数值计算方法第5讲牛顿插值总结
牛顿(newton)插值法
牛顿(newton)插值法牛顿插值法是一种数值分析中的插值方法,它用于找到一个多项式函数,该函数会经过给定的一系列数据点。
该方法最初由英国数学家艾萨克·牛顿(Isaac Newton)发明并称为插值多项式,它也被称作差分插值法。
插值是数学和工程学中的一项重要任务,它是用于在给定数据点之间构建连续函数的一种数值方法。
插值方法通常涉及过渡从观察结果派生出抽象结果的过程,从而使得预测可能的结果取得更加准确。
下面介绍牛顿插值法的基本原理。
插值基础插值基础是插值方法中的一个重要概念。
在这里,我们将对牛顿插值法中用到的插值基础进行简要介绍。
一个插值基础是指一个已知数据点的集合,通常是一个 x 坐标和对应的 y 坐标。
每个插值基础一般定义为一个数据点的函数,该函数包含了给定点的所有信息并将这些信息用于构建连续函数。
在牛顿插值法中,我们使用差分来定义插值基础。
差分是指两个相邻数据点之间 y 坐标的差值。
具体来说,若给定以下节点:x0, y0x1, y1x2, y2...xn, yn我们则通过以下的 "+" 符号所示的不断进行差分的方式来构建一个插值基础:y0y1-y0…yn-yn-1 yn-yn-1 yn-yn-2 ... yn-y0上述图表所展示的差分的值即为定义插值基础的差商(divided difference)。
牛顿插值公式基于上述插值基础和差商,我们现在可以使用牛顿插值公式来实现插值。
具体来说,牛顿插值公式可以表示为:f(x) = y0 + d1*f[x0,x1] + d2*f[x0,x1,x2] + ... + dn*f[x0,x1,...,xn]其中 f(x) 是插值函数,x0, x1, ..., xn 是给定的节点,y0, y1, ..., yn 是对应的 y 值,f[x0,x1] 是差商 f(x0,...,x1) 的值,d1, d2, ..., dn 也是差商。
请注意,插值函数的次数最高为 n - 1,这意味着插值函数与插值基础的次数相同。
newton插值均差与差分
第五章 函数近似计算(插值问题)的插值方法5.3 Newton 插值/均值与差分lagrange 插值多项式作为一种计算方案,公式简洁,做理论分析也方便。
其缺点是,当节点改变时,公式需要重建,计算量大;如果还要根据精度要求,选取合适的节点和插值多项式的次数,则只好逐次计算出)(1x L , )(2x L等,并做误差试算,才可以做到,这当然是不理想的。
为次,人们从改进插值多项式的形式入手,给出另一种风格的插值公式,这就是Newton(牛顿)插值公式。
Newton 插值公式通过均差和差分的记号来表达。
1. 均差的概念及其性质 定义 5.3.1 设函数f在互异节点 ,,10x x 上的值为 )(0x f , )(1x f ,等,定义(1)f 在j i x x ,上的1阶均差为 ji j i j i x x x f x f x x f --=)()(],[(2) f在k j i x x x ,,上的2阶均差为 ki k j j i k j i x x x x f x x f x x x f --=],[],[],,[(3)递推地,f在k x x x ,,,10 上的k阶均差为kk k k x x x x x f x x x f x x x f --=-02111010],,,[],,,[],,,[同时规定f在i x 上的零阶均差为)(][]i x f x f =性质1k 阶均差可以表示成1+k个函数值的线性组合,即∑=+-----=kj k j j j j j j j k x x x x x x x x x f x x x f 011010)())(()()(],,,[ (5.3.5)或记为∑=+=kj j k j k x x f x x x f 0110)(')(],,,[ω (5.3.5b )证明:用数学归纳法。
当1=k 时由均差定义有11100101010)()()()(],[x x x f x x x f x x x f x f x x f -+-=--=故(5.3.5)式成立。
