机械手plc课程设计

合集下载

机械手的PLC控制-PLC课程设计

机械手的PLC控制-PLC课程设计

一、要求机械手的PLC控制1.设备基本动作:机械手的动作过程分为顺序的8个工步:既从原位开始经下降、夹紧、上升、右移、下降、放松、上升、左移8个动作后完成一个循环(周期)回到原位。

并且只有当右工作台上无工件时,机械手才能从右上位下降,否则,在右上位等待。

2.控制程序可实现手动、自动两种操作方式;自动又分为单工步、单周期、连续三种工作方式。

3.设计既有自动方式也有手动方式满足上述要求的梯形图和相应的语句表。

4. 在实验室实验台上运行该程序。

二参考1. “PLC电气控制技术——CPM1A系列和S7-200”书中212页“8.1.3机械手的控制”2. “机床电气控制”第三版王炳实主编书中156页“三、机械手控制的程序设计”。

3.“可编程控制器原理及应用”宫淑贞徐世许编著人民邮电出版社书中P168—P175例4.6。

其中工作方式时手动、自动(单步)、单周期、连续;还有自动工作方式下的误操作禁止程序段(安全可靠)。

注解:“PLC电气控制技术——CPM1A系列和S7-200”书中212页“8.1.3机械手的控制”例中只有手动和自动(连续)两种操作模式,使用顺序控制法编程。

PLC 机型选用CPM2A-40型,其内部继电器区和指令与CPM1A系列的CPM有所不同。

“机床电气控制”第三版王炳实主编书中156页“三、机械手控制的程序设计”。

本例中的程序是用三菱公司的F1系列的PLC指令编制。

有手动、自动(单工步、单周期、连续)操作方式。

手动方式与自动方式分开编程。

参考其编程思想。

“可编程控制器原理及应用”宫淑贞徐世许编著人民邮电出版社书中P168—P175例4.6。

其中工作方式有手动、自动(单步)、单周期、连续;还有自动工作方式下的误操作禁止程序段(安全可靠)。

用CPM1A编程。

这里“误操作禁止”是指当自动(单工步、单周期、连续)工作方式时,按一次操作按钮自动运行方式开始,此后再按操作按钮属于错误操作,程序对错误操作不予响应。

工业机械手plc控制系统毕业设计

工业机械手plc控制系统毕业设计

工业机械手plc控制系统毕业设计工业机械手在现代化的生产线中扮演着重要的角色,它可以高效地完成各种物品转移操作,但是机械手的运作离不开PLC控制系统的支持。

因此,本文将围绕“工业机械手PLC控制系统毕业设计”展开阐述。

第一步,进行需求分析。

在进行PLC控制系统设计之前,首先需要了解客户的具体需求,包括机械手的移动速度、精度、各种动作状态、传感器的数量等等因素。

针对这些要求进行详细分析,方便后续控制程序的编写。

第二步,进行PLC选型。

在根据客户需求推算出所需要的控制模块后,可以进行PLC选型。

考虑到冗余备份和可靠性要求,一般会采用双控制模块和双电源供电模块的设计方案,以确保系统的高可靠性和稳定性。

第三步,进行程序设计。

PLC程序设计分为由编辑、编译、下载到PLC并运行、调试等步骤,需要详尽地分析程序逻辑、动作流程和异常处理等内容。

同时,还应该编写人机界面(HMI),方便人员进行系统的监控、操作和故障排除等工作。

第四步,进行现场测试。

在PLC控制程序编写之后,需要进行现场测试以确保程序的稳定性和可靠性。

此时要进行疯狂测试,跑黑盒白盒、配置自检等多个测试方式,确保程序能够符合客户的需求。

第五步,进行评估和优化。

在测试过程中,需要对系统运行数据进行评估和分析,并对程序进行优化。

调整参数和算法,优化运行效率和准确率,最终确保系统能够达到高效稳定的运行状态。

综上所述,关于“工业机械手PLC控制系统毕业设计”,需要进行需求分析、PLC选型、程序设计、现场测试和评估优化等步骤。

这种设计方案需要掌握扎实的基础理论知识和丰富的实践经验,而且需要具备敏锐的技术洞察力以及灵活应变的能力。

只有这样才能够完成高质量的PLC控制系统毕业设计。

基于PLC控制的机械手设计(毕业论文)第二章 PLC机械运动控制手

基于PLC控制的机械手设计(毕业论文)第二章 PLC机械运动控制手

第二章 PLC机械运动控制手2.1 机械手工作原理机械手主要由执行机构.驱动机构和控制系统组成,机械手的执行机构又包括手部、手臂和躯干。

手部安装在最前端,主要是用来准确的抓取搬移工件,手臂的作用是用来辅助手部准确的抓住工件并能够转移到所需要的位置,机械手的运动有两种:一个是上下直线运动,另一个是左右直线运动。

因此其必须安装有液压缸、电液脉冲马达、电磁阀等作为其执行机构的动力部分或辅助系统。

驱动机构主要有四种:液压驱动、气压驱动、电气驱动和机械驱动。

其主要以电气和气压驱动为主,只有少量的运用液压和机械驱动。

本课题采用的机械手全部动作由汽缸驱动,而汽缸又由相应的电磁阀控制。

而电磁式继电器广泛用于电力拖动控制系统中,其结构及工作原理与接触器类似,也是由电磁机构和触点系统组成。

继电器只能用于切换电流较小的控制电路或保护电路(各触点允许通过的电流多为5A),继电器可对多种输入信号量的变化作出反映,起工作原理为上升/下降和左移/右移分别由双线圈二位电磁阀控制。

