +t=> t > 121.解:d (4) = 8% ,设复利下月实贴现率为d,单利下实利率为do 。

金融数学引论答案-(一)

金融数学引论答案-(一)

(2) I = A(n) − A(t) n n ∑ ∑ = Ik = Ik
k=t+1 k=t+1
= 2n+1 − 2t+1
3. 已知累积函数的形式为: a(t) = at2 + b 。若 0 时刻投入的 100 元累积到 3 时刻 为 172 元, 试计算: 5 时刻投入的 100 元在 10 时刻的终值。 北京大学数学科学学院金融数学系 第1页
2 4
= 3281.25 12.以同样的实利率,1元经过a年增为2元,2元经过b 年增为3元,3元经过c年增 为15元。若已知6元经过n年增为10元。试用a,b和c表示n。
北京大学数学科学学院金融数学系
第4页
版权所有,翻版必究 解: (1 + i)a = 2 3 (1 + i)b = 2 c (1 + i) = 5 5 (1 + i)n = 3 (4) ⇒ n · ln (1 + i) = ln 5 − ln 3 (3) ⇒ ln 5 = c × ln (1 + i) (1) × (2) ⇒ ln 3 = (a + b) · ln (1 + i) 故 n = c − (a + b) 13. 已知资本A在一年内产生的利息量为336, 产生的贴现量为300。计算A。 解:
1 i(m)
=
1 m
⇒m=8
18. 基金A以单利率10%累积,基金B以单贴现率5%累积。计算两个基金的利息 力相等的时刻。
北京大学数学科学学院金融数学系
第6页
版权所有,翻版必究 解: aA (t) 0.1 = aA (t) 1 + 0.1t −1 (a (t)) 0.05 −1 aA (t) = 1 − 0.05t ⇒ δB (t) = − B = −1 1 − 0.05t aB (t) aA (t) = 1 + 0.1t ⇒ δA (t) = 由δA (t) = δB (t)得 t=5 19. 一年期投资的累积函数为二次多项式, 前半年的半年名利率为5%, 全年的实 利率为7%, 计算δ0.5 。 解: 依题意, 累积函数为a(t) = at2 + bt + 1 a(0.5) = 0.25a + 0.5b + 1 = 1.025 a(1) = a + b + 1 = 1.07 于是 δ0.5 = a (0.5) a(0.5)

金融数学引论答案 .docx

金融数学引论答案 .docx

第一章习题答案1.设总量函数为A(t) = t2 + 2/ + 3 o试计算累积函数a(t)和第n个吋段的利息【仇°解:把t =()代入得4(()) = 3于是:4(t) t? + 2t + 3啲=丽=3In = 4(北)一A(n一1)=(n2 + 2n + 3) — ((n — I)2 + 2(n — 1) + 3))= 2n+l2.对以下两种情况计算从t时刻到冗(£ < n)时刻的利息:(1)厶(0 < r < n);(2)/r =2r(0<r <n).解:(1)I = A(n) - A(t)—In + in-1+ • • • + A+l n(n + 1) t(t + 1)=2 2I = A(n) - A(t)n n=乞h = 土hk=t+l A:=t+13.已知累积函数的形式为:Q(t) = at2 +几若0时刻投入的100元累积到3吋刻为172元,试计算:5时刻投入的10()元在10时刻的终值。

解:由题意得。

(0) = 1, «(3) = = L72=> a = 0.0& 6=14(5) = 100>1(10) = 4(0) • «(10) = 4⑸• W = 100 x 3 = 300.a(5)4.分别对以下两种总量函数计算订和讪:(1) A(t) = 100 + 5t; (2) A(t) = 100(1 + 0.1尸・解:(1)_ 4(5) - 4(4)5 _ 4(4)5二面-.17% . 4(10)-4(9)210 =—4(9)—5=—^ 3.45%145⑵_ 4(5) - 4(4)5 - 4⑷_ 100(1 + 0.1)5 - 100(1 + 0.1)4 = 100(1+ 0.1)4=10%. 4(10) —4(9)皿=_ 100(1+ O.1)10-100(1+ 0.1)9 = 100(1 + 0.1)9=10%5•设4(4) = 1000, i n = O.Oln.试计算4(7)。

