材料力学第2章-轴向拉压
材料力学(机械类)第二章 轴向拉伸与压缩
二
章
拉伸压缩与剪切
1
பைடு நூலகம்
§2-1
轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)
2
拉、压的特点:
1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3
§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4
材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。
现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:
N A
F
FN
σ
10
例题2-2
A 1
45°
C
2
5 材料力学第二章 轴向拉伸和压缩
16锰钢
合金钢 铸铁 混凝土 石灰岩 木材(顺纹)
196-216
186-216 59-162 15-35 41 10-12
0.25-0.30
0.25-0.30 0.23-0.27 0.16-0.18 0.16-0.34
橡胶
0.0078
0.47
25
材料力学
§2-5
轴向拉伸时材料的机械性能
一、试验条件及试验仪器
P BC段:N 2 3 P
1
3P + P
AB段:N
3
2 P
+
–
12
2P
三、横截面上的应力
问题提出: P P (一)应力的概念 P P
度量横截面 上分布内力 的集度
1.定义:作用在单位面积上的内力值。 2.应力的单位是: Pa KPa MPa GPa
3.应力:a:垂直截面的应力--正应力σ 拉应力为正,压应力为负。
※E为弹性模量,是衡量材料抵抗弹 性变形能力的一个指标。“EA”称 为杆的抗拉压刚度。
l E Sl S E E l l EA A
胡克定律:
=Eε
23
四、横向变形
d d 1 d 0
泊松比(或横向变形系数)
d d 1 d 0 相对变形: ' d0 d0
e
DE段:颈缩阶段。
• 材料的分类:根据试件断裂时的残余相对变形率将材料分类: 延伸率(δ )>5% 塑性变形:低碳钢,铜,塑料,纤维。 延伸率(δ )<5% 脆性变形:混凝土,石块,玻璃钢,陶瓷, 玻璃,铸铁。 • 冷作硬化:材料经过屈服而进入强化阶段后卸载,再加载时,弹 性极限明显增加,弹性范围明显扩大,承载能力增大的现象。 • 强度指标:对塑性材料,在拉断之前在残余变形0.2 %(产生 0.2%塑性应变)时对应的应力为这种材料的名义屈服应力,用 0.2表示 ,即此类材料的失效应力。 锰钢、镍钢、铜等 • 脆性材料拉伸的机械性能特点: 1.断裂残余相对变形率δ <5% 0.2 or s max b 2.弹性变形基本延伸到破坏 3.拉伸强度极限比塑性材料小的多 4.b是脆性材料唯一的强度指标
材料力学第2章轴向拉伸与压缩
图2.5
(2)物理关系
根据物理学知识,当变形为弹性变形时,变形和力成正比。因为各“纤维” 的正应变ε 相同,而各“纤维”的线应变只能由正应力ζ 引起,故可推知横
截面上各点处的正应力相同,即在横截面上,各点处的正应力ζ 为均匀分布
,如图2.6所示。
图2.6
(3)静力学关系 由静力学求合力的方法,可得
α
和沿斜截面的切应力
,如图2.8(d)所示,即得
从式(2.4)可以看出,ζ
α
和α 都是α 的函数。所以斜截面的方位不同,截 , 即横截面上的正应力是所有截
面上的应力也就不同。当α =0时,
面上正应力中的最大值。当α =45°时,α 达到最大值,且
可见,在与杆件轴线成45°的斜截面上,切应力为最大值,最大切应力在数 值上等于最大正应力的1/2。 关于切应力的符号,规定如下:截面外法线顺时针转90°后,其方向和切应 力相同时,该切应力为正值,如图2.9(a)所示;逆时针转90°后,其方向和 切应力相同时,该切应力为负值,如图2.9(b)所示。
同理,可求得BC段内任一横截面上的轴力(见图2.4(d))为
在求CD段内任一横截面上的轴力时,由于截开后右段杆比左段杆受力简单, 所以宜取右段杆为研究对象(见图2.4(e)),通过平衡方程可求得
结果为负,说明N3的实际方向与假设方向相反。 同理,DE段内任一横截面上的轴力为