例如,当下降电磁阀通电时,机械手下降;当下降电磁阀断电时,机械手停止下降,但保持现有动作状态。

只有在上身电磁阀通电时,机械手才上升;当上身电磁阀断电时,机械手停止上升。

同样,左移/右移分别由座椅电磁阀和右移电磁阀控制,机械手的放松/夹紧由一个单线圈二位电磁阀控制,该线圈通电时,机械手夹紧;该线圈断电时,机械手放松。

机械手的工作机构手部、手臂和躯干,手部主要采用电气传动,而抓取机构主要采用气压传动,机械手的是抓取工件要准确迅速的抓起是设计的最起码的要求。

当我们设计手爪时,首先要知道机械手的坐标形式、运动的速度和加速度的具体要求,还要考虑被夹紧的物体的重量、大小和惯性来计算。

同时还要考虑手爪的开口尺寸,以保证有足够的开口来抓取工件。

为了防止工件在被夹紧是有损坏,所以我们要在手爪的接触部分加上弹性棉垫。

为了防止电源临时出现故障。

所以我们应该对其工件加以保护。

大小球分拣机械手plc课程设计

大小球分拣机械手plc课程设计

大小球分拣机械手plc课程设计一、引言在现代工业生产中,自动化技术已经成为了必不可少的一部分。

其中,PLC(可编程逻辑控制器)作为自动化控制系统中的核心控制设备,被广泛应用于各种机械设备和生产线中。

本文将以大小球分拣机械手为例,介绍PLC课程设计的具体实现过程。

二、问题描述大小球分拣机械手是一种常见的自动化分拣设备。

该设备可以对大小不同的球进行快速准确地分类。

但是,在使用过程中,由于各种原因(例如机械故障、电气故障等),可能会导致分拣错误或无法正常工作。

因此,需要设计一套PLC控制系统来保证该设备的正常运行。

三、PLC课程设计方案1. 设计目标本次PLC课程设计的主要目标是实现以下功能:(1)检测传感器信号;(2)通过程序控制机械手移动;(3)根据传感器信号判断球的大小;(4)将球分类到相应的出口。

2. 系统组成本次PLC课程设计所需组成如下:(1)大小球分拣机械手;(2)传感器;(3)PLC控制器;(4)电磁阀。

3. 系统设计(1)传感器信号检测在大小球分拣机械手中,需要使用传感器来检测球的大小。

这里我们可以选择光电传感器或者压力传感器。

当球经过传感器时,会产生相应的信号。

PLC通过读取传感器信号来判断球的大小。

(2)机械手控制机械手是本系统中最重要的部分之一。

在PLC课程设计中,我们需要通过程序控制机械手的运动轨迹和速度。

具体实现方法可以采用脉冲输出方式或者模拟输出方式。

(3)分类出口控制分类出口是将不同大小的球分别送往不同位置的关键部件。

在本系统中,我们需要通过电磁阀控制分类出口的开闭状态,实现将球分类到不同位置的目标。

四、程序设计本次PLC课程设计所需编写程序如下:(1)读取传感器信号;(2)根据信号判断球的大小;(3)根据判断结果控制机械手移动;(4)根据判断结果控制电磁阀开闭状态。

五、总结本文介绍了PLC课程设计的具体实现过程。

在大小球分拣机械手中,通过PLC控制系统的设计,可以实现自动化的球分类功能。

(完整word版)PLC机械手臂课程设计原稿

(完整word版)PLC机械手臂课程设计原稿

气动机械手控制系统1 课程设计的任务与要求1。

1 课程设计的任务1。

熟悉三菱FX2N PLC的机构及使用。

2.掌握相关的PLC的编程操作并实现所要求的功能。

3。

具备PLC的硬件设计。

4.熟悉PLC仿真软件的操作和仿真。

通过本次论文,进一步加强自己对机械手和PLC的认识,以及它们在生活中广泛应用.1.2 课程设计的要求气动机械手动作示意图如下图所示,气动机械手的功能是将工件从A点搬运到B点,控制要求为:(1)气动机械手的升降和左右移动分别由不同的双线圈电磁阀实现,电磁阀线圈失电时能保持原来的状态,必须驱动反向的线圈才能反向运动;(2)上升、下降的电磁阀线圈分别为MB2、MB1;右行、左行的电磁阀线圈为MB3、MB4;(3)机械手的夹钳由单线圈电磁阀MB5来实现,线圈通电夹紧,断电松开;(4)机械手的夹钳的松开,夹紧通过延时2s实现;(5)机械手下降、上升、右行、左行的限位由行程开关BG1、BG2、BG3、BG4来实现。

图1 气动机械手动作示意图2气动机械手控制系统设计方案制定本设计采用三菱系列PLC设计下图为一个将工件由A处传送到B处的机械手,上升/下降和左移/右移的执行用双线圈二位电磁阀推动气缸完成.当某个电磁阀线圈通电,就一直保持现有的机械动作,例如一旦下降的电磁阀线圈通电,机械手下降,即使线圈再断电,仍保持现有的下降动作状态,直到相反方向的线圈通电为止.另外,夹紧/放松由单线圈二位电磁阀推动气缸完成,线圈通电执行夹紧动作,线圈断电时执行放松动作。