金融数学课后答案

金融数学课后答案

金融数学课后答案【篇一:金融数学(利息理论)复习题练习题】购买一张3年期,面值为1000元的国库券,每年末按息票率为8%支付利息,第三年末除支付80元利息外同时偿付1000元的债券面值,如果该债券发行价为900元,请问他做这项投资是否合适? 2.已知:1) 1?i2) 1?由于(1?m)?(1?n)?1?i 由于(1?)?(1?)?1?d3. 假设银行的年贷款利率12%,某人从银行借得期限为1年,金额为100元的贷款。

银行对借款人的还款方式有两种方案:一、要求借款人在年末还本付息;二、要求借款人每季度末支付一次利息年末还本。

试分析两种还款方式有何区别?哪一种方案对借款人有利?4. 设m?1,按从小到大的顺序排列i,i(m)(m)(m)(m)m?(1?i5)(1?i6)?1 求m?? ?(1?d(5)d(6)?1)(1?6) 求m?? 5(5)(6)d(m)mm(n)nm(n)n,d,d(m),?解:由i?d?i?d? i?dd(m?1)?d(m) ? d?d(m) i(m)?d(n) ? d(m)?i(m) i(m?1)?i(m)?i(m)?ii(m)?limd(m)?? 1?i?e??1?? , limm??m???d?d(m)???i(m)?i5. 两项基金x,y以相同的金额开始,且有:(1)基金x以利息强度5%计息;(2)基金y以每半年计息一次的名义利率j计算;(3)第8年末,基金x中的金额是基金y中的金额的1.5倍。

求j.6. 已知年实际利率为8%,乙向银行贷款10,000元,期限为5年,计算下列三种还款方式中利息所占的额度:1)贷款的本金及利息积累值在第五年末一次还清; 2)每年末支付贷款利息,第五年末归还本金; 3)贷款每年年末均衡偿还(即次用年金方式偿还)。

三种还款方式乙方支付的利息相同吗? 请你说明原因?7.某人在前两年中,每半年初在银行存款1000元,后3年中,每季初在银行存款2000元,每月计息一次的年名义利率为12% 计算5年末代储户的存款积累值。

金融数学_中国人民大学中国大学mooc课后章节答案期末考试题库2023年

金融数学_中国人民大学中国大学mooc课后章节答案期末考试题库2023年

金融数学_中国人民大学中国大学mooc课后章节答案期末考试题库2023年1.一个合约的回收是指合约到期时可以实现的现金价值,不考虑合约签订时发生的初始费用。

答案:正确2.在利率互换合约中,互换利率等于浮动利率的加权平均数。

答案:正确3.假设当前的期货价格为30,年波动率为30%,无风险连续复利为5%。

用两步二叉树计算6个月期的执行价格为31的欧式看涨期权的价格答案:大于24.股票当前的价格为50元,波动率为每年10%。

一个基于该股票的欧式看跌期权,有效期为2个月,执行价格为50元。

连续复利的无风险年利率为5%。

构造一个二步(每步为一个月)的二叉树为该期权定价。

答案:小于0.65.期权价格也称作执行价格答案:错误6.美式看涨期权多头的盈利可以无限大答案:正确7.假设股票的现价为100元,一年期看涨期权的执行价格为105元,期权费为9.4元,年有效利率为5%。

如果一年后的股票价格为115元,则该看涨期权的盈亏为0.13元。

答案:正确8.假设股票的现价为100元,一年期看跌期权的执行价格为105元,期权费为8元,年有效利率为5%。

如果一年后的股票价格为105元,则该看跌期权的盈亏为3元。

答案:错误9.债券的面值为1000元,息票率为6%,期限为5年,到期按面值偿还,到期收益率为8%。

应用理论方法计算该债券在购买9个月后的账面值。

答案:大于93010.一份股票看涨期权的执行价格为40元,期权费为2元,期权的有效期是半年,无风险的连续复利为5%。

假设期权到期时的股票价格为43元,在期权到期时,多头可以达到盈亏平衡点的股票价格为多少?答案:大于40,小于5011.股票现价为60,一份2个月到期的该股票美式看涨期权的交割价格为60,连续复利为5%,股票无红利支付,波动率为30%,应用两阶段二叉树模型计算该期权的价值。

答案:2.8412.期权的回收小于期权的盈亏答案:错误13.美式看涨期权和看跌期权的价格之间存在一种平价关系答案:错误14.标的资产的现价越高,欧式看涨期权与看跌期权的价格之差越大答案:正确15.债券的面值,为1000,期限为20年,到期偿还值为1050元,每年末支付一次利息。

