图像表示变量之间的关系教案
用图像表示变量间的关系
⑥ 90
60 ②
⑤
⑦
20 24 时间/分
判断速度随时间的变化情况:
怎样看图:
从左往右若图象上升,表明速度增大;
若图象下降,表明速度减小;
若图象与横轴平行;则表明速度保持不变,
尝试
探究 洪峰公司根据工作需要,准备租一辆面包车,
经考察,个体车与出租车公司的月租金计算方法如图所示,请 你根据图中提供的信息,与同伴讨论一个租车方案,
__关__系_式__法__
给定一个变量的值可求出另一个变量的值
__图__象__法_
能够直观地看出变量间的变化__趋__势_
在图象中
上升线------表示因变量随自变量的增大而增大; 水平线-----表示因变量随自变量的增大而不变; 下降线------表示因变量随自变量的增大而减小, 以上三点是打开“解决图象类问题”的一把万能钥匙 ,
y元
200 150 100 50
0
乙 1 当每月通话时间为多少时,两
A
甲
公司的收费相同 2 当每月通话时间在什么范围
时, t/分钟 应选择乙公司 100 200 300 3 当每月通话时间在什么范围
时,
应选择
甲公司
变量之间关系的三种表示方法
变量之间关系的表示 __列__表__法_
特征 能看出两个变量之间的_变__化__关系
随堂练习:
1.柿子熟了,从树上落下来.下面的那一幅图可以 大致刻画出柿子下落过程中 即落地前 的速度的 变化情况
速
速
度
度
0
时间
1
0
时间
2
速
度
正确
0 3
时间
速 度
0 4 时间
七年级数学下册 第3章 变量之间的关系 3.3 用图像表示的变量间关系课件 (新版)北师大版
例1 新成药业集团研究了一种新药,在试验药效时发现,如果儿童按规 定剂量服用,那么2时时血液中的含药量最高,接着逐步衰减,每毫升血液 中的含药量y(微克)随时间x(时)的变化情况如图3-3-1所示,当儿童按规 定剂量服药后:
图3-3-1
(1)何时血液中的含药量最高?是多少微克? (2)A点表示什么意义? (3)每毫升血液中含药量为2微克以上时治疗疾病有效,那么这个有效时 间多长?
解析 (1)2时时血液中的含药量最高,为4微克. (2)A点表示体内的含药量衰减到0微克. (3)服药后达到2微克的时间是1时,衰减到2微克的时间是6时,因此有效 时间是5时.
知识点二 行程问题 “路程与时间”图象和“速度与时间”图象 (1)在路程与时间关系的图象中,通常用横轴表示时间,用纵轴表示路程, “水平线”表示停止. (2)在速度与时间关系的图象中,通常用横轴表示时间,用纵轴表示速度, “水平线”表示匀速运动. (3)在行程问题中,“速度与时间”图象和“路程与时间”图象是从两 个不同的角度描述行程问题中变量之间的关系,它们既有区别又有联 系.现将“速度与时间”图象和“路程与时间”图象各部分所表示的意 义作如下对比:
易错警示 由于不理解函数的意义,特别是不理解函数图象中平行于x 轴的线段表示“一段时间内离家的距离保持不变”,只能根据图象的形 状来选择行走的路线.
从图象中获取信息的直观想象 素养解读 直观想象是指借助几何直观和空间想象感知事物的形态与 变化,利用空间形式特别是图形,理解和解决数学问题的素养.主要包括: 借助空间认识事物的位置关系、形态变化与运动规律;利用图形描述、 分析数学问题;建立形与数的联系,构建数学问题的直观模型,探索解决 问题的思路. 直观想象是发现和提出问题、分析和解决问题的重要手段,是探索和形 成论证思路、进行数学推理、构建抽象结构的思维基础. 在直观想象核心素养的形成过程中,学生能提升数形综合的能力,发展 几何直观和空间想象能力;增强运用几何直观和空间想象思考问题的意 识;形成数学直观,在具体的情境中感悟事物的本质.
(北师大版)七年级数学下册:第三章变量之间的关系3.3用图像表示的变量的关系第2课时 折线型图象备课素材
素材一新课导入设计情景导入置疑导入归纳导入复习导入类比导入悬念激趣情景导入图3-3-13抱犊崮,海拔584米,与龟龙湖交融一体,山水相连,壮观巍峨,为天下第一崮.恰值清明假期,小强一家前去踏春,兴之所至,小强用学过的变量的知识绘了一幅图(如图3-3-13)来表示他们当天的行程.其中横轴表示当时的时刻t(时),纵轴表示他们与家的距离s(千米).图3-3-14设疑:同学们,你能想象出他们一天的情境吗?说明:引导学生在欣赏抱犊崮秀丽的美景中,自然引入有趣的变量知识,既培养了学生从图象中获取信息的能力,又锻炼了学生的语言表达能力.建议:学生欣赏抱犊崮的美景,简单了解抱犊崮的有关知识.然后观察小强绘制的图象,从中获取两个变量之间关系的信息,叙述一天情境时,学生还是存在困惑,教师不要急着提示,进而指出这就是本节课要继续学习的内容——用图象表示的变量间关系.复习导入图3-3-15问题1:我们已经学习了哪几种表示变量之间关系的方法?问题2:某种西瓜子每千克2元,小明购买西瓜子的总价y元与购买的数量x千克之间有什么关系?(1)用表格的形式表示总价y与数量x的关系:(2)试写出y与x的关系式__y=2x__;(3)在下面的图象中能够正确表示总价y与数量x关系的图象是(C)图3-3-16说明:让学生通过表格、关系式、图象三种方式来表示西瓜子的总价与购买的数量之间的关系,旨在复习三种表示变量间关系的方法,并初步感受三种方法各自的优越性,为本节课的学习做好铺垫.建议:三种表示变量之间关系的方法可让学生快速回答,然后学生独立完成问题2中的三个题目,教师出示答案,及时纠正.教材母题挖掘74页随堂练习第2题一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶.过了一段时间,汽车到达下一个车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下面的哪一幅图可以近似地刻画出汽车在这段时间内的速度变化情况?图3-3-17【模型建立】分析变量图形时要明确自变量和因变量,更要清楚每一个点对应的变量和它表示的实际意义以及整个图象变化的趋势,其中比较特殊的是当图象与横轴平行时,说明在对应的自变量的范围内因变量不发生变化.【变式变形】1.如图3-3-18,在直径为AB 的半圆O 上有一动点P 从点A 出发,按顺时针方向绕半圆匀速运动到点B ,然后再以相同的速度沿着直径回到点A 停止,线段OP 的长度d 与运动时间t 之间的函数关系用图象描述大致是(A )图3-3-18图3-3-19.如图3-3-19,爸爸从家(点O)出发,沿着扇形AOB 上OA →AB ︵→BO 的路径去匀速散步.设爸爸距家(点O)的距离为s ,散步的时间为t ,则下列各图中,能大致刻画s 与t 之间函数关系的图象是(C )图3-3-20图3-3-21.万州某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地.假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从万州出发,逆水航行到朝天门,停留一段时间(卸货、装货、加燃料等)又顺水航行返回万州,若该轮船从万州出发后所用的时间为x(时),轮船距万州的距离为y(千米),则下列各图中,能反映y 与x 之间函数关系的大致图象是(C )图3-3-214.2013年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x表示童童从家出发后所用的时间,y表示童童离家的距离.下图能反映y与x的函数关系式的大致图象是(A)图3-3-22图3-3-235.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图3-3-23所示,则下列说法正确的是(B)A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多6.小红的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步到家里,下面能够反映当天小红爷爷离家的距离y(米)与时间x(分)之间的关系的大致图象是(C)图3-3-24图3-3-257.某城市为了节约用水,采用分段收费标准,若某用户居民每月应交水费y(元)与用水量x(吨)之间的关系如图3-3-25所示,根据图象回答:(1)该市自来水收费时,每户用水不足5吨时,每吨收费多少元?超过5吨时,超过的部分每吨收费多少元?