七年级数学实数PPT教学课件
合集下载
(人教版)七年级下册数学:《实数》ppt课件PPT17页
(人教版)七年级下册数学:《实数》 ppt课件
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛
人教版《实数》优秀课件初中数学ppt
品比赛,小红很高兴,他 想裁出一块面积为25dm2 的正方形画布,画上自己 的得意之作参加比赛,这 块正方形画布的边长应取 多少?你能帮小明算一算 吗?
二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方
二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方
-实数ppt课件
新课引入
但后来,这学派的一位年轻成员希伯索斯 (Hippasus) 发现边长为1的正方形的对角线的长 不能用有理数来表示,这就动摇了毕达哥拉斯 学派的信条,引起了信徒们的恐慌,他们试图 封锁这一发现,然而希伯索斯偷偷将这一发现 传播出去,这为他招来了杀身之祸,在他逃回 家的路上,遭到毕氏成员的围捕,被投入大海.
3
-5
0
5
2.如果将所有有理数都标到数轴上,那么数轴被填满了吗?
没有
新课讲解
B
1
C
-1
0
A
1
2
如图:OA=OB,数轴上A、C点对应的数分别是什么?
A点对应的数是 2 C点对应的数是 2
通过画图中正方形的边长,就能准确的把 2 和 2 表示在数轴上.
新课讲解 在实数范围内,每一个数都可以用数轴上
做一做
5.填空:
(1) 3 的相反数是____3______
(2) 3
的相反数是
3
(3) 5 _____5______
(4)绝对值等于 6 的数是 _____6____
新课讲解
我们已经知道,每一个有理数都可以用数轴
上的点表示出来.
1.请把-2,-0.5,
1 4
和3在数轴表示出来.1-2 -0.5 4无限不循 环小数
正实数 实数 零
负实数
正有理数 正无理数
负有理数 负无理数
注意: 零既不是正实数也不是负实数
小结 3.无理数
我们把这种无限不循环小数叫做无理数.
4.无理数的形式
(1)圆周率 π 及一些含有 π 的数都是无理数.
(2)像√-2,√-3,﹣√-12…开不尽方的数是无理数.
(3)有一定的规律,但不循环的无限小数都是无理数.
初中实数ppt课件
为分数。
实数具有完备性,即实数集在加 法、减法、乘法和除法(除数不
为0)下是封闭的。
实数的分类
有理数
有理数包括整数和分数,其中整 数包括正整数、0和负整数。分数
则可以表示为两个整数的比,如 1/2、2/3等。
无理数
无理数是无法表示为分数的数,常 见的无理数有无限不循环小数,如 π、√2等。
实数的其他分类
实数还可以根据其性质进行分类, 如正数、负数、零、正有理数、负 有理数等。
实数的性质
实数的顺序性
对于任意两个不同的实数a和b,如果 a小于b,那么在它们之间一定存在一 个实数c,使得a小于c且c小于b。
实数的四则运算性质
实数的完备性
实数集在加法、减法、乘法和除法( 除数不为0)下是封闭的,即任何两 个实数的这四种运算的结果仍然是实 数。
减法运算
总结词
掌握减法运算的基本概念和规则
详细描述
实数的减法可以通过加法来实现,即将减数变为相反数,然后进行加法运算。例如,a - b = a + (-b) 。
乘法运算
总结词
理解乘法运算的基本概念和规则
详细描述
实数的乘法运算需要考虑正负数的特殊情况。例如,正数与正数相乘、负数与负数相乘、正数与负数相乘等。
详细描述
在建筑、工程、机械制造等领域,需要使用实数来表示物体的长度、宽度、高度等参数 。例如,在设计一座桥梁时,需要精确地测量各个部分的长度,并使用实数来表示,以
确保桥梁的安全性和稳定性。
重量测量中的实数应用
总结词
在购买商品时,我们经常需要测量物体 的重量,而实数在重量测量中的应用也 是必不可少的。
值的取值范围。
解决几何问题
在解决与几何图形相关的面积、 体积等问题时,需要比较实数的 大小,以确定相关参数的取值范
实数具有完备性,即实数集在加 法、减法、乘法和除法(除数不
为0)下是封闭的。
实数的分类
有理数
有理数包括整数和分数,其中整 数包括正整数、0和负整数。分数
则可以表示为两个整数的比,如 1/2、2/3等。
无理数
无理数是无法表示为分数的数,常 见的无理数有无限不循环小数,如 π、√2等。
实数的其他分类
实数还可以根据其性质进行分类, 如正数、负数、零、正有理数、负 有理数等。
实数的性质
实数的顺序性
对于任意两个不同的实数a和b,如果 a小于b,那么在它们之间一定存在一 个实数c,使得a小于c且c小于b。