依据前述绘制轴力图的规则,所作的轴力图如图2.4(f)所示。显然,最大轴 力发生在BC段内,其值为50 kN。
由此可得杆的横截面上任一点处正应力的计算公式为
对于承受轴向压缩的杆,式(2.3)同样适用。但值得注意的是:细长杆受压
时容易被压弯,属于稳定性问题,将在第11章中讨论,式(2.3)适用于压杆 未被压弯的情况。关于正应力的符号,与轴力相同,即拉应力为正,压应力
材料力学第2章-1拉压
平方米) (牛顿/平方米)记作:Pa (帕斯 牛顿 平方米 记作: 记为: 记为:Mpa 记为: 记为:Gpa 矢量背离截面 矢量指向截面
返回
N/m N/m
2 2
兆帕 千兆帕
4、正应力的符号规定: 、正应力的符号规定: 与轴力相同,拉伸( ) 与轴力相同,拉伸(+) 压缩( 压缩(-)
5、应力的分布规律: dFN= σ dA
ε
返回
二、压缩曲线: 压缩曲线:
F D B A C
σp
σs
σb
E
O
ε=∆ L/L
1、低碳钢的压缩曲线
特点: 弹性模量E均与拉伸时相同 均与拉伸时相同, 特点:极限应力σS弹性模量 均与拉伸时相同,但得不 到强度极限。 到强度极限。
返回
铸铁压缩曲线
2、铸铁压缩曲线的特点: 铸铁压缩曲线的特点: 1)形状与拉伸时相似。 )形状与拉伸时相似。 2)抗压强度比抗拉强度高 )抗压强度比抗拉强度高4~5倍。 倍 3)在较小的变形下突然破坏,破坏断面与轴线大约成 )在较小的变形下突然破坏, 450~550角。 三、两类材料力学性能比较 塑性材料:1)破坏前变形大,有流动阶段。 塑性材料: 破坏前变形大,有流动阶段。 承受冲击的能力好。 2)承受冲击的能力好。 均相同。 3)拉压时E、 σs均相同。 脆性材料: 破坏前变形小,没有明显的流动阶段。 脆性材料:1)破坏前变形小,没有明显的流动阶段。 承受冲击的能力不好。 2)承受冲击的能力不好。 抗拉强度低,抗压强度高。 3)抗拉强度低,抗压强度高。 塑性材料适合做承拉构件,脆性材料适合做承压构件。 塑性材料适合做承拉构件,脆性材料适合做承压构件。
FN =
∫ dF
A
N
《材料力学》第二章
F
F
F
F
横截面上 正应力分
横截面间 的纤维变
斜截面间 的纤维变
斜截面上 应力均匀
布均匀
形相同
形相同
m
分布
F
m
p
Page24
第二章 轴向拉压应力与材料的力学性能 s t
n
F p
n p
FN FN p s 0 cos A A / cos
s p cos s 0 cos 2 s t p sin 0 sin 2
二、材料拉伸力学性能 低碳钢Q235
s
D E A
o
线弹性 屈服
硬化
缩颈
e
四个阶段:Linear, yielding, hardening, necking
Page32
第二章 轴向拉压应力与材料的力学性能
低碳钢Q235拉伸试验 线性阶段
s
B A
规律:
s Ee (OA段)
变形:变形很小,弹性 特征点:s p 200MPa (比例极限)
应力——应变曲线(低碳钢)
思考:颈缩阶段后,图中应力为什么会下降?
Page37
第二章 轴向拉压应力与材料的力学性能
名义应力与真实应力
真实应力曲线 名义应力曲线 名义应力
FN s A
变形前截面积
颈缩阶段载荷减小,截面积也减小,真实应力继续增加
Page38
第二章 轴向拉压应力与材料的力学性能
低碳钢试件在拉伸过程中的力学现象
材料力学应力分析的基本方法:
•试验观察
•几何方程
e const 变形关系
•提出假设
•物理方程
s Ee
材料力学-第二章
第二单元第二章 杆件的轴向拉压应力与材料的力学性能§2-1 引言工程实例: 连杆、螺栓、桁架、房屋立柱、桥墩……等等。
力学特征: 构件:直杆外力:合力沿杆轴作用(偏离轴线、怎样处理?)内力:在轴向载荷作用下,杆件横截面上的唯一内力分量为轴力N ,它们在该截面的两部分的大小相等、方向相反。
规定拉力为正,压力为负。
变形:轴向伸缩§2-2 拉压杆的应力一、拉压杆横截面上的应力(可演示,杆件受拉,上面所划的横线和纵线仍保持直线,仅距离改变,表明横截面仍保持为平面)平面假设→应变均匀→应力均匀AN=σ或A P =σ(拉为正,压为负)二、Saint-Venant 原理(1797-1886,原理于1855年提出)问题:杆端作用均布力,横截面应力均布。
杆端作用集中力,横截面应力均布吗? 如图, 随距离增大迅速趋于均匀。