(2)若某用户居民某月用水3.5吨,应交水费多少元?若某月交水费17元,该用户用水多少吨?解:(1)由图象可知:当x =5时,y =10,所以用水不足5吨时,每吨交费105=2(元);当x =8时,y =20.5,故超过5吨部分每吨交水费20.5-108-5=3.5(元).(2)因为x =3.5<5,所以y =3.5×2=7(元);若交17元水费,则用水5+17-103.5=7(吨).考情考向分析利用图象分析、体现变量变化的趋势结合图象中每个点对应的自变量和因变量,可以得到变量变化的趋势,一般是随着自变量的变大(图象从左向右),图象对应的因变量的值的变化情况(上升为变大,下降为变小).如课本第79页复习题第11题.例1 某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y 与时间x 的关系的大致图象是(B )图3-3-26例2 图3-3-27中所反映的过程是:张强从家跑步去体图3-3-27育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是(C )A .体育场离张强家2.5千米B .张强在体育场锻炼了15分钟C .体育场离早餐店4千米D .张强从早餐店回家的平均速度是3千米/时 利用图象给出的信息计算用图象表示变量之间的关系时,每一个点都有一定的实际意义,过图象上一点向横轴作垂线,垂足对应的数就是自变量,向纵轴作垂线,垂足对应的数就是对应的因变量.图3-3-28例王大爷带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价出售一些后,又降价出售,售出土豆的千克数x与他手中持有的钱数y(含备用零钱)的关系如图3-3-28所示.根据图象回答下列问题:(1)王大爷自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?解:(1)根据图象可知王大爷自带的零钱是5元.(2)降价前,每千克土豆的价格是(20-5)÷30=0.5(元).(3)降价前,他一共卖了30千克土豆,手中的钱有20元;降价后,他卖完剩余的土豆,手中的钱有26元,降价后他收入了26-20=6(元),按每千克0.4元卖出,他卖出了6÷0.4=15(千克)土豆,他一共带的土豆有30+15=45(千克).素材四教材习题答案P74随堂练习1.柿子熟了,从树上落下来,下面的哪一幅图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况?解:(3).2.一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶. 过了一段时间,汽车到达下一个车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下面的哪一幅图可以近似地刻画出汽车在这段时间内的速度变化情况?解:(2).P74习题3.41.根据图3-7填写下面的表格:解:2.亮亮今天发烧了,早晨他烧得很厉害,吃过药后感觉好多了,中午时亮亮的体温基本正常.但是下午他的体温又开始上升,直到夜里亮亮才感觉身上不那么发烫了.下面哪一幅图能较好地刻画出亮亮今天体温的变化情况?解:(3).3.下面的图表示小明放学回家途中骑车速度与时间的关系,你能想象出他回家路上的情境吗?解:小亮刚出校门时加速行驶一段后改成匀速行驶,在离家不远处减速行驶,到家后停下.4.小明站在离家不远的公共汽车站等车.图中哪一个图能最好地刻画等车这段时间离家距离与时间的关系?解:(3).图书增值练习专题一曲线型图象1.温度的变化是人们经常谈论的话题.请你根据图象,讨论某地某天温度变化的情况如图所示:(1)上午10时的温度是度,14时的温度是度;(2)这一天最高温度是度,是在时达到的;最低温度是度,是在时达到的;(3)这一天从最低温度到最高温度经过了小时;(4)温度上升的时间范围为,温度下降的时间范围为;(5)你预测次日凌晨1时的温度是.2.如图,水以恒速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中.(1)请分别找出与各容器对应的水的高度h和时间t的变化关系的图象,用直线段连接起来;(2)当容器中的水恰好达到一半高度时,请在关系图的t轴上标出此时t值对应点T的位置.专题二折线型图象1.如图,表现了一辆汽车在行驶途中的速度随时间的变化情况.(1)A、B两点分别表示汽车是什么状态?(2)请你分段描写汽车在第0分钟到第19分钟的行驶状况.(3)司机休息5分钟后继续上路,加速1分钟后开始以60 km/h的速度匀速行驶,5分钟后减速,用了2分钟汽车停止,请在原图上画出这段时间内汽车的速度与时间的关系图.【知识要点】图象法:用图象来表示两个变量之间的关系的方法叫做图象法.在用图象法表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量,图象上每个点都表示自变量和因变量之间的相互关系.【温馨提示】图象法能直观、形象地描述两个变量之间的关系,但只是反映两个变量之间的关系的一部分,而不是整体,且由图象确定的数值往往是近似的.【方法技巧】1.借助图象,过某点分别向横轴、纵轴作垂线可以知道自变量取某个值时,因变量取什么值.1.借助图象可判断因变量的变化趋势:图象自左向右是上升的,则说明因变量随着自变量的增大而增大,图象自左向右是上升下降的,则说明因变量随着自变量的增大而增大减小,图象自左向右是与横轴平行的,则说明因变量在自变量的增大的过程中保持不变.答案:1.(1)4 10(2)10 14 -2 4(3)12(4)4 h~14 h 0 h~4 h和14 h~24 h(5)1℃2.解:(1)对应关系连接如下:(2)当容器中的水恰好达到一半高度时,关系图上T的位置如上图.3.解:(1)A点表示匀速运动,B点表示停止;(2)0到3分钟加速,3到12分钟匀速,速度为90 km/h,12到15分钟减速,减到约每小时20千米,后再匀速到18分钟开始减速,19分钟运动停止.(3)司机休息5分钟后的运动情况如图所示.素材六数学素养提升情景中图象信息题将实际生活中蕴涵的变量关系,用图形的方式呈现出来,图文并茂,富有生活气息,不仅提高我们从图形中获取信息的能力,而且是数形结合思想应用的重要体现,请看举例..例1商店里把塑料凳整齐地叠放在一起,据图1的信息,解答下列问题(1)当有10张塑料凳整齐地叠放在一起时的高度是多少?(2)求叠放塑料凳的个数x(个)与叠放的高度y(cm)之间的变量关系?图1分析:本题是一道图形信息试题,从图形观察可知:三个塑料凳的叠放在一起的高度是29cm,此时的29cm 包括凳子腿的高度和三个凳子面的厚度;五个塑料凳叠放在一起的高度为35cm,此时的35cm包括凳子腿的高度和5个塑料凳面的厚度.由此可知两个凳子面的厚度为35-29=6cm.所以一个凳子面的厚度为3cm,三个凳子叠放在一起高度减去三个凳子面的厚度,即可29-3×3=20为凳子腿的高度.这样可以求解(1),(2)两问.解:(1)观察图形,可得一个凳子面的厚度为3cm,凳子腿的高度为20cm.所以叠放10个凳子的高度为10×3+20=50cm;(2)y与x之间的关系为y=3x+20.评注:解决本题需要仔细观察图形中的数据信息以及塑料凳叠放的特征,根据这些特征确定一个凳子面的厚度以及凳子腿的高度 .例2请根据图2中给出的信息,解答下列问题:图2(1)放入一个小球量筒中水面升高 cm;(2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的关系式;(3)量筒中至少放入几个小球时有水溢出?分析:本题是图形信息问题,解决问题需要从图形中正确得到解题信息,从前两个量筒可以观察到,当放入三个球时,水面增加6cm,这样可得到放入一个球水上升的高度,由此可得到放x个球时,水面高度y与x之间的关系式.解: (1)(36-30)÷3=2; 即放入一个小球量筒中水面升高2cm.(2) 放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式y=30+2x(3) 当y=49时,30+2x=49,x=9.5, 所以至少放入10个小球时有水溢出.评注:解决图形信息问题,其关键是认真观察图形中的信息,从图形中发现存在的数量关系.。
用图象表示的变量间关系(绝对经典)
度更快?
