控制理论发展历史
中国内部控制理论的发展和近况

中国内部控制理论的发展和近况内部控制是一种组织管理和运营的体系,旨在有效地提高企业管理水平、控制风险、保护企业利益、达到预期目标。
中国内部控制理论的发展经历了多个阶段,自20世纪80年代末的起步阶段,到21世纪初的初步发展阶段,再到现在的成熟阶段。
在起步阶段,中国内部控制理论主要受到国际上的影响。
国内学者开始学习和借鉴西方发达国家的内部控制理论,如美国的萨班斯-奥克斯利法案。
这个阶段的重点是理解内部控制的基本概念和原则,并根据国情进行适度的调整和应用。
同时,国家对内部控制的重要性也开始有了一定的认识,相关法律法规逐渐完善,企业对内部控制的需求逐渐增加。
在初步发展阶段,中国内部控制理论开始有了一定的原创性和自主性。
国内学者对国际上的内部控制理论进行了批判性分析和思考,提出了“内部控制三重目标”、“内控社会责任理论”等理论框架。
同时,专业学术机构和行业协会积极组织学术研讨和交流活动,推动内部控制理论的发展和应用。
进入成熟阶段后,中国内部控制理论在实践中得到了广泛应用。
国内企业和政府部门对内部控制的重视程度不断提高,内部控制体系逐渐建立和完善。
各类内控规范和标准的制定和发布也越来越多,如《企业内部控制基本规范》、《内部控制细则》等。
此外,一些跨国公司和大型国内企业还开始使用国际通行的内部控制框架,如COSO(委员会赞助的组织的内部控制综合架构)。
近几年来,中国内部控制理论和实践方面取得了一些重要成果。
首先,内部控制成为企业上市、发行债券和融资的重要前提条件之一,资本市场对内部控制的要求也越来越高。
其次,各行各业对内部控制的理解和应用不断加深,内部控制文化开始在企业内部得到普及。
此外,信息技术和数据分析的发展为内部控制提供了更多的工具和方法,如虚拟内部审计和数据挖掘等。
然而,中国内部控制理论和实践还存在一些问题和挑战。
首先,内部控制的理论研究和实践经验还相对不足,需要进一步深化和拓展。
其次,一些企业对内部控制的重视程度和落实情况还不够,内部控制制度和机制仍然存在一些薄弱环节。
现代控制理论的发展史

2
现代控制理论
现代控制理论以多变量控 最优控制为主要内容, 制、最优控制为主要内容, 采用时域法,以状态方程 采用时域法, 为数学模型。数学工具: 为数学模型。数学工具: 线性代数, 线性代数, 泛函分析
经典控制理论
• 经典控制理论,以单变量控制,随动/ 调节为主要内容,以微分方程和传递 函数为数学模型,所用的方法主要以 频率响应法为主。数学工具: 微分方 程, 复变函数
3
人才培养: 人才培养:多学 科交叉、 科交养宽口径、多 面手、 面手、复合型人 才
我国控制理论的教学
–1949. 上海交大 张钟俊 伺服系统 1949. – 1950 清华大学 钟士模 自动调节原理 – 50-60年代 随动系统,自动调节原理 - 年代 随动系统, – 70年代末-80年代 现代控制理论,最优控制 ,自适 年代末- 年代 现代控制理论, 年代末 应控制,系统辨识, 随机控制,大系统理论( 应控制,系统辨识, 随机控制,大系统理论(运筹 ),鲁棒控制 学),鲁棒控制 – 90年代 模糊控制, 智能控制,系统集成 年代 模糊控制, 智能控制, – 新世纪 网络技术,生物信息技术,嵌入式系统--信 网络技术,生物信息技术,嵌入式系统--信 -- 息自动化 要求: 要求:厚基础 宽口径 学科交叉 科学思维方法 勇于实践和探索
目前的发展趋势
1
突出含机、 突出含机、电、 计算机、 计算机、通信网 络的大系统、 络的大系统、复 杂系统与人机交 互系统的集成; 互系统的集成;
2
控制论的根本是 信息的控制, 信息的控制, 包 括模型的建立 数学特征), (数学特征), 信息的处理( 信息的处理(计 算机微电子技术) 算机微电子技术) 与实体的控制 领域知识, (领域知识,工 程特征) 程特征)
控制理论发展简史

控制理论发展简史控制理论经过数十年世界范围的发展,研究成果十分丰富,其中一些研究经过不断发展完善已经成为成熟的独立学科,还有一些研究经过一段时间的繁荣昌盛,大大促进了控制理论的发展,完成了其历史使命,现在看起来,其本身的理论及应用价值却是有限的。
当前,控制理论已渗透到几乎所有工程技术领域,新的问题、专题及学科分支大量涌现,五彩缤纷,但也使人有迎接不暇,无所适从之感。
当前,高新技术的发展提出了形形色色的新问题,难度大,亟待解决。
面对这些新问题,现有的控制理论常常显得无能为力,使得一些问题甚至等不到理论上的准备及指点,已在实际中用各种技术手段着手加以解决了。
控制理论发展的历史可追溯到十八世纪中叶英国的第一次技术革命。
1765年,瓦特(Jams Wate,1736~1819)发明了蒸汽机,进而应用离心式飞锤调速器原理控制蒸汽机,标志着人类以蒸汽机为动力的机械化时代的开始。
后来,工程界用自动控制理论讨论调速系统的稳定性问题。
1868年发表的"关于调节器"一文中指出,控制系统的品质可用微分方程来描述,系统的稳定性可用特征方程根的位置和形式来研究。
1872年劳斯(E.J.Routh,1831~1907)和1890年赫尔维茨(Hurwitz)先后找到了系统稳定性的代数判据,即系统特征方程根具有负实部的充分必要条件。
1892年俄国学者李亚普诺夫(1857~1918)发表了"论运动稳定性的一般问题"的博士论文,提出了用适当的能量函数–李亚普诺夫函数的正定性及其倒数的负定性来鉴别系统的稳定性准则,从而总结和发展了系统的经典时域分析法。
随着通讯及信息处理技术的迅速发展,电气工程师们发展了以实验为基础的频率响应分析法,1932年美国贝尔实验室工程师奈奎斯特发表了反馈放大器稳定性的著名论文,给出了系统稳定性的奈奎斯特判据。
后来,苏联学者米哈依洛夫又把奈奎斯特判据推广到条件稳定和开环不稳定系统的一般情况。
控制理论与控制系统的发展历史及发展趋势