实数的四则运算性质
实数的完备性
实数集在加法、减法、乘法和除法( 除数不为0)下是封闭的,即任何两 个实数的这四种运算的结果仍然是实 数。
减法运算
总结词
掌握减法运算的基本概念和规则
详细描述
实数的减法可以通过加法来实现,即将减数变为相反数,然后进行加法运算。例如,a - b = a + (-b) 。
乘法运算
总结词
理解乘法运算的基本概念和规则
详细描述
实数的乘法运算需要考虑正负数的特殊情况。例如,正数与正数相乘、负数与负数相乘、正数与负数相乘等。
详细描述
在建筑、工程、机械制造等领域,需要使用实数来表示物体的长度、宽度、高度等参数 。例如,在设计一座桥梁时,需要精确地测量各个部分的长度,并使用实数来表示,以
确保桥梁的安全性和稳定性。
重量测量中的实数应用
总结词
在购买商品时,我们经常需要测量物体 的重量,而实数在重量测量中的应用也 是必不可少的。
值的取值范围。
解决几何问题
在解决与几何图形相关的面积、 体积等问题时,需要比较实数的 大小,以确定相关参数的取值范
(新人教版)数学七年级下册:《实数》PPT课件
4
(2) (15)2 ( 15)2
15 15 0
(3) (2)3 (2)2 2 (9)2 3 (8)2
8 2 9 4 29
(4) 225 196 3 64 15 14 4 5
(5) ( 2 3)2 (1 2)2
3 2 2 1 3 1
(6) 2 5 2( 7 1 5) (2 5 7) 2
(2) 7 的整数部分是__2_,小数部分是
___7___2___;
(3)已知x是 3 2 的整数部分,则
x2-2x+8的平方根是_1_1__.
1 6.(1)|-5 |的倒数是___5____;
(2)若 x 2,y 3,且xy>0,x+y=_5_或__-__5_;
(3)点A在数轴上对应的数为 2 7 ,点B在 数轴上对应的数为 3 7 ,则A,B两点的距 离为__5__7__.
2 0.6& 0.666 666 666L 3
13.3.2 实数与数轴 B
A
C
E
D
F
提问:若以点D为圆心,CD为半径 画圆与数轴交于点E、F,则点E、F分 别表示什么数? 无理数.
{ 实数 }: 数 a
实数与数轴上的点一一对应
-2
-1
0A 1
2
(数点)每一个实数(有理数、无理数)都
可以用数轴上的一个点来表示.
4.(1)0.65;(2)-2.74.
5.(1)5 2 ;(2)0.
6.(1)4> 15 ;(2)π<3.1416;
(3)
32
>
3 2
;(4)
2 2
>
3 3
.
7.有,没有,没有,没有,没有,有.
8.1.4s.
(2) (15)2 ( 15)2
15 15 0
(3) (2)3 (2)2 2 (9)2 3 (8)2
8 2 9 4 29
(4) 225 196 3 64 15 14 4 5
(5) ( 2 3)2 (1 2)2
3 2 2 1 3 1
(6) 2 5 2( 7 1 5) (2 5 7) 2
(2) 7 的整数部分是__2_,小数部分是
___7___2___;
(3)已知x是 3 2 的整数部分,则
x2-2x+8的平方根是_1_1__.
1 6.(1)|-5 |的倒数是___5____;
(2)若 x 2,y 3,且xy>0,x+y=_5_或__-__5_;
(3)点A在数轴上对应的数为 2 7 ,点B在 数轴上对应的数为 3 7 ,则A,B两点的距 离为__5__7__.
2 0.6& 0.666 666 666L 3
13.3.2 实数与数轴 B
A
C
E
D
F
提问:若以点D为圆心,CD为半径 画圆与数轴交于点E、F,则点E、F分 别表示什么数? 无理数.
{ 实数 }: 数 a
实数与数轴上的点一一对应
-2
-1
0A 1
2
(数点)每一个实数(有理数、无理数)都
可以用数轴上的一个点来表示.
4.(1)0.65;(2)-2.74.
5.(1)5 2 ;(2)0.
6.(1)4> 15 ;(2)π<3.1416;
(3)
32
>
3 2
;(4)
2 2
>
3 3
.
7.有,没有,没有,没有,没有,有.
8.1.4s.
人教版七年级数学下册 6.3 第1课时 实数 (共19张PPT)
有理数都可以写成有限小数或无限循环 小数的形式.
反过来,任何有限小数或无限循环小数 也都是有理数.
想一想:所有的数都可以写成有限小数或无限循环 小数的形式吗?
在前面的学习中,我们知道:
π=3.1415926535897932384626… 1.01001000100001…(两个1之间依次多一个0) 你有什么发现呢? 无限不循环小数,叫做无理数.