设备装有上、下限位开关和左、右限位开关,它的工作过程如图所示,有八个动作,即为:原位下降夹紧上升右移左移上升放松下降图2 机械手的动作周期3气动机械手控制系统设计方案实施3.1气动机械手控制系统电路元器件选择为实现设计目的,本设计需用到两台三相电机,4个接触器,4个继电器.其中M1三相电机控制机械手臂的上下移动(KM1闭合M1电动机正转,机械手臂下降;KM2闭合M1电动机反转,机械手臂上升);M2三相电机控制机械手臂的左右移动(KM3闭合M2电动机正转,机械手臂右移;KM4闭合M2电动机反转,机械手臂左移)。

基于PLC的机械手臂控制课程设计

基于PLC的机械手臂控制课程设计

课程设计说明书课程设计说明书课程名称:电气控制PLC课程设计课程代码: XXXXXXXX 题目:基于PLC机械手控制系统学生姓名: X X 学号: XXXXXXXXXXXXX 年级/专业/班: XXXX级电气自动化X班学院(直属系) : XXXXXXX学院指导教师: X X学院名称:XXXXXX 专业:XXX 年级:2021级机械手控制系统设计一、选题背景及题目来源工业实际工程,可在天科TKPLC-A实验装置机械手装置的模拟控制实验区完本钱模拟实验。

二、训练目的〔1〕通过使用各根本指令,进一步熟悉掌握PLC的编程和程序调试;〔2〕学会绘制电气原理图及接线图;〔3〕选择电气元器件;〔4〕完成系统硬件和软件设计;〔5〕完成模拟实验;〔6〕编写技术文件。

三、要求实现的功能启动机械手,将物体从A处移动到B处,机械手将完成原位、下降、抓取、上升、右移、下降、放松、上升、左移、循环或者回到原位动作过程。

在执行动作时由限位开关对机械手位置进行控制,并且由双线圈二位电磁阀推动气缸完成。

提出改良方案:在机械手夹紧过程进行探究,增加压力传感器用于机械手爪压力并进行反响控制;增加超声波传感器检测物体是否滑落。

当物体出现滑落或操作错误时发出报警等。

四、实验设备1、安装了STEP7-Micro/WIN32编程软件的计算机一台2、天科TKPLC-A实验装置3、机械手模块五、设计任务〔1〕根据控制要求分析控制及动作过程,设计硬件系统;〔2〕绘制电气原理图及PLC I/O接线图;〔3〕设计软件系统;〔4〕组成控制系统;〔5〕进行系统调试,实现〔三〕所要求的控制功能,完成模拟实验。

〔6〕撰写课程设计说明书。

六、参考资料1、天科TKPLC-A实验装置实验手册2、?S7-200可编程序控制器手册?,西门子技术效劳中心,四川省机械研究设计院,3、?现代电器控制及PLC应用技术?第2版,王永华,北京航空航天大学出版社指导教师: XX 签名日期: 2021 年 06 月 1日摘要可编程控制器是一种以微处理器为核心的工业控制装置。

项目10 PLC控制搬运机械手设计

项目10 PLC控制搬运机械手设计
• 10. 1. 5气动系统设计
• 1.垂直气缸、水平气缸选择 • (1)类型选择。 • 现有的工作要求和条件如下: • 1)要求当气缸到达行程终端时无冲击现象和撞击噪声,因此选择缓冲
气缸; • 2)要求重量轻,因此选择轻型气缸; • 3)要求安装空间窄且行程短,因此可选择薄型气缸; • 4)若有横向负载,可选带导杆气缸; • 5)要求制动精度高,应选择锁紧气缸; • 6)若不需要活塞杆旋转,可选择杆不回转气缸。
上一页 下一页 返回
10. 1搬运机械手设计案例导入
• 10. 1. 3材料选择
• 机器人手臂的材料应根据手臂的工作状况来选择,并满足机器人的设 计及制作要求。从设计的思想出发,机器人的手臂要求完成各种运动。 因此,对材料的一个要求是作为运动的部件,它应是轻型材料。另一 方面,手臂在运动过程中往往会产生振动,这必然会大大降低它的运 动精度,所以在选择材料时,需要对质量、刚度、阻尼进行综合考虑, 以便有效地提高手臂的动态性能。此外,机器人手臂选用的材料与一 般的结构材料不同。机器人手臂是一种伺服机构,要受到控制,必须 考虑它的可控性。可控性还要与材料的可加工性、结构性、质量等性 质一起考虑。总之,在选择机器人手臂材料时,要考虑强度、刚度、 重量、弹性、抗振性、外观及价格等多方面因素,下面为几种常见机 器人手臂材料:
上一页 下一页 返回
10. 1搬运机械手设计案例导入
• (1)碳素结构钢和合金结构钢等高强度钢:这类材料强度好,尤其是合 金结构钢强度增加了4~ 5倍,弹性模量大、抗变形能力强,是应用最 为广泛的材料。
• (2)铝、铝合金及其他轻合金材料:其共同特点是重量轻,弹性模量不 大,但是材料密度小,其(E/P)之比仍可与钢材相比。
上一页 下一页 返回

课程设计_PLC搬运物品机械手控制设计

课程设计_PLC搬运物品机械手控制设计

课程设计_PLC搬运物品机械手控制设计PLC(Programmable Logic Controller)搬运物品机械手控制设计是一门工业自动化领域的课程。

在制造业中,物品搬运常常是非常繁琐的工作,因此机械手的出现给了制造业带来极大的便利。

机械手需要通过PLC来进行控制,通过对PLC程序的编程,可以让机械手对物品进行精准搬运。

本文将介绍PLC搬运物品机械手控制设计的相关知识和实践操作。

一、搬运物品机械手控制设计的基本知识1. PLC的基本概念PLC(Programmable Logic Controller)即可编程控制器,是一种专门用于控制工业生产过程的计算机硬件,也是一种特殊的计算机控制系统。