牛顿插值法介绍
牛顿插值法介绍本文将介绍牛顿插值法的基本原理、计算过程、优缺点以及在实际问题中的应用。
首先,我们将简要介绍插值法的基本概念和牛顿插值法的由来,然后详细讨论牛顿插值法的计算步骤和算法,接着分析其优缺点以及适用范围,最后通过几个实际问题的例子展示牛顿插值法的应用场景。
一、插值法基本概念在数学和计算机领域,插值是指根据已知的离散数据点构造满足这些数据点的曲线或函数的过程。
假设我们有一组数据点{(x1, y1), (x2, y2), ..., (xn, yn)},我们想要通过这些数据点构建一个函数f(x),使得f(xi) = yi,其中i = 1, 2, ..., n。
这样的函数就是经过插值的函数,它代表了这些数据点的趋势和变化规律。
插值法通常用于寻找这样的函数,它能够通过已知的数据点来估计函数在其他位置的值。
常见的插值方法包括拉格朗日插值法、牛顿插值法和埃尔米特插值法等。
在这些方法中,牛顿插值法是最为广泛使用的一种,因为它的计算效率高、精度较高,并且易于编程实现。
二、牛顿插值法的由来牛顿插值法由艾萨克·牛顿在17世纪提出,他是一位英国著名的数学家、物理学家和天文学家,在微积分、物理学和光学等领域都做出了重大贡献。
牛顿发展了牛顿插值法的理论基础和计算方法,并将其应用于数据分析和天体运动等问题中。
牛顿插值法基于牛顿插值多项式的概念,该多项式利用差商(divided differences)来表示,并具有易于计算和分析的优势。
牛顿插值多项式能够在已知的数据点上进行插值,并且还可以通过添加新的数据点来动态地更新插值结果。
因此,牛顿插值法成为了一种非常有用的数值计算工具,被广泛应用于工程、科学和金融等领域。
三、牛顿插值法的计算步骤1. 确定数据点首先,我们需要确定一组离散的数据点{(x1, y1), (x2, y2), ..., (xn, yn)},这些数据点是我们已知的数据,我们要通过它们来构建插值函数。
数值计算方法-拉格朗日牛顿插值实验
3.对比牛顿前插和牛顿后插两种方法的差异, 讨论分析同一个数值两种方法的计 算结果。 答:如果插值点 x 离 x0。比较近,则一般使用牛顿前差公式;如果插值点 x
离 x0。比较远,则一般使用牛顿后差公式。但对于同一个插值点 x 来说,不管 用牛顿前差公式还是用牛顿后差公式,得到的结果是一-样的,这两种插值公式 只是形式上的差别。 4.讨论分段插值法的意义。 答:高次插值的收敛性没有保证,实际计算稳定性也没有保证,所以当插值结 点 n 较大时, 通常不采用高次多项式插值, 用低次多项式插值, 它能保证收敛性, 得到的结果也相对稳定。
《计算方法》实验报告
实验二 插值法 实验目的
1. 掌握拉格朗日插值法、牛顿插值法、牛顿前后插值法及分段插值法的原理与算法。 2. 讨论几种方法的计算精度与误差,分析拉格朗日插值与牛顿插值法的差异。 3. 学会使用 Matlab 绘图方法,并以此方法来显示插值函数,使结果更直观更形象。
算法原理
(一)拉格朗日插值法 设 是互异插值节点,则满足插值条件 的插值多项式
是存在且唯一的。那么可以得到 n+1 个插值方程,求解 这个方程组,可以得到 n 次拉格朗日插值公式: ‴ , (二)牛顿插值法
其中:
(三)牛顿前后插值法 牛顿前插法为: th t t t t t t t t t t t t t t t t
牛顿后插法为: th
程序代码
拉格朗日插值 +
牛顿插值法运行脚本
牛顿向前插值法
牛顿向后插值法
牛顿向前插值作业
牛顿向后插值
数据测试结果
(1)选取 n=7,拉格朗日插值结果为:
(2)选取 n=7,牛顿插值法结果为:
(3) (4)X1=1.3,x2=5.6,牛顿向前向后插值法结果为:
牛顿插值法公式
牛顿插值法公式牛顿插值法公式,这可真是个有趣又实用的数学工具!还记得我当年读书的时候,有一次参加数学竞赛的集训。
那时候,我们一群对数学充满热情的小伙伴天天聚在一起钻研各种难题。
有一天,老师就给我们讲到了牛顿插值法公式。
当时,我们都被这个看起来有点复杂的公式给难住了。