控制理论与控制系统的发展历史及趋势姓名:学号:指导教师:专业:所在学院:机电工程学院时间:2011年11月3号控制理论与控制系统的发展历史及趋势摘要:由于自动控制理论和自动控制系统的的广泛运用,各行业的专业人员对它的学习,研究也在不断的进行。
本文叙述了自动控制理论和自动控制系统的发展历史(三个阶段:经典控制,现代控制,智能控制)和发展的趋势。
前言控制是人类对事物的认识思考,进而作出决策并作出相应反应的过程。
人类在漫长的生产与生活实践中不断总结,积累经验,形成理论,进而指导实践使生产力不断发展。
随着生产力的不断发展,人们开始要求生活的高质量,一方面要从繁重的体力劳动中解放自己,另一方面要有更高质量的产品来满足生活的需要。
自动控制理论自动控制系统就随之而产生了。
控制理论和控制系统经过漫长的发展,其研究范围和应用范围很广泛。
控制理论研究的对象和应用领域不但涉及到工业、农业、交通、运输等传统产业,还涉及到生物、通讯、信息、管理等新兴行业。
由于自动控制理论和自动控制系统获得了如此广泛的应用,所以自动控制的发展必将受到各行各业的关注。
本文就是对控制理论和控制系统的发展历史进行综述,叙述控制发展的各个阶段。
还有就是控制理论和控制系统的今后的发展趋势。
一,控制理论的发展历史及趋势1,早期的自动控制装置及自动控制技术的形成古代人类在长期生产和生活中,为了减轻自己的劳动,逐渐产生利用自然界动力代替人力畜力,以及用自动装置代替人的部分繁难的脑力活动的愿望,经过漫长岁月的探索,他们互不相关地造出一些原始的自动装置。
约在公元前三世纪中叶,亚历山大里亚城的斯提西比乌斯首先在受水壶中使用了浮子。
按迪尔斯(Diels)本世纪初复原的样品,注入的水是由圆锥形的浮子节制的。
而这种节制方式即已含有负反馈的思想(尽管当时并不明确)。
公元前500年,中国的军队中即已用漏壶作为计时的装置。
约在公元120年,著名的科学家张衡(78-139,东汉)又提出了用补偿壶解决随水头降低计时不准确问题的巧妙方法。
控制理论各历史阶段发展的特点

控制理论各历史阶段发展的特点经典控制理论在20世纪30到40年代,奈奎斯特、伯德、维纳等人的著作为自动控制理论的初步形成奠定了基础;二次大战以后,又经过众多学者的努力,在总结了以往的实践和关于反馈理论、频率响应理论并加以发展的基...经典控制理论(20世纪40-50年代)在20世纪30到40年代,奈奎斯特、伯德、维纳等人的著作为自动控制理论的初步形成奠定了基础;二次大战以后,又经过众多学者的努力,在总结了以往的实践和关于反馈理论、频率响应理论并加以发展的基础上,形成了较为完整的自动控制系统设计的频率法理论。
1948年又提出了根轨迹法。
至此,自动控制理论发展的第一阶段基本完成。
这种建立在频率法和根轨迹法基础上的理论,通常被称为经典控制理论。
经典控制理论以拉氏变换为数学工具,以单输入-单输出的线性定常系统为主要的研究对象。
将描述系统的微分方程或差分方程变换到复数域中,得到系统的传递函数,并以此作为基础在频率域中对系统进行分析和设计,确定控制器的结构和参数。
通常是采用反馈控制,构成所谓闭环控制系统。
经典控制理论具有明显的局限性,突出的是难以有效地应用于时变系统、多变量系统,也难以揭示系统更为深刻的特性。
当把这种理论推广到更为复杂的系统时,经典控制理论就显得无能为力了,这是因为它的以下几个特点所决定。
1.经典控制理论只限于研究线性定常系统,即使对最简单的非线性系统也是无法处理的;出描述方式,这就从本质上忽略了系统结构的内在特性,也不能处理输入和输出皆大于1的系统。
实际上,大多数工程对象都是多输入-多输出系统,尽管人们做了很多尝试,但是,用经典控制理论设计这类系统都没有得到满意的结果;2.经典控制理论采用试探法设计系统。
即根据经验选用合适的、简单的、工程上易于实现的控制器,然后对系统进行分析,直至找到满意的结果为止。
虽然这种设计方法具有实用等很多优点,但是,在推理上却是不能令人满意的,效果也不是最佳的,人们自然提出这样一个问题,即对一个特定的应用课题,能否找到最佳的设计。
自动控制理论的早期发展历史