4
9
负实数: 16, 3 8, 5
方法 对每个数都要进行判断,分类标准不同结果不同.
练一练
把下列各数分别填入相应的集合内:
22 , 7
64,
3,
4,
0.101,
π ,
3
2, 5
2.121, 0.3737737773
...
有理数集合
...
无理数集合
二、实数与数轴上的点
思考1: 如图,直径为1个单位长度的圆从原点沿数 轴向右滚动一周,圆上一点从原点到达A点,则数轴 上表示点A的数是多少?
2、判断快枪手——看谁最快最准!
(1)实数不是有理数就是无理数. ( )
(2)无理数都是无限不循环小数. (
)
(3)带根号的数都是无理数.
(× )
(4)无理数都是无限小数.
()
(5)无理数一定都带根号.
(× )
3、把下列各数填入相应的括号内:
9 35
64
π
•
0. 6
3 4
3 9
0.13
(1)有理数: {
典例精析
例1 将下列各数分别填入下列相应的括号内:
3 9, 1, 7 , π, 16, 5, 3 8,
4
4 , 0, 25, 0.3232232223
反过来,任何有限小数或无限循环小数 也都是有理数.
想一想:所有的数都可以写成有限小数或无限循环 小数的形式吗?
在前面的学习中,我们知道:
π=3.1415926535897932384626… 1.01001000100001…(两个1之间依次多一个0) 你有什么发现呢? 无限不循环小数,叫做无理数.
4
9
负实数: 16, 3 8, 5
方法 对每个数都要进行判断,分类标准不同结果不同.
练一练
把下列各数分别填入相应的集合内:
22 , 7
64,
3,
4,
0.101,
π ,
3
2, 5
2.121, 0.3737737773
...
有理数集合
...
无理数集合
二、实数与数轴上的点
思考1: 如图,直径为1个单位长度的圆从原点沿数 轴向右滚动一周,圆上一点从原点到达A点,则数轴 上表示点A的数是多少?
2、判断快枪手——看谁最快最准!
(1)实数不是有理数就是无理数. ( )
(2)无理数都是无限不循环小数. (
)
(3)带根号的数都是无理数.
(× )
(4)无理数都是无限小数.
()
(5)无理数一定都带根号.
(× )
3、把下列各数填入相应的括号内:
9 35
64
π
•
0. 6
3 4
3 9
0.13
(1)有理数: {
典例精析
例1 将下列各数分别填入下列相应的括号内:
3 9, 1, 7 , π, 16, 5, 3 8,
4
4 , 0, 25, 0.3232232223
实数ppt课件
原点
数轴上的零点,表示0。
正半轴
数轴上右边的点表示正实数。
负半轴
数轴上左边的点表示负实数。
实数在数轴上的表示
实数
在数轴上有唯一确定的点与之对 应。
相反数
在数轴上与原点对称的点表示相反 数。
绝对值
在数轴上到原点的距离表示绝对值 。
数轴上的点与实数的关系
点与实数一一对应
数轴上的每一个点都表示一个唯一的实数。
实数的四则运算
01
总结词:实数的四则运算是加 法、减法、乘法和除法的统称
。
02
详细描述
03
04
1. 加法和减法:实数的加法 和减法满足交换律、结合律和
相反律。
2. 乘法和除法:实数的乘法 和除法满足交换律、结合律和
分配律。
03
实数与数轴
数轴的定义
01
02
03
04
数轴
一条水平的直线,用来表示实 数的连续范围。
实数还可以根据其正 负性分为正实数、负 实数和零。
无理数:无限不循环 小数,如π、根号2 等。
02
实数的运算
加法与减法
详细描述
2. 结合律:加法或减法的结合律 是指括号如何结合不会影响结果 。例如,a+(b+c)=(a+b)+c和a(b+c)=a-(b+c)。
总结词:实数的加法与减法是基 础运算,它们具有交换律、结合 律和相反律。
2. 结合律:乘法或除法的结合律是指括 号如何结合不会影响结果。例如, a(bc)=(ab)c。
详细描述
1. 交换律:乘法或除法的交换律是指改 变运算顺序不会影响结果。例如, ab=ba和a/b=b/a。
实数ppt课件
。
方程可以看作是实数之间的一种 约束关系,实数则是满足这种约
束条件的数值解。
通过解方程,我们可以找到实数 之间的特定关系和条件。
实数与不等式的关系
不等式是表达数学大小关系的一种形 式,而实数是这些不等式中的变量。
通过解不等式,我们可以找到实数之 间的特定范围和界限。
不等式可以看作是实数之间的一种限 制关系,实数则是满足这种限制条件 的数值。
02
实数的运算规则
实数的加法运算
定义
实数的加法运算是指将两个或多个实数合并成一 个实数的运算。