80
(3)当小明到达终点时,小亮所跑 60
的路程是多少?
40
小明 小亮
(4)小明和小亮到达终点后如果 20
各自继续以原速度往前跑,他们 能否相遇?利用图象加以解释.
0
2 4 6 8 10 12 12.5
(1)小明和小亮的百米成绩各是多少?(2)两人的速度各是多少?谁的速度更 快?(3)当小明到达终点时,小亮所跑的路程是多少?(4)小明和小亮到达终点 后如果各自继续以原速度往前跑,他们能否相遇?利用图象加以解释.
A
S D
4
B
P
C
图(1)
0
4 图(2)
6x
如图一,在长方形MNPQ中,动点R从点N出发,沿
路程相同的情况发生,所以两人不会
相遇.
0 2 4 6 8 10 12 12.5
如图(1),在长方形ABCD中,AB=2,动点P从点B出发,
沿路线B→C→D作匀速运动,图(2)是此运动过程中,
三角形PAB的面积S与点P运动的路程x之间的关系图
D 象,则BC+CD的长为 A.3 B.4 C.5 D.6
1.一个变化过程中,有变量和常量。 2.两个变量: 自变量和因变量,表示的意义,书写形式 3.变量间的关系表示法 第一表格法 第二关系式法 (1)利用公式(2)根据表格(3)实际问题 第三图像法
第三章变量之间关系
用图象表示的变量间关系
知识点1用图象表示两个变量之间的关系
1.图象法:是指用图象来表示两个变量之间 关系的方法。 2.图象的基本特征:横轴(x轴)上的点表示自 变量,纵轴(y轴)上的点表示因变量.图象上 的每个点表示自变量和因变量之间的相互 关系. 3.优点:能直观、形象地反映因变量随着自 变量变化的趋势
用图像表示变量之间的关系
图像可能无法准确地表示所有的数据细节,特别是当数据集非常大或非常复杂时 ;对于某些类型的数据或分析目的,图像可能不是最佳的表示方式,例如对于需 要精确计算或复杂统计分析的情况,图像可能无法提供足够的信息。
02
散点图与变量关系
散点图基本原理与绘制方法
散点图定义
用点的分布来表示两个变量之间 关系的图形,通常用于展示两个 连续变量之间的关系。
绘制方法
确定数据类别和数值范围;为每个类别分配一个矩形条,条 的长度与数据值成比例;在图表中添加坐标轴、标题和图例 等辅助元素。
分类数据的条形图表达
分类数据特点
分类数据是按照某种标准或属性将数 据分成不同类别的数据,如性别、职 业等。
条形图表达方法
对于分类数据,可以使用条形图来表 示各类别的频数或频率。在条形图中 ,每个矩形条代表一个类别,条的高 度或长度表示该类别的频数或频率。
气候变化趋势分析
通过折线图展示长时间序列的气候数据,分析气候变化趋势及可 能的影响因素。
销售业绩跟踪与预测
将销售业绩数据绘制成折线图,跟踪销售业绩的变化趋势,为制 定销售策略提供依据。
04
条形图与变量关系
条形图基本原理与绘制方法
条形图基本原理
条形图是一种用矩形条的长度来表示数据大小的图形,通过 不同长度的矩形条来直观展示不同类别数据的数量或比例关 系。
绘制方法
在坐标系中,以横轴表示一个变 量,纵轴表示另一个变量,将每 对数据对应的点画在坐标系中。
线性关系的散点图表达
线性关系定义
两个变量之间的关系可以近似地用一 条直线来表示。
散点图表达
在散点图中,如果点大致分布在一条 直线附近,则表明两个变量之间存在 线性关系。
变量之间的关系用图像表示变量间的关系
纵轴
横轴Leabharlann 议一议:骆驼被称为“沙漠之舟”,它的体温随时 间的变化而发生较大的变化.
(1)一天中,骆驼的体温 的变化范围是什么? 它的体温从最低上升 到最高需要多少时间?
(2)从16时到24时,骆 驼的体温下降了多少?
议一议:
骆驼被称为“沙漠之舟”,它的体温随时 间的变化而发生较大的变化.
(3)在什么时间范围内 骆驼的体温在上升? 在什么时间范围内 骆驼的体温在下降?
(4)你能看出第二天8时 骆驼的体温与第一天 8时有什么关系吗? 其他时刻呢?
议一议:
骆驼被称为“沙漠之舟”,它的体温随时 间的变化而发生较大的变化.
(5)A点表示的是什么? 还有几时的温度与A点 所表示的温度相同?
(6)你还知道哪些关于 骆驼的趣事? 与同伴进行交流.
海水受日月的引力而产生潮汐现象,早晨海水上涨叫做 潮,黄昏海水上涨叫做汐,合称潮汐.潮汐与人类的生活 有着密切的联系.下面是某港口从0时到12时的水深情况.
第三章 变量之间的关系 用图像表示变量间的关系
青铜峡市回民中学 李德鸿
图象是我们表示变量之间关系的又一种方法, 它的特点是可以直观的表示出自变量与因变量的 变化过程和变化趋势.
在用图象表示变量之间的关系时,通常用水平 方向的数轴(称为横轴)上的点表示自变量, 用竖直方向的数轴(称为纵轴)上的点表示因变量.