自动控制理论的早期发展历史自动控制理论的早期发展历史可以追溯到古代。
在古希腊时期,有一位名叫克提斯波斯的埃及工程师和发明家,他以自动水钟闻名。
这个自动水钟利用了一个水箱和一个漏斗系统来控制水的流量,从而保持水位稳定。
这可以被视为自动控制的初步形式。
在17世纪,欧洲工程师和科学家开始对机械自动控制系统进行研究。
其中一位重要的人物是维尔祖伊厄斯,他发明了一种水力机械自动控制装置,该装置可以保持风帆船的直线航行。
这个装置成为后来航海自动驾驶仪的基础。
到了18世纪,以导弹系统为代表的武器技术的发展推动了自动控制理论的进一步发展。
导弹系统需要能够控制导弹的轨迹和飞行速度,以使其能够准确打击目标。
这促使科学家和工程师研究如何利用机械装置来自动控制导弹的飞行。
19世纪建立了控制工程学作为一门学科。
詹姆斯·沃特(James Watt)开发的蒸汽机以及他的调速器被视为开启了现代自动控制理论的里程碑。
调速器可以自动调整蒸汽机的工作速度,以保持稳定的转速。
这个发明对工业革命的驱动力起到了重要作用。
20世纪初,电力和电子技术的发展促进了自动控制理论的进一步发展。
从20世纪20年代开始,自动控制系统被应用在许多工业和军事领域。
在这一时期,自动控制理论的基本概念和原理如反馈、稳定性和系统控制等被建立起来。
控制工程学成为了一个独立的学科。
在20世纪50年代,数字计算机的出现对自动控制理论的发展产生了深远影响。
数字计算机可以实时获取和处理大量数据,并根据预设的算法进行自动控制。
这使得控制系统设计更加灵活和精确。
在20世纪60年代和70年代,控制理论的研究越来越侧重于非线性系统的分析和控制。
非线性系统是现实世界中大部分系统的基本特征,如化学反应、生物系统和航空航天系统等。
研究人员发展了一系列非线性控制理论和方法,为非线性系统的控制提供了有效的解决方案。
随着现代计算机技术的快速发展,自动控制系统的设计和实现变得更加高效和精确。
控制理论的发展

宇宙哥伦布-加加林
Capsule used in first manned orbit of earth
In 1961, the first human to pilot a spacecraft, Yuri Gagarin, was launched by the Soviet Union aboard Vostok I.
(4) C. Shannon提出继电器逻辑自动化理论(1938),随后,发表专著《通信的数字 理论》(The Mathematical Theory of Communication),奠定了信息论的基础(1948)
C. E. Shannon
第二阶段。时间为20世纪60~70年代,称为“现代控制理论”时期。 第二阶段。时间为20世纪60~70年代,称为“现代控制理论”时期。 20世纪60 年代 这个时期,由于计算机的飞速发展,推动了空间技术的发展。 这个时期,由于计算机的飞速发展,推动了空间技术的发展。
数学与应用数学08-4班 王刚琦
控制理论的发展
更早 的探索
经典控制 理论时期
现代控制 理论时期 智能控制时期
20世纪40年代之前,科学家的早期探索。 20世纪40年代之前,科学家的早期探索。 世纪40年代之前
1)、我国北宋时期(1086~1089年)天 文学家苏颂、韩公廉建造的水运仪 象台。
2)、1681年法国物理学家、发明家巴本(D.Papin),发明了用作安全调节装置 的锅炉压力调节器。 3)、1765年,俄国人普尔佐诺夫(I.Polzunov)发明了蒸汽锅炉水位调节器。 4)、1788年,英国人瓦特(J.Watt)在他发明的蒸汽机 上使用了离心调速器,解决了蒸汽机的速度控制问题。
第一阶段。时间为20世纪40~60年代,称为“经典控制理论”时期。 第一阶段。时间为20世纪40~60年代,称为“经典控制理论”时期。 20世纪40 年代
自动控制理论发展史

自动控制理论发展史自动控制理论是研究如何设计、分析和实现自动控制系统的学科。
它涉及到数学、工程和物理等多个领域,经过数十年的发展,取得了广泛的应用和重要的成果。
本文将对自动控制理论的历史进行回顾和总结,探讨其发展的重要里程碑。
1.早期控制理论的起源在自动控制理论发展的早期阶段,人们主要关注如何通过机械装置实现自动控制。
18世纪末,雅各布·温特和约瑟夫·马里奥·雅科比开创了自动控制领域的先河。
他们分别发明了温特调节系统和雅科比的机械计算机,这两项发明被视为现代自动控制的重要基石。
2.经典控制理论的发展经典控制理论主要集中在线性系统的分析与设计上。
20世纪30年代,黑尔伯特正演算法的提出奠定了经典控制理论的基础,为后来的PID控制器奠定了基础。
此后,由于工程实践的需求,随着频率响应、根轨迹和复平面等概念的引入,经典控制理论逐渐成熟并被广泛应用。
3.现代控制理论的诞生随着科学技术的发展和对更高控制性能的需求,进一步推动了自动控制理论的发展。
20世纪40年代和50年代,现代控制理论开始崭露头角。
导纳法和态空间法等概念的提出为自动控制理论的进一步推进奠定了基础。
此外,奈奎斯特和布鲁克斯斯等学者的贡献,使得自动控制的频域分析和设计方法得以成为一门独立的学科。
4.控制理论的发展与应用随着计算机技术的发展,控制理论也得以推动和应用于更多领域。
20世纪60年代,数字控制技术的出现使得控制系统的精度和性能得到极大提升。
此后,随着自适应控制、鲁棒控制和优化控制等新概念的提出,控制理论迎来了一次次的飞跃。
特别是随着人工智能的兴起,基于神经网络和模糊逻辑的控制理论开始受到广泛关注。
5.未来的发展趋势随着科技的迅猛发展,自动控制理论也面临着新的挑战和机遇。
深度学习、强化学习等新兴技术的涌现将为控制理论的进一步发展提供巨大的潜力。
同时,面对日益复杂的工程系统和全球化的挑战,自动控制理论也需要不断创新和发展,以满足实际应用的需求。
控制理论与控制系统的发展历史及趋势