局部力系的等效代换只影响局部。
它已由大量试验和计算证实,但一百多年以来,无数数学力学家试图严格证明它,至今仍未成功。
这是固体力学中一颗难以采撷的明珠。
三、拉压杆斜截面上的应力(低碳钢拉伸,沿45°出现滑移线,为什么?)0cos =-P Ap αα ασ=α=αcos cos AP p ασ=α=σαα2cos cos pασ=α=ταα22sin sin p ()0=ασ=σm ax ()452=ασ=τmax方位角α:逆时针方向为正剪应力τ:使研究对象有顺时针转动趋势为正。
例1和例2,看书p17,18§2-3 材料拉伸时的力学性能(构件的强度、刚度和稳定性,不仅与构件的形状、尺寸和所受外力有关,而且与材料的力学性能有关。
拉伸试验是最基本、最常用的试验。
)一、拉伸试验P18: 试样 拉伸图绘图系统放大变形传感器力传感器--→→→→二、低碳钢拉伸时的力学性能材料分类:脆性材料(玻璃、陶瓷和铸铁)、塑性材料(低碳钢:典型塑性材料)四个阶段:线性阶段(应力应变成正比,符合胡克定律,正比阶段的结束点称为比例极限)、屈服阶段(滑移线)(可听见响声,屈服极限s σ)、强化阶段(b σ强度极限)、局部变形(颈缩)阶段(名义应力↓,实际应力↑) 三(四个)特征点:比例极限、(接近弹性极限)、屈服极限、强度极限(超过强度极限、名义应力下降、实际应力仍上升)。
材料力学第二章-轴向拉伸与压缩
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n
材料力学第二章 轴向拉伸和压缩
2、计算各杆轴向变形
C
l 2 =1m a =170mm
B'
B2
F
l1 0.48mm
3、由变形的几何条件确定B点的位移 分别以A为圆心,AB1为半径,C为圆 心,CB1为半径画弧,相较于B’点,
B"
小变形条件,可以用切线代替弧线。
材料力学
第2章 轴向拉伸和压缩
FN FN ( x)
轴力方程
即为轴力图。
即:FN随x的变化规律
以x为横坐标,以FN为纵坐标,绘制FN F( )的关系图线, N x
FN
正的轴力画在x轴的上侧,负的画在下侧.
x
材料力学
第2章 轴向拉伸和压缩
例题1
等值杆受力如图所示,试作其轴力图
F =25kN F 4=55kN 4 1=40kN F
纵向线 即: 原长相同
变形相同
横截面上各点的纵向线应变相等
c
拉压杆变形几何方程.
反映了截面上各点变形之间的几何关系.
材料力学
第2章 轴向拉伸和压缩
§2-2 横截面上的正应力 应力分布规律 找变形规律 研究思路: 试验观察 综合几何方面、物理方面、静力学方面推导应力计算公式
一、几何方面
F
a' b'
材料力学
第2章 轴向拉伸和压缩
第二章 轴向拉伸和压缩
材料力学
第2章 轴向拉伸和压缩
• • • • • •
本章主要内容 轴力及轴力图 横截面上的应力 拉压杆的变形、胡克定律 强度计算 材料的力学性质
材料力学
第2章 轴向拉伸和压缩
§2-1 概述 一、工程实际中的轴向拉压杆
材料力学第2章
轴向拉伸和压缩
1
§2.1 轴向拉伸和压缩的概念
当作用于杆上的外力合力的作用线与直杆的轴线 重合时,杆的主要变形是纵向伸长或缩短,这类 构件称为拉杆或压杆。 如图 所示三 角架中的AC 杆为拉杆, BC杆为压杆 。
2
右图所示的桁架 中的杆也是主要 承受拉伸或压缩 变形的。
轴向拉力和轴向压力的 概念可由右图给出,上 图为轴向拉力;下图为 轴向压力。
若设BC段内立柱的单位长度自重为q2、横截面面 积为A2,则:
q2 γ A2 19kN/m 0.37m 0.37m 2.6kN/m
3
15
例题 2.2
(b)图:这是在集中荷载单 独作用下,柱的轴力图。图 中的负号表示轴力为压力。
(c)图:这是在自重荷载单 独作用下,柱的轴力图。即 在B处的轴力为:
①画一条与杆的轴线平行且与杆等长的直线作基 线; ②将杆分段,凡集中力作用点处均应取作分段点; ③用截面法,通过平衡方程求出每段杆的轴力; 画轴力图时,截面轴力一般先假设为正的,这样 ,计算结果是正的,则就表示为拉力,计算结果 是负的,就表示为压力。 ④按大小比例和正负号,将各段杆的轴力画在基 线两侧,并在图上表示出数值和正负号。
7
例题 2.1
图a所示等直杆,求各段内截面上的轴力并作出 轴力图的轴力图。
8
例题 2.1
解: (1) 求约束反力
