模态命题及其推理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲模态命题及其推理

第一节模态命题

无论是直言命题,还是复言命题,都是表达明确判断的句子。然而在现实情况中这样并不能解决所有的问题,有时会出现谈论事件发生可能性的情况

例如:今天早上堵车。

表达的是一种判断,是直言命题。但是,今天早上堵车的可能性有多大呢?是有可能会堵车呢?还是一定会堵车?为了探讨这种可能性,就要引入我们模态命题这一部分的学习

一、什么是模态命题

模态命题就是陈述事物情况的必然性或可能性的命题。直言命题和关系命题只是关于事物情况存在或不存在的陈述。但有些事物情况的存在或不存在是必然的,有些事物情况的存在或不存在是可能的,陈述这种必然性或可能性的命题就是模态命题。模态命题反映人们对客观事物认识的程度。

例如:违反客观规律必然要受到客观规律的惩罚。

辩护人的意见可能是对的。

模态命题都含有“必然”或“可能”等模态词。必然:一定、肯定、必须、必定等。可能:大概、也许等。不含有模态词的命题是非模态命题。人们使用模态命题一般是出于两种情况:1、用模态命题来反映事物本身确实存在的某种可能性或必然性。如例(1);2、我们有时对事物是否确实存在某种情况,一时还不十分清楚、确定,因而只好用可能命题来表示自己对事物情况断定的不确定的性质。如例(2)。

另外,模态词在一个模态命题中所处的位置,不是固定不变的。模态命题是在非模态命题的基础上,加上模态词而构成的。模态词可以加在命题的中间,也可以加在命题的前面或后面。如例(2)也可表述为:“可能辩护人的意见是对的”。

注意:辨别模态命题和非模态命题的关键就是看这个命题中是否包括模态词,如果包括模态词就是模态命题。

二、模态命题的种类

既然是命题,就是表示某种判断,所以,根据模态词和判断词的不同,模态命题大致可以分为四种:必然P(P是非模态命题),必然非P,可能P,可能非P。

1

可能命题就是陈述事物情况的可能性的命题。在自然语言中,通常用“可能”、“或许”、“也许”、“大概”等语词作为它的模态词。可能命题又分为两种:

(1) 可能肯定命题

可能肯定命题就是陈述事物情况可能存在的命题。例如: 飞碟可能是天外之物。

可能肯定命题的形式是:可能p 。

现代逻辑一般用符号“◇”表示“可能”,这样,“可能p ”又可以写作:“◇p ”。

(2) 可能否定命题

可能否定命题就是陈述事物情况可能不存在的命题。例如: 明天可能不下雨。

可能否定命题的形式是:可能非p 。 可用符号表示为:◇﹃p 2、必然命题

必然命题就是陈述事物情况的必然性的命题。在自然语言中,通常用“必然”、“必定”、“一定”等语词作为它的模态词。必然命题又分为两种:

(1) 必然肯定命题

必然肯定命题就是陈述事物情况必然存在的命题。例如: 事物之间必然有联系。

必然肯定命题的形式为:必然p 。 可用符号表示为:□p

(2) 必然否定命题

必然否定命题就是陈述事物情况必然不存在的命题。例如: 客观规律必然不依人们的意志为转移。 必然否定命题的形式是:必然非p 。 可用符号表示为: □﹃p

模态命题

第二节模态命题的推理

一、什么是模态命题的推理

模态命题的推理,就是以模态判断为前提的推理,即可以从一个模态命题为真,推出其他的模态命题的真假。例如:明天必然会下雨明天可能下雨

二、模态推理的种类

1反对关系推理

具有上反对关系的两个命题至少有一假,可以同假,不能同真。因此,可以从一个模态命题为真,推出与其具有上反对关系的另一个模态命题必定为假。

模态命题间的反对关系是指□p与□﹃p之间不同真,可同假的真假关系。所以,可以由真推假。根据反对关系进行模态推理有两个有效式:

①必然p,所以,并非必然非p。(□p→﹃□﹃p)

例如:新生事物必然能战胜腐朽事物,所以,新生事物不必然不能战胜腐朽事物。

②必然非p,所以,并非必然p。(□﹃p→﹃□p)

例如:晚上十点半以前必然不关灯,所以,晚上十点半以前不必然关灯。

2下反对关系推理

具有下反对关系的两个命题至少有一真,可以同真,不能同假。因此,可以从一个模态命题为假推出与其具有下反对关系的另一个模态命题必定为真。

模态命题间的下反对关系是指◇p与◇﹃p之间不同假,可同真的真假关系。所以,可以由假推真。根据下反对关系进行模态推理有两个有效式:

①不可能p,所以,可能非p。(﹃◇p→◇﹃p)

例如:人不可能总是情绪饱满的,所以,人可能不总是情绪饱满的。

②不可能非p,所以可能p。(﹃◇﹃p→◇p)

例如:他不可能不认识作案人,所以,他可能认识作案人。

3从属关系推理

(1)、模态命题间的推出关系

模态命题间的从属关系是指□p与◇p之间、□﹃p与◇﹃p之间可同真,可同假的真假关系。即由必然p真可推知可能p真;由可能p假推知必然p 假。所以,根据从属关系进行模态推理,有以下四个有效式:

①必然p,所以,可能p。(□p→◇p)

例如:旧体制必然要被新体制取代,所以,旧体制可能要被新体制取代。

②必然非p,所以,可能非p。(□﹃p→◇﹃p)

例如:他明天必然不到学校来,所以,他明天可能不到学校来。

③不可能p,所以,不必然p。(﹃◇p→﹃□p)

例如:某人不可能是凶手,所以,某人不必然是凶手。

④不可能非p,所以,不必然非p。(﹃◇﹃p→﹃□﹃p)

例如:水不可能不往低处流,所以,水不必然不往低处流。

(2)、与非模态命题之间的推出关系

必然是P→是P→可能是P(“是”只是表示某一事物存在这一状态)

例如:地球必然是圆的→地球是圆的→地球可能是圆的

必然非P→非P→可能非P

例如:钓鱼岛必然不是日本的→钓鱼岛不是日本的→钓鱼岛可能不是日本的(4)矛盾关系推理

模态命题间的矛盾关系是指□p与◇﹃p之间、□﹃p与◇p之间不同真,不同假的真假关系。由其中一个真,可以推知另一个假;由其中一个假,可以推知另一个真。有以下八个有效式:

①必然p,所以,不可能非p。(□p→﹃◇﹃p)

例如:新生事物必然要代替旧事物,所以,新生事物不可能不代替旧事物。

②不必然p,所以,可能非p。(﹃□p→◇﹃p)

例如:明天不必然降温,所以,明天可能不降温。

③可能p,所以,不必然非p。(◇p→﹃□﹃p)

例如:太阳系可能有第十颗行星,所以,太阳系不必然没有第十颗行星。

④不可能p,所以,必然非p。(﹃◇p→□﹃p)

例如:价值规律不可能以人的意志为转移,所以,价值规律必然不以人的意志为转移。

将以上四种矛盾关系对当推理的前提和结论对调,可形成另外四种同样的有效推理。这里就不一一罗列。新推出的四种推理之所以有效,是由于具有矛盾关系的两个判断,任一方与其对方的否定,都是等值的,所以可以互推。

三、模态命题之间的关系

以上四种模态命题之间,也可以用逻辑方阵来表示出它们类似性质命题对当关系的那样一种真假关系。如下图:

此图表明:

相关文档
最新文档