控制理论与控制系统的发展历史及趋势控制论一词Cybernetics,来自希腊语,原意为掌舵术,包含了调节、操纵、管理、指挥、监督等多方面的涵义。
因此“控制”这一概念本身即反映了人们对征服自然与外在的渴望,控制理论与技术也自然而然地在人们认识自然与改造自然的历史中发展起来。
根据控制理论的理论基础及所能解决的问题的难易程度,我们把控制理论大体的分为了三个不同的阶段。
这种阶段性的发展过程是由简单到复杂、由量变到质变的辩证发展过程。
一、经典控制论阶段(20世纪50年代末期以前)经典控制理论,是以传递函数为基础,在频率域对单输入---单输入控制系统进行分析与设计的理论。
1、控制系统的特点单输入---单输出系统的,线性定常或非线性系统中的相平面法也只含两个变量的系统。
2、控制思路基于频率域内传递函数的“反馈”和“前馈”控制思想,运用频率特性分析法、根轨迹分析法、描述函数法、相平面法、波波夫法,解决稳定性问题。
3、发展事件回顾1)我国古人发明的指南车就应用了反馈的原理2)1788年J.Watt在发明蒸汽机的同时应用了反馈思想设计了离心式飞摆控速器,这是第一个反馈系统的方案。
3)1868年J.C.Maxwell为解决离心式飞摆控速器控制精度和稳定性之间的矛盾,发表《论调速器》,提出了用基本系统的微分方正模型分析反馈系统的数学方法。
4)1868年,韦士乃格瑞斯克阐述了调节器的数学理论。
5)1875年E.J.Routh和A.Hurwitz提出了根据代数方程的系数判断线性系统稳定性方法6)1876年俄国学者N.A.维什涅格拉诺基发表著作《论调速器的一般理论》,对调速器系统进行了全面的理论阐述。
7)1895年劳斯与古尔维茨分别提出了基于特征特征根和行列式的稳定性代数判别方法。
8)1927年H.S.Black发现了采用负反馈线路的放大器,引入负反馈后,放大器系统对扰动和放大器增益变化的敏感性大为降低。
9)1932年H.Nyquest采用频率特性表示系统,提出了频域稳定性判据,很好地解决了Black 放大器的稳定性问题,而且可以分析系统的稳定裕度,奠定了频域法分析与综合的基础。
控制理论的简要发展历史(经典控制与现代控制之间的联系等)

自动化科学作为一门学科起源于20 世纪初,自动化科学与技术的基础理论来自于物发展中有着重要的地位,起着重要的作用。
在第40 届IEEE 决策与控制年会的全会开篇点:“控制将是21 世纪的物理学”。
稳定的条件是其特征根均有负实部,Roth 和Hurwitz 等人提出了间接的稳定判据,研究的,其研究成果可以看成是现代广泛应用的PID 控制器的前身,而1942 年,Ziegler 和Nichols 提出了调节PID(Proportion Integration Differentiation,比例积分微分)控制器参数的经验公式方法,此方法对当今的PID 控制器整定仍有影响。
自动控制理论是自动控制技术的理论基础,是一门理论性较强的科学。
按照自动控制理论发展的不同阶段,自动控制理论一般可分为“经典控制理论”和“现代控制理论”两大部分。
这些理论主要是以传递函数为基础,研究单输入单输出自动控制系统的分析和设计问题。
分析设计和运行发挥了重要的作用,并积累了丰富的经验,成功地解决了一系列以输出反馈为主要控制手段的自动控制问题。
20 世纪60 年代开始,由于生产的发展,自动控制系统日趋复杂、规模日趋庞大,特别是空间技术的发展,使自动控制理论有了一次新的飞跃,逐渐形成了“现代控制统的分析设计问题。
近年来,由于计算机技术的迅猛发展和应用数学研究的进展,特别是一些新型控制技术,诸如最优控制、自适应控制、预测控制、模糊控制、人工神经网络控制、鲁棒控制等的出现,使自动控制理论又有了日新月异的发展。
目前主要是庞大的系统工程的基础上发展起来的大系统理论和在模仿人类智能活动的基础上发展起来的智能控制方面,都取得了许多重大进展。
“经典控制理论”和“现代控制理论”是自动控制理论发展的两个阶段,但它们又是相互联系,相互促进的。
“现代控制理论”不能看成是“经典控制理论”简单的延伸和推广,在所采用的数学工具、理论基础、研究方法、研究对象等多方面有着明显的不同,可以说是一次质的飞跃。
现代控制理论的发展概况

现代控制理论的发展概况传统的控制理论是在 20 世纪 30 到 40 年代,奈奎斯特、伯德、维纳等人的著作为自动控制理论的初步形成而奠定了基础的。
而由于航空航天技术的推动与计算机技术飞速发展,控制理论在 1960 年先后有了重大的突破与创新。
在此期间,由卡尔曼提出的线性控制系统的状态空间法、能控性与能观测性的概念,奠定了现代控制理论的基础,其提出的卡尔曼滤波,在随机控制系统的分析与控制中得到广泛应用;庞特里亚金等人提出了极大值原理,深入研究了最优控制问题;由贝而曼提出最优控制的动态规划法,广泛用于各类最优控制问题。
这些就构成为了后来被称为现代控制理论的发展起点与基础。
罗森布洛克、麦克法轮与欧文斯研究了使用于计算机辅助控制系统设计的现代频域法理论,将经典控制理论传递函数的概念推广到多变量系统,并探讨了传递函数矩阵与状态方程之间的等价转换关系,为进一步建立统一的线性系统理论奠定了基础。
20 世纪 70 年代奥斯特隆姆与朗道在自适应控制理论与应用方面作出了贡献。
与此同时,关于系统辨识、最优控制、离散时间系统与自适应控制的发展大大丰富了现代控制理论的内容。
鲁棒控制理论阶段:由于现代数学的发展,结合着 H2 与H¥等范数而浮现了 H2 与H¥控制,还有逆系统控制等方法。
20 世纪 70 年代末,控制理论向着“大系统理论”、“智能控制理论”与“复杂系统理论”的方向发展。
“大系统理论”:用控制与信息的观点,研究各种大系统的结构方案、总体设计中的分解方法与协调等问题的技术基础理论。
“ 智能控制理论”:研究与摹拟人类智能活动及其控制与信息传递过程的规律,研制具有某些拟人智能的工程控制与信息处理系统的理论。
“复杂系统理论”:把系统的研究拓广到开放复杂巨系统的范筹,以解决复杂系统的控制为目标。
而“现代控制理论”这一名称是 1960 年卡尔曼的著名文章发表后浮现的,其在经典控制理论的基础上,以线性代数与微分方程为主要的数学工具,以状态空间法为基础,分析与设计控制系统。
现代控制理论发展史