5
A
B (5)A,B两点分
4
别表示什么?还有
3
几时水的深度与A点
2
所表示的深度相同
1
0
(6)说一说这个港
0
1
2
3
4
5
用图像表示变量间的关系
折线图的解读
折线图的基本构成:横轴和纵轴分别表示变量,折线表示随时间或其他变 量的变化趋势。
解读方法:观察折线的形状、趋势和交叉点,以及折线的起点和终点,从 而判断变量之间的关系。
注意事项:注意数据的准确性和单位,以及折线图的可读性,避免误导读 者。
实际应用:折线图在各个领域都有广泛应用,如金融、医学、环境等,可 以帮助我们更好地理解数据和变量之间的关系。
实际应用案例分析
金融数据分析
描述金融市场趋势和预测未来 走势
评估投资组合的风险和回报
识别欺诈和异常交易行为
分析客户信用风险和贷款违约 概率
市场调查分析
描述市场趋势和 消费者需求
分析竞争对手的 产品和营销策略
确定目标市场和 潜在客户群体
评估市场机会和 风险
科学研究分析
医学影像分析:通过图像识别技术,分析医学影像,辅助医生诊断疾病 气象预报:利用卫星遥感图像,分析气象数据,预测天气变化 农业种植:通过卫星遥感图像,监测作物生长状况,提高种植效率和产量 军事侦察:利用无人机拍摄的图像,分析敌情,提高作战效率和安全性
添加标题
添加标题
添加标题
添加标题
折线图可以显示数据的变化趋势, 帮助我们发现变量之间的规律。
折线图在金融、经济、科研等领域 应用广泛,是表示变量间关系的重 要工具之一。
柱状图
定义:柱状图是一 种用条形长度表示 数值的图形,通常 用于比较不同类别 数据的大小。
用途:柱状图可以 直观地展示不同类 别数据之间的差异 和趋势,帮助人们 更好地理解数据。
饼状图的解读
饼状图是一种圆形 图表,用于表示不 同类别数据的比例 关系。
解读饼状图时,应 先观察各部分所占 的比例,了解各部 分在整体中的比重。
用图象表示的变量间的关系
选择合适的图表类型
根据数据的性质和目的,选择适合的折线图类型,如单变 量折线图、双变量折线图等。
绘制折线图
使用绘图软件或编程语言(如Python、Excel等)绘制折 线图,将数据点连接成线,并添加必要的图表元素(如标 题、坐标轴标签、图例等)。
04
柱状图
柱状图的定义
柱状图是一种用柱形表示数据的图表 ,通常用于展示不同类别数据的大小 比较。
柱状图的绘制方法
确定数据和分类变量
首先需要确定要展示的数据和分类变量, 例如销售数据按产品类别进行分类。
分析图表
根据柱状图的展示结果,进行数据分析, 得出结论和建议。
数据整理
将数据整理成适合绘制柱状图的形式,通 常为表格形式,包括行和列。
绘制图表
使用图表绘制软件或工具,根据数据表格 绘制柱状图,设置合适的图表标题、坐标 轴标签等元素。
图像可以轻松地解释给其他 人听,并且可以方便地分享 到社交媒体或其他平台,提 高数据的传播和影响力。
尽管图像表示变量具有很多 优点,但也存在一些局限性 ,例如对于大量数据的处理 能力有限,对于非线性关系 的表示不够精确等。因此, 在使用图像表示变量时需要 注意其适用范围和局限性。
02
散点图
散点图的定义
03
同类别的数据。
饼图的用途
01
用于展示不同类别的数据比例,如市场份额、用户分布等。
02
可用于比较不同类别的相对大小,帮助用户快速了解数据的 分布情况。
03
可用于发现异常值或突出显示某个类别的重要地位。
饼图的绘制方法
选择数据
确定要展示的数据类别和数据值。
设计布局
确定饼图的标题、图例和数据标签等元素的位 置。
《用图象表示的变量关系》变量之间的关系
实例分析
例如,在物理学中,匀速直线运动的位移与时间之间 的关系是线性的,其图像为一条直线;而自由落体运 动的位移与时间之间的关系是非线性的,其图像为一 条抛物线。再如,在经济学中,某商品的需求量与价 格之间的关系可能是非线性的,其图像可能呈现为一 条向下弯曲的曲线;而供给量与价格之间的关系可能 是线性的,其图像为一条向上倾斜的直线。
两者对比及实例分析
对比
正相关和负相关的主要区别在于变量之间的变化趋势。正相关中,变量之间变化趋势相同;负相关中,变量之间 变化趋势相反。
实例分析
例如,研究身高和体重之间的关系。随着身高的增加,体重一般也会增加,因此两者之间呈现正相关关系。再例 如,研究广告投入和销售收益之间的关系。在一定范围内,随着广告投入的增加,销售收益可能会增加,但当广 告投入过多时,销售收益可能会下降,因此两者之间呈现负相关关系。
《用图象表示的变量关系》 变量之间的关系
汇报人: 2023-12-15
目录
• 引入 • 线性关系与非线性关系 • 正相关与负相关 • 离散型数据和连续型数据 • 图像变换与变量关系解读 • 总结与展望
01
引入
变量与函数概念回顾
变量
在某一变化过程中,数值发生变化的量称为变量。
函数
一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的 值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
非线性关系的图像在坐标系中呈 现为一条曲线,可能具有不同的 弯曲程度和方向。
02
03
变化速率不均等
可能有界
非线性关系中,当一个变量发生 变化时,另一个变量的变化速率 可能会随之改变。
非线性关系的图像在坐标系中可 能有界,即变量的取值范围有限 。
初中数学《变量之间的关系》单元教学设计以及思维导图
学习函数图像奠定了基础。 本专题的重点是理解用图像表示两个变量之间的关系
本专题的主要学习活动是利用图像法解决一些实际问题。
学生的主要学习成果:
能够从图象中分析变量之间的关系,明确图象上点所表示的意义,会
利用图象找到准确的信息。
专题学习目标
知识技能:
1.培养学生的观察能力,根据图像预测能力,分析能力,动手操作
(1)这个变化过程中,自变量、因变量各是什么? (2)如果三角形的底边长为 x(厘米),那么三角形的面积 y(厘米 2) 可以表示为 ________________。 (3) 当底边长从 12 厘米变化到 3 厘米时,三角形的面积从_____平 方厘米变化到_____平方厘米. 活动 3:(1)同学们能根据要求填写下列的表格吗? 根据三角形的底边长为 x(厘米),和三角形的面积 y(厘米 2)的 关系式填表:
量间的关系判断和识别图像。
主 题 单 元 问 1. 举例说明自变量和因变量,常量。
题设计
2. 表示变量之间关系的方法有哪些,各有什么特点?
专题一:用表格表示变量之间的关系
( 1 课时)
专题划分
专题二:用关系式表示变量之间的关系 ( 1 课时)
专题三: 用图像表示变量之间的关系
( 2 课时)
专题一
用表格表示变量之间的关系
专题二
用关系式表示变量之间的关系
所需课时 课内 1 课时 专题二概述
本专题内容是建立在学生已理解变量、自变量、因变量的意义和体会 到了因变量是随自变量变化而变化的基础上,教材通过对三角形的底
边的变化引起三角形面积的变化问题的探索,探索出了变量间的变化
规律可用关系式来表达,运用表达式可以描述出自变量和因变量具体 变化的情况。
图像表示变量之间的关系教案
图像表示变量之间的关系教案一、教学目标:1. 让学生理解图像表示变量之间的关系的方法和意义。
2. 学会使用图表来表示两个变量之间的关系。
3. 培养学生观察、分析和解决问题的能力。
二、教学内容:1. 图像表示变量之间的关系的方法。
2. 线性关系与非线性关系。
3. 图表的制作和解读。
三、教学重点与难点:1. 教学重点:图像表示变量之间的关系的方法和意义,线性关系与非线性关系的识别。
2. 教学难点:图表的制作和解读。
四、教学方法:1. 讲授法:讲解图像表示变量之间的关系的方法和意义。
2. 案例分析法:分析线性关系与非线性关系。
3. 实践操作法:制作和解读图表。
五、教学准备:1. 教学PPT。
2. 教学案例。
3. 绘图工具(如纸、笔、尺子等)。
4. 计算机和投影仪。
六、教学过程:1. 导入:通过一个实际案例,引发学生对图像表示变量之间关系的兴趣。
2. 新课导入:讲解图像表示变量之间的关系的方法和意义。
3. 案例分析:分析线性关系与非线性关系。
4. 实践操作:学生分组制作和解读图表。
5. 总结与评价:对学生的制作和解读情况进行评价,总结图像表示变量之间的关系的方法和意义。
七、作业布置:1. 让学生运用所学知识,选择一个实际问题,制作一张图表,并表示出其中的变量关系。
八、教学反思:1. 反思教学目标的达成情况。
2. 反思教学方法的适用性。
3. 反思学生的学习效果。
九、课后辅导:1. 对学生在作业中遇到的问题进行解答。
2. 针对学生的学习情况,给予个性化的指导和建议。
十、教学评价:1. 学生作业的评价。
2. 学生课堂参与度的评价。
3. 学生对图像表示变量之间的关系的方法和意义的理解程度。
六、教学步骤:1. 回顾上节课的内容,让学生简要复述图像表示变量之间的关系的方法和意义。
2. 引入新的概念:函数关系和依赖关系。
3. 通过实际案例,讲解如何判断两个变量之间的函数关系和依赖关系。
4. 学生分组讨论,举例说明函数关系和依赖关系的区别。
9.3.2用图像表示变量之间的关系2
总结:
• “上升线”——表示因变量随自变量的增大而增 大. • “水平线”——表示因变量随自变量的增大不变或 为0.