老师在黑板上写下:$N(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x -x_0)(x - x_1) + \cdots + f[x_0, x_1, \cdots, x_n](x - x_0)(x - x_1) \cdots (x - x_{n-1})$ ,然后开始给我们讲解每个部分的含义。
老师说,这个公式就像是一个神奇的魔法,能够通过已知的几个点,帮我们推测出其他未知点的大致情况。
比如说,我们知道了一些温度随时间变化的几个特定时间点的数值,用牛顿插值法公式就能大概猜到其他时间点的温度。
咱来仔细瞅瞅这个公式。
首先,$f[x_0]$ 就是我们已知的第一个点的函数值。
而 $f[x_0, x_1]$ 呢,它叫一阶差商,计算方法是$\frac{f(x_1) - f(x_0)}{x_1 - x_0}$ 。
再往后的二阶差商 $f[x_0, x_1,x_2]$ 、三阶差商 $f[x_0, x_1, x_2, x_3]$ 等等,计算起来就更复杂一点啦,但原理都是相通的,就是通过不断地找差值的差值来找到规律。
举个简单的例子吧。
假设我们知道三个点,$(1, 2)$ 、$(2, 5)$ 和$(3, 10)$ 。
先算一阶差商,$f[1, 2] = \frac{5 - 2}{2 - 1} = 3$ ,$f[2, 3] =\frac{10 - 5}{3 - 2} = 5$ 。
然后算二阶差商,$f[1, 2, 3] = \frac{5 - 3}{3 - 1} = 1$ 。
这样,我们就能用牛顿插值法公式写出通过这三个点的插值多项式啦。
第5章 插值方法
第5章插值方法5.1 插值问题概述假设f(x)是某个表达式很复杂,甚至根本写不出来的实函数,且已知f(x)在某个区间[a,b]上的n+1个互异的点x0,x1,…,x n处的函数值f(x0),f(x1),…,f(x n),我们希望找到一个简单的函数y=P(x),使得P(x k)=f(x k),k=0,1,…,n.这就是插值问题。
如果我们找到了这样的函数y=P(x),我们就可以在一定范围内利用P(x)近似表示f(x),从而解决了相应的计算问题。
1.利用函数值列表来表示插值问题对于一个插值问题来说,我们的已知条件就是n+1个互异的点处的函数值.回顾高等数学中学习过的函数的表示方法,我们可用下面表1的形式列出已知的函数值,并简称为由表1给出的插值问题。
表1:插值问题的函数值列表2.重要术语对于n+1个基点的插值问题,我们称:f(x) 为被插值函数;P(x)为插值函数;x0,x1,…,x n为插值基点或插值节点;P(x k)=f(x k),k=0,1,…,n为插值条件;[a,b]为插值区间。
注释:对于早期的插值问题来说,f(x)通常是已知的,比如对数函数,指数函数,三角函数等这些问题现在已经不用插值法来计算了;对于现在的许多实际问题来说,我们并不知道f(x)的具体形式,所对应的函数值可能是由测量仪器或其他物理设备中直接读出来的,f(x)只是一个概念中的函数。
3.多项式插值对于n+1个基点的插值问题,如果要求插值函数是次数不超过n 的多项式,记为P n(x),则相应的问题就是多项式插值,并且把P n(x)称为插值多项式。
实际上,我们所考虑的插值函数通常都是多项式函数或分段多项式函数。
由于次数不超过n的多项式的一般形式为P n((x)=a 0+a 1x+a 2x 2+…+a n x n (1)所以只要确定了n+1个系数a 0,a 1,a 2,a n ,我们便确定了一个插值多项式。
4.多项式插值的一般方法对于n+1个基点的多项式插值问题,我们完全可以用上一章中的办法来求插值多项式P n (x)的系数,a 0,a 1,a 2,a n ,它们可表为下面的线性方程组的解,所以多项式插值相对说来是很简单的。
数值计算方法第5讲牛顿插值总结
f [ x0 ,, xn ] f [ xi0 ,, xin ]
牛 顿 插 值 法
f ( xi ) f [ x0 , , xn ] i 0 'i 1 ( xi )
f n ( ) f [ x0 ,, xn ] (n)!