由平衡方程求出约束力 FR=10 kN。 (2)求各杆段截面轴力 杆件中AB段、BC段、CD段、DE段的轴力是不 同的。分别用四个横截面:1-1、2-2、3-3、4-4 ,截杆并取四个部分为研究对象。
25kN
(e)
20kNFxFra bibliotek 0 : FN 3 F3 F4 0
002-材料力学_轴向拉压
σ
F FN
σ =
FN A
拉应力为正 压应力为负
拉压杆横截面上正应力计算公式
公式适用于轴载作用的杆件。 公式适用于轴载作用的杆件。 变截面杆或分布轴载作 用下横截面正应力计算
σ ( x) =
FN ( x ) A( x )
2.2 拉压杆的应力
二、斜截面上的应力
σ F σ
τ= σ
σ
2
σ
τ=
2
σ
F
2 σ τ= 2
ρgπ
l
ξ )2
叠加原理适用
FN (0) = F
FN (l ) = ( F + P)
dFN ( x) ρgπ 2 d1 (d 2 d1 ) d d ρgπ d d = [d1 + 2 x + ( 2 1 )2 x2 ] = (d1 + 2 1 x) 2 = p( x) dx 4 l l 4 l
单向(单轴) 单向(单轴)应力状态
σ
2
σ τ = 2 σ
2
2
讨论任一方位截面上的应力及与横截面上应 作顺时针转动的趋势为正。 切应力以使隔离体有作顺时针转动的趋势为正。 力的关系, 力的关系,斜截面上各处法向线应变和切应 σ max = σ 0 = σ τ0 = 0 横截面上 变相同,即变形是均匀的。 变相同,即变形是均匀的。因此内力均匀分 σ min = σ 90 = 0 τ 90 = 0 布。 纵截面上 σ Fα = ∫ Aoα p α dAτ max p ατ ∫ Aα=dA = p α σ α = σ = = A F
2.1 拉压杆的内力 轴力及轴力图
横截面是杆件内最有代表性的截面, 横截面是杆件内最有代表性的截面, 其上的内力可用截面法求出。 其上的内力可用截面法求出。 由隔离体的平衡条件截面上只 有截面法向的内力分量 FN(x), ), 轴力。 称为轴力 称为轴力。 由 ∑ Fx = FN ( x) F = 0
第2章轴向拉压
第二章轴向拉伸和压缩§2-1 引言此类受轴向外力作用的等截面直杆称为拉杆或压杆。
受力特点:直杆受到一对大小相等,作用线与其轴线重合的外力F 作用。
变形特点:杆件发生纵向伸长或缩短。
F F F F 一、轴向拉压杆的受力特点、变形特点二、轴力及轴力图Ⅰ、内力内力——由于物体受外力作用而引起的其内部各质点间相互作用的力的改变量。
F F F F根据可变形固体的连续性假设可知,物体内部相邻部分之间的作用力是一个连续分布的内力系,我们所说的内力是该内力系的合成(力或力偶)求内力的一般方法——截面法(1)截开;(2)代替;(3)平衡。
步骤: FFmm (c) F N (a) FF m m (b) m m F N x 二、轴力及轴力图Ⅰ、内力---轴力可看出:杆件任一横截面上的内力,其作用线均与杆件的轴线重合,因而称之为轴力,用记号F N 表示。
F F +=N FF mm (c)F N (a) FF m m (b) m m F N x引起伸长变形的轴力为正——拉力(背离截面);引起压缩变形的轴力为负——压力(指向截面)。
轴力的符号规定:F F +=N FF mm (c)F N (a) FF m m (b) m m F N xFF -=N F N mm(c) F N (a) FF m m (b) mm F x F若用平行于杆轴线的坐标表示横截面的位置,用垂直于杆轴线的坐标表示横截面上轴力的数值,所绘出的图线可以表明轴力与截面位置的关系,称为轴力图。
FF F N 图F F FF N 图F注意:用截面法法求内力的过程中,在截面取分离体前,作用于物体上的外力(荷载)不能任意移动或用静力等效的相当力系替代。
F F(a)F F(b)F N =Fmmnn (a)FCB Am mFA(b)F N =Fnn B FA(c)n n mmF N =0(e)mmAF N =Fn n B(f)AFCB(d)F A例试作图示杆的轴力图。
材料力学-第2章 轴向拉压
24
材料力学-第2章 轴向拉压
拉压杆的应力和圣维南原理
– 点M处的应力p可分解为
•
•
p
垂直于横截面的法向应力分量 — —称为正应力 相切于横截面的应力分量t ——称为 切应力(剪应力)