PLC控制器主要由中央处理器(CPU)、输入/输出模块(I/O)、电源部分和编程器四个部分组成。

PLC控制器的任务是将输入设备的信号转换为控制信号去驱动输出设备,从而实现控制过程。

2. 机械手的基本概念机械手(Robotic Arm)是一种可以代替人手进行工业生产操作的机器人。

它主要由机械臂、控制器、传感器、执行器等多个部件组成。

机械手在工业生产中可以起到非常重要的作用,在电子、汽车、食品等工业领域都有广泛应用。

3. 搬运物品机械手的基本工作原理搬运物品机械手的基本工作原理是通过控制机械手的关节转动和末端执行器的运动来实现物品的搬运。

在实际应用中,机械手需要进行复杂的运动规划,通过PLC对机械手进行精准的控制,可以实现对物品的精准搬运。

二、PLC搬运物品机械手控制设计的实践操作在PLC搬运物品机械手控制设计的实践操作中,我们需要通过PLC编程来实现搬运物品机械手的自动化控制。

1. 确定控制策略在控制机械手的过程中,需要明确控制策略,比如机械手的运动轨迹、动作的先后顺序、运动速度等。

在PLC编程中,可以通过编写具体的程序来实现控制的策略。

2. 设计PLC程序在PLC编程之前,我们需要根据机械手控制的策略来设计PLC程序。

plc机械手课程设计实验报告

plc机械手课程设计实验报告

PLC机械手课程设计实验报告1. 引言本实验针对PLC(可编程逻辑控制器)机械手进行课程设计,旨在通过实际操作掌握PLC编程和机械手控制的基本原理与方法。

通过本实验的学习,可以进一步加深对PLC及其应用的理解,并培养学生的实践能力。

2. 实验目标本实验的目标是设计一个PLC控制的机械手系统,通过编写PLC程序控制机械手的运动和操作。

具体目标如下:1.了解PLC的基本原理和工作方式;2.了解机械手的基本结构和工作原理;3.掌握PLC编程,包括Ladder图的编写;4.实现机械手的基本运动,如抓取、放置等;5.实现机械手的路径规划和运动控制。

3. 实验步骤3.1 实验环境搭建1.准备一台PLC控制器和一台机械手;2.将PLC控制器与机械手进行连接,确保联通正常;3.配置PLC编程软件,确保能够正常编写PLC程序。

3.2 机械手的基本控制在本实验中,我们使用PLC编程软件,针对机械手的基本动作编写PLC程序,实现机械手的基本控制功能。

包括以下几个步骤:1.编写PLC程序,实现机械手的抓取功能;2.编写PLC程序,实现机械手的放置功能;3.编写PLC程序,实现机械手的回到初始位置功能。

3.3 机械手的路径规划和运动控制在本实验中,我们进一步深入研究机械手的路径规划和运动控制。

具体步骤如下:1.学习机械手的运动学原理,并了解机械手路径规划的基本方法;2.编写PLC程序,实现机械手的按照指定路径运动;3.通过模拟机械手的运动轨迹,验证PLC程序的正确性。

4. 实验结果分析实验完成后,我们对实验结果进行分析评估。

主要包括以下几个方面:1.实验是否达到了预期的目标;2.实验中是否存在问题,以及问题的解决方案;3.对实验结果的总结和评价。

通过实验结果分析,我们可以进一步改进实验设计,提高实验教学效果。

5. 总结与展望通过本次PLC机械手课程设计实验,我们对PLC编程和机械手控制有了更深入的理解。

通过实践操作,我们掌握了PLC的基本原理和工作方式,学习了机械手的基本结构和工作原理,并实现了机械手的基本运动和路径规划控制。

搬运机械手PLC控制系统设计

搬运机械手PLC控制系统设计

搬运机械手PLC控制系统设计PLC控制系统设计应考虑以下几个方面:1.硬件设计:PLC控制系统的硬件设计包括选择适当的PLC主控板、I/O模块、通信模块等。

在选择PLC主控板时,应根据搬运机械手的工作要求和应用环境选择合适的型号和规格。

同时,还需考虑I/O模块的数量和类型,以满足机械手的输入输出需求,并确保通信模块能够与上位机等其他设备实现良好的通信。

2.软件设计:PLC控制系统的软件设计是搬运机械手的核心部分,它包括编写PLC 程序、设计操作界面等。

在编写PLC程序时,需考虑机械手各个部分的动作顺序和条件判断,以实现机械手的准确、高效工作。

同时,还需设计操作界面,使操作人员能够方便地控制和监控机械手的运动情况。

3.电气布线设计:搬运机械手的电气布线设计是PLC控制系统设计中的重要环节。

在电气布线设计中,需合理安排电气设备和传感器的布置,确保信号的传递和控制的可靠性。

同时,还需进行电气隔离和防护措施,以确保整个系统的安全性和稳定性。

4.通信与监控设计:PLC控制系统的通信与监控设计包括与上位机、其他设备的通信以及对机械手工作状态的监控。

通过与上位机的通信,可以实现对搬运机械手的远程监控和管理。

而通过对机械手工作状态的实时监控,可以及时发现故障和异常情况,并采取相应措施,确保机械手的安全和稳定运行。

5.安全保护设计:在搬运机械手的PLC控制系统设计中,安全保护是重要的考虑因素之一、安全保护措施包括急停开关、安全光幕、限制开关等,它们能够及时停止机械手的运动,并保护操作人员的安全。