金融数学引论答案第一章__北京大学出版[1]

金融数学引论答案第一章__北京大学出版[1]

第一章习题答案1. 设总量函数为A(t) = t 2 + 2t + 3 。

试计算累积函数a(t) 和第n 个时段的利息I n 。

解: 把t = 0 代入得A(0) = 3 于是:a(t) =A(t)/A(0)=(t 2 + 2t + 3)/3I n = A(n) − A(n − 1)= (n 2 + 2n + 3) − ((n − 1)2+ 2(n − 1) + 3))= 2n + 12. 对以下两种情况计算从t 时刻到n(t < n) 时刻的利息: (1)I r (0 < r <n); (2)I r = 2r (0 < r < n).解: ()n n-1t 11I A(n)A(t)I I I n(n 1)/2t(t 1)/2+=-=+++=+-+・・・ (2)1t 11I A(n)A(t) 22n n k k t I ++=+=-==-∑3. 已知累积函数的形式为: 2a(t) at b =+。

若0 时刻投入的100 元累积到3 时刻为172 元,试计算:5 时刻投入的100 元在10 时刻的终值。

解: 由题意得a(0) = 1, a(3) =A(3)/A(0)= 1.72⇒ a = 0.08, b = 1∴ A(5) = 100A(10) = A(0) ・ a(10) = A(5) ・ a(10)/a(5)= 100 × 3 = 300.4. 分别对以下两种总量函数计算i 5 和i 10 :(1) A(t) = 100 + 5t; (2)t A(t) 100(1 0.1)=+.解:(1)i 5 =(A(5) − A(4))/A(4)=5120≈ 4.17%i 10 =(A(10) − A(9))/A(9)=5145≈ 3.45%(2)i 5 =(A(5) − A(4))/A(4)()()()544109109100(1 0.1)100(1 0.1) 10%100(1 0.1)100(1 0.1)100(1 0.1)i (A 10A 9)/A 9 10%100(1 0.1)+-+==++-+=-==+5.设()n A 4 1000, i 0.01n ==. 试计算A(7) 。

金融数学附答案

金融数学附答案

1、给定股票价格的二项模型,在下述情况下卖出看涨期权 S 0 S u S d X r τ 股数50 60 40 55 0.55 1/2 1000(1)求看涨期权的公平市场价格。

(2)假设以公平市场价格+0.10美元卖出1000股期权,需要买入多少股股票进行套期保值,无风险利润是多少?答案:(1)d u d r S S S e S q --=τ0=56.0406040505.005.0=--⨯⨯e (2)83.2>73.2,τr e S V -∆+∆='0083.2> τr e S -∆+∆'0 406005--=--=∆d u S S D U =25.0股 104025.00'-=⨯-=∆-=∆d S D 753.9975.0105.005.0'-=⨯-=∆⨯-e 美元 则投资者卖空1000份看涨期权,卖空250股股票,借入9753美元 所以无风险利润为1.85835.005.0=⨯e 美元2、假定 S 0 = 100,u=1.1,d=0.9,执行价格X=105,利率r=0.05,p=0.85,期权到期时间t=3,请用连锁法则方法求出在t=0时该期权的价格。

(答案见课本46页)3、一只股票当前价格为30元,六个月期国债的年利率为3%,一投资者购买一份执行价格为35元的六个月后到期的美式看涨期权,假设六个月内股票不派发红利。

波动率σ为0.318.问题:(1)、他要支付多少的期权费?【参考N (0.506)=0.7123;N (0.731)=0.7673 】{提示:考虑判断在不派发红利情况下,利用美式看涨期权和欧式看涨期权的关系}解析:在不派发红利情况下,美式看涨期权等同于欧式看涨期权!所以利用B—S公式,就可轻易解出来这个题!同学们注意啦,N(d1)=N(-0.506),N(d2)=N(-0.731)。

给出最后结果为0.6084、若股票指数点位是702,其波动率估计值σ=0.4,指数期货合约将在3个月后到期,并在到期时用美元按期货价格计算,期货合约的价格是715美元。