t
M
正负号规定 正应力 以离开截面为正,指向截面为负,即拉 应力为正,压应力为负 切应力t 对所截物体内部一点产生顺时针方向的 力矩时为正,反之为负
– 杆件上外力(或外力合力)的作用线与杆的轴线 重合(不是平行) – 杆件的变形沿着轴线方向伸长或缩短(主要变 形),同时,伴随着横截面方向的相应减小和增 大(次要变形)
分别称为简单拉伸和简单压缩,或轴向拉伸 和轴向压缩,相应的构件称为拉(压)杆
7
材料力学-第2章 轴向拉压
轴向拉压的基本概念
•
受力及变形特点
F
F
F
F F cos 0 cos A A cos
p
F 所以: p A
38
材料力学-第2章 轴向拉压
拉压杆的应力和圣维南原理
斜截面上的正应力和切应力
F
所以:
p
F
p
t
p cos 0 cos2 0 t p sin sin 2 2
积分别为A,2A,3A。则三段杆截面上 。
(a)轴力和应力都相等
F
F
F
(b)轴力和应力都不等
(c)轴力相等,应力不等 (d)轴力不等,应力相等
29
材料力学-第2章 轴向拉压
拉压杆的应力和圣维南原理
例: 横截面为正方形的砖柱分为上、下两段,其横截面尺
材料力学 第二章 轴向拉压应力PPT课件
§2–1 拉压杆的内力 ·轴力与轴力图 §2–2 拉压杆的应力及强度条件 §2-3 材料在拉伸和压缩时的力学性质 §2-4 剪切与挤压的强度计算
§2–1 拉压杆的内力 · 轴力与轴力图
杆件在轴向荷载作用下,将发生轴向拉伸或压缩。
拉伸 F
F
压缩 F
F
×
一、拉压杆的内力——轴力
×
§2–3 应力集中的概念
拉压杆横截面的应力并不完全是均匀分布的,当横截面 上有孔或槽时,在截面曲率突变处的应力要比其它处的应力 大得多,这种现象称为应力集中。
P
P
P
P
P
×
五、拉压杆的强度条件
拉压杆在正常情况下不发生破坏的条件是:拉压杆的最
大工作应力(横截面的最大正应力)不超过材料的容许应
力。
max
FN3
Ⅲ 30k N
Ⅲ
×
FN3 300 FN3 30kN
例2 长为l ,重为W 的均质杆,上端固定,下端受一轴向拉
力P 作用,画该杆的轴力图。
轴力图
FN
P+W F x 0 ;F N P x 0
⊕
x
P
FN
PxPWx
l
x0 ;F NF N mi nP
P
P
x l;F NF N ma x P W
×
例3 画图示杆的轴力图。
3k N 2k N N 4k N 8kN
3k N ⊕ 1⊕kN
○-
1kN
轴力图
6k N ⊕
○-
4k N 8k N
轴力图
×
§2–2 拉压杆的应力及强度条件
一、横截面的正应力
拉压杆横截面上只有正应力而无剪应力,忽略应力集中 的影响,横截面上的正应力可视作均匀分布的,于是有
材料力学 第02章 轴向拉伸和压缩及连接件的强度计算
弹屈 性服 阶阶 段段
强 化 阶 段
颈 缩 阶 段
33/113
2.3 材料在拉伸或压缩时的力学性能 2.3.1 低碳钢Q235拉伸时的力学性能-弹性阶段
Oa段应力与应变成正比
s Ee
s
b a
弹性模量E是直线Oa的斜率 Q235 E≈200GPa
直线部分的最高点a所对应的应力称为 比例极限,sp Oa段材料处于线弹性阶段
(2) 杆AB段上与杆轴线夹45°角(逆时针方向)斜截面上的正应力 和切应力。
A 1 300 mm B 500 kN 300 mm 2 C 3 300 kN 400 mm
26/113
D
200 kN
2.2 拉压杆截面上的内力和应力 【例2-3】解
A 1 300 mm B 500 kN 300 mm 2 C
内力相同,
但是常识告诉我们,
F F
直径细的拉杆更容易破坏。
求得各个截面上的轴力后,并不能直接判断杆件是否具有足 够的强度。必须用横截面上的应力来度量杆件的受力程度。 用横截面上的应力来度量杆件的受力程度。
18/113
2.2 拉压杆截面上的内力和应力 2.2.2 1 拉压杆横截面上的应力
a
F
c
c' d'
F4
D
FN4
F
x
0 FN4 F4 0
FN4 20 kN 拉
16/113
同一位置处左右侧截面上的内力分量具有相同的正负号
2.2 拉压杆截面上的内力和应力 【例】解
1
FR A F1
F1=40kN,F2=55kN,F3=25kN,F4=20kN
2
F2 B