此外,还需设计故障检测和报警系统,及时发现和排除故障,保障机械手的稳定运行。

总之,搬运机械手的PLC控制系统设计需要综合考虑硬件设计、软件设计、电气布线设计、通信与监控设计以及安全保护设计等多方面的因素。

只有经过合理的设计和严格的测试,才能确保搬运机械手能够安全、稳定地运行,并实现高效的物品搬运任务。

plc课程设计机械手搬运

plc课程设计机械手搬运

plc课程设计机械手搬运一、课程目标知识目标:1. 学生能理解PLC(可编程逻辑控制器)的基本原理,掌握其编程方法。

2. 学生能了解机械手的结构、功能及其在工业自动化中的应用。

3. 学生能掌握机械手搬运过程中的控制要求,如运动轨迹、速度调节等。

技能目标:1. 学生能运用所学知识,设计出符合实际需求的PLC程序,实现机械手的搬运功能。

2. 学生能通过小组合作,进行程序调试,解决实际问题,提高团队协作能力。

情感态度价值观目标:1. 学生对工业自动化产生兴趣,认识到PLC技术在现代工业中的重要性。

2. 学生在学习过程中,培养勇于探索、积极创新的精神,提高解决问题的能力。

3. 学生通过课程学习,树立正确的价值观,认识到科技发展对国家和社会的积极影响。

课程性质:本课程为实践性较强的课程,结合理论知识与实际操作,使学生能够学以致用。

学生特点:学生具备一定的PLC基础知识,对实际操作有较高的兴趣。

教学要求:教师需结合学生特点,采用任务驱动法、分组合作等形式,引导学生主动探究,注重培养学生的实践能力和团队协作精神。

通过课程学习,使学生在知识、技能和情感态度价值观方面取得具体的学习成果。

二、教学内容本课程教学内容主要包括以下三个方面:1. PLC基础知识回顾:- PLC的基本原理与结构- PLC的工作过程与编程方法- 常用PLC指令及其应用2. 机械手搬运原理与控制要求:- 机械手的结构、功能及其分类- 机械手搬运过程中的运动轨迹规划- 机械手搬运过程中的速度调节与控制3. PLC编程与机械手搬运实践:- PLC程序设计方法与步骤- 机械手搬运控制程序编写- 程序调试与优化教学大纲安排:第一课时:PLC基础知识回顾第二课时:机械手搬运原理与控制要求第三课时:PLC编程与机械手搬运实践第四课时:程序调试与优化教材章节及内容:第一章:PLC基础知识1.1 PLC的基本原理与结构1.2 PLC的工作过程与编程方法1.3 常用PLC指令及其应用第二章:机械手搬运原理与控制2.1 机械手的结构、功能及其分类2.2 机械手搬运过程中的运动轨迹规划2.3 机械手搬运过程中的速度调节与控制第三章:PLC编程与机械手搬运实践3.1 PLC程序设计方法与步骤3.2 机械手搬运控制程序编写3.3 程序调试与优化教学内容确保科学性和系统性,结合课程目标,使学生能够掌握PLC与机械手搬运相关知识,为后续的实际应用打下坚实基础。

工件传送机械手的plc控制课程设计

工件传送机械手的plc控制课程设计

工件传送机械手的plc控制课程设计一、设计背景工件传送机械手是一种自动化设备,可以用于将工件从一个位置转移到另一个位置。

工件传送机械手的PLC控制系统是其中关键的一部分,通过PLC来控制机械手的运动,实现工件的自动传送。

本课程设计将介绍如何设计和编程工件传送机械手的PLC控制系统。

二、课程设计目标1.掌握工件传送机械手的基本工作原理和结构。

2.了解PLC的基本原理和编程方法。

3.掌握如何将PLC与机械手连接并进行控制。

4.完成一个简单的工件传送机械手的PLC控制系统的设计和编程。

三、课程设计内容1.工件传送机械手的基本工作原理和结构介绍。

a.工件传送机械手的组成部分及其功能。

b.机械手的运动控制原理及方法。

2. PLC的基本原理和编程方法介绍。

a. PLC的概念和作用。

b. PLC的基本原理和结构。

c. PLC的编程语言和编程方法。

3.工件传送机械手与PLC的连接和控制。

a.介绍PLC和机械手之间的连接方式。

b.详细说明PLC如何控制机械手的运动。

4.工件传送机械手的PLC控制系统的设计和编程。

a.设计一个简单的工件传送机械手的PLC控制系统。

b.使用PLC编程软件进行控制程序的编写。

c.对控制程序进行模拟验证和调试。

5.课程设计总结和反思。

a.对整个课程设计进行总结和评价。

b.反思设计中遇到的问题和解决方法。

四、课程设计教学方法本课程设计将采用理论教学与实践操作相结合的教学方法。

在理论教学中,通过课堂讲解和案例分析,让学生了解工件传送机械手和PLC的基本原理。

在实践操作中,学生将根据设计要求,使用PLC编程软件进行控制程序的编写,并进行模拟验证和调试。

五、课程设计评价方式课程设计评价将分为两个部分:实验操作评价和实验报告评价。

实验操作评价主要考察学生在实验操作中的动手能力和问题解决能力;实验报告评价主要考察学生对课程设计内容的理解和掌握程度。

评价结果将以学生实验操作评价表和实验报告的成绩形式反馈给学生。

PLC课程设计机械手电气控制系统.