金融数学引论答案.docx

金融数学引论答案.docx

⾦融数学引论答案.docx第⼀章习题答案1.设总量函数为A(t) = t2 + 2/ + 3 o试计算累积函数a(t)和第n个吋段的利息【仇°解:把t =()代⼊得4(()) = 3于是:4(t) t? + 2t + 3啲=丽=3In = 4(北)⼀A(n⼀1)=(n2 + 2n + 3) — ((n — I)2 + 2(n — 1) + 3))= 2n+l2.对以下两种情况计算从t时刻到冗(£ < n)时刻的利息:(1)⼛(0 < r < n);(2)/r =2r(0解:(1)I = A(n) - A(t)—In + in-1+ ? ? ? + A+l n(n + 1) t(t + 1)=2 2I = A(n) - A(t)n n=乞h = ⼟hk=t+l A:=t+13.已知累积函数的形式为:Q(t) = at2 +⼏若0时刻投⼊的100元累积到3吋刻为172元,试计算:5时刻投⼊的10()元在10时刻的终值。

解:由题意得。

(0) = 1, ?(3) = = L72=> a = 0.0& 6=14(5) = 100>1(10) = 4(0) ? ?(10) = 4⑸? W = 100 x 3 = 300.a(5)4.分别对以下两种总量函数计算订和讪:(1) A(t) = 100 + 5t; (2) A(t) = 100(1 + 0.1⼫?解:(1)_ 4(5) - 4(4)5 _ 4(4)5⼆⾯-.17% . 4(10)-4(9)210 =—4(9)—5=—^ 3.45%145⑵_ 4(5) - 4(4)5 - 4⑷_ 100(1 + 0.1)5 - 100(1 + 0.1)4 = 100(1+ 0.1)4=10%. 4(10) —4(9)⽫=_ 100(1+ O.1)10-100(1+ 0.1)9 = 100(1 + 0.1)9=10%5?设4(4) = 1000, i n = O.Oln.试计算4(7)。

金融数学引论答案 .docx

金融数学引论答案 .docx

第一章习题答案1.设总量函数为A(t) = t2 + 2/ + 3 o试计算累积函数a(t)和第n个吋段的利息【仇°解:把t =()代入得4(()) = 3于是:4(t) t? + 2t + 3啲=丽=3In = 4(北)一A(n一1)=(n2 + 2n + 3) — ((n — I)2 + 2(n — 1) + 3))= 2n+l2.对以下两种情况计算从t时刻到冗(£ < n)时刻的利息:(1)厶(0 < r < n);(2)/r =2r(0<r <n).解:(1)I = A(n) - A(t)—In + in-1+ • • • + A+l n(n + 1) t(t + 1)=2 2I = A(n) - A(t)n n=乞h = 土hk=t+l A:=t+13.已知累积函数的形式为:Q(t) = at2 +几若0时刻投入的100元累积到3吋刻为172元,试计算:5时刻投入的10()元在10时刻的终值。

解:由题意得。

(0) = 1, «(3) = = L72=> a = 0.0& 6=14(5) = 100>1(10) = 4(0) • «(10) = 4⑸• W = 100 x 3 = 300.a(5)4.分别对以下两种总量函数计算订和讪:(1) A(t) = 100 + 5t; (2) A(t) = 100(1 + 0.1尸・解:(1)_ 4(5) - 4(4)5 _ 4(4)5二面-.17% . 4(10)-4(9)210 =—4(9)—5=—^ 3.45%145⑵_ 4(5) - 4(4)5 - 4⑷_ 100(1 + 0.1)5 - 100(1 + 0.1)4 = 100(1+ 0.1)4=10%. 4(10) —4(9)皿=_ 100(1+ O.1)10-100(1+ 0.1)9 = 100(1 + 0.1)9=10%5•设4(4) = 1000, i n = O.Oln.试计算4(7)。

金融数学附答案修订版

金融数学附答案修订版

金融数学附答案修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】1、给定股票价格的二项模型,在下述情况下卖出看涨期权 S 0 S u S d X r τ 股数50 60 40 55 0.55 1/2 1000(1)求看涨期权的公平市场价格。

(2)假设以公平市场价格+0.10美元卖出1000股期权,需要买入多少股股票进行套期保值,无风险利润是多少?答案:(1)d u d r S S S e S q --=τ0=56.0406040505.005.0=--⨯⨯e (2)83.2>73.2,τr e S V -∆+∆='0083.2> τr e S -∆+∆'0 406005--=--=∆d u S S D U =25.0股 104025.00'-=⨯-=∆-=∆d S D 753.9975.0105.005.0'-=⨯-=∆⨯-e 美元则投资者卖空1000份看涨期权,卖空250股股票,借入9753美元所以无风险利润为1.85835.005.0=⨯e 美元2、假定 S 0 = 100,u=1.1,d=0.9,执行价格X=105,利率r=0.05,p=0.85,期权到期时间t=3,请用连锁法则方法求出在t=0时该期权的价格。