现代控制理论综述一、前言现代控制理论是以状态变量概念为基础,利用现代数学方法和计算机来分析、综合复杂控制系统的新理论,适用于多输入、多输出,时变的或非线性系统。
较之经典控制理论,现代控制理论的研究对象要广泛得多,原则上讲,它既可以是单变量的、线性的、定常的、连续的,也可以是多变量的、非线性的、时变的、离散的。
现代控制理论本质上是时域法,是建立在状态空间基础上,它不用传递函数,而是以状态向量方程作为基本工具,从而大大简化了数学表达方法。
现代控制理论从理论上解决了系统的能控性、能观测性、稳定性以及许多复杂系统的控制问题。
二、发展历史现代控制论的形成主要标志是贝尔曼的动态规划法、庞特里亚金的极大值原理和卡尔曼的滤波理论。
现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下基于经典控制理论的基础上发展起来的。
由于航空航天技术的推动和计算机技术飞速发展,特别是空间技术的发展,迫切要求解决更复杂的多变量系统、非线性系统的最优控制问题(例如火箭和宇航器的导航、跟踪和着陆过程中的高精度、低消耗控制,到达目标的控制时间最小,把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题等)。
这类控制问题十分复杂,而采用经典控制理论难以解决。
科学技术的发展不仅需要迅速地发展控制理论,而且也给现代控制理论的发展准备了两个重要的条件—现代数学和数字计算机。
现代数学,例如泛函分析、现代代数等,为现代控制理论提供了多种多样的分析工具;而数字计算机为现代控制理论发展提供了应用的平台,促使控制理论由经典控制理论向现代控制理论转变。
因此,控制理论在1960年前后有了重大的突破和创新。
1892年,俄国数学家李雅普诺夫创立的稳定性理论被引入到控制中。
1954年,美国学者贝尔曼创立了动态规划,并在1956年应用于控制过程,广泛用于各类最优控制问题。
1956年,前苏联科学家庞特里亚金提出极大值原理,解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。
自动控制理论发展历史

自动控制理论发展历史
自动控制理论作为一种科学技术,其发展史可以追溯到古代,但真正有效的自动控制系统实施是在20世纪。
在这一时期,微型计算机、微处理器和数字信号处理技术的发展为自动控制的发展提供了技术支持。
主要发展历史如下:
第一阶段:20世纪50年代,美国大规模投入军事科研,开发了许多用于无线电导航和飞机控制领域的自动控制系统,这个阶段以科研方面的发展为主,自动控制理论初步形成,但受到当时计算机能力有限的制约。
第二阶段:20世纪60年代,随着微机电子技术的迅猛发展,芯片电子技术和数字信号的处理技术的出现,推动了自动控制领域的发展。
这个时期,计算机的能力和性能得到了极大的改进,微型机控制也得到了广泛的应用,这样自动控制理论也不断完善,不同的控制算法也不断提出。
第三阶段:20世纪70年代,计算机技术、微处理机结构设计和控制算法等都得到了长足发展。
特别是当时的专家系统优化的控制算法和系统仿真技术的发展,极大地推动了虚拟自动控制技术的建立,使自动控制领域的研究有了更大的发展空间。
第四阶段:20世纪80年代,计算机技术的发展也不断提升。
工业过程先进控制及应用-控制理论与工程的发展

工业过程先进控制及应用-控制理论与工程的发展-----------------------作者:-----------------------日期:过程控制中的若干问题一、控制理论发展1.40-50年代经典控制理论传递函数为基础,在频率域对单输入单输出SISO控制系统分析与设计的理论20世纪40年代开始形成的控制理论被称为“20世纪上半叶三大伟绩之一”最辉煌的成果之一PID控制根轨迹Evans频率特性Nyquist Bode随动控制 定值控制定量分析困难定性分析相当有用2. 60年代现代控制理论状态空间方法为基础,以极小值原理和动态规划方法等最优控制理论为特证,而以采用卡尔曼滤波器的随机干扰下的线性二次型系统宣告了时域方法的完成。
研究多输入多输出系统在航天、航空、导制等领域取得了辉煌的成果对复杂工业过程却显得无能为力,主要原因:要有精确过程数学模型建精确过程数学模型难点:机理复杂非线性与分布参数时变性不确定性多变量之间耦合信息不完全性IFAC----系统辨识与参数估计 (1965年以来每三年一次)现代工业过程建模主要特征:•模型的层次性。
系统结构为递阶结构型,为此过程建模将围绕着结构逐层进行,各层模型之间通过信息通道相互联系。
•模型的多时标性。
模型的各层次时标快慢亦是不同的,每一层次兼有两种状态,相对于下层快时标系统它是离散事件变量,相对于上层慢时标系统,它可视为连续时间变量。
•信息的多样性。
信息是语言,文字,图形,符号,图象,数字等多媒体信息集成。
建模方法:机理建模;经验建模;智能建模(神经网络建模、知识模型、模糊模型、逻辑关系模型等)。
3.七十年代开始逐步发展形成了大系统理论大系统理论是现代控制理论和系统理论相结合,其核心思想是系统的分解与协调,多级递阶优化与控制。
大系统理论仍未突破现代控制理论的基本思想与框架,除了高维线性系统之外,它对其它复杂系统仍然束手无策。
对于含有大量不确定性和难于建模的复杂系统,基于知识的专家系统、模糊控制、人工神经网络控制、学习控制和基于信息论的智能控制等应运而生,它们在许多领域都得到了广泛的应用。
控制理论发展史