材料力学02(第二章 轴向拉压应力与材料的力学性能)
FN 2
A
F
1.校核强度
已知F, ,A1,A2, t , c
校核结构是否安全? 解:
F 1= t ? A1 sin F 2 = c ? A2 tan
2
L
FN ,max max [ ] (1)强度校核 A FN ,max A (2)截面选择 [ ] (3)计算许可荷载 FN,max A[ ]
强度条件的应用举例
1 2
L
(1) 求内力(节点A平衡) FN1= F sin
A
FN2= - F tan
FN1
F
(2) 求应力(A1,A2横截面积)
C 1m
B
A F
C y 1m
FN1
B A F
A F
x
FN2
解: (1)节点 A 的受力如图,其平衡方程为:
F F
x y
0 0
FN2 FN1 cos 30 0 FN1 sin 30 F 0
得 FN1 2F (拉) FN 2 1.732F (压)
(2)查型钢表得两杆的面积 杆AC 杆AB
例题2 . 钢板冲孔,已知t=5mm,d=18mm,剪切极限应力 τ0=400MPa,求冲力P的大小。
• 解:(1)内力分析: • 剪力: Fs=P • 剪切面面积:A=πd t
• (2)应力分析与强度计算: • τ= Fs/ A ≥τ0 • 由上解得: P ≥ τ0 πd t =113kN
例3 、一铆钉接头如图所示,铆钉和板用同一种材料制成, 铆钉的直径d=18mm,板厚t=10mm,其[τ]=80MPa, [σbs]=200MPa,[σ]=120MPa,试校核此接头部分的强度。
材力第2章:轴向拉伸与压缩
F
F
F
F
拉杆
压杆
§2-2 轴力及轴力图 1.内力的概念
构件因反抗外力引起的变形,而在其内部各质点间引起的相 互之间的作用力,称为内力。 显然,外力越大,变形越大,因而内力也越大,但内力不可 能无止境地随外力的增大而增大,总有个限度,一旦超过了 这个限度,材料将发生破坏。因此,材料力学中,首先研究 内力的计算,然后研究内力的限度,最后进行强度计算。
B
α α
FN1
α α
FN2
FN 2 cos + FN 1 cos - F = 0
FN 2 = FN 1 = F 2 cos Fl
A
A
F
l1 = l2 =
l2
FN 2l EA
=
=
2 EA cos
Fl
A = AA =
A l 1
=
A
l2 cos
2EA cos
2
= FN A ,
=
l l
=
E
又称为单轴应力状态下的胡克定律,不仅适用于轴向拉(压)杆,可以更普遍 地用于所有的单轴应力状态。
= E 表明在材料的线弹性范围内,正应力与线应变呈正比关系。
例题 试求图示杆 AC 的轴向变形△ l 。
FN 1
B
F1
F2
C
FN 2
C
F2
分段求解:
0
90 = 0
0
90 = 0
0
在平行于杆轴线的截面上σ、τ均为零。
• 作业: P41 • •
2-1(2)(3) 2-3 2-6
§2-5 拉、压杆的变形
杆件在轴向拉压时:
材料力学第2章 轴向拉伸和压缩
(b),由静力平衡条件:
∑X = 0
N AB + N BC cos30 = 0
…(1) NBC …(2) NAB 30
y
Y =0 ∑ N BC sin 30 - P = 0
B P
x
(b)
由(2)式可得
N BC
P 2 = = = 4kN (拉) sin 30 0.5
将NBC的值代入(1),可得
6
40 106 Pa 40 MPa
杆端加载方式对正应力分布的影响
圣维南原理:若用与外力系静力等效的合力代替原力 系,则这种代替对构件内应力与应变的影响只限于原 力系作用区域附近很小的范围内。
对于杆件, 此范围相 当于横向 尺寸的 1~1.5倍。
圣维南原理:“ 力作用于杆端方式
不同,只会使与杆端距离不大于杆 的横向尺寸的范围内受影响。”
用径向截面将薄壁圆环截开,取其上半部分为分离 体,如图b所示。分布力的合力为
d FR ( pb d )sin pbd 0 2
π
FR pba 由SFy=0,得 FN 2 2
径向截面上的拉应力为
FN 1 pbd pd ( 2 10 Pa)(0.2 m) s ( ) A bd 2 2d 2(5 10-3 m)
符号规定:
正号轴力-- N的方向与截面外法线方向一致。
负号轴力-- N的方向与截面外法线方向相反。
也即:拉伸为正、压缩为负。