(答案见课本46页)3、一只股票当前价格为30元,六个月期国债的年利率为3%,一投资者购买一份执行价格为35元的六个月后到期的美式看涨期权,假设六个月内股票不派发红利。

波动率σ为0.318.问题:(1)、他要支付多少的期权费?【参考N(0.506)=0.7123;N(0.731)=0.7673 】{提示:考虑判断在不派发红利情况下,利用美式看涨期权和欧式看涨期权的关系}解析:在不派发红利情况下,美式看涨期权等同于欧式看涨期权!所以利用B—S公式,就可轻易解出来这个题!同学们注意啦,N(d1)=N(-0.506),N(d2)=N(-0.731)。

金融数学智慧树知到课后章节答案2023年下宁波大学

金融数学智慧树知到课后章节答案2023年下宁波大学

金融数学智慧树知到课后章节答案2023年下宁波大学宁波大学第一章测试1.利息是资金的 ( ) 。

A:指标B:水平C:价格D:价值答案:价格2.现值也叫 ( ) 。

A:贴现值B:贴现C:终值D:贴现系数答案:贴现值3.假定满足下列条件(i) 10 年末支付 X 和20 年末支付 Y 的现值之和等于 15 年末 X + Y 付款的现值。

(ii) X + Y = 100(iii) 年利率i = 5%则X=()A:44B:48C:52D:50答案:444.杰夫将10元存入一个基金,15 年后又存入20元。

利息以名义贴现率d计息,前 10 年每季度复利一次,名义利率为6%,此后每半年一次。

该基金在30年末的累计余额为100。

则名义贴现率()A:4.43%B:4.63%C:4.53%D:4.33%答案:4.53%5.六个月后到期的$1.00 的现值为$0.97。

则按每年贴现4次的名义年贴现率为()A:6.05%B:6.55%C:6.75%D:5.95%答案:6.05%第二章测试1.一项投资需要首付1万元,前10年每年年底支付1000元。

从第11年年底开始,该投资连续5年在每年底回报相等的金额X。

试确定X使得在15年期间产生10%的年回报率()。

A:10,900B:11,050C:11,200D:10,750答案:11,0502.若年利率为6.3%,每年末付款1000元的4N期年金现值为14113,试确定第一个N年付款的现值和第三个N年付款的现值的百分比为()。

A:66%B:57%C:60%D:63%答案:63%3.如果2010年至2021年(含)每年1月1日缴存1500元,实际利率为每年1.75%,试确定这些存款在2030年1月1日的累计价值为()。

A:23,290B:23,390C:23,490D:23,190答案:23,1904.李明将在每季度末存入账户450元,为期10年。

15年后,李明使用账户资金在每年年初支付Y,为期4年,之后账户余额为0,假设年利率为7%。

利息理论第三章课后答案

利息理论第三章课后答案

利息理论第三章课后答案《金融数学》课后习题参考答案第三章 收益率1、某现金流为:3000o o =元,11000o =元,12000I =元,24000I =元,求该现金流的收益率。

解:由题意得:2001122()()()0O I O I v O I v -+-+-=23000100040000v v --=4133v i ⇒=⇒=2、某投资者第一年末投资7000元,第二年末投资1000元,而在第一、三年末分别收回4000元和5500元,计算利率为0.09及0.1时的现金流现值,并计算该现金流的内部收益率。

解:由题意得:23(0)[(47) 5.5]1000V v v v =--+⨯ 当0.09i =时,(0)75.05V =当0.1i =时,(0)57.85V =-令(0)00.8350.198V v i =⇒=⇒=3、某项贷款1000元,每年计息4次的年名义利率为12%,若第一年后还款400元,第5年后还款800元,余下部分在第7年后还清,计算最后一次还款额。

解:由题意得:40.121(1)0.88854i v +=+⇒=571000400800657.86v pv p =++⇒= 4、甲获得100000元保险金,若他用这笔保险金购买10年期期末付年金,每年可得15380元,若购买20年期期末付年金,则每年可得10720元,这两种年金基于相同的利率i ,计算i 。