• “下降线”——表示因变量随自变量增大而减小
当堂达标
根据图象回答下列问题。 上图反映了哪两个变量之间的关系? 点A,B分别表示什么? 说一说速度是怎样随时间变化而变化的; 找到一个实际情境,大致符合上图所刻画的 关系吗?
用图象表示变量 之间的关系2
学习目标:
通过速度随时间变化的实际情境, 能分析出变量之间关系。
自学指导:
自学课本P138-P139内容 1.认识多种时速 2.读此时表示的速度 3.明确速度在变化 6分钟后,比谁能快速完成与例题类似的 题目
自学检测:
汽车在行驶的过程中,速度往往是变化的。下面的图象分别表示一辆汽车速度变 化的情况。 (1)图中反映了哪两个变量之间的关系?自变量、因变量分别是什么? (2)你从图中获得哪些信息? (3)请你用自己的语言描述这辆汽车的行驶情况。
当堂面的图象表示一辆汽车的速度随时间变化而变化的情况。 (1)汽车从出发到最后停止共经过了多少时间? 它的最高时速是多少? (2)汽车在哪些时间段保持匀速行驶?时速分别是多少? (3)出发后8分到10分之间可能发生了什么情况? (4)用自己的语言大致描述这辆汽车的行驶情况
用图像表示变量间的关系优质课用
直观性
图像能够直观地展示变量间的关 系,使数据更加易于理解和解释。
通过视觉感知,人们可以快速地 识别出变量之间的关系模式,从
而提高决策效率和准确性。
图像可以清晰地显示出变量之间 的趋势、异常值和分布情况,有
助于快速发现问题和异常。
可视化复杂数据
对于复杂的数据集,图像可以简化数据的呈现方式,使其更加易于分析和理解。
周期性规律
分析周期性变化的规律,了解周期的长度、峰值 和谷值等特征。
周期性变化的解释
结合实际情况,解释周期性变化的原因和影响。
06
如何选择合适的图表类型来表示变量间的关 系
CHAPTER
根据数据类型选择图表
分类数据:柱状图、 条形图、饼图等。
时间序列数据:时间 序列图。
定量数据:折线图、 散点图、箱线图等。
用图像表示变量间的关系优质 课
目录
CONTENTS
• 图像表示变量间关系的重要性 • 散点图:展示两个变量之间的关系 • 热力图:展示多个变量之间的关系 • 树状图和网络图:展示变量之间的层次和结构关系 • 时间序列图:展示变量随时间变化的关系 • 如何选择合适的图表类型来表示变量间的关系
01 图像表示变量间关系的重要性
通过将多个变量整合到一个图中,可以更全面地了解数据之间的关系,从而更好地 进行数据挖掘和预测。
图像可以清晰地展示出数据的维度和层次结构,有助于更好地理解数据的内在联系。
揭示潜在模式和关系
图像可以揭示出隐藏在数据中 的潜在模式和关系,这些模式 和关系可能难以通过其他方式 发现。
通过观察图像中的模式和趋势, 可以启发新的思考和发现,推 动科学研究的进步。
解读趋势
北师版七年级数学下册课件(BS) 第三章 变量之间的关系 用图像表示变量间关系 第2课时 折线型图象
解:(2)小王到达离家最远的地方是出发 2 h 后,此时离家 30 km (3)最快的速度是302--110 =20(km/h),最慢的速度是304--220 =5(km/h) (4)小王在出发后 1.5 h 和 4 h 时与家相距 20 km
【素养提升】 10.(15分)如图,分别表示甲步行与乙骑自行车(在同一路上) 行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题: (1)乙出发时,乙与甲相距__1_0_千米; (2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为_1___小时; (3)乙从出发起,经过_3___小时与甲相遇; (4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?
解:(4)乙骑自行车出故障前的速度与修车后的速度不一样. 乙骑自行车出故障前的速度为70..55 =15(千米/小时), 修车后的速度为223.-5-1.75.5 =10(千米/小时),因为 15>10, 所以乙骑自行车出故障前的速度与修车后的速度不一样
三、解答题(共30分) 9.(15分)(宝丰月考)如图所示的是小王骑自行车离家的距离s(km)与时间t(h)之间 的关系. (1)根据图象填表: 时间t/h,0,1,2,3,4,5距离s/km,0,10,30,25,20,0(2)小王到达离家最远的地方时是什么 时间?离家多远? (3)他骑自行车最快的速度是多少?最慢的速度是多少? (4)小王在什么时间与家相距20 km?
8.(重庆中考)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地, 乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才 出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如 图所示,当乙到达终点A时,甲还需____分7钟8 到达终点B.
初中数学七年级下册《变量之间的关系》大单元教学设计
初中数学七年级下册《变量之间的关系》大单元教学设计一.教材分析变量之间的关系是继学习代数式求值、探索规律后运用各变量之间的关系解决具体实际问题。
在本章的学习中学生已经分别利用表格、图像、表达式等多种方法表示变量之间的关系上,进一步依据学生实际创新的情景,解决实际问题。
此外从本章开始,学生的数学学习从常量进入了变量的世界,由于是刚刚接触一种新的思维方式,学生对于变量之间的关系的理解停留在表象上,事实上我们期望通过本章对变量和变量之间的关系的丰富经历,为学生以后顺利的过度到函数学习打下基础,而为了发展学生对函数的理解,必须使他们对函数的多种表示有相当丰富的经历,结合本章的学习,学生的抽象思维将不断加强,对数学知识的认识将上升到新的境界。
二.整体结构函数是研究现实世界变化规律的一个重要模型,在六年级上学期中,教科书已经在代数式求值、探索规律等地方渗透了变化的思想,而本章则是第三学段第一次集中讨论变量之间的关系,主要是让学生联系实际背景了解变量以及量与量之间变化的规律,为以后顺利过渡到函数学习打下基础。
从木章开始学生从常量的世界进入了变量的世界,开始接触一种新的思维方式。
本单元主要内容是两个变量之间的关系及表示方法,能确是其中的自变量或因变量,能够正确写出变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测,通过表格、图像、表达式获取信息解决实际问题。
本章的重点是用表格、表达式和图像表示变量之间的关系,难点是从表格、表达式和图像中分析变量之间的关系,并进行变化规律的预测。
三.对应课标①探索简单实例中的数量关系和变化规律,了解常量、变量的意义;了解函数的概念和表示法,能举出函数的实例。
②能结合图象对简单实际问题中的函数关系进行分析(例68)。
③能确定简单实际问题中函数自变量的取值范围,会求函数值。
④能用适当的函数表示法刻画简单实际问题中变量之间的关系, 理解函数值的意义。
⑤结合对函数关系的分析,能对变量的变化情况进行初步讨论。
用图像表示变量之间的关系
10 20 30 40 50 60
汽车距B城的距离/km 20 10 0
/
/
/
摩托车距B城的距离/km 25 20 15 10 5
0
第7页/共13页
某人从A城出发,前往距离A城30km的B城,现有三种车供他 选择:(1)自行车,其速度为15km/h;(2)摩托车,其速 度为30km/h;(3)汽车,其速度为60km/h.