an , k n 推论:若f ( x) P ( x), f [ x0 ,, xk ] 0, k n
差商可表示为函数值的线性组合
若 f ( x ) k1 g1 ( x ) k 2 g 2 ( x )
f [ x0 , , xk ] ( x j x0 )( x j x j1 )( x j x x
f (xj ) j 0 ji
k
j 1
)( x j x k )
f [ x0 , x1 ,..., xk ] k ( x )
k 0
n
Newdon插值多项式的余项
Rn ( x ) f [ x , x0 ,, x n ]( x x0 )( x x1 )( x x n ) f [ x , x0 , , x n ] n1 ( x0 , , x n )
特别地
f [ x i ] f ( x i ), i 0,1,..., n. f [ x i ]称为f ( x )关于x i的零阶差商。
差商及其性质
差商具有线性 牛 顿 插 值 法
则 f [ x0 , x1 ,... xk ] k1 g1[ x0 , x1 ,... xk ] k 2 g2 [ x0 , x1 ,... xk ]
计算量较大 计算简便 说明每增加一个结点,Newton插值多项式只增加一项,具有承袭性! 误差可估 误差可估
Newdon插值的计算
牛顿插值法
分段线性插值
满足条件 S1xiyi,i0,1 , ,n具有分划
的分段一次式 S 1 x 在每个子段 xi, xi1上都
具有如下表达式:
S 1x0 x h ix i y i1 x h ix i y i 1 ,x ixx i 1
并在每个 xi, xi1子段上构造插值多项式,然后把它
们装配在一起,作为整个区间 a , b 上的插值函数,
即称为分段多项式。如果函数 S k x 在分划 的每
个子段上都是 k 次式,则称为具有分划 的分段 k 次式。
分段插值
1.分段线性插值; 2.分段抛物插值; 3.分段低次多项式插值;
02((1/12))
1 6
例题分析(续2)
f(x)N2(x)f(x0)f[x0,x1](xx0)
f[x0,x1,x2](xx0)(xx1)
21(x1)1(x1)(x1)
2
6
练习:
若上例中增加两点f(-2)=2, f(3)=2, 加上原来三点f(-1)=2, f(1)=1, f(2)=1, 求f(x)的Newdon插值多项式。
所以 S 3 x 0 x h ix i y i 1 x h ix i y i 1 h i0 x h ix i y i' h i1 x h ix i y i' 1
其中 xi xxi1,且有 0xx122x1,1xx22x3
0xxx12,1xx2x1
样条函数的概念
高次插值的龙格现象
对于代数插值来说,插值多项式的次数 很高时,逼近效果往往很不理想。例如,考
察函数 fx 1 /1 x 2, 5 x 5 ,设将区间 -5,5 分
ch1.5 牛顿插值多项式
( x0 , xn )
5.3 差商与牛顿基本插值多项式
(解一串互异的点xi 0 , xi1 , xi 2 , 上的值 依次为f ( xi 0 ), f ( xi1 ), f ( xi 2 ),,称函数值之差 f ( xi1 ) f ( xi 0 )与自变量之差xi1 xi 0的比值 f ( xi1 ) f ( xi 0 ) xi1 xi 0
ak k !h
k
, (k 0,1, 2,, n)
牛顿向前插值公式
t (t 1) 2 N n ( x0 th) y0 ty0 y0 2! t (t 1) (t n 1) n y0 内江师范学院数学与信息科学学院 吴开腾 制作 n!
余项公式
yk yk 1 yk
2、一阶向前差分(一阶差分)
3、一般地,定义函数f(x)在点 x k处的m阶差 分为:
m y k m1 y k 1 m1 y k
内江师范学院数学与信息科学学院 吴开腾 制作
差分表
内江师范学院数学与信息科学学院 吴开腾 制作
一般地,由插值条件 N n ( xk ) yk,可得牛顿插 值公式中的系数为: k y 0
t (t 1) (t n) n 1 ( n1) Rn ( x0 th) h f ( ) (n 1)!