PLC课程设计机械手电气控制系统.

河南机电高等专科学校课程设计报告书课程名称:《PLC技术与工程应用》课题名称:机械手电气控制系统设计系部名称:自动控制系专业班级:计控102班姓名:刘宾学号:1014132312012年06月20日目录目录 (11、引言 (42、系统总体设计要求 (63、系统方案设计 (64、上位监控系统设计 (125、程序调试 (145.1 调试设备 (145.2 遇到的问题与解决方法 (146、心得体会 (15附录1 参考文献 (16附录2 程序清单 (161、引言在现代工业中,生产过程的机械化、自动化已成为突出的主题。

随着工业现代化的进一步发展,自动化已经成为现代企业中的重要支柱,无人车间、无人生产流水线等等,已经随处可见。

同时,现代生产中,存在着各种各样的生产环境,如高温、放射性、有毒气体、有害气体场合以及水下作业等,这些恶劣的生产环境不利于人工进行操作。

机械手是近代自动控制领域中出现的一项新的技术机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。

,是现代控制理论与工业生产自动化实践相结合的产物,并以成为现代机械制造生产系统中的一个重要组成部分。

机械手是提高生产过程自动化、改善劳动条件、提高产品质量和生产效率的有效手段之一。

尤其在高温、高压、粉尘、噪声以及带有放射性和污染的场合,应用得更为广泛。

在我国,近几年来也有较快的发展,并取得一定的效果,受到机械工业和铁路工业部门的重视。

机械手的种类,按驱动方式可分为液压式、气动式、电动式、机械式机械手;按适用范围可分为专用机械手和通用机械手两种;按运动轨迹控制方式可分为点位控制和连续轨迹控制机械手等。

机械手通常用作机床或其他机器的附加装置,如在自动机床或自动生产线上装卸和传递工件,在加工中心中更换刀具等,一般没有独立的控制装置。

有些操作装置需要由人直接操纵,如用于原子能部门操持危险物品的主从式操作手也常称为机械手。

机械手plc课程设计

机械手plc课程设计

机械手plc课程设计一、课程目标知识目标:1. 学生能理解机械手的基本结构、功能和工作原理;2. 学生能掌握PLC(可编程逻辑控制器)的基本组成、编程方法和应用技巧;3. 学生能了解机械手与PLC的接口技术及其在自动化生产线中的应用。

技能目标:1. 学生能运用PLC编程软件进行简单的程序编写,实现对机械手的控制;2. 学生能通过组态软件对机械手PLC控制系统进行监控与调试;3. 学生具备分析并解决机械手PLC控制系统故障的能力。

情感态度价值观目标:1. 学生培养对机械手PLC控制技术的兴趣,激发学习热情;2. 学生树立正确的工程观念,认识到自动化技术在现代工业生产中的重要性;3. 学生养成团队协作、积极探索、创新实践的良好习惯。

课程性质:本课程为实践性较强的课程,结合理论教学与实际操作,旨在培养学生的动手能力和实际应用能力。

学生特点:学生具备一定的电工电子基础和PLC基础知识,对实际操作具有较强的兴趣。

教学要求:教师应注重理论与实践相结合,引导学生通过实际操作掌握知识,提高技能,同时关注学生的情感态度价值观的培养。

将课程目标分解为具体的学习成果,以便于教学设计和评估。

1. 机械手基础知识:介绍机械手的基本结构、功能、分类及工作原理,对应教材第1章。

- 结构与功能:关节式、直角坐标式、圆柱坐标式、球坐标式机械手;- 工作原理:伺服电机、减速机、传动机构等。

2. PLC基础知识:回顾PLC的基本组成、工作原理、编程语言及编程方法,对应教材第2章。

- 基本组成:CPU、输入/输出模块、电源模块等;- 编程语言:梯形图、指令表、功能块图等。

3. 机械手与PLC接口技术:讲解机械手与PLC的连接方法、信号类型及接口电路设计,对应教材第3章。

- 连接方法:并行连接、串行连接;- 信号类型:数字量信号、模拟量信号。

4. PLC控制程序设计:学习PLC控制机械手的编程方法,对应教材第4章。

- 编程实例:搬运机械手、装配机械手等;- 编程技巧:模块化编程、顺序控制、条件判断等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1 课程设计目的2 机械手工作过程及控制要求2.1 机械手的工作过程2.2机械手的控制要求3 机械手的系统设计3.1PLC的选择3.2热继电器的选择3.3熔断器的选择3.4主电路的设计3.5输入输出点的地址分配3.6机械手程序设计(见附录)4总结5 参考文献附录1 课程设计目的机械手采用PLC控制技术,大大提高了系统的自动化程度,提高了控制系统的可靠性。

根据系统的控制要求综合运用了PLC技术,编程软件,机械手的电气控制系统进行课程设计,为机械手在实际应用中控制系统的设计提供借鉴。

根据工业机械手常规操作运行的特点画出时序图,根据画出的时序图以及各种综合情况选择PLC 型号,进行硬件系统的设计,根据PLC硬件系统及内部资源并画出工业机械手自动控制装置的硬件系统图。

