2020-2021学年人教版数学七年级下册6.3实数第2课时课件

合集下载

最新人教版七年级数学下册 6.3实数2 优质课件

最新人教版七年级数学下册 6.3实数2 优质课件

=
9 8 2 3 1 2 3
=-2.4ቤተ መጻሕፍቲ ባይዱ4101615≈-2.464
计算:
(1)
(2)
3
4 (精确到 18 0.01)
2 (结果保留 3各有效数字)
( 精确到 10 7 0.01)
(3)
典型例题
例2:计算 解:原式= =
2 9 2


5 2

2 (9 2



究 探
计算下面的式子:
9 2
活 动
与2
9 2 2
2 与 3
23
你发现了什么?换几个数再试一试,是否 有相同的规律?
6.3
实数运算(2)
合作学习
请同学们总结有理数的运算律和运算法则
1.交换律 : 加法 a+b=b+a 乘法a×b=b×a 2.结合律: 加法(a+b)+c=a+(b+c) 乘法(a×b)×c=a×(b×c) 3.分配律: a× (b+c)= a×b+ a×c 注:有理数的运算律和运算法则在实数范围内同样适用
实数的运算顺序
先算乘方和开方,再算乘除,最后算加减。如 果遇到括号, 则先进行括号里的运算
典型例题
例1 计算:
(1)
(2)
解:(1) (2)
8 (精确到 9 0.001)
3
(结果保留 9 2(4 3) 4个有效数字)
3 0.748343301≈0.748 8= 9
= 3) 9 2(4
=
=
5 4)
2 (5 2 5 )
10 2 2 5

实数 第2课时 课件 2022—2023学年人教版数学七年级下册

实数 第2课时 课件 2022—2023学年人教版数学七年级下册

(9)实数的减法运算规定为a -b = a + ;(-b)
(10)对于每一个非零实数a,存在一个实数b,满足a b 我b们 a把b1
叫作a的_____;倒数
1
(11)实数的除法运算(除数b≠0),规定为a÷b = a· ; b
(12)实数有一条重要性质:如果a≠0,b≠0,那么ab___≠ 0.
讲授新课 用计算器计算
练一练1 计算(结果保留小数点后两位):
(1) 5 π ;
(2) 3 2.
(1) 5 π 2.236 3.142 5.38;
(2) 3 2 1.732 1.414 2.45.
【方法总结】在实数运算中,如果遇到无理数,并且需要求出 结果的近似值时,可按要求的精确度用相应的近似有限小数代 替无理数,再进行计算.
(3)a+0 = 0+a =
;a
(4)a+(-a) = (-a)+a =
0

(5)ab =
b(a 乘法交换律);
(6)(ab)c = a(b(c)乘法结合律);
(7) 1·a = a·1 =
;a
讲授新课 实数的运算
(8)a(b+c) =
a(b+乘ac法对于加法的分配律),
(b+c)a =
(乘ba法+c对a 于加法的分配律);
2.下列各数中,互为相反数Fra bibliotek是( C)A. 3 与 1B. -2与
(2) 2
3
C. (-与1)2 D3.-51与
-5
当堂练习
3. 5 - 3的- 2值- 是5 ( ) C A.5 B.-1 C. D. 5 - 2 5
4.比较大小:(1) 3 2 >;(22)3

人教版七年级数学下册6.3 实数(2)课件(共26张PPT)

人教版七年级数学下册6.3 实数(2)课件(共26张PPT)
一个正实数的绝对值是___它__本__身____;
一个负实数的绝对值是_它__的__相__反___数__; 0的绝对值是___0___.
字母 表示
a, 当a 0时; a 0, 当a 0时;
a, 当a 0时.
10
知识点一:实数的相反数与绝对值
典例解析
例1 (1)分别写出 6 ,π 3.14 的相反数; (2)指出 5 ,1 3 3 是什么数的相反数; (3)求 3 64 的绝对值;
复习备用 1.实数可以分哪几类?
按定义分
整数
有理数:
有限小数或无限循环小数

分数

开方开不尽的数
无理数: 无限不循环小数
含有 的数
有规律但不循环的数
1
复习备用
按性质分
1.实数可以分哪几类?
实数
负实数
0
正实数
负有理数 负无理数 正有理数 正无理数
负实数
正实数
0
2
复习备用
2.实数与数轴上的点有什么关系?
(1)( 3 2) 2; (2)3 3 2 3.
解: (1)( 3 2) 2 3 ( 2 2)
(2)3 3 2 3 (3 2) 3
3 0 3;
加法结合律
5 3.
乘法分配律
17
知识点二:实数的运算
学以致用
计算:(1)2 2 3 2;(2)3( 2 3) 4 2 解:(2)原式 3 2 3 3 4 2
其运算. 难点:求无理数的绝对值.
6
知识链接
无理数的起源
传说中,无理数最早由毕达哥拉斯学派的弟子希帕索发
现.他用几何方法证明 2无法用整数及分数表示,而毕达哥拉 斯深信任意数均可用整数及分数表示,不相信无理数的存在.但