两种套餐的费用分别是多少? 都是40元
第3页/共13页
想一想
结合图,在选择套餐上你还有上可以看 出选用乙套餐合适;
当通话时间小于100 分时,从图像上可以看 出选用甲套餐合适。
第4页/共13页
某公司根据工作需要准备租一辆面包车,经考察,捷 运公司与公交公司的月租金的计算方法如图所示观察 图象,你能得到哪些信息?
(2)设此人在行进途中距离B城的路程为s(km),行进时间为t (h),就(1)中所选出的方案,试写出s与t之间的表达式。
用摩托车关系式为:s=30-30t;用汽车关系式为:s=30-60t;
(3)根据(2)中提供的表达式,请用表格表示在1h内每隔 10min距离B城的路程s与时间为t之间的关系。
时间/min
思考并回答提出的问题:
(1)租来的车没有行驶是否也要缴租金?
缴多少金?是哪个公司?
(2)当一个月行驶约750千米的时 候,租哪家公司的车较为合算?
若一个月行驶约1250千米的时
• •
• •
候,租哪家公司的车较为合算?
•
•
•
•
第5页/共13页
(3)当一个月恰好行驶1000千米的时 候,两家公 司的租金分别是多少? (4)公司估计租的车每月行驶的路程约为2000千 米,租哪家公司的车合算? (5)在多少路程范围内 租捷运公司的车 合算? 在多少路程范围内租 捷运公司的车不合算?
9.3用图像表示变量之间的关系教师版
用图像表示变量之间的关系地球和太阳的关系是什么呀?地球围绕着太阳旋转这种行为叫什么呀?地球自己旋转这种行为叫什么呀?知识点一:用图象的形式表示两个变量之间的关系(1)骆驼体温的变化范围是35°~40°,它的体温从最低到最高经过了12小时;(2)骆驼的体温下降了3°;(3)在4时~16时和28时~40时范围内骆驼的体温在上升,在0时~4时、16时~28时和40时~48时范围内骆驼的体温在下降;(4)相等;(5)A点表示的是12时的骆驼体温为39°,20时、36时和44时的温度与A点所表示的温度相同.故答案为:(1)35°~40°;12小时;(2)3°;(3)4时~16时和28时~40时;0时~4时、16时~28时和40时~48时;(4)相等;(5)12时的骆驼体温为39°;20时、36时和44时【解析】观察图表即可得出结果,要学会看图表,从图表中得出有用的信息,然后解答各题即可,都是一些简单的问题. 【总结】此题主要考查了利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,准确识图是解题的关键,根据图中的信息来解决问题即可.【变式训练】海水受日月的引力而产生潮汐现象,早晨海水上涨叫做潮,黄昏海水上涨叫汐,合称潮汐,潮汐与人类的生活有着密切的联系,下面是某港口从时到时的水深情况.点时水深_________米,点时水深_________米;大约_________时港口的水最深,深度约是_________米;根据该折线统计图,说一说这个港口从时到时水深的变化情况.【答案】(1)0点时水深5.5米,2点时水深7米;(2)大约3时港口的水最深,深度约是8米;(3)从0时开始涨潮到3时达到最高水深大约8米,之后落潮,到9时达到最低水深约2米.之后进入下一涨潮期.【解析】(1)由折线统计图可知;(2)折线统计图中最上面的点即为水最深的时刻;(3)从折线统计图可以看出:从0时开始涨潮到3时达到最高水深大约8米,之后落潮,到9时达到最低水深约2米,之后进入下一涨潮期.2.今年5月14日川航3U8633航班挡风玻璃在高空爆裂,机组临危不乱,果断应对.正确处置,顺利返航,避免了一场灾难的发生,下面表格是成都当日海拔高度h(千米)与相应高度处汽温t(℃)的关系【成都地处四川盆地,海拔高度较低,为方便计算,在此题中近似为0米】.海拔高度h(千米)012345…气温t(℃)201482﹣4﹣10…根据上表,回答以下问题:(1)由上表可知海拔5千米的上空气温约为℃;(2)由表格中的规律请写出当日气温t与海拔高度h的关系式为.如图是当日飞机下降过程中海拔高度与玻璃爆裂后立即返回地面所用的时间关系图.根据图象回答以下问题:(3)挡风玻璃在高空爆裂时飞机所处的高度为千米,返回地面用了分钟;(4)飞机在2千米高空水平面上大约盘旋了分钟;(5)挡风玻璃在高空爆裂时,当时飞机所处高空的气温为℃,由此可见机长在高空经历了多大的艰险.【答案】(1)由表中数据即可得;(2)由海拔高度每上升1千米,气温下降6℃求解可得;(3)由t=0时h=9.8及t=20时h=0解析可得;(4)由函数图象中t=10至t=12时,h=2求解可得;(5)将h=9.8代入t=20﹣9.8h求解可得.【解析】解:(1)由上表可知海拔5千米的上空气温约为﹣10℃,故答案为:﹣10;(2)由表知海拔高度每上升1千米,气温下降6℃,所以当日气温t与海拔高度h的关系式为t=20﹣6h,故答案为:t=20﹣6h.(3)由函数图象知挡风玻璃在高空爆裂时飞机所处的高度为9.8千米,返回地面用了20分钟,故答案为:9.8、20;(4)飞机在2千米高空水平面上大约盘旋了2分钟,故答案为:2;(5)当h=9.8时,t=20﹣6×9.8=﹣38.8(℃),故答案为:﹣38.8.考点二:根据图像选择合适的形状【例题2】从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为()A.B.C.D.【答案】根据液面高度h随时间t的变化情况的图象可以看出,高度h随时间t的变化情况是:先是高度随时间变化比较缓慢,然后逐渐变快,然后又变得比较缓慢,并且变慢的长度越来越大,最后,又急速上升,可以推断这个容器底部比较粗,然后逐渐变细,然后又逐渐变粗,最后又变得细小,并且最后非常细,推断可能是C容器.【解析】解:根据图象可知,容器大致为:容器底部比较粗,然后逐渐变细,然后又逐渐变粗,最后又变得细小,并且最后非常细,推断可能是C容器.故选:C.【总结】考查对变化过程中两个变量的变化关系的理解,即函数的意义的理解,根据图象变化情况,推断容器形状,强化对函数的理解.【变式训练】1.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是()A.体育场离林茂家2.5kmB.体育场离文具店1kmC.林茂从体育场出发到文具店的平均速度是50m/minD.林茂从文具店回家的平均速度是60m/min【答案】从图中可得信息:体育场离文具店1000m,所用时间是(45﹣30)分钟,可算出速度.【解析】解:从图中可知:体育场离文具店的距离是:2.5﹣1.5=1km=1000m,所用时间是(45﹣30)=15分钟,∴体育场出发到文具店的平均速度==m/min故选:C.2.小亮饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小亮离家的时间与离家的距离之间关系的是()A.B.C.D.【答案】从小亮散步的时间段看,分为0﹣20分钟散步,20﹣30分钟看报,30﹣45分钟返回家,按时间段把函数图象分为三段.【解析】解:依题意,0﹣20分钟散步,离家路程增加到900米,20﹣30分钟看报,离家路程不变,30﹣45分钟返回家,离家路程减少为0米.