根据工业机械手的运行特点和要求利用所学的PLC的基本指令进行程序设计。

根据设计的PLC硬件系统图进行接线,利用STEP-Micro/WIN32编程软件将程序输入到PLC进行上机操作,直至调试正确。

通过编程及调试程序,了解掌握S7-200PLC的硬件构成及使用方法,摸索并积累编程的技巧经验,在调试中发现问题,分析问题,解决问题。

2 机械手工作过程及控制要求2.1 机械手的工作过程该机械手是一个水平、垂直位移的机械设备,其操作是将做工作台搬运到又工作台,由光耦合器VLC来检测左工作台有无工件。

有工件才搬运,即使按下启动按钮,若检测到左工作台上无工件,系统也不能启动。

图1是这种机械手的动作示意,其过程并不复杂,共6个动作,分3组,即上升、下降、左移、右移和放松加紧。

图1 机械手的动作示意图机械手全部动作由气缸驱动,而气缸又由一、相应的电磁阀控制;左移和右移分别有左移电磁阀和右移电磁阀控制,当该线圈断电时,机械手放松如图2所示。

图2 机械手动作的流程图2.2 机械手的控制要求第一步是当工作台A上有工件出现时(可以由光藕合器VLC 检测到,当检测到有工件时,VLC),机械手开始下降。

当机械手下降到位时(可以由限位开关检测到,下降到位),机械手停止下降,第一步结束。

第二步是机械手在最低位开始抓紧工件,约10s抓住、抓紧,第二步结束。

第三步是机械手夹紧工件上升。

当机械手上升到位时(可以由限位开关检测到,当上升到位时,I0.2=1),机械手停止上升,第三步结束。

第四步是机械手夹紧工件右移。

当机械手右移到位时(可以由限位开关检测到,当右移到位时,I0. 3=1),机械手停止右移,第四步结束。

第五步是机械手在最右位开始下降。

当机械手下降到工作台B 到位时(可以由限位开关检测到,当下降到位时,I0. 1=1),机械手停止下降,第五步结束。

第六步是机械手开始放松工件,所需时间约为10s ,10s之后放开工件,第六步结束。

第七步是机械手开始上升。

机械手上升到位时(可以由限位开关检测到,当上升到位时,I0. 2=1),停止上升,第七步结束。

第八步是机械手在高位开始左移,当左移到位时(可以由限位开关检到,左移到位时,I0. 4=1),机械手停止左移,第八步结束。

机械手工作一个周期完成。

等待工件在工作台A上出现转到第一步。

2.3.工作过程按照设计要求机械手的工作均由电机驱动,它的上升、下降、左移、右移都是有电机驱动来完成的。

机械手的初始位置停在原点,按下启动后按扭后,机械手将下降→加紧工件→上升→右移→再下降→放松工件→在上升→左移总共八个动作,也就是一个工作周期。

机械手的下降、上升、右移、左移等动作转换,是由相应的限位开关来控制的,而加紧、放松动作的转换是由时间来控制的。

为了确保安全,机械手右移到位后,必须在右工作台上无工件时才能下降,若上次搬到右工作台上的工件尚未移走,机械手应自动暂停,直到工件移走为止,否则等待。

为此设置了一个光电开关,以检测“无工件”信号。

3 机械手的系统设计3.1 PLC的选择从控制方式选择上需要3个启动按钮,分别完成自动方式I0.0、单动方式I0.5的启动,还需要一个停止按钮I1.4用来处理现在任何情况下的停止运行。

机械手运行的限位开关有4个,高位限位开关I0.2、低位限位开关I0.1、左位限位开关I0.4和右位限位开关I0.3。

手动控制输入信号由5个按钮组成,下降按钮I0.6、上升按钮I1.0、夹紧按钮I0.7、左移按钮I1.2和右移按钮I1.1。

工作台A上有工件检测光耦合器VLC的输入信号。

输出信号有机械手下驱动信号Q0.0、上升驱动信号Q0.2、右移驱动信号Q0.4、左移驱动信号Q0.3和机械手夹紧驱动信号Q0.1,共有5个输出信号。

可选择S7-200系列的CPU224就可以满足要求。

3.2热继电器的选择3.2.1热继电器的型选择:一般情况下,可选用两相结构的热电器继电器,但当三相电压的均衡性较差,工作环境恶劣或无人看管的电动机,宜选用三相结构的热继电器。

对于三角形接线的电动机,应选用带断相保护装置的热继电器。

3.2.2热继电器额定电流的选择:当电动机启动电流为其额定电流的6倍及启动时间不超过6S 时,就可按电动机的额定电流选取热继电器;当电动机的启动时间较长、拖动冲击性负载或不答应停车时,热继电器的额定电流调节到电动机额定电流的1.1~1.15倍。

综上所述,选择NR3-45 0.32-21A热继电器、NR2-25G/Z 0.1-10A 热继电器、NR3-25 0.1-8.5A热继电器。

3.3熔断器的选择3.3.1 熔断器的类型选择选择熔断器时类型时,主要依据负载的保护特性和短路电流的大小。

对大容量的照明线路和电动机,除过载保护以外,还应考虑短路时分断电路电路的能力。

若短路电流较小时,可采用熔体为锡质的或熔体为锌质的熔断器。

用于车间低压供电线路的保护熔断器,一般是考虑短路时的分断能力。

3.3.2熔断器额定电流的选择用于保护多台电动机的熔断器,在出现尖峰电流时不应熔断。

通常将其中容量最大的一台电动机启动,而其余电动机正常运行时出现的电流作为其尖峰电流。

为此熔体的额定电流应满足关系式∑+≥e e re I I I max ,2.5)~(1.5,re I 为熔体的额定电流,e I 为负责的额定电流。

综上所述,选择KS8/380~690V /16A 熔断器或者KG8/380~690V /16A 。

3.4主电路的设计启动时首先要和上自动开关QA0,主电路引入三相电源。

本次设计中所用电动机均为小容量的,故可直接启动,熔断器FA 完成主电路的短路保护,热继电器BB 完成过载保护,QA 接触器实现失压保护。

3.5输入输出点的地址分配输入输出地址分配3.6机械手程序设计(见附录)4 总结机械手的控制对于很多场合需求很大,不论是机床使用的小型系统还是流水线上的这类设备,其基本动作要求类似,所以控制的实现也可以相互借鉴。