3.轴力图 例1:一直杆受力如图所示。试求各段中横截面上的 轴力。
6kN
A
I I I I
II B 10kN II
III D C 4kN 8kN III
6kN
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
叶片
例 7-3 图示桁架,杆1与2分别用钢与松木制成。F = 10 kN;E1 = 200 GPa, A1 = 100 mm2, l1 = 1 m;E2 = 10 GPa, A2 = 4000 mm2。试求节点 A 的水平与铅垂位移
例 7-4 F1 = F2 / 2 = F,求截面 A 的位移Ay
GB/T 228-2002《金属材料室温拉伸试验方法》
单辉祖-材料力学教程 23
拉伸试验
试验装置
单辉祖-材料力学教程
24
拉伸试验与应力-应变图
F F / As l l / l
应力-应变图
单辉祖-材料力学教程
25
低碳钢的拉伸力学性能
加载过程与力学特性
滑移线
低碳钢Q235
单辉祖-材料力学教程 16
圣维南原理 杆端应力分布
单辉祖-材料力学教程
17
应力非 均布区
应力均布区
应力非 均布区
圣维南原理
力作用于杆端的分布方 式,只影响杆端局部范围的 应力分布,影响区约距杆端 1~2 倍杆的横向尺寸
单辉祖-材料力学教程
杆端镶入底座,横 向变形受阻,应力 非均匀分布
18
例 题
第 2 章 轴向拉伸与压缩
本章主要研究:
单辉祖-材料力学教程
拉压杆的内力、应力与强度计算 材料在拉伸与压缩时的力学性能 轴向拉压变形分析 简单拉压静不定问题分析 连接部分的强度计算
1
Байду номын сангаас
§1 引言
§2 轴力与轴力图
§3 拉压杆的应力与圣维南原理 §4 材料在拉伸与压缩时的力学性能
§5 应力集中概念
刚体 EA
刚体 EA
单辉祖-材料力学教程 46
例 题
例 6-1 图示吊环,最大吊重 F = 500 kN,许用应力[s] = 120 MPa,夹角 = 20°。试确定斜杆的直径 d。
单辉祖-材料力学教程
47
单辉祖-材料力学教程
48
例 6-2 已知:A1=A2=100 mm2,[st ]=200 MPa,
[sc ]=150 MPa
单辉祖-材料力学教程 31
其它材料的拉伸力学性能
塑性金属材料拉伸
30铬锰硅钢 50钢 硬铝
/%
s 0.2-名义屈服极限
单辉祖-材料力学教程 32
灰口铸铁拉伸
断口与轴线垂直
单辉祖-材料力学教程 33
纤维增强复合材料拉伸
碳纤维/环氧树脂基体
各向异性 线弹性 脆性材料
单辉祖-材料力学教程
单辉祖-材料力学教程 9
例 题
例 21 等直杆BC , 横截面面积为A , 材料密度为r , 画杆 的轴力图,求最大轴力
单辉祖-材料力学教程
10
§3 拉压杆的应力与圣维南原理
拉压杆横截面上的应力
拉压杆斜截面上的应力
圣维南原理 例题
单辉祖-材料力学教程
11
拉压杆横截面上的应力
例 3-1 已知:F = 50 kN,A = 400 mm2 试求:斜截面 m-m 上的应力
单辉祖-材料力学教程
19
单辉祖-材料力学教程
20
例 3-2 以加速度 a 向上起吊直杆, 分析杆的轴力,并求最 大正应力。横截面面积为A, 材料密度为r。
重力+ 惯性力(达郎贝尔原理)
单辉祖-材料力学教程
单辉祖-材料力学教程
26
滑移线
缩颈与断裂
单辉祖-材料力学教程
27
sp-比例极限 ss-屈服极限
单辉祖-材料力学教程
sb-强度极限 E= tan - 弹性模量
28
卸载与再加载规律
s e-弹性极限
e -弹性应变
p-塑性应变
冷作硬化:由于预加塑性变形, 使s e 或s p 提高的现象
单辉祖-材料力学教程 29
1. 斜截面应力分布
横截面上 的正应力 均匀分布
单辉祖-材料力学教程
横截面间 的纤维变 形相同
斜截面间 的纤维变 形相同
斜截面上 的应力均 匀分布
14
2. 斜截面应力计算
Fx 0, p
p
A F 0 cos
F cos s 0 cos A
s p cos s 0cos 2 s0 t p sin sin2
例 题
例 7-1 已知 l = 54 mm, di = 15.3 mm, E=200 GPa, 0.3,
拧紧后, AB 段的轴向变形为l =0.04 mm。试求螺栓横 截面上的正应力 s , 与螺栓的横向变形 d