解:由题意得: 08688.010720153802010=⇒=i a a i i5、某投资基金按1(1)t k t k δ=+-积累,01t ≤≤,在时刻0基金中有10万元,在时刻1基金中有11万元,一年中只有2次现金流,第一次在时刻0.25时投入15000元,第二次在时刻0.75时收回2万元,计算k 。

解:由题意得:101(1)1k dt t k ek +-⎰=+ 10.251(1)10.75k dt t k ek +-⎰=+ 10.751(1)10.25kdt t k e k +-⎰=+ ⇒10000(1)15000(10.75)20000(10.25)1100000.141176k k k k +++-+=⇒=6、某投资业务中,直接投资的利率为8%,投资所得利息的再投资利率为4%,某人为在第10年末获得本息和1万元,采取每年末投资相等的一笔款项,共10年,求证每年投资的款项为:100.0410000210s -。

《金融数学》(第二版)习题参考答案(修订版)

《金融数学》(第二版)习题参考答案(修订版)

δ0.5 = a' (0.5) / a (0.5) =(0.08*0.5+0.03)/(1+2.5%)=0.06829
∫ 1.15
A(3) = 100⋅ exp⎜⎝⎛⎜
3
t2
0
/ 100dt⎞⎠⎟⎟+
X
= 109.42 +
X
∫ A(6) = (109.42 + X )⋅exp⎛⎜⎜⎝
6t2
3
/ 100dt⎞⎠⎟⎟
第三部分是自55年开始支付5次每次支付2x故有050545500001051053278516由已知115045869228001001由过去法第2期后未偿还本金金额为10001018692288453852次支付的本金金额为001784689由将来法第4期后未偿还本金金额为次支付的利息金额为0015138212517第69期还款额中本金金额为3606929269rvrv故由已知292292094473rv和70期偿还的本金金额比为944186970同样解得01196518由已知前10次付款等于应付利息故十年末的未偿还贷款余额仍为1000第11至20次付款等于应付利息的两倍即本金偿还值等于应付利息值有11101110111011101211101010201000809209209209209210004343885后10期每期付款等于x故206474008104343885519分别用将来法计算两种偿还方式在第5次付款之后的未偿还本金有10005100050051000800kvia487914
200a ×(1+ 0.5%)123 = 33873 123 0.5%
200a ×(1+ 0.5%)70 = 26005 123 0.5%
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金融数学课后答案【篇一:金融数学(利息理论)复习题练习题】购买一张3年期,面值为1000元的国库券,每年末按息票率为8%支付利息,第三年末除支付80元利息外同时偿付1000元的债券面值,如果该债券发行价为900元,请问他做这项投资是否合适? 2.已知:1) 1?i2) 1?由于(1?m)?(1?n)?1?i 由于(1?)?(1?)?1?d3. 假设银行的年贷款利率12%,某人从银行借得期限为1年,金额为100元的贷款。

银行对借款人的还款方式有两种方案:一、要求借款人在年末还本付息;二、要求借款人每季度末支付一次利息年末还本。

试分析两种还款方式有何区别?哪一种方案对借款人有利?4. 设m?1,按从小到大的顺序排列i,i(m)(m)(m)(m)m?(1?i5)(1?i6)?1 求m?? ?(1?d(5)d(6)?1)(1?6) 求m?? 5(5)(6)d(m)mm(n)nm(n)n,d,d(m),?解:由i?d?i?d? i?dd(m?1)?d(m) ? d?d(m) i(m)?d(n) ? d(m)?i(m) i(m?1)?i(m)?i(m)?ii(m)?limd(m)?? 1?i?e??1?? , limm??m???d?d(m)???i(m)?i5. 两项基金x,y以相同的金额开始,且有:(1)基金x以利息强度5%计息;(2)基金y以每半年计息一次的名义利率j计算;(3)第8年末,基金x中的金额是基金y中的金额的1.5倍。

求j.6. 已知年实际利率为8%,乙向银行贷款10,000元,期限为5年,计算下列三种还款方式中利息所占的额度:1)贷款的本金及利息积累值在第五年末一次还清; 2)每年末支付贷款利息,第五年末归还本金; 3)贷款每年年末均衡偿还(即次用年金方式偿还)。