奈奎斯特
4.1948年伊万斯(W.R.Ewans)提出了复数域内研究 系统的根轨迹法。 建立在奈奎斯特的频率响应法和伊万斯的根轨迹 法基础上的理论,称为经典(古典)控制理论(或 自动控制理论)。
四 标志阶段
1.1947年控制论的奠基人美国 数学家韦纳(N.Weiner)把控制 论引起的自动化同第二次产业革 命联系起来,并与1948年出版了 《控制论—关于在动物和机器中 控制与通讯的科学》,书中论述 了控制理论的一般方法,推广了 反馈的概念,为控制理论这门学 科奠定了基础。
维纳
维纳生于哥伦比亚市一个犹太人家里。维纳4岁开始读 书。9岁时读中学,11岁进人大学学习.他的数学知识已 超过大学一年级学生的水平,所以转而热衷于研究化学、 物理、电学了。他18岁时取得了哈佛大学数学和哲学两个博士学位,后来又到德国、 英国学习,拜著名哲学家罗素、数学家希尔伯特为师,进一步深造。 维纳已是一个很有名的数学家了,但他对其他学科也很有兴趣。在第二次世界大 战末期,有两个大问题特别引起了他的兴趣,一个是电子计算机,另一个是火炮命 中率问题。 维纳和一位年轻工程师合作,从驾驶汽车这种简单的动作中发现,人是采用了一 种叫“反馈”的控制方法,使汽车按要求行驶。维纳又请来了神经专家进行共同研 究,发现机器和人的控制机能有相似之处。后来,维纳又和许多有名科学家进行讨 论,听取对方的批评意见,甚至是“攻击”意见,终于于1948年把自己的研究成果 发表了出来,叫《控制论》。
奈奎斯特
奈奎斯特,美国物理学家,1889年出生在瑞典。1976年在德 克萨斯逝世。奈奎斯特对信息论做出了重大的贡献。奈奎斯特 1907年移民到美国并于1912年进入北达克塔大学学习。1917年 在耶鲁大学获得物理学博士学位。1917年~1934年在AT&T公司 工作,后转入贝尔电话实验室工作。
自动控制理论发展

自动控制理论是一门研究如何设计稳定、鲁棒和高性能控制系统的学科。
自动控制理论的发展可以分为以下几个阶段:
1. 经典控制理论阶段:20世纪前半叶,经典控制理论主要集中在线性系统的研究上,包括PID控制器、根轨迹法、频域分析等方法。
这些方法主要适用于线性、稳定、可预测的系统。
2. 现代控制理论阶段:20世纪60年代后期至70年代初期,现代控制理论开始崭露头角,状态空间方法、最优控制理论、鲁棒控制理论等相继涌现,为非线性、时变系统的分析与设计提供了新的思路。
3. 数字控制理论阶段:随着计算机技术的发展,数字控制理论应运而生。
数字信号处理技术的应用使得控制系统设计更加灵活,同时也促进了实时控制的发展。
4. 智能控制理论阶段:近年来,随着人工智能和机器学习的快速发展,智能控制理论逐渐引起关注。
模糊控制、神经网络控制、遗传算法等方法被引入到控制领域,为复杂系统的建模与控制提供了新的思路。
5. 网络化控制理论阶段:随着物联网和云计算技术的快速发展,网络化控制理论成为一个新的研究热点。
研究者们开始探索在网络环境
下的控制系统设计与实现,涉及到网络延迟、数据丢失、安全性等问题。
总的来说,自动控制理论的发展经历了经典理论、现代理论、数字化、智能化和网络化等多个阶段,不断地推动着控制理论与技术的进步,为各种工程和科学应用提供了强大支持。
自动控制理论发展历程及趋势

自动控制理论发展历程及趋势
一.自动控制理论发展历程
自动控制理论,简称控制理论,是研究对机器系统进行控制目标的达
成的数学理论。
它也是一种计算机技术,主要包括程序范围内规划、设计、开发、识别、测量和控制方案。
一个可控制系统的核心,是控制算法的实现,而自动控制理论就是完成这一工作的核心理论。
自动控制理论的发展迅速,一般认为其起源始于1724年,瑞士物理
学家伯南克发明了定比例阀,首次提出了控制系统的概念,实现了把热力
学的能量实现控制所需的阀门。
在1840年,德国科学家威廉·柯科曼发
明了热控制系统,使得控制系统技术迈出了一大步。
20世纪,控制理论领域最重要的发现是美国物理学家凯斯·费舍尔
提出的“受控系统反馈”,他的发现标志着控制理论进入了一个新的阶段。
1947年,费尔舍尔在美国纽约将12月节知识报纸记者的一份文章,题为《自动控制技术,新发明的革命》,详细介绍了他在控制系统中引入反馈
的思想。
控制理论发展历史