规则
实数的加法运算满足交换律和结合律,即 a+b=b+a和(a+b)+c=a+(b+c)。
例子
2+3=5,(-1)+(-2)=-3。
实数的减法运算
定义
实数的减法运算是指将一个实数减去另一个实数的运算。
规则
实数的减法运算可以通过加法运算进行转化,即a-b=a+(-b)。
例子
5-3=2,(-1)-(-2)=1。
实数的乘法运算
定义
实数的乘法运算是指将两个或多个实数相乘得到一个实数的运算 。
规则
实数的乘法运算满足交换律、结合律和分配律,即ab=ba和 (a+b)c=ac+bc。
例子
2×3=6,(-1)×(-2)=2。
03
1欧元=100欧分
时间单位的换算
小时与分钟换算:1 小时=60分钟
天与小时换算:1天 =24小时
小时与秒换算:1小 时=3600秒
其他应用举例
01
02
03
温度换算
摄氏度与华氏度换算,例 如:2摄氏度=3.6华氏度
方程可以看作是实数之间的一种 约束关系,实数则是满足这种约
束条件的数值解。
通过解方程,我们可以找到实数 之间的特定关系和条件。
实数与不等式的关系
不等式是表达数学大小关系的一种形 式,而实数是这些不等式中的变量。
通过解不等式,我们可以找到实数之 间的特定范围和界限。
不等式可以看作是实数之间的一种限 制关系,实数则是满足这种限制条件 的数值。
02
实数的运算规则
实数的加法运算
定义
实数的加法运算是指将两个或多个实数合并成一 个实数的运算。
规则
实数的加法运算满足交换律和结合律,即 a+b=b+a和(a+b)+c=a+(b+c)。
例子
2+3=5,(-1)+(-2)=-3。
实数的减法运算
定义
实数的减法运算是指将一个实数减去另一个实数的运算。
规则
实数的减法运算可以通过加法运算进行转化,即a-b=a+(-b)。
例子
5-3=2,(-1)-(-2)=1。
实数的乘法运算
定义
实数的乘法运算是指将两个或多个实数相乘得到一个实数的运算 。
规则
实数的乘法运算满足交换律、结合律和分配律,即ab=ba和 (a+b)c=ac+bc。
例子
2×3=6,(-1)×(-2)=2。
03
1欧元=100欧分
时间单位的换算
小时与分钟换算:1 小时=60分钟
天与小时换算:1天 =24小时
小时与秒换算:1小 时=3600秒
其他应用举例
01
02
03
温度换算
摄氏度与华氏度换算,例 如:2摄氏度=3.6华氏度
实数教学课件
感谢您的观看
THANKS
。
04 实数的应用
在数学中的应用
01
02
03
代数运算
实数可用于解决代数方程 、不等式和函数等问题, 如求解一元二次方程、求 函数的极值等。
几何学
实数与几何学紧密相关, 如长度、角度、面积和体 积等都可以用实数表示。
概率论与统计学
在概率论和统计学中,实 数用于描述随机事件发生 的可能性以及数据的分布 和统计分析。
金融与经济
在金融和经济领域,实数被用于描述货币交易、投资回报、成本 和利润等经济活动。
科学实验与工程设计
在科学实验和工程设计中,实数用于测量各种参数、计算结果和评 估设计方案的有效性。
计算机科学
在计算机科学中,实数用于表示数字、编码和算法等,并用于处理 数据和执行计算任务。
05 实数的扩展知识
无理数的定义与性质
无理数
无理数是一些无法表示为两个整数的比的数,如圆周率π、自然对数的底数e等 。无理数在实数中占据了大部分,它们在数学分析和高等数学中有着广泛的应 用。
02 实数的运算
加法运算
总结词
理解加法运算的意义,掌握加法运算的规则和技巧。
详细描述
实数的加法运算是指将两个或多个实数相加,得到一个新的实数。在进行加法运 算时,应遵循实数的加法规则,即同号数相加取相同的符号,异号数相加取绝对 值较大数的符号,并把绝对值相减。
实数集是数学中最基本的概念之一,它具有完备性和连续性 ,是数学分析和高等数学的基础。实数在日常生活中有着广 泛的应用,如长度、重量、时间等计量单位都是用实数来表 示的。
实数的性质
实数的四则运算
实数的连续性
实数的加法、减法、乘法和除法满足 交换律、结合律和分配律,这些性质 使得实数在数学中具有重要的作用。
《实数》ppt课件
指数运算法则可以用于简化复杂的数 学表达式。
03
CATALOGUE
实数的分类
有理数和无理数
有理数
可以表示为两个整数之比的数, 包括整数、有限小数和无限循环 小数。
无理数
无法表示为两个整数之比的数, 常见于无限不循环小数,如π和 √2。
正数、负数和零
01
02
03
正数
大于零的实数,包括正整 数、正小数和正无理数。
其结果仍为实数。
详细描述