故选:D.1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化.在这一问题中,自变量是()A.时间B.骆驼C.沙漠D.体温【答案】A.【解析】解:∵骆驼的体温随时间的变化而变化,∴自变量是时间;2.一本笔记本4.5元,买x本共付y元,则4.5和y分别是()A.常量,常量B.变量,变量C.变量,常量D.常量,变量【答案】D.【解析】解:由题意,得y=4.5x,4.5是常量,y是变量,3.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器【答案】B.【解析】解:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.(1)16 时气温最高,最高气温是10℃; 4 时气温最低,最低气温是﹣4℃.(2)18时的气温是8℃;10时,20时时的气温是6℃.(3)0﹣﹣4时,16﹣﹣24时时段内,气温不断下降,12﹣﹣14时时段内气温持续不变.【答案】16,10℃,4,﹣4℃;8℃,10时,20时;0﹣﹣4时,16﹣﹣24时,12﹣﹣14时.【解析】解:(1)16时气温最高,最高气温是10℃;4时气温最低,最低气温是﹣4℃;(2)18时的气温是8℃;10时,20时时的气温是6℃;(3)0﹣﹣4时,16﹣﹣24时时段内,气温不断下降,12﹣﹣14时时段内气温持续不变;11.已知长方形的周长为30cm,一边长为ycm,另一边长为xcm,则y与x的关系式为y=15﹣x,其中变量是x,y,常量是15 .【答案】y=15﹣x;x,y;15.【解析】解:∵矩形的周长是30cm,∴矩形的一组邻边的和为15cm,∵一边长为xcm,另一边长为ycm.∴y=15﹣x,其中变量是:x,y;常量是:15.12.一杯滚烫的水10min后冷却下来,在这个变化过程中,自变量是时间,因变量是温度.【答案】时间、温度.【解析】解:一杯滚烫的水10min后冷却下来,在这个变化过程中,自变量是时间,因变量是温度.13.公路上一辆汽车以50km/h的速度匀速行驶,它行驶的时间与路程这两个量中,行驶时间是自变量,行驶路程是因变量.【答案】行驶时间;行驶路程.【解析】解:由题意的:s=50t,路程随时间的变化而变化,则行驶时间是自变量,行驶路程是因变量;14.在正方形的面积公式S=a2中,随a的增大,S也增大,其中自变量是a,因变量是S.【答案】增大,a,s.【解析】解:正方形的面积公式S=a2中,随a的增大,S也增大,其中自变量是a,因变量是S.15.如图所示是某人骑自行车的行驶路程s(千米)随行驶时间t(时)变化的图象,则图象中AB段表示的意义是从1时到2时骑车人原地休息.【答案】从1时到2时骑车人原地休息.【解析】解:从图中可以看出AB段的路程不变,时间增多,故可知从1时到2时骑车人原地休息.16.如图所示,某市自来水公司职工养老保险个人月缴费y(元)随个人工资x(元)的变化情况,则:(1)小红的妈妈六月份工资为600元,该月她个人应缴养老保险38 元;(2)杨总工程师六月份工资为3000元,该月他个人应缴养老保险180 元.【答案】(1)38(2)180【解析】解:(1)x轴上600所对应的函数图象上的y的值为38,故答案为38;(2)x轴上3000所对应的函数图象上的y的值为180,故答案为180.17.设地面气温为20℃,如果每升高1千米,气温下降6℃.(1)在这个变化过程中,自变量是升高的高度,因变量是气温;(2)如果高度用h(千米)表示,气温用t(℃)表示,那么t随h的变化而变化的关系式为t=20﹣6h;(3)高度h=10千米时,气温是﹣40℃.【答案】(1)升高的高度气温(2)t=20﹣6h(3)﹣40℃【解析】解:(1)∵气温随高度的变化而变化,∴自变量是升高的高度,因变量是气温;(2)∵地面气温为20℃,如果每升高1千米,气温下降6℃,∴t与h的关系为:t=20﹣6h;(3)将h=10代入上式得:t=20﹣6×10=﹣40℃.18.小丽烧一壶水,发现在一定时间内温度随时间的变化而变化,即随时间的增加,温度逐渐增高,如果用t表示时间,T表示温度,则t是自变量,T是因变量.【答案】t是自变量,T是因变量.【解析】解:根据函数的定义可知:如果用t表示时间,T表示温度,19.为了解某品牌汽车的耗油量,人们对这种车在高速公路上做了耗油试验,并把试验的数据记下来,制成下表:汽车行驶时间t(h) 0 1 2 3 …邮箱剩余油量Q(L) 100 94 88 82 …根据上表的数据,写出Q与t的关系式:Q=100﹣6t.【答案】Q=100﹣6t【解析】解:Q与t的关系式为:Q=100﹣6t;三.解答题(共1小题)20.下表给出了橘农王林去年橘子的销售额(元)随橘子卖出质量(千克)的变化的有关数据:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5千克时,销售额是多少?(3)估计当橘子卖出50千克时,销售额是多少?【答案】解:。
《用图像表示的变量间关系》word教案 (公开课)2022年北师大版 (1)
3.3 用图象表示的变量间关系●教学目标〔一〕教学知识点1.经历从图象中分析变量之间的关系的过程,进一步体会变量之间的关系.2.结合具体情境理解图象上的点所表示的意义.3.能从图象中获取变量之间关系的信息,并能用语言进行描述.〔二〕能力训练要求1.培养学生从图象中获取信息的广泛性和准确性.2.在具体情境中锻炼学生对变量之间关系的敏感和语言描述的合理.〔三〕情感与价值观要求从解决大量实际问题和学生感兴趣的问题中提高学生用数学的意识,体验数学所蕴含的数学美.●教学重点1.用图象表示两个变量之间的关系.2.从图象中获取变量之间关系的信息,并能用语言合理地表示,并能结合具体情境理解图象上的点所表示的数学意义.●教学难点根据图象得出事物变化的规律.●教学方法自主探索法本节课的重点是使学生获得对图象反映变量之间关系的体验,学生可借助于以前读统计图的经验发现两个变量的关系,并尽可能多地从图象中获取信息.●教学过程一、温故知新1.某河受暴雨袭击,某天此河水的水位记录为下表:时间/小时0 4 8 12 16 20 24水位/米 2 3 4 5 6 8上表中反映了个变量之间的关系,自变量是,因变量是 .强调:借助表格,我们可以表示,因变量随自变量的变化而变化的情况.2.汽车油箱中原有汽油50升,汽车每行驶1小时耗油6升,请写出油箱中剩余油量y〔升〕与行驶时间t〔小时〕之间的关系式 .强调:利用关系式,我们可以根据一个自变量的值求出相应的因变量的值.二、创设情境,导入新课以以下图是我国某天的气温分布图,你能根据此图说一说家乡的气温吗?你还能从图中看出什么?三、探究交流,获取新知1.合作与探究——气温变化的情况请你根据图象,与同伴讨论某地某天温度变化情况.〔1〕上午9时的温度是多少?12时呢?〔2〕这一天的最高温度是多少?是几时到达的?最低温度呢?〔3〕这一天的温差是多少?从最低温度到最高温度经过了多长时间?〔4〕在什么时间范围内温度在上升?在什么时间范围内温度在下降?〔5〕图中的A点表示的是什么?B点呢?〔6〕你能预测次日凌晨1时的温度吗?说说你的理由.〔学生思考,交流〕2.知识归纳图象是我们表示变量之间关系的第三种方法,它的特点是非常直观.