控制理论发展历史综述一:20世纪40年代末-50年代的经典控制理论时期,着重解决单输入单输出系统的控制问题,主要数学工具是微分方程、拉氏变换、传递函数;主要方法是时域法、频域法、根轨迹法;主要问题是系统的稳、准、快。
二:20世纪60年代的现代控制理论时期,着重解决多输入多输出系统的控制问题,主要数学工具是以此为峰方程组、矩阵论、状态空间法主要方法是变分法、极大值原理、动态规划理论;重点是最优控制、随即控制、自适应控制;核心控制装置是电子计算机。
三:20世纪70年代之后的先进控制理时期,先进控制理论是现代控制理论的发展和延伸。
先进控制理论内容丰富、涵盖面最广,包括自适应控制、鲁棒控制、模糊控制、人工神经网络控制等。
经典控制理论经典控制理论适用于单输入、单输出的线性定常(参数不随时间而变)系统。
发展过程1.原始阶段中国,两千年前我国发明的指南车:一种开环自动调节系统,它利用差速齿轮原理,利用齿轮传动系统,根据车轮的转动,由车上木人指示方向。
不论车子转向何方,木人的手始终指向南方,“车虽回运而手常指南”。
2.起步阶段人类社会发展,有一个点把人类社会的发展分成两大部分,那就是工业革命。
18世纪中叶之前,不管你什么怎么划分人类社会也好(农业牧业手工业),社会的发展始终离不开人力,就是必须得有人亲自去做。
18世纪中叶之后,机器的出现,使得以机器取代了人力,所以称之为革命。
然后机器的出现变革了人类的整个历史,直至现代社会文明的如此进步。
工业革命的开始的标志为哈格里夫斯发明的珍妮纺纱机,而工业革命的标志是瓦特改良蒸汽机,为什么扯这么多?如果机器不能控制,那和工具又有什么区别?所以工业革命的标志是瓦特改良蒸汽机。
钱学森也在最新一版的工程控制论中提到技术革命。
1769年,控制思想首次应用于工业控制的是瓦特,发明用来控制蒸汽机转速的飞球离心控制器。
以后人们曾经试图改善调速器的准确性,却常常导致系统产生振荡。
1868年以前,这一百年来,自动控制装置的设计还出于“直觉”阶段,没有系统的理论指导,因此在控制系统的各项性能(稳、准、快)的协调方面经常出现问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制理论发展历史综述一:20世纪40年代末-50年代的经典控制理论时期,着重解决单输入单输出系统的控制问题,主要数学工具是微分方程、拉氏变换、传递函数;主要方法是时域法、频域法、根轨迹法;主要问题是系统的稳、准、快。
二:20世纪60年代的现代控制理论时期,着重解决多输入多输出系统的控制问题,主要数学工具是以此为峰方程组、矩阵论、状态空间法主要方法是变分法、极大值原理、动态规划理论;重点是最优控制、随即控制、自适应控制;核心控制装置是电子计算机。
三:20世纪70年代之后的先进控制理时期,先进控制理论是现代控制理论的发展和延伸。
先进控制理论内容丰富、涵盖面最广,包括自适应控制、鲁棒控制、模糊控制、人工神经网络控制等。
经典控制理论经典控制理论适用于单输入、单输出的线性定常(参数不随时间而变)系统。
发展过程1.原始阶段中国,两千年前我国发明的指南车:一种开环自动调节系统,它利用差速齿轮原理,利用齿轮传动系统,根据车轮的转动,由车上木人指示方向。
不论车子转向何方,木人的手始终指向南方,“车虽回运而手常指南”。
2.起步阶段人类社会发展,有一个点把人类社会的发展分成两大部分,那就是工业革命。
18世纪中叶之前,不管你什么怎么划分人类社会也好(农业牧业手工业),社会的发展始终离不开人力,就是必须得有人亲自去做。
18世纪中叶之后,机器的出现,使得以机器取代了人力,所以称之为革命。
然后机器的出现变革了人类的整个历史,直至现代社会文明的如此进步。
工业革命的开始的标志为哈格里夫斯发明的珍妮纺纱机,而工业革命的标志是瓦特改良蒸汽机,为什么扯这么多?如果机器不能控制,那和工具又有什么区别?所以工业革命的标志是瓦特改良蒸汽机。
钱学森也在最新一版的工程控制论中提到技术革命。
1769年,控制思想首次应用于工业控制的是瓦特,发明用来控制蒸汽机转速的飞球离心控制器。
以后人们曾经试图改善调速器的准确性,却常常导致系统产生振荡。
1868年以前,这一百年来,自动控制装置的设计还出于“直觉”阶段,没有系统的理论指导,因此在控制系统的各项性能(稳、准、快)的协调方面经常出现问题。
实践中出现的问题,促使科学家们从理论上进行探索研究。
19世纪后半叶许多科学家开始基于理论来研究控制。
1868年,麦克斯韦(J.C. Maxwell)通过对瓦特的调速器建立起线性常微分方程,解释了瓦特蒸汽机速度控制系统中出现的剧烈振荡的不稳定问题,提出了简单的稳定性代数判据,开辟了用数学方法研究控制系统的途径。
1877年,劳斯(E.J.Routh)提出了不直接求解系统微分方程的根的稳定性判据。
1895年,霍尔维茨(A.Hurwitz)也独立提出了类似的霍尔维茨稳定性判据。
他俩把麦克斯韦的思想扩展到高阶微分方程描述的更复杂的系统中,各自提出了直接根据代数方程的系数判别系统稳定性的准则两个著名的稳定性判据—劳斯判据和霍尔维茨判据。
这些方法基本上满足了20世纪初期控制工程师的需要,奠定了经典控制理论中时域分析法的基础。
3.发展阶段早期的控制的目的是防止不稳定,控制目的比较单一,于是劳斯和霍尔维茨的代数稳定判据在相当一个历史时期里基本满足了控制工程师的需要。
直至二战前后,这种情况才发生了改变。
战争的发生某种意义上也是有好处的,比如推动的科技的发展这方面。
战争武器的进化需求,需要控制系统具有准确跟踪与补偿能力,这种要求推动了控制理论的研究和蓬勃发展。
故先后出现了奈奎斯特、伯德的频率法和伊万斯的根轨迹法,这两种方法不用求解微分方程就能分析高阶系统的稳定性、动态质量和稳态性能。
1932年美国物理学家奈奎斯特(H. Nyquist)提出了频域内研究系统的频率响应法,建立了以频率特性为基础的稳定性判据,为具有高质量的动态品质和静态准确度的军用控制系统提供了所需的分析工具。
伯德(H.W. Bode)和尼科尔斯(N.B. Nichols)在1930年代末和1940年代初进一步将频率响应法加以发展,形成了经典控制理论的频域分析法。
4.成熟阶段1947年控制论的奠基人美国数学家维纳(N. Weiner) 的《控制论》一书的出版,标志着控制论的正式诞生。
把控制论引起的自动化同第二次产业革命联系起来,于1948年出版了《控制论—关于在动物和机器中控制与通讯的科学》。