实数的加法运算与整数、有理 数类似,遵循交换律和结合律 ,即a+b=b+a, (a+b)+c=a+(b+c)。
总结词
正数与负数相加,结果的符号 取决于绝对值较大的数。
详细描述
如果a>0,b<0,则a+b=a-(b);如果a<0,b>0,则 a+b=b-(-a)。
减法运算
总结词
《实数》PPT课件
目 录
• 实数的基本概念 • 实数的运算 • 实数的分类 • 实数在生活实数的基本概念
实数的定义
实数的定义
实数是包括有理数和无理数在内的所有数的集合,即实数集。实数集可以用实数轴来表 示,实数轴上的每一个点都对应一个实数,每一个实数都可以在实数轴上找到一个点来
乘法运算
总结词
乘法运算在实数范围内具有封闭性, 即任何两个实数相乘,其结果仍为实 数。
详细描述
实数的乘法运算遵循交换律和结合律 ,即ab=ba,(ab)c=a(bc)。
总结词
正数与负数相乘得负数,负数与负数 相乘得正数。
详细描述
正数乘以正数得正数,如2*3=6;正 数乘以负数得负数,如2*(-3)=-6; 负数乘以负数得正数,如(-2)*(3)=6。
人教版七年级下册 第六章 实数 6.3 实数 课件(共16张PPT)
3 1.7320
3 5 1.710
5 2.2360 3 7 1.913
3.14159265
无限不循环小数
无限不循环小数叫无理数
我们把这类无限不循环的小数叫做无理数。
☆无理数的特征:
1.圆周率及一些含有 的数 2 1
2.开方开不尽数 2、3 5
注意:带根号 的数不一定 是无理数
3
2
0.5050050005 (每两个5之间依次增加一个 0)
正有理数: 9 , __________________;
正无理数:_0_.5_0_5_0_0_5_0_0_0_5___,_3_3__, ;
3
1
负有理数: 8 , ____________3______;
,
正无理数: 5 2 __________________;
2 ___2___ ______ 0 _0___
a是一个实数,它的相反数为 -a
一个正实数的绝对值是它本身; 一个负实数的绝对值是它的相反数; 0的绝对值是0
1、正实数的绝对值是 它本身 ,0的绝对值是 0 , 负实数的绝对值是它的相反数 .
2、 3 的相反数是 3 ,绝对值是
3、一个数的绝对值是 p ,则这个数是 2
4、比较大小:-7 大于 50
3.
p 2
.
5、绝对值等于 5 的数是 5 。
(1)( 3 2) 2; (2)3 3 2 3
解:(1)( 3 2) 2 3 2 2 3
(2)3 3 2 3 (3 2) 3 5 3
解:由题知,a010 a
2 实数: __5_, _9_,_3__8,__13_,_0._•_,_0_,_2__,0_.5_0_5_0_050005 , 3 3
《实数》课件精品 (公开课)2022年数学PPT
情境引入2
两位同学背靠背,规定向前为正,
一人向前走3步,记作
,
一人向后走3步 ,记作
.
对照数轴,说出-3与+3两数的相同点和不同点. 你还能说出具备这些特征的成对的数吗?
一 相反数
探究一 相反数的概念
活动1:观察下列一组数+1和-1,+2.5和-2.5, +4和-4,并把它们在数轴上表示出来.
思考: 1)上述各对数之间有什么特点? 2)请写出一组具有上述特点的数 3)你能得出相反数的概念吗? 4)表示各对数的点在数轴上有什么位置关系?
9 35
64
π
•
0.6
3 4
3 9
0.13
(1)有理数: {
9
64
•
0.6
3
4
3 0.13
π (2)无理数: { 3 5
3 9
(3)整数: { 9
(4)负数: { 3
4
(5)分数: {
•
0.6
(6)实数: {
64 3
3 9
3 0.13
4
3
}
}
} } }
}
5. 比较 3 7 与6的大小.
解: ∵37 >36 ∴ 3 7 > 6.
二 多重符号的化简 问题1:a的相反数是什么?
a 的相反数是-a , a可表示任意有理数. 问题2:如何求一个数的相反数?
在这个数前加一个“-”号.
问题3:若把 a分别换成+5,-7,0时,这些数的相 反数怎样表示?
a = +5, a = -7, a = 0,
- a = -(+5) - a = -(-7) -a = 0
思考 由此你可以得到什么结论? 有理数都可以化成有限小数或无限循环
2020人教版七年级数学下册第六章6.3实数(1)实数的概念课件(共32张PPT)
6,
••
, 1. 2 3,
22 , 36
2
7
1.232232223 (两个3之间依次多一个 2)
有理数是:1.