例 7-2 图示涡轮叶片,材料密度为r ,转速为w 试求叶片横截面上的正应力与轴向变形
拉 压 杆: 以轴向拉压为主要变形的杆件
单辉祖-材料力学教程
5
§2 轴力与轴力图
轴力 轴力计算 轴力图 例题
单辉祖-材料力学教程
6
轴 力
轴力定义:通过横截面形心并沿杆件轴线的内力
符号规定:拉力为正,压力为负
单辉祖-材料力学教程 7
轴力计算
试分析杆的轴力 (F1=F,F2=2F)
F sn ( b d )
-板厚
单辉祖-材料力学教程
40
交变应力与材料疲劳概念
交变或循环应力 随时间循环或交替变化的应力
连杆
单辉祖-材料力学教程
41
疲劳破坏
sb ss
N-应力循环数
钢拉伸疲劳断裂
在循环应力作用下,虽然小于强度极限,但经历应 力的多次循环后,构件将产生可见裂纹或完全断裂
在交变应力作用下,材料或构件产生可见 裂纹或完全断裂的现象,称为 疲劳破坏
胡克定律与杆的轴向变形
胡克定律
实验表明:当s sp 时,
s
引入比例常数E
s E
在比例极限内,正应力与正应变成正比-胡克定律
E-弹性模量,其量纲与应力相同,常用单位为GPa
1 GPa109 Pa103 MPa 钢与合金钢: E 200~ 220 GPa
铝合金: E 70~ 72 GPa
§6 许用应力与强度条件
失效与许用应力 轴向拉压强度条件 例题
单辉祖-材料力学教程
44
失效与许用应力
静荷失效
断裂与屈服,相应极限应力
s s - 塑性材料 su s b - 脆性材料
许用应力 构件工作应力的最大容许值 su [s ] n ≥ 1 安全因数 n
[s ] [s ]
34
材料压缩时的力学性能
低碳钢压缩
Et Ec
单辉祖-材料力学教程
(s s )t (s s )c
愈压愈扁
35
灰口铸铁压缩
(sb)c= 3 ~ 4 (sb)t
单辉祖-材料力学教程
断口与轴线约成45o
36
温度对力学性能的影响
材料强度、弹性常数随温度变化的关系
中炭钢
单辉祖-材料力学教程
硬铝
21
§4 材料在拉伸与压缩时的力学性能
拉伸试验与应力-应变图 低碳钢的拉伸力学性能
其它材料的拉伸力学性能
材料压缩时的力学性能 温度对力学性能的影响
单辉祖-材料力学教程
22
拉伸试验与应力-应变图
拉伸标准试样
l 10d 或 l 5d
l 11.3 A 或 l 5.65 A
单辉祖-材料力学教程 42
应力集中对构件强度的影响
对于脆性材料构件,当 smax=sb 时,构件断裂
对于塑性材料构件,当smax达到ss 后再增加载荷, s 分布趋于均匀化,不影响构件静强度 应力集中促使疲劳裂纹的形成与扩展,对构件 (塑性与脆性材料)的疲劳强度影响极大
单辉祖-材料力学教程 43
FR F2 F1 F
AB 段: FN1 F
BC 段: FN2 F 0
FN2 F
要点:逐段分析轴力;设正法求轴力
单辉祖-材料力学教程 8
轴力图
FN1 F
FN2 F
以横坐标 x 表示横截面位置,以纵坐标 FN 表示轴力,绘制轴力沿杆轴的变化曲线。 表示轴力沿杆轴变化情况的图 线(即 FN-x 图 ), 称为轴力图
轴向变形基本公式
s E
l
FN s A
l l
FN l -胡克定律 EA
在比例极限内,拉压杆的轴向变形 l ,与轴 力 FN 及杆长 l 成正比,与乘积 EA 成反比 EA- 杆截面的 拉压刚度 l - 伸长为正,缩短为负
轴向变形一般公式
变截面变轴力杆
d( l )
1.试验观察
横线仍为直线
仍垂直于杆轴 横线间距增大
单辉祖-材料力学教程
12
2. 假设
变形后,横截面仍保持平面,仍与杆轴垂 直,仅沿杆轴相对平移 – 拉压平面假设
3.正应力公式
横截面上各点处仅存在正 应力,并沿横截面均匀分布 公式得到试验证实
单辉祖-材料力学教程 13
s
FN A
拉压杆斜截面上的应力
ss sb
nb ns
- 塑性材料 - 脆性材料
单辉祖-材料力学教程
45
轴向拉压强度条件
强度条件 保证拉压杆不致因强度不够而破坏的条件
FN [s ] A max
s max
变截面变轴力拉压杆
FN,max [s ] A
等截面拉压杆
常见强度问题类型 校核强度 已知杆外力、A与[s],检查杆能否安全工作 截面设计 已知杆外力与[s],确定杆所需横截面面积 FN,max A [s ] 确定承载能力 已知杆A与[s],确定杆能承受的FN,max [FN ] A[s ]