书中论述了控制理论的一般方法,推广了反馈的概念,为控制理论这门学科奠定了基础。
1948年,美国科学家伊万斯(W.R. Evans)创立了根轨迹分析方法,为分析系统性能随系统参数变化的规律性提供了有力工具,被广泛应用于反馈控制系统的分析、设计中。
我国著名科学家钱学森将控制理论应用于工程实践,并与1954年出版了《工程控制论》。
到20世纪50年代,经典控制理论发展到相当成熟的地步,形成了相对完整的理论体系,以传递函数作为描述系统的数学模型,以时域分析法、根轨迹法和频域分析法为主要分析设计工具,构成了经典控制理论的基本框架,为工程技术人员提供了一个设计反馈控制系统的有效工具。
现代控制理论现代控制理论是以状态变量概念为基础,利用现代数学方法和计算机来分析、综合复杂控制系统的新理论,适用于多输入、多输出,时变的或非线性系统。
现代控制理论本质上是时域法,是建立在状态空间基础上,它不用传递函数而是状态向量方程作为基本工具,从而大大简化了数学表达方法。
现代控制论的形成主要标志是卡尔曼的滤波理论、庞特里亚金极大值原理、贝尔曼的动态规划法。
主要分支学科有最有控制论、自适应控制、系统辨识、大系统论。
发展过程20世纪50年代中期,科学技术及生产力的发展,特别是空间技术的发展,迫切要求解决更复杂的多变量系统、非线性系统的最优控制问题(例如火箭和宇航器的导航、跟踪和着陆过程中的高精度、低消耗控制,到达目标的控制时间最小等)。
实践的需求推动了控制理论的进步,同时,计算机技术的发展也从计算手段上为控制理论的发展提供了条件,适合于描述航天器的运动规律,又便于计算机求解的状态空间模型成为主要的模型形式。
科学技术的发展不仅需要迅速地发展控制理论,而且也给现代控制理论的发展准备了两个重要的条件—现代数学和数字计算机。
现代数学,例如泛函分析、现代代数等,为现代控制理论提供了多种多样的分析工具;而数字计算机为现代控制理论发展提供了应用的平台,促使控制理论由经典控制理论向现代控制理论转变。
1892年,俄国数学家李雅普诺夫创立的稳定性理论被引入到控制中。
1956年,美国数学家贝尔曼(R. Bellman)提出了寻求最优控制的动态规划法。
1959年,美国数学家卡尔曼(R. Kalman)等人提出了著名的卡尔曼滤波器,在控制系统的研究中成功地应用了状态空间法,提出系统的能控性和能观测性问题。
1956年,前苏联科学家庞特里亚金(L.S. Pontryagin)提出极大值原理,极大值原理和动态规划为解决最优控制问题提供了理论工具。
到1960年代初,一套以状态方程作为描述系统的数学模型,以最优控制和卡尔曼滤波为核心的控制系统分析、设计的新原理和方法基本确定,现代控制理论应运而生。
最优控制是现代控制理论的核心,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。
但是最优控制依赖确定的数学模型,但环境和被控对象参数不可避免的变化导致将实际系统的模型发生变化。
因此,在线辨识系统的数学模型,并按当前模型修改最优控制规律的自适应控制和系统辨识理论也是现代控制的研究范畴。
20世纪70年代瑞典控制理论学者奥斯特隆姆(K.J. Astrom)和法国控制理论学者朗道(L.D. Landau)在自适应控制理论和应用方面作出了贡献。
与此同时,关于系统辨识、最优控制、离散时间系统和自适应控制的发展大大丰富了现代控制理论的内容。
先进控制理论先进控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。
在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。
现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。
它所采用的方法和算法也更适合于在数字计算机上进行。
现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。
继现代控制理论产生以后,出现的多种先进控制理论。
计算机的普及,为先进控制理论的应用提供了强有力的硬件和软件平台。
自适应控制:自适应控制是一种跟踪系统特性变化的控制方案,它能感知系统动态特性的变化,并随时修正控制器参数,以使得控制效果保持较好的水平。
自适应控制和常规的反馈控制和最优控制一样,也是一种基于数学模型的控制方法,所不同的只是自适应控制所依据的关于模型和扰动的先验知识比较少,需要在系统的运行过程中去不断提取有关模型的信息,使模型逐步完善。
具体地说,可以依据对象的输入输出数据,不断地辨识模型参数,这个过程称为系统的在线辩识。
随着生产过程的不断进行,通过在线辩识,模型会变得越来越准确,越来越接近于实际。
在这个意义下,控制系统具有一定的适应能力。
鲁棒控制:鲁棒控制的优点在于无需在线调节控制器参数,它能保证当系统的动态特性在一定范围内发生波动时仍能保证较好的控制性能。
它讨论的是如何设计一个固定的控制器,使具有不确定性的对象也满足控制品质,也就是鲁棒控制。
鲁棒性(robustness)就是系统的健壮性。
它是在异常和危险情况下系统生存的关键。
比如说,计算机软件在输入错误、磁盘故障、网络过载或有意攻击情况下,能否不死机、不崩溃,就是该软件的鲁棒性。
鲁棒性一般定义为在实际环境中为保证安全要求控制系统最小必须满足的要求。
一旦设计好这个控制器,它的参数不能改变而且控制性能保证。
一般鲁棒控制系统的设计是以一些最差的情况为基础,因此一般系统并不工作在最优状态。
自适应控制的基本思想是进行模型参数的辩识,进而设计控制器。
控制器参数的调整依赖于模型参数的更新,不能预先把可能出现的不确定性考虑进去。
而鲁棒控制在设计控制器时尽量利用不确定性信息来设计一个控制器,使得不确定参数出现时仍能满足性能指标要求。
模糊控制对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了。
因此便尝试着以模糊数学来处理这些控制问题。
模糊控制实际上是以模糊数学为基础的一种计算机数字控制技术。
人工神经网络控制人工神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。
它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。
人工神经网络控制就是利用神经网络这种工具从机理上对人脑进行简单结构模拟的新型控制和辨识方法。