•
2
•
3
22
,7
36
无理数是: 6
,,
2
1.232232223 ,(两个3之间依次多一个 2)
思考:无理数一般有哪些形式?
(1)像 7, 3, 12 的开不尽方的数是无理数。
020
002
000
02…是无
理数吗?
1.57079632679...
2
它们都是无限 不循环小数,
2.02002000200002…
是无理数
常见的一些无理数:
(1)含 π 的一些数;
(2)含开不尽方的数; (3)有规律但不循环的小数,如1.01001000100001…
例:判断下列数哪些是有理数?哪些是无理数?
人教版七年级数学 下册
6.3 实 数 第1课时 实数的概念
1.了解实数的意义,并能将实数按要求进 行准确的分类;
2.熟练掌握实数大小的比较方法;(重点) 3.了解实数和数轴上的点一一对应,能用 数轴上的点 表示无理数.(难点)
认真阅读课本中6.3 实数的 内容,完成下面练习并体验知 识点的形成过程。
• 这个矛盾说明, 2 不能写成分数的形式, 即 2 不是有理数。
• 实际上, 2 是无限不循环小数。
实数的概念:
在前面的学习中,我们知道,许多数的平方根和 立方根都是无限不循环小数,它们不能化成分数.我 们给无限不循环小数起个名字,叫“无理数”.有理 数和无理数统称为实数.
思考:
实数的有关概念PPT课件
8.一个近似数的有效数字,是指从这个数的左边第一个非零数字起,到 右边最后一位数字止的所有数字.
9.科学记数法是把一个大于10或小于l的正数记成 a 10n 的形式,其
中1≤a<10 ( n是正整数),这种记数的方法叫科学记数法.
10.实数的分类
整数
有理数
实数
分数
(有限小数或无限循环小数 )
无理数 (无限不循环小数)
各实数的绝对值之间的大小关系,进而判定带绝对值符号的代数式的值是
正、是负还是零,然后再根据绝对值的意义,去掉绝对值符号.
例3 2005年l0月12日,我国“神舟六号”载人航天一举成功升天,历时5 天共飞行3250000km,这个飞行距离用科学计数法表示正确的是( ).
(A)3.25104 km;(B)3.25105 km;(C)3.25106 km;(D)3.25107 km.
(3)下列说法中j正确的是( ). (A)一个数的相反数—定是负数 (B)—个数的绝对值一定是正数 (C)一个数的绝对值一定不是负数 (D)一个数的绝对值的相反数一定是负数
(4)下列命题中错误的是( ). (A)每一个整数都对应着数轴上的一个点 (B)每一个无理数都对应着数轴上的一个点 (C)数轴上每个点都对应着一个实数 (D)有理数和数轴上的点一.一对应 (5)一个实数的偶数幂是正数,这个实数是( ). (A)正实数 (B)任何实数 (C)负实数 (D)正实数或负实数
是
,属于负实数集合的是
,属于整实数集
合的是
,属于分数集合的是
,属于有理数集
合的是
,属于无理数集合的是
·
(2)若m、n互为相反数.则 m+n= ;若m、n互为倒数,则 mn= 。
6.3.1实数-人教版七年级数学下册课件
你能求出下列各数的相反数、倒数和绝对值吗?
限 47 限 设点C表示的实数为x,则点A到点C的距离为-1-x,
5 . 8 7 5 2.会在实数范围内求一个数的相反数、倒数、绝对值.
小 8 循 思考: 是无理数吗?2.
反过来,数轴上的每一点都表示一个实数,即实数和数轴上的点是一一对应的。
数 环 ⑤无理数一定都带根号.
(√) (√) (√) (× ) (× ) (√) (× ) (√)
2、把下列各数分别填在相应的集合里
22 , 3.1415926, 7, 8, 3 2 , 0.6, 0,
7 36 ,
,
3
..
1.652,
0.3131131113
有理数集合
无理数集合
4. 下列说法不正确的是 A.|3-π|= 3-π C.2的相反数是-2
|-π|=___π_____,|3-π|=__π_-__3___.
2.我们在有理数范围内学过的运算法则和运算律是 否在实数范围内还能继续用呢?
在实数范围内,相反数、倒数、绝对值的意义和有理 数范围内的相反数、倒数、绝对值的意义完全一样。
学以致用 知行并进
你能求出下列各数的相反数、 倒数和绝对值吗?
7.如图所示,数轴上A,B两点表示的数分别为-1 和 3 ,点B关于点A的对称点为C,求点C所表示的 实数.
解:∵数轴上A,B两点表示的数分别为-1和 3 , ∴点B到点A的距离为1+ 3 ,则点C到点A的距离为 1+ 3 , 设点C表示的实数为x,则点A到点C的距离为-1-x, ∴-1-x=1+ 3 , ∴x=-2- 3
02002000200002… 有理数和无理数统称为实数
它们都是无限不循环小数,是无理数
人教版数学七年级下册第六章实数教学课件
(2)在探索知识的过程中,你积累了哪些经验?