( x0 , xn )
内江师范学院数学与信息科学学院 吴开腾 制作
例 从给定的正弦函数表出发计算 sin(0.12)
计截断误差。
,并估
由线性插值有
sin(0.12) N1 (0.12) y0 t y0 0.09983 0.2 0.09884 0.11960
拉格朗日插值法 牛顿插值法
拉格朗日插值法牛顿插值法
摘要:
1.插值法的概念和作用
2.拉格朗日插值法原理和应用
3.牛顿插值法原理和应用
4.两种插值法的优缺点比较
正文:
一、插值法的概念和作用
插值法是一种数学方法,通过已知的数据点来预测未知数据点的一种技术。
在科学计算和工程应用中,常常需要根据有限个已知数据点,来估计某个函数在其他点上的值。
插值法正是为了解决这个问题而诞生的。
二、拉格朗日插值法原理和应用
拉格朗日插值法是一种基于拉格朗日基函数的插值方法。
它的基本原理是:在给定的区间[a, b] 上,选取一个基函数,然后通过求解一组线性方程,得到基函数在各数据点上的值,最后用这些值来近似函数在待求点上的值。
拉格朗日插值法广泛应用于数值分析、工程计算等领域。
三、牛顿插值法原理和应用
牛顿插值法,又称为牛顿前向差分法,是一种基于差分的插值方法。
它的基本原理是:通过对已知数据点的函数值进行差分,然后使用牛顿迭代公式来求解差分后的函数在待求点上的值。
牛顿插值法具有较高的精度,适用于各种函数,特别是对于单调函数和多项式函数,效果尤为显著。
四、两种插值法的优缺点比较
拉格朗日插值法和牛顿插值法各有优缺点。
拉格朗日插值法的优点是适用范围广,可以插值任意类型的函数,但计算过程较为复杂;牛顿插值法的优点是计算简便,精度高,但对于非线性函数或多峰函数,效果可能不佳。
因此,在实际应用中,需要根据具体情况选择合适的插值方法。
牛顿插值法原理及应用
牛顿插值法插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。
如果这特定函数是多项式,就称它为插值多项式。
当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。
为了克服这一缺点,提出了牛顿插值。
牛顿插值通过求各阶差商,递推得到的一个公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)。
插值函数插值函数的概念及相关性质[1]定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点x0,x1,…xn 上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。
若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数.称x1,x2,…xn 为插值节点,称[a,b]为插值区间。
定理:n次代数插值问题的解存在且唯一。
牛顿插值法C程序程序框图#include<>void main(){float x[11],y[11][11],xx,temp,newton;int i,j,n;printf("Newton插值:\n请输入要运算的值:x=");scanf("%f",&xx);printf("请输入插值的次数(n<11):n=");scanf("%d",&n);printf("请输入%d组值:\n",n+1);for(i=0;i<n+1;i++){ printf("x%d=",i);scanf("%f",&x[i]);printf("y%d=",i);scanf("%f",&y[0][i]);}for(i=1;i<n+1;i++)for(j=i;j<n+1;j++){ if(i>1)y[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-i]);elsey[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-1]);printf("%f\n",y[i][i]);}temp=1;newton=y[0][0];for(i=1;i<n+1;i++){ temp=temp*(xx-x[i-1]);newton=newton+y[i][i]*temp;}printf("求得的结果为:N(%.4f)=%9f\n",xx,newton);牛顿插值法Matlab程序function f = Newton(x,y,x0)syms t;if(length(x) == length(y))n = length(x);c(1:n) = ;elsedisp('x和y的维数不相等!');return;endf = y(1);y1 = 0;l = 1;for(i=1:n-1)for(j=i+1:n)y1(j) = (y(j)-y(i))/(x(j)-x(i));endc(i) = y1(i+1);l = l*(t-x(i));f = f + c(i)*l;simplify(f);y = y1;if(i==n-1)if(nargin == 3)f = subs(f,'t',x0);elsef = collect(f); %将插值多项式展开f = vpa(f, 6);endend牛顿插值法摘要:值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。