对于控制程序的编写,是一种实现手段,使用可编程控制器还有其他的方法可以实现这样的控制,针对所用的具体系统的情况,可以选用不同的方法来编写程序。

机械手高效的工作效率,准确的定位精度,以及简单的结构及控制方式是人手不能替代的,机械手的使用也将越来越广泛。

机械手是一种能模拟人的手臂的部分动作,按预定的程序轨迹极其它要求,实现抓取,搬运工件或操做工具的自动化装置。

在我国由于大多数工业机器人所执行的工作为模拟人的手臂而工作,因而通常把工业机器人称做操作机械手。

随着工业技术的发展,工业机器人与机械手的应用范围不断扩大,其技术性能也在不断提高。

在国内,应用于生产实际的工业机器人特别是示教再现性机器人不断增多,而且计算机控制的也有所应用。

在国外应用于生产实际的工业机器人多为示教再现型机器人,而且计算机控制的工业机器人占有相当比例。

带有“触觉”,“视觉”等感觉的“智能机器人”正处于研制开发阶段。

带有一定智能的工业机器人是工业机器人技术的发展方向。

参考文献[1]肖俊明杨涟陈玉国. 工厂电气及PLC课程设计指导书. 中原工学院电子信息学院,2012.5[2]王永华陈玉国. 现代电气控制及PLC应运技术. 北京:北京航空航天大学出版社,2003.9[3]廖常初. PLC编程及应用. 北京:机械工业出版社,2003.7[4]陈立定. 电气控制与可编程控制器. 华南理工大学出版社,2001[5]于庆广. 可编程控制器原理及系统设计. 北京:清华大学出版社,2004.4附录机械手主电路机械手Network 1 // 网络标题// 单周期/循环LD I0.0O M0.0O M2.0 AN I0.5 AN M2.5 = M0.0 Network 2// 置位初始状态LD SM0.1 S S0.0, 1 Network 3 LSCR S0.0 Network 4// 原位指示灯LD I0.2A I0.4 AN Q0.1 = Q0.5 Network 5// 启动/转移LD I0.0O M2.0 SCRT S0.1 Network 6 SCRE Network 7 LSCR S0.1 Network 8// 下行LDN I0.1AN I1.3AN M2.6= M1.0 Network 9// 下限/转移LD I0.1 SCRT S0.2 Network 10 SCRENetwork 11 LSCR S0.2 Network 12// 抓取/延时LD SM0.0S Q0.1, 1 TON T37, 100 A I1.4R Q0.1, 1 Network 13// 延时转移LD T37 SCRT S0.3 Network 14 SCRENetwork 15 LSCR S0.3 Network 16// 上行LDN I0.2 AN I1.3 AN M2.6 = M1.1 Network 17// 上限/转移LD I0.2 SCRT S0.4 Network 18 SCRE Network 19 LSCR S0.4 Network 20// 右行LDN I0.3 AN I1.3 AN M2.6 = M1.2 Network 21// 右限/转移LD I0.3 SCRT S1.0 Network 22 SCRE Network 23 LSCR S1.0 Network 24// 下行LDN I0.1AN I1.3AN M2.6= M1.5 Network 25// 下限/转移LD I0.1 SCRT S1.1 Network 26 SCRENetwork 27 LSCR S1.1 Network 28// 松开/延时LD SM0.0R Q0.1, 1 TON T38, 100 Network 29// 延时/转移LD T38 SCRT S1.2 Network 30 SCRENetwork 31 LSCR S1.2 Network 32// 上行LDN I0.2AN I1.3AN M2.6= M1.6 Network 33// 上限/转移LD I0.2 SCRT S1.3 Network 34SCRENetwork 35LSCR S1.3 Network 36// 自动左行LDN I0.4= Q0.4 Network 37// 左限/单周期/循环LD I0.4LPSA M0.0 SCRT S0.1LPPAN M0.0 SCRT S0.0 Network 38SCRENetwork 39// 自动下行输出LD M1.0 O M1.5 = Q0.0 Network 40// 自动上行输出LD M1.1 O M1.6 = Q0.2 Network 41// 自动右行输出LD M1.2 = Q0.3 Network 42// 手动下行输出LD I0.6O M4.0 O Q0.0 AN I1.0 AN M4.1 = Q0.0 Network 43// 手动抓放输出LD I0.7O M3.1 O Q0.1 = Q0.1 Network 44// 手动右行输出LD I1.1O M4.3 O Q0.3 AN I1.2 AN M4.2 = Q0.3 Network 45// 手动左行输出LD I1.2O M4.2 O Q0.4 AN I1.1 AN M4.3 = Q0.4 Network 46// 手动上行输出LD I1.0O M4.1 O Q0.2 AN I0.6 AN M4.0 = Q0.2 Network 47LD I1.4O M2.7 R Q0.1, 1。

相关文档
最新文档