【新】2019-2020浙江杭州高级中学初升高自主招生数学【4套】模拟试卷【含解析】

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一套:满分120分

2020-2021年浙江杭州高级中学初升高

自主招生数学模拟卷

一.选择题(共6小题,满分42分)

1. (7分)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象是【 】

A. B. C. D.

2. (7分)在平面直角坐标系中,任意两点规定运算:①;②;③当x 1= x 2且y 1=

y 2时,A =B.

有下列四个命题:

(1)若A (1,2),B (2,–1),则,; (2)若,则A =C ; (3)若,则A =C ;

()()1122,,,A x y B x y ()1212,⊕=++A B x x y y 1212=⊗+A B x x y y (),31⊕= A B 0=⊗A B ⊕=⊕A B B C =⊗⊗A B B C

(4)对任意点A 、B 、C ,均有成立. 其中正确命题的个数为( )

A. 1个

B. 2个

C. 3个

D. 4个 3.(7分)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC ∥OD ;②CE=OE ;③△ODE ∽△ADO ;④2CD 2=CE •AB .正确结论序号是( )

A .①②

B .③④

C .①③

D .①④ 4. (7分)如图,在△ABC 中,∠ACB =90º,AC =BC =1,

E 、

F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、

G .现有以下结论:①;

②当点E 与点B 重合时,;③;④MG •MH =,

其中正确结论为( )

A. ①②③

B. ①③④

C. ①②④

D. ①②③④ 5.(7分)在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )

A. 4,2,1

B. 2,1,4

C. 1,4,2

D. 2,4,1 6. (7分)如图,在矩形ABCD 中,AB =4,AD =5,

AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D

()()⊕⊕=⊕⊕A B C A B C 2AB =1

2

MH =AF BE EF +=12

作⊙O 的切线交BC 于点M ,则DM 的长为( )

A.

B. C. D.

二.填空题(每小题6分,满分30分)

7.(6分)将边长分别为1、2、3、4……19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为 . 8.(6分)如图,三个半圆依次相外切,它们的圆心都在x 轴上,并与直线3

3

y x =

相切.设三个半圆的半径依次为r 1、r 2、r 3,则当r 1=1时,r 3= .

9.(6分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOB=60°,点A 在第一象限,过点A 的双曲线为k y x

=.在x 轴上取一点P ,过点P 作直线OA 的垂线l ,

以直线l 为对称轴,线段OB 经轴对称变换后的像是O ´B ´.

(1)当点O ´与点A 重合时,点P 的坐标是 ;

(2)设P (t ,0),当O ´B ´与双曲线有交点时,t 的取值范围是 .

133924

133

25

10.(6分)如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反 比例函数2(0)y x x

=>的图象上,顶点A 1、B 1分别在x 轴、y 轴

的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数

2

(0)y x x

=>的图象上,顶点A 2在x 轴的正半轴上,则点P 3的

坐标为 .

11.(6分)如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,点M 在OC 上,AM 的延长线交⊙O 于点G ,交过C 的直线于F ,∠1=∠2,连结CB 与DG 交于点N .若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=4

1,则BN= .

三.解答题(每小题12分,满分48分)

12.(12分)先化简,再求值:, 其中.

13.(12分)如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数的图象上.

(1)求m ,k 的值;

32

221052422

x x x x x x x x --÷++--+-2022(tan 45cos30)21

x =-+︒-︒-x

k

y =

x

O y

A

B (2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式. (3)将线段AB 沿直线进行对折得到线段,且点始终在直线OA 上,当线段与轴有交点时,则b 的取值范围为 (直接写出答案)

14.(12分)如图,在Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O 交AC 于点D ,

DE 是⊙O 的切线,连接DE .

(1)连接OC 交DE 于点F ,若OF=CF ,证明:四边形OECD 是平行四边形; (2)若=n ,求tan ∠ACO 的值

b kx y +=11B A 1A 11B A x OF

CF

相关文档
最新文档