2020-2021学年人教版七年级下册数学6.3 实数课件

2020-2021学年人教版七年级下册数学6.3  实数课件

有分理数数
数解:或52无任限何2.循一5,环个 小5有3 数理的数0.6形都, 式可247.以写6.成75,有限小 反过来,任何有限小数或无限循环
小数也都是有理数。 3=3.0
有限小数 或
无限循环小数
合作探究---无理数的概念
思考1:所有的数都可以写成有限小数和无限循环小数的形式吗?
答:不是.我们知道,很多数的平方根和立方根都是无限不循环小数
课堂总结
实数按定义分类:
正有理数
有理数
0

负有理数

正无理数
无理数
负无理数
实数按大小分类如下:
正有理数 正实数
正无理数
实 数0
负有理数 负实数
负无理数
课堂总结
实数的相反数和绝对值 在实数范围内,相反数、绝对值、倒数的意义与 有理数 范围内的意义完全相 同.
实数的运算法则 1.有理数大小比较的方法,有理数的运算性质、运算律在实数范围内仍然适用. 2.在实数范围内,任何数都可以进行开立方运算,任何 非负实数 都可以 进行开平方运算.
小试牛刀
2.如图所示,数轴上A,B两点表示的数分别为 之间表示整数的点共有( C )
A.6个 B.5个 C.4个 D.3个
2 和5.1,则A,B两点
知识点拨:数轴上的点与实数一一对应,结合数轴分析,可轻松得出结论.
合作探究---无理数的大小比较
与有理数规定的大小一样,数轴上右边的点表示的实数比左边 的点表示的实数大.
(4)所有有理数都可以用数轴上的点表示,反过来,数轴上的所有点
都表示有理数;×
(5)所有实数都可以用数轴上的点来表示,反过来,数轴上的所有点
都表示实数。 √

6.3实数(课件)七年级数学下册(人教版)

6.3实数(课件)七年级数学下册(人教版)







-2
-1

●●
0
π
1
2



3
4
从图中可以看出,OO’的长是这个圆的周长π,所以点O’对应的数是π.
这样,无理数π可以用数轴上的点表示出来.
探究新知
人教版数学七年级下册
数轴上的点可以表示有理数,那它可以表示无理数吗,
你能在数轴上画出表示 的点吗?
2
-2
2-1
0
1
2
2
当数的范围从有理数扩充到实数后,实数与数轴上的点是一一对应
例1 (1)分别写出− 和π-3.14的相反数;
(2)指出− , −

��分别是什么数的相反数;

(3)求 −的绝对值;
(4)已知一个数的绝对值是 ,求这个数.
解:(1)因为
( 6) 6 ,-(π-3.14)=3.14-π,
所以, 6 ,π-3.14的相反数分别为 6 ,3.14-π.
人教版数学七年级下册
人教版数学七年级下册
第6.3 实数
学习目标
人教版数学七年级下册
1.理解无理数和实数的概念.
2.对实数进行分类,判断一个数是有理数还是无理数.
3.理解实数和数轴上的点一一对应.
4.掌握实数的运算法则及运算律.
情境引入
人教版数学七年级下册
探究
我们知道有理数包括整数和分数,请把下列分数写成
例题讲解
例2
人教版数学七年级下册
计算下列各式的值:
(1)( 3
2)
2; (2)3 3 2 3
解:
(1)( 3 2) 2

6.3 实数(第二课时)--(课件)

6.3 实数(第二课时)--(课件)
假设这个数字为a,
则|a|= 3
所以a=± 3
所以绝对值为 3的数为 3和- 3 。
第五步:巩固反馈



− − − (−) +

3
4
【环节1 :师友检测】
− + − + (−)
(−) −

+ −
+ − − − + − .
3
问题二:指出− 5,1 − 3分别是什么数的相反数。
解: − − 5 = 5
3
-( 1 − 3 )=
3
3
3 -1
所以,− 5和1 − 3的相反数分别为 5,
3
3 -1
第二步:互助探究
【环节2 :教师讲解】
当数从有理数扩充到实数以后,实数之间不仅可以进
行加、减、乘、除(除数不为0)、乘方运算,又增加了非
【详解】
3
3
−27 − 32 − (−1)2 + 8 = −3 − 3 − 1 + 2 = −5;
2 5−
5 − 2 + 5 − 3 + (−5)2 = 2 5 − 5 + 2 − 5 + 3 + 5 = 10.
3
(−3)2 − 8 + 1 − 2 = 2.
18 + 1 − 2 − 2−3 + − 1
负数的开平方运算,任意实数可以进行开立方运算.进行
实数运算时,有理数的运算法则及性质等同样适用。
实数的运算顺序
(1)先算乘方和开方;
(2)再算乘除,最后算加;
(3)如果遇到括号,则先进行括号里的运算.
第三步:分层提高