newton插值几何解释
newton插值几何解释Newton插值是一种常用的数值分析方法,用于在给定一组数据点的情况下,构造一个多项式函数,以便在数据点之间进行插值。
这种方法的基本思想是利用差商的概念,通过递推的方式来构造一个多项式函数,以便在给定的数据点上达到插值的目的。
从几何角度来看,Newton插值的基本思想是利用插值点之间的差值来构造一个多项式函数。
具体来说,假设我们有n个数据点(x1,y1),(x2,y2),...,(xn,yn),我们希望构造一个n次多项式函数P(x),以便在这些数据点上达到插值的目的。
为了实现这个目标,我们可以利用插值点之间的差值来构造一个差商表,然后利用这个差商表来递推地构造出多项式函数P(x)。
具体来说,我们可以定义一个差商函数f[x0,x1,...,xk],表示在给定的数据点x0,x1,...,xk上的插值多项式函数的系数。
这个差商函数可以通过递归地计算差商的方式来构造,具体的计算公式如下:f[xi] = yi (i=0,1,...,n)f[xi,xj,...,xk] = (f[xj,...,xk] - f[xi,...,xk-1]) / (xi - xk)利用这个差商函数,我们可以递推地构造出一个n次多项式函数P(x),具体的计算公式如下:P(x) = f[x0] + (x - x0)f[x0,x1] + (x - x0)(x - x1)f[x0,x1,x2] + ... + (x - x0)(x - x1)...(x - xn-1)f[x0,x1,...,xn]这个多项式函数可以在给定的数据点上达到插值的目的,因为它在每个数据点上的函数值都等于对应的y值。
此外,由于这个多项式函数是通过递推地构造出来的,因此它的计算效率也比较高。
总之,Newton插值是一种常用的数值分析方法,它的基本思想是利用插值点之间的差值来构造一个多项式函数,以便在给定的数据点上达到插值的目的。
从几何角度来看,这个方法的核心是利用差商的概念,通过递推的方式来构造一个多项式函数。
拉格朗日插值公式和牛顿插值公式
拉格朗日插值公式和牛顿插值公式拉格朗日插值公式和牛顿插值公式是数值分析中常用的插值方法,用于根据给定的一些数据点,推断出未知点的近似值。
本文将分别介绍这两个插值方法的原理和应用。
一、拉格朗日插值公式拉格朗日插值公式是由法国数学家拉格朗日在18世纪提出的一种插值方法。
它的基本思想是通过一个多项式函数来拟合已知的数据点,从而推断出未知点的值。
具体来说,假设有n+1个数据点(x0, y0),(x1, y1),...,(xn, yn),其中x0,x1,...,xn是互不相同的实数,y0,y1,...,yn是对应的函数值。
拉格朗日插值公式的表达式如下:P(x) = ∑[i=0 to n] yi * Li(x)其中,P(x)表示通过插值得到的多项式函数,Li(x)是拉格朗日基函数,定义为:Li(x) = ∏[j=0 to n, j≠i] (x-xj) / (xi-xj)拉格朗日插值公式的优点是简单易懂,计算方便。
但是随着数据点的增多,计算量也会增大,且插值函数的阶数较高时容易产生龙格现象,导致插值结果不稳定。
二、牛顿插值公式牛顿插值公式是由英国数学家牛顿在17世纪提出的一种插值方法。
它的基本思想是通过差商的形式来表示插值多项式,从而推断出未知点的值。
具体来说,假设有n+1个数据点(x0, y0),(x1, y1),...,(xn, yn),其中x0,x1,...,xn是互不相同的实数,y0,y1,...,yn是对应的函数值。
牛顿插值公式的表达式如下:P(x) = ∑[i=0 to n] fi(x) * wi(x)其中,P(x)表示通过插值得到的多项式函数,fi(x)是牛顿插值基函数,定义为:fi(x) = ∏[j=0 to i-1] (x-xj)wi(x)是差商,定义为:wi(x) = ∏[j=0 to i-1] (x-xj) / (xi-xj)牛顿插值公式的优点是计算效率高,且插值函数的阶数较高时也能保持较好的精度。
第5章 3.牛顿插值公式
∴ N 1 ( x )为f ( x )以x0 , x1为插值结点的线性插值 函数
即N(x ) = L1 ( x ) 1
一般地构造以下基函数 求作n 问题 求作n次多项式 N n ( x )
N n ( x ) = c0 ⋅ 1 + c1 ( x − x0 ) + c2 ( x − x0 )( x − x1 ) + L + cn ( x − x0 )( x − x1 )( x − x2 )L ( x − xn −1 )
将f [ x0 , x1 ]代入得
f ( x ) = f ( x0 ) + f [ x0 , x1 ]( x − x0 ) + f [ x0 , x1 , x ]( x − x0 )( x − x1 )
其中线性部分 N 1 ( x ) = f ( x0 ) + f [ x0 , x1 ]( x − x0 )
注意:均差表中,对角线上的均差是构造牛顿型插值公式的重要数据。 注意:均差表中,对角线上的均差是构造牛顿型插值公式的重要数据。