三种还款方式乙方支付的利息相同吗? 请你说明原因?7.某人在前两年中,每半年初在银行存款1000元,后3年中,每季初在银行存款2000元,每月计息一次的年名义利率为12% 计算5年末代储户的存款积累值。

8. 期末付款先由1到n递增付款,然后再由n?1到1的递减付款形成的变额年金称为虹式年金,试求付款期利率为i的虹式年金的现值和终值。

解:现值为:a???2?2?3?3?,...,?(n?1)?n?1?n?n?(n?1)?n?1?,...,??2n?1 ?a??2?2?3?3?4?,..?.(,n?1)?n?n?n?1?(n?1)?n?2?,..?.?,2nn a??a????2??3?,...,??n??n?1??n?2?,...,??2n?1?(1??)1??)a??((1 ??)2n2n?1同理可证终值公式。

9. 固定养老保险计划:责任:未退休时,每月初存入一定金额(养老保险金),具体方式: 25岁—29岁,月付200元, 30岁---39岁,月付300元, 40岁—49岁,月付500元, 50岁—59岁,月付1000元,权益:从退休时(60岁),每月初领取p元退休金,一直领取20年。

问题:在给定年利率i?10%,分别计算从25,30,40,50岁参加养老保险,60岁以后月退休金为多少?查表可得:a|0.1?8.5136,s0.1?271.0244,s0.1?164.4940,s0.1?57.2750,s0.1?15.9374。

10.某人继承一笔遗产:从现在起每年初可得10000元。

该继承人以10%年利率将以产收入存入银行,到第五年底,在领取第六年年金之前将遗产的权益转卖给他人,然后将前五年的存款收入取出并和转卖收入一并做一项年收益率为12%的投资项目。

若每年底的投资回报是相同的,项目有效期为30年。

求投资人每年的回报金额。

11.考虑下列两种等价的期末年金:a:首付6000元,然后每年减少100元,直到某年(k),然后保持一定付款的水平直到永远;b:每年底固定付款5000元;如果年利率为6%,试求k(近似整数)。

解:方法一:价值等式:5000a|?(6000?100(k?1))?a|?6000a|?100?ka|?k?k0.65000?(6000?100(k?1))?k?6000(1??k)?100(a?k?k)解得a|?10,查表得k?15方法二:价值等式:5000|?(6000?100(k?1))|?100(da) 注意到(da)|?答:k?15。

12.某人退休一次性获得退休金y元,它将其中的一部分x用于投资回报率为n?a|i解得|?10查表得k?15ix的永久基金,另一部分用于投资回报率为j的十年期的国债。

已知他前十年的收入是后十年的两倍,试确定他投资于永久基金占总退休金的比例。

13.某汽车销售商计划采取以下两种零售策略:1)若一次性付清车款,零售价格为2万元;或 2)以年利率10%,提供4年分期付款(按月付款)。

如果目前市场上,商业零售贷款月换算的年名义利率为12%,试分析两种零售策略那种对消费者更优惠?14.十万元的投资每年底收回一万元,当不足一万元时将不足一万元的部分与最后一次的一万元一次收回。

如果每半年接转一次利息的年名义利率为7%,试求收款次数和最后一次的收款金额。

15.考虑一个十年期的投资项目:第一年初投入者投入10000元,第二年初投入5000元,然后每年初只需投入维修费1000元。

该项目期望从第六年底开始有收益:最初为8000元,以后每年递增1000元。

用dcf法计算该投资项目的价值。

特别如果贷款利率为10%,该项目是否有投资价值?16.某项10年期贷款,年利率为8%,如果还款额同时以年利率为7%在投资,求下列情况下的实际收益率:1)到期一次还清;2)每年还利息,到期还本金;3)每年等额分期偿还。

17.某基金投资者:每年初投入一定本金,共投资10年。

基金本身的年回报率为7%,年底支付。

分别对再投资利率为5% 和8% 两种情况下,讨论投资者的实际收益率。

18.讨论下列模型假设下得再投资的实际收益率:1)每年末(一个计息期)投资1单位资金,每年(一个计息期)的直接投资收益率为i;2)投资的回报方式为:逐年(一个计息期)收回利息,结束时收回本金; 3)同时将每年的利息收入以再投资利率为j进行再投资。