在用图象表示变量之间的关系时,通常用水平方向的数轴〔称为横轴〕上的点表示自变量,用竖直方向的数轴〔称为纵轴〕上的点表示因变量.如何从图象中获取关于两个变量的信息?(1)要明白图象上的点所表示的意义?(2)从自变量的值如何得到因变量的值?及从因变量的值如何得到自变量的值?(3)要明白因变量如何随自变量变化而变化的?3. 议一议——骆驼的体温骆驼被称为“沙漠之舟〞,它的体温随时间变化而发生较大的变化,下面是骆驼的体温随时间变化的图象,我们根据它来分析变量之间的关系.〔图中25时表示次日凌晨1时〕〔1〕一天中,骆驼体温变化范围是什么?它的体温从最低上升到最高需要多少时间?〔2〕从16时到24时,骆驼的体温下降了多少?〔3〕在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?〔4〕你能看出第二天8时骆驼的体温与第一天8时有什么关系吗?其他时刻呢?〔5〕A点表示的是什么?还有几时的温度与A点所表示的温度相同?〔6〕你还知道哪些关于骆驼的趣事?与同伴交流.〔学生思考交流〕四、达标检测,反响新知1.在夏天一杯开水放在桌面上,其水温T与放置时间 t 的关系大致图象为〔〕2.洗衣机在洗涤衣服时,每洗涤一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与洗涤一遍的时间x(分)之间关系的图象大致为( )3.以以下图是今年5月1日至5月6日某市旅游人数统计图:〔1〕你能从图中获得哪些信息?〔2〕你能预测5月7日的旅游人数吗?〔3〕你会选择这7天中的哪一天出游?4.下面是一位病人的体温记录图,看图答复以下问题:(1)护士每隔几小时给病人量一次体温?护士每隔6小时给病人量一次体温.(2)这位病人的最高体温是多少摄氏度?最低体温是多少摄氏度?(3)他在4月8日12时的体温是多少摄氏度?(4)图中的横线表示什么?(5)从图中看,这位病人的病情是恶化还是好转?5.下面是某港口“水上游乐场〞从0时到12时的水深情况变化图:864201234567891011121.此图反映哪两个变量之间的关系?2.假设规定水深超过6米时,不允许游客下海,图中有哪些时间段可以下海?五、知识拓展,提升能力人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东西会逐渐被遗忘,德国心理学家艾宾浩斯第一个发现了记忆遗忘规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标:
1、知识与技能:结合具体情境,理解图象上的点所表示的意义;能从图象中获取变量之间关系的信息,并能用语言进行描述.
2、过程与方法:经历从图象中分析变量之间关系的过程,进一步体会变量之间的关系;在具体情境中培养学生对变量之间关系的认识和语言描述的合理性,培养学生从图象中获取信息的广泛性和准确性.
3、情感与态度:从解决大量实际问题和学生感兴趣的问题中提高学生用数学的意识,体验数学所蕴含的数学美.
教学重点:结合具体情境,理解图象上的点所表示的意义,并能从图象中获取变量之间关系的信息.
教学难点:能从图象中获取变量之间关系的信息,并能用语言进行描述.
教学过程:
一、温故知新:
1.我们已经学习了几种表示变量之间关系的方法?
1、表格法
2、关系法
2.某河受暴雨袭击,某天此河水的水位记录如下表
在这个表中反映哪两个变量之间的关系?自变量和因变量各是什么?
3.“十一”黄金周中,若用x表示七天假期中已过的天数,y表示所剩天数,则y与x 的关系式可表示为_________________.
关系式:y=7-x
二、新课:
1.某地某天温度变化的情况如下图示,观察并回答下列问题:
(1)上午9时的温度是多少?12时呢?
(2)这一天的最高温度是多少?是在几时达到的? 最低温度呢?
(3)这一天的温差是多少?从最高温度到最低温度经过了多长时间?
(4)在什么时间范围内温度在上升?在什么时间范围内温度在下降?
(5)图中的A点表示的是什么?B点呢?
(6)你能预测次日凌晨1时的温度吗?说说你的理由.
总结:
图象是我们表示变量之间关系的第三种方法,它的特点是非常直观。
在用图象表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示
自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量。
如何从图象中获取关于两个变量的信息?
(1)要明白图象上的点所表示的意义?
(2)从自变量的值如何得到因变量的值?及从因变量的值如何得到自变量的值?
(3)要明白因变量如何随自变量变化而变化的?
2.议一议:
骆驼被称为“沙漠之舟”,你知道关于骆驼的一些趣事吗?例,它的体温随时间的变化而发生较大的变化:白天,随沙漠温度的骤升,骆驼的体温也升高,当体温达到40ºC时,骆驼开始出汗,体温也开始下降;夜间,沙漠的温度急剧降低,骆驼的体温也继续降低,大约在凌晨4时,骆驼的体温达到最低点.
如下图,是骆驼的体温随时间变化而变化的的关系图,据图回答下列问题:
(1)一天中,骆驼体温的变化范围是什么?它的体温从最低上升到最高需要多少时间?
(2)从16时到24时,骆驼的体温下降了多少?
(3)在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?
(4)你能看出第二天8时骆驼的体温与第一天8时有什么关系吗?其它时刻呢?
(5)A点表示的是什么?还有几时的温度与A点所表示的温度相同?
3.练一练:
海水受日月的引力而产生潮汐现象,早晨海水上涨叫做潮,黄昏海水上涨叫做汐,
合称潮汐。
潮汐与人类的生活有着密切的联系。
下面是某港口从0时到12时的水深情况。
(1)大约什么时刻港口的水最深?深度约是多少?
(2)大约什么时刻港口的水最浅?深度约是多少?
(3)在什么时间范围内,港口水深在增加?
(4)在什么时间范围内,港口水深在减少?
(5)A,B两点分别表示什么?还有几时水的深度与A点所表示的深度相同?
(6)说一说这个港口从0时到12时的水深是怎样变化的。
人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东西会逐渐被遗忘,
国心理学家艾宾浩斯第一个发现了记忆遗忘规律。
他根据自已得到的测试数据描绘了一
条曲线(如图),这就是非常有名的艾宾浩斯遗忘曲线,其中竖轴表示学习中的记忆保
持量,横轴表示时间。
观察图象并回答下列问题:
(1)2时后,记忆保持了多少?
(2)图中点A表示的意义是什么?在哪个时间段内遗忘的速度最快?
(3)有研究表明,如及时复习,一天后能保持98%。
根据遗忘曲线,如不复习又怎样? 由
此,你有什么感受?
4.做一做:
在夏天一杯开水放在桌面上,其水温T与放置时间 t 的关系大致图象为()
A B C D
三、小结:
1、两个变量之间关系的表示方法?
表格法关系式图象法
2、图象法能直观反映变量间的整体变化情况及变化规律,这就是它的优越性。
3、及时复习才是好的学习习惯,它具有事半功倍之功效。
四、作业布置
1、课本第202页:习题6、3
2、练习册第65:温度的变化。