已知函数y=f(x)的观测数据如表, y=f(x)的观测数据如表 例 已知函数y=f(x)的观测数据如表,试构造差商 并求f[2,4,5] f[2,4,5,6]的值 f[2,4,5]及 的值。 表,并求f[2,4,5]及f[2,4,5,6]的值。x 0 2 4 5 解
1 2
n−1 −
…………
f [ x, x0 , ... , xn−1 ] = f [ x0 , ... , xn ] + ( x − xn ) f [ x, x0 , ... , xn ] n−
正文牛顿插值法
牛顿插值法摘要:值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。
如果这特定函数是多项式,就称它为插值多项式。
利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化,这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。
牛顿插值通过求各阶差商,递推得到的一个公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x 0)...(x-xn-1)+Rn(x)关键词:牛顿插值法流程图程序实现一、插值法的由来在许多实际问题及科学研究中,因素之间往往存在着函数关系,然而,这种关系经常很难有明显的解析表达,通常只是由观察与测试得到一些离散数值。
有时,即使给出了解析表达式,却由于表达式过于复杂,不仅使用不便,而且不易于进行计算与理论分析。
解决这类问题的方法有两种:一种是插值法,另一种是拟合法。
插值法是一种古老的数学方法,它来自生产实践,早在一千多年前,我国科学家在研究历法上就应用了线性插值与二次插值,但它的基本理论却是在微积分产生之后才逐渐完善的,其应用也日益增多,特别是在计算机软件中,许多库函数,如等的计算实际上归结于它的逼近函数的计算。
逼近函数一般为只含有算术运算的简单函数,如多项式、有理分式(即多项式的商)。
在工程实际问题当中,我们也经常会碰到诸如此类的函数值计算问题。
被计算的函数有时不容易直接计算,如表达式过于复杂或者只能通过某种手段获取该函数在某些点处的函数值信息或者导数值信息等。
因此,我们希望能用一个“简单函数”逼近被计算函数,然后用该简单函数的函数值近似替代被计算函数的函数值。
这种方法就叫插值逼近或者插值法。
逐次线性插值法优点是能够最有效地计算任何给定点的函数值,而不需要写出各步用到的插值多项式的表达式。
数值计算方法拉格朗日与牛顿插值法
(x ( xk
xk xk
1 1
)( )(
x xk1) xk xk1
)
,lk
1
(
x)
(x ( xk 1
xk1)(x xk ) xk1)(xk1 xk
)
拉格朗日型二次插值多项式
由前述,拉格朗日型二次插值多项式: P2 (x) yk1lk1(x) yklk (x) yk1lk1(x),P2 (x)是 三个二次插值多项式的线性组合,因为它是次数 不超过二次的多项式,且满足:
yk
,
1
记l k (x)
x xk1 xk xk 1
, lk1(x)
x xk xk 1 xk
,
称它们为一次插值基函数。
线性插值
基函数的特点: lk1(x)
lxkk(x1 )
xk
lk (x)
1
lk 1 ( x)
0
xk 1
0
1
从而,P1(x) yklk (x) yk1lk1(x), 此形式称之为 拉格朗日型插值多项式。其中,插值基函数与
(x 4)(x 6)(x 8)(x 10) l0 (x) (2 4)(2 6)(2 8)(2 10) 1 (x 4)(x 6)(x 8)(x 10)
384
l1 ( x)
( x 2)( x 6)( x 8)( x 10) (4 2)(4 6)(4 8)(4 10)
1 ( x 2)( x 6)( x 8)( x 10), 96
1 50
x
15
x
20
l1 ( x)
(x (15
10)(x 20) 10)(15 20)
1 25
x
10
x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛 顿 插 值 法
f [ x 0 , x 2 ] f [ x 0 , x1 ] f [ x 0 , x1 , x 2 ] x 2 x1
f1 f 0 x1 x 0
x 2 x1
f [ x1 ,... x k 1 , x k ] f [ x 0 , x1 ,... x k 1 ] f [ x 0 , x1 ,..., x k ] x k x0
二阶差商: K阶差商:
f [ x 0 , x1 ,..., x k ]
f [ x1 ,... x k 1 , x k ] f [ x 0 , x1 ,... x k 1 ] x k x0
差商及其性质
差商记 号
f k ( x ) f [ xk ]
f [ x1 ] f [ x 0 ] f [ x 0 , x1 ] x1 x 0
f [ x0 ,, xn ] f [ xi0 ,, xin ]
差商定 义
f (xk ) - f (x0 ) 称 f [x0 , xk ] = 为函数f ( x ) xk - x0
f [ x0 , x2 ] f [ x0 , x1 ] f [ x0 , x1 , x2 ] x2 x1
(xk , xk 1可以不相邻)
牛 顿 插 值 法
关于点x 0 , x k 的一阶差商(亦称均差) . .