资金流程图如下:19.投资者购买以下五年期的金融产品:1)每年底得到1000元;2)每年的收入可按年利率4%再投资且当年收回利息。

如果该投资者将每年的利息收入以年利率3%再投资,实际年收益率为4%。

求该金融产品的购买价。

20.某投资者连续五年每年向基金存款1000元,年利率5%,同时利息收入可以年利率为4%投资。

给出第十年底的累积余额表达式。

21.1万元的贷款计划20年分年度还清,每年底还款1000元。

如果贷款方可以将每年的还款以年利率为5%投资,计算贷款方的实际收益率。

22.某活期存款账户年初余额为1000元,4月底存入500元,六月底和八月底分别提取200元和100元,年底余额为1236元,求该储户的年资本加权收益率。

23.某投资账户年初余额为10万元,5月1日的余额为11.2万元,同时投资3万元,11月1日余额将为12.5万元,同时提取4.2万元,在下一年的1月1日又变为10万元。

分别用资金加权和时间加权求投资收益率。

24.某基金由两个投资人,甲年初在基金中有资金1万元,年中又投入1万元,乙年初有2万元,上半年收益率为10%,下半年收益率为20%,利用投资组合法计算甲乙应分得的收益。

25.债券a,面值为pa,收益率为ia,无违约风险;债券b,面值为pb,收益率为ib,违约概率为p(0?p?1),如果违约发生则到期债券的价值为0,即债券b在到期时的价值为随机变量xb??pb......不违约0............违约。

问题:在什么条件(pa,pb,p,ia,ib满足什么关系)下,债券a和债券b对投资者来说有相同的期望收益?分析:要使两债券在到期时有相同的期望收益,两债券期末的期望本利和应相同,所以应有关系:pa(1?ia)?e[xb](1?ib) 即:pa(1?ia)?pb(1?p)(1?ib)26.某按月摊还的债务,年实际利率为11%,如果第三次还款中的本金量为1000元,计算第33次还款中本金部分的金额。

27.某借款人借款2000元,年利率为10%,要求两年内还清。

借款人以偿债基金方式还款:每半年向基金存款一次,而且存款利率为季度挂牌利率8%,求每半年应偿债基金的存款额。

并构造偿还表。

28.假设一笔贷款期限为5年,贷款利率为10%,如果贷款人计划每年末的总付款额为:1000元、2000元、3000元、4000元和5000元。

试分别用分期偿还法和偿债基金利率为8%的偿债基金法计算原始贷款本金。

【篇二:金融数学引论答案第三章北京大学出版】第三章习题答案1 已知某投资的内部回报率为r ,且在该投资中c0 = 3000 元,c1= 1000 元, r2 = 2000 元和r3 = 4000 元。

计算r 。

解: 令v = 11+r,由p(r) = 0 有c0 + c1v ? r2v2 ? r3v3 = 0代入数据,解得:v ≈ 0.8453∴ r = 18.30%2 十年期投资项目的初期投入100, 000 元,随后每年年初需要一笔维持费用:第一年3000 元,以后各年以6% 的速度增长。

计划收入为:第一年末30,000 元,以后逐年递减4% ,计算r6 。

解: 由i = 6%, j = 4%r6 = 30000(1 ? j)5 ? 3000(1 + i)5= 20446.60元3 已知以下投资方式:当前投入7000 元,第二年底投入1000 元;回报为:第一年底4000 元,第三年底5500 元。

计算:p(0.09) 和p(0.10) 。

解: 净现值p(i) 为:p(i) = ? 7000 + 4000(1 + i)?1? 1000(1 + i)?2 + 5500(1 + i)?3p(0.09) = 75.05元p(0.10) = ? 57.85元北京大学数学科学学院金融数学系第1 页版权所有,翻版必究4 计算满足以下条件的两种收益率的差:当前的100 元加上两年后的108.15 元,可以在第一年底收回208 元。

解: 设收益率为i ,其满足:?100 + 208v ? 108.15v2 = 0解得i = 2.03% 或6.03%两种收益率的差为4.00%5 每年初存款,第10 年底余额为1000 元,存款利率4% ,每年的利息收入以4% 的利率进行再投资。

给出每年存款金额的表达式。

解: 以第10 年底为比较日,有以下的方程10r + 4%r(is)10p3% ¬ = 1000解得r =100010 + 4%(is)10p3% ¬6 现在10000 元贷款计划在20 年内分年度还清,每年还款1000 元。

相关文档
最新文档