• 思维方法:求一个正数的算术平方根运算和开平方求 一个正数的二次幂运算互为逆运算.
• 探究策略:由特殊到一般,再由一般到特殊,是发现 问题和解决 问题的基本方法和途径.
第六章 实 数
6.1 平方根
第2课时 平方根
导入新课
讲授新课
当堂练习
课堂小结
学习目标
负数没有算术平方根.
典例精析 例1 分别求下列各数的算术平方根:
(1)100, (2)1265, (3) 0.49 .
解:(1)由于102=100,
因此 100 10;
(2)由于
4 5
2=1265
,
因此
16 4 ;
25 5
(3)由于0.72=0.49,
不难看出:被 开方数越大, 对应的算术平 方根也越大.这 个结论对所有 正数都成立.
解:由于一个正数的两个平方根是2a+1和a-4, 则有2a+1+a-4=0,即3a-3=0,解得a=1.所 以这个数为(2a+1)2=(2+1)2=9.
方法归纳:一个正数有两个平方根,它们互为 相反数
回顾平方的概念
已知一个数,求它的平方的运算,叫作平方运算.
平方
+1
-1
1
+2
-2
4
+3
-3
9
二、开平方的概念 反之,已知一个数的平方,求这个数的运算是什么?
(3)0的平方根和算术平方根都是0.
平方根与算术平方根的区别: (1)定义不同:如果一个数x的平方等于a,那么这个
数x叫做 a的平方根,如果一个正数x的平方等于a, 即x2 =a,那么这个正数x叫做a的算术平方根. (2)个数不同:一个正数有两个平方根,而一个正
• 思维方法:求一个正数的算术平方根运算和开平方求 一个正数的二次幂运算互为逆运算.
• 探究策略:由特殊到一般,再由一般到特殊,是发现 问题和解决 问题的基本方法和途径.
第六章 实 数
6.1 平方根
第2课时 平方根
导入新课
讲授新课
当堂练习
课堂小结
学习目标
负数没有算术平方根.
典例精析 例1 分别求下列各数的算术平方根:
(1)100, (2)1265, (3) 0.49 .
解:(1)由于102=100,
因此 100 10;
(2)由于
4 5
2=1265
,
因此
16 4 ;
25 5
(3)由于0.72=0.49,
不难看出:被 开方数越大, 对应的算术平 方根也越大.这 个结论对所有 正数都成立.
解:由于一个正数的两个平方根是2a+1和a-4, 则有2a+1+a-4=0,即3a-3=0,解得a=1.所 以这个数为(2a+1)2=(2+1)2=9.
方法归纳:一个正数有两个平方根,它们互为 相反数
回顾平方的概念
已知一个数,求它的平方的运算,叫作平方运算.
平方
+1
-1
1
+2
-2
4
+3
-3
9
二、开平方的概念 反之,已知一个数的平方,求这个数的运算是什么?
(3)0的平方根和算术平方根都是0.
平方根与算术平方根的区别: (1)定义不同:如果一个数x的平方等于a,那么这个
数x叫做 a的平方根,如果一个正数x的平方等于a, 即x2 =a,那么这个正数x叫做a的算术平方根. (2)个数不同:一个正数有两个平方根,而一个正
【新】人教版七年级数学下册第六章《 实 数》公开课课件.ppt
famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about. 。2020年12月15日星期二2020/12/152020/12/152020/12/15
【预习导学】
②用一张硬纸片前一个半径为1cm的小圆,计算圆的周长,周长是有理 数还是无理数?如何在数轴上表示圆的周长呢?
归纳总结:实数与数轴上的点是 一一对应的 ,即任何一个都可以用数轴上的一 个点来表示;反过来,数轴上的每一个点都表示一个实数。数轴上的任意两个 点,右边的点表示的数总比左边的点表示的数 大 。
1、有理数的运算法则及运算律同样适用于实数的运算;当 遇到无理数并需要求出结果的近似值时,应按照要求的精 确度用相应的近似有限小数去代替无理数,再进行计算。
9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/152020/12/15Tuesday, December 15, 2020
【预习导学】
一、自学指导 1、自学1:自学课本P53-54页,完成54页“探究”,掌握实数的相关概念,理解实数与
数轴上的点的对应关系,完成下列填空。5分钟 归纳总结: 有理数 和 无理数 统称实数。 实数按正负分可分为 正实数 、 0 、 负实数 。
点拨精讲:带根号的不一定都是无理数;所有的无限循环小数都可以化成分数。
解:没有最大的实数,没有最小的实数,绝对值最小的实数是0. 2、设a是最小的自然数,b是最大的负整数,c是绝对值最小的实数,求
【预习导学】
②用一张硬纸片前一个半径为1cm的小圆,计算圆的周长,周长是有理 数还是无理数?如何在数轴上表示圆的周长呢?