人教版数学七年级下册课件6.3实数(共20张PPT)

人教版数学七年级下册课件6.3实数(共20张PPT)

实数的大小比较
实数也有大小,其比较方法与有理数大小的比较方法相同.
1.两个正实数比较大小绝对值大的较大; 2.两个负实数比较大小绝对值大的反而小; 3.正实数都大于0,负实数都小于0,即正实数>0>负实数.
如: π__<_ 3.146
3 _<__1.732
实数的运算
实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方 运算,而且正数和0可以进行开平方运算,任意一个实数可以进行 开立方运算.
第六章 实数
6.3 实数
复习引入 (1)
即设 a 表示一个实数,则: (1)
例1 (1)分别写出
的相反数;
(跟2有)理数一样是什,无么理的数是相也反有有数正理;负之数分?,如有理数可以如何分类?
一一个个负 负实实数数的的绝绝对对值值是是整它它数的的相相和反反数数分;;数统称为有理数
(3)求
的绝对值;
有理数的运算法则和运算性质同样适用于实数. 实数的混合运算顺序:先乘方、开方,再乘除,后加减.
例2 计算下列各式的值:
(1) ( 3 2) 2
3 2 2
3 0 3;
(2) 3 3 2 3
3 2 3
5 3.
加法结合律 分配律
在实数运算中,当遇到无理数并且需要求出结果的近似值时, 可以按照所要求的精确度用相应的近似有限小数去代替无理数, 再进行计算.
反过来,任何有限小数或无限循环小数也都是有理数.
无理数
前边我们学习了平方根和立方根,我们知道很多数的平方根或立方 根都是无限不循环小数.
我们把无限不循环小数叫做无理数.
例如, 2, 5, 3 2, 3 3 等都是无理数,π=3.14159265…也是无理数 .

6.3 实数 课件(2课时)

6.3 实数 课件(2课时)

人教版七年级(下册)
第六章实数
复习
实数的分类
整数 有理数 有限小数或 无限循环小数 无限不循环小数
实 数 无理数
分数
复习
实数的分类
正实数 正有理数 正无理数 负有理数
实 数
0
负实数
负无理数
引入
3 5 4 5 (3 4) 5 7 5 3 5 4 5 (3 4) 5 5
6.两个无理数之积不一定是无理数。( ) 7.两个无理数之和一定是无理数。( × )
把下列各数填入相应的集合内: 0.13 3 9 3 5 64 0 . 6 4 0 3 9 3 (1)有理数集合:{ 9 64 0. 6 3 3 0.13 }
3
(2)无理数集合:{
2的相反数是 2 ;

正数的绝对值是它本身; 负数的绝对值是它的相反数; 0的绝对值是0. 2 2 绝对值等于 2的数是什么?
-2 2 -1 0 1 2
例1、(1)求 3 64 的绝对值; (2)已知一个数的绝对值是 3 , 求这个数。 2、请将数轴上是各点与下列实数对应 起来:
2
2
1 (2) ( x 3) 3 4 0 2
(3) ( x 1) 5 0
2
……
小结
1、本节课你学了什么知识?
实数的计算 方程的解法 2、你有什么体会? 计算方法 开方
人教版七年级(下册)
第六章实数
复习 你认识下列各数吗? 3 9 3 5 11 5 有理数分类:
正整数 整数 零 有 负整数 理 数 正分数 分数 负分数
0.875 0
正整数 正数
有 正分数 理 零 数 负整数 负数 负分数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)如果a 0,那么它的倒数为 a .
例1:
(1)分别写出- 6 , 3.14 的相反数;
(2)指出 5,1 3各是什么数的相反数
(3)求 3 64的绝对值
(4)已知一个数的绝对值是 3 求这个数.
填空
1、 3的相反数是 3 ,绝对值是 3 .
2、绝对值等于 5 的数是 5, 7 的平
c
bO
a
练习:
P56 第3题
作业:
课本P57 3, 5
人教版七年级数学下册
无理数的特征: 无限不循环的小数
请举例说明
注意:带根号 的数不一定是 无理数
有理数和无理数统称实数.
整数
实 有理数

分数
有限小数或无 限循环小数
无理数 无限不循环小数
在实数范围内,相反数、倒数、绝 对值的意义和有理数范围内的相反数、 倒数、绝对值的意义完全一样。
(1)a是一个实数,它的相反数为
方是 7 .
3是、一 个2p 数的.绝对值是
p 2
,则这个数
例2
计算下列各式的值:
(1)( 3 2) 2; (2)3 3 2 3
例3.计算(: 结果保留小数点后两位)
(1) 5
(2) 3 • 2.
练习:
P86 4、计算:
(1)2 2 3 2;
(2) 2 32 2.
已知实数在数轴上的位置如下, 化简 a b a b c a 2 c
相关文档
最新文档