建议记忆
差商及其性质
( n) 设节点x 0 , x n [a , b], f ( x ) C [a , b], 则
f ( n ) ( ) f [ x0 , x1 ,, xn ] n!
(min{ x0 , x1 ,... x n }, max{ x0 , x1 ,... x n })
牛 顿 插 值 法
证明见后
Rn ( x ) f [ x , x0 , x1 ,..., x n ] n 1 ( x )
f
( n1)
( )
( n 1)!
n1 ( x )
f [ x 0 , x 1 ,..., x n ]
f
(n)
( )
n!
N阶差商和N阶导数密切相关!
差商性质总结
第 二 章
插值法
主讲教师:杨爱民
http://210.31.198.78/eol/jpk/course/welcome.jsp?courseId=1220
学习计算方法的建议
问题的引入
思考 1
问题的由 来
提法的抽象
问题的实质
思考2 思考 3 思考4
准确理解概念
新概念的诞生 特性(独有的性质) 新概念的初识
差商及其性质
差商与所含节点的顺序无关
牛 顿 插 值 法
即 f [ x 0 , , x k ] f [ x1 , x 0 , x 2 , , x k ] f [ x1 , x k , x 0 ]
f [ x 1 ,... x k ] f [ x 0 , x 1 ,... x k 1 ] f [ x 0 , x 1 ,..., x k ] xk x0
等距节点
差分
Newton 前插后插公式
知 识 结 构 图
插 值 法
插值多项式
两点式
Lagrange 插值
算 法 比 较
推广方法
误差估计值
差商及其性质 Newdon插值法的基本思路
Newdon插值多项式的构造
Newdon插值多项式余项
差分及其应用
差商及其性质
i 0
k
f (xj )
' j 1 ( x j )
差商及其性质
如:k 2时,
f [ x0 , x1 , x2 ]
观察与思考
f [ x0 ] f [ x1 ] f [ x2 ] ( x0 x1 )( x0 x 2 ) ( x1 x0 )( x1 x 2 ) ( x 2 x0 )( x 2 x1 )
学习建议
算法原理
思考 5 思考6 思考 7 思考8
新算法研究 警示:A!B! C! 算法的警示 能解决的专业问题
算法的应用
联想与展望 算法的进一步研究
1
插值法的一般理论 Lagrange插值 Newton插值
2
3 4 5
分段低次插值
Hermite插值、样条插值
一般理论
Newton 插值
点斜式 均差
0 f ( x 0 ) 1 f ( x1 ) 3 f ( x 2 )
1 k 'k 1 ( x k ) ( k 0,1,2,...)
0
1 1 ( x0 x1 )( x0 x2 ) '21 ( x0 ) 1 1 ( x1 x0 )( x1 x2 ) '21 ( x1 ) 1 1 ( x2 x0 )( x2 x1 ) '21 ( x2 )
差商可表示为函数值的线性组合
若 f ( x ) k1 g1 ( x ) k 2 g 2 ( x )
f [ x0 , , xk ] ( x j x0 )( x j x j1 )( x j x x
f (xj ) j 0 ji
k
j 1
)( x j x k )
牛 顿 插 值 法
f [ x 0 , x 2 ] f [ x 0 , x1 ] x 2 x1
f [ x 2 ] f [ x0 ] f [ x1 ] f [ x0 ] x 2 x0 x1 x0 x 2 x1
1
2
21 ( x) ( x x0 )( x x1 )( x x2 ) '21 ( x) ( x x1 )( x x2 ) ( x x0 )( x x2 ) ( x x0 )( x x1 )
特别地
f [ x i ] f ( x i ), i 0,1,..., n. f [ x i ]称为f ( x )关于x i的零阶差商。
差商及其性质
差商具有线性 牛 顿 插 值 法
则 f [ x0 , x1 ,... xk ] k1 g1[ x0 , x1 ,... xk ] k 2 g2 [ x0 , x1 ,... xk ]