归纳总结:实数与数轴上的点是 一一对应的 ,即任何一个都可以用数轴上的一 个点来表示;反过来,数轴上的每一个点都表示一个实数。数轴上的任意两个 点,右边的点表示的数总比左边的点表示的数 大 。
1、有理数的运算法则及运算律同样适用于实数的运算;当 遇到无理数并需要求出结果的近似值时,应按照要求的精 确度用相应的近似有限小数去代替无理数,再进行计算。
9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/152020/12/15Tuesday, December 15, 2020
【预习导学】
一、自学指导 1、自学1:自学课本P53-54页,完成54页“探究”,掌握实数的相关概念,理解实数与
数轴上的点的对应关系,完成下列填空。5分钟 归纳总结: 有理数 和 无理数 统称实数。 实数按正负分可分为 正实数 、 0 、 负实数 。
点拨精讲:带根号的不一定都是无理数;所有的无限循环小数都可以化成分数。
解:没有最大的实数,没有最小的实数,绝对值最小的实数是0. 2、设a是最小的自然数,b是最大的负整数,c是绝对值最小的实数,求
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)分数集合:
•
0.6
(6)实数集合: 9 3 5
64 3
3 9
3 0.13
4
64
•
0.6
3 4
3 9
3
0.13
直径为1个单位长度的圆从原点沿数轴向右
实滚数动与一数周轴,圆上上的的点一一点一由对原应点。到达即点每O一,,个实 数点都O可,的以坐用标数是轴多上少?的一个点来表示;反之 数轴上的每一点都表示一个实数。
7 的平方 是
7.
正实数的绝对值是 它本身 ;
0的反数 。
在实数范围内,相反数、倒数、绝对 值的意义和有理数范围内的相反数、 倒数、绝对值的意义完全一样。
(1)a是一个实数,它的相反数为
绝对值为 a
;
(2)如果a 0,那么它的倒数为
a ,
1 a。
例:求下列各式的值。 (1)( 3 2) 2 (2) 3 3 2 3
2, 4
,
4 , 0,
9
7 , , 5 ,
2
2,
20 3
,
5, 3 8,
(相邻两个3之间
0.373773777 3的7的个数逐次加1)
1 , 5 , 42
4, 9
0,
3 8,
3 2 , 7 , , 2 , 20 , 3
5, 0.373773777
有理数集合
无理数集合
有 理实 数数 和 无 理 数 统 称实 实数 数
6.两个无理数之积不一定是无理数。( )
7.两个无理数之和一定是无理数。(× )
例:计算。 (1) 5( 精 确0到 .01) (2) 3• 2( 结 果 保 留 三 个 有 字效 )数
随堂练习
一、判断:
1.实数不是有理数就是无理数。( ) 2.无理数都是无限不循环小数。( )
3.无理数都是无限小数。( )
4.带根号的数都是无理数。( ×) 5.无理数一定都带根号。( ×)
8
11
反过来,任何有限小数或无限循环小数也都是
有理数无除还限了有不有什限 么循小其环数它的和类无型小限的数循小环数小吗数?,
----------叫做无理数
1.圆周率
2 34
2.开不尽的方根
0.1010010001
(每两1个 之间依次增加0) 一个3.人为构造的数
把下列各数分别填入相应的集合内:
3
1
有理数
无理数 正实数
0 负实数
整数 分数
正有理数 正无理数 负有理数 负无理数
把下列各数填入相应的集合内:
9 3 5 64
(1)有理数集合: 9
•
0.6 •
64 0.6
3
4
3
0 3
3 9 3 0.13 0.13
4
(2)无理数集合: 3 5
3 9
(3)整数集合: 9
(4)负数集合:
3 4
把下列各数写成小数的形式,你有什么发现?
3,3,47 , 9,11 ,5 5 8 11909
33.0, 30.6, 4 75.87,5
5
8
90.8••,1 1 10.12•, 5 0.5•
11
90
9
事实上,任何一个有理数都可以写成有限小数或
无限循环小数。
5.87547 , 0 .8•• 1 9,
2
2
如 图 ,A、B两 点 的 坐 标 分 别 是 A(1,2)、B( 5,0), 求OAB的 面 积 ( 精 确0.1到 ) 。
平面直角坐标系内的点与有序实数对是一一对应的。
随堂练习
1、 3 的相反数是 3 ,绝对值是 3 .
2、绝对值等于 5 的数是 5 ,
3、比较大小:-7
4 3
4、 3 64 